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Marin Biloš 1 Yu Chen 1 Yuriy Nevmyvaka 1 Ricky T. Q. Chen 4

Abstract
Schrödinger bridge (SB) has emerged as the go-to
method for optimizing transportation plans in dif-
fusion models. However, SB requires estimating
the intractable forward score functions, inevitably
resulting in the costly implicit training loss based
on simulated trajectories. To improve the scal-
ability while preserving efficient transportation
plans, we leverage variational inference to lin-
earize the forward score functions (variational
scores) of SB and restore simulation-free proper-
ties in training backward scores. We propose the
variational Schrödinger diffusion model (VSDM),
where the forward process is a multivariate dif-
fusion and the variational scores are adaptively
optimized for efficient transport. Theoretically,
we use stochastic approximation to prove the con-
vergence of the variational scores and show the
convergence of the adaptively generated samples
based on the optimal variational scores. Empiri-
cally, we test the algorithm in simulated examples
and observe that VSDM is efficient in genera-
tions of anisotropic shapes and yields straighter
sample trajectories compared to the single-variate
diffusion. We also verify the scalability of the
algorithm in real-world data and achieve competi-
tive unconditional generation performance in CI-
FAR10 and conditional generation in time series
modeling. Notably, VSDM no longer depends on
warm-up initializations and has become tuning-
friendly in training large-scale experiments.

1. Introduction
Diffusion models have showcased remarkable proficiency
across diverse domains, spanning large-scale generations
of image, video, and audio, conditional text-to-image tasks,
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and adversarial defenses (Dhariwal & Nichol, 2022; Ho
et al., 2022; Kong et al., 2021; Ramesh et al., 2022; Zhang
et al., 2024). The key to their scalability lies in the closed-
form updates of the forward process, highlighting both sta-
tistical efficiency (Koehler et al., 2023) and diminished de-
pendence on dimensionality (Vono et al., 2022). Neverthe-
less, diffusion models lack a distinct guarantee of optimal
transport (OT) properties (Lavenant & Santambrogio, 2022)
and often necessitate costly evaluations to generate higher-
fidelity content (Ho et al., 2020; Salimans & Ho, 2022; Lu
et al., 2022; Xue et al., 2023; Luo, 2023).

Alternatively, the Schrödinger bridge (SB) problem
(Léonard, 2014; Chen & Georgiou, 2016; Pavon et al., 2021;
Caluya & Halder, 2022; De Bortoli et al., 2021), initially
rooted in quantum mechanics (Léonard, 2014), proposes
optimizing a stochastic control objective through the use
of forward-backward stochastic differential equations (FB-
SDEs) (Chen et al., 2022b). The alternating solver gives rise
to the iterative proportional fitting (IPF) algorithm (Kull-
back, 1968; Ruschendorf, 1995) in dynamic optimal trans-
port (Villani, 2003; Peyré & Cuturi, 2019). Notably, the
intractable forward score function plays a crucial role in
providing theoretical guarantees in optimal transport (Chen
et al., 2023c; Deng et al., 2024). However, it simultane-
ously sacrifices the simulation-free property and largely
relies on warm-up checkpoints for conducting large-scale
experiments (De Bortoli et al., 2021; Chen et al., 2022b). A
natural follow-up question arises:

Can we train diffusion models with efficient transport?

To this end, we introduce the variational Schrödinger diffu-
sion model (VSDM). Employing variational inference (Blei
et al., 2017), we perform a locally linear approximation of
the forward score function, and denote it by the variational
score. The resulting linear forward stochastic differential
equations (SDEs) naturally provide a closed-form update,
significantly enhancing scalability. Compared to the single-
variate score-based generative model (SGM), VSDM is a
multivariate diffusion (Singhal et al., 2023). Moreover, hy-
perparameters are adaptively optimized for more efficient
transportation plans within the Schrödinger bridge frame-
work (Chen et al., 2022b).

Theoretically, we leverage stochastic approximation (Rob-
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bins & Monro, 1951) to demonstrate the convergence of
the variational score to the optimal local estimators. Al-
though the global transport optimality is compromised, the
notable simulation-free speed-ups in training the backward
score render the algorithm particularly attractive for train-
ing various generation tasks from scratch. Additionally, the
efficiency of simulation-based training for the linearized
variational score significantly improves owing to computa-
tional advancements in convex optimization. We validate
the strength of VSDM through simulations, achieving com-
pelling performance on standard image generation tasks.
Our contributions unfold in four key aspects:

• We introduce the variational Schrödinger diffusion
model (VSDM), a multivariate diffusion with optimal
variational scores guided by optimal transport. Addi-
tionally, the training of backward scores is simulation-
free and becomes much more scalable.

• We study the convergence of the variational score using
stochastic approximation (SA) theory, which can be
further generalized to a class of state space diffusion
models for future developments.

• VSDM is effective in generating data of anisotropic
shapes and motivates straighter transportation paths
via the optimized transport.

• VSDM achieves competitive unconditional generation
on CIFAR10 and conditional generation in time series
modeling without reliance on warm-up initializations.

2. Related Works
Flow Matching and Beyond Lipman et al. (2023) utilized
the McCann displacement interpolation (McCann, 1997) to
train simulation-free CNFs to encourage straight trajectories.
Consequently, Pooladian et al. (2023); Tong et al. (2023)
proposed straightening by using minibatch optimal transport
solutions. Similar ideas were achieved by Liu (2022); Liu
et al. (2023) to iteratively rectify the interpolation path.
Albergo & Vanden-Eijnden (2023); Albergo et al. (2023)
developed the stochastic interpolant approach to unify both
flow and diffusion models. However, “straighter” transport
maps may not imply optimal transportation plans in general
and the couplings are still not effectively optimized.

Dynamic Optimal Transport Finlay et al. (2020); Onken
et al. (2021) introduced additional regularization through
optimal transport to enforce straighter trajectories in CNFs
and reduce the computational cost. De Bortoli et al. (2021);
Chen et al. (2022b); Vargas et al. (2021) studied the dy-
namic Schrödinger bridge with guarantees in entropic opti-
mal transport (EOT) (Chen et al., 2023c); Shi et al. (2023);
Peluchetti (2023); Chen et al. (2023b) generalized bridge
matching and flow matching based EOT and obtained

smoother trajectories, however, scalability remains a signifi-
cant concern for Schrödinger-based diffusions.

3. Preliminaries
3.1. Diffusion Models

The score-based generative models (SGMs) (Ho et al., 2020;
Song et al., 2021b) first employ a forward process (1a) to
map data to an approximate Gaussian and subsequently
reverse the process in Eq.(1b) to recover the data distribution.

d−→x t = f t(
−→x t)dt+

√
βtd
−→w t (1a)

d←−x t =
[
f t(
←−x t)− βt∇ log ρt

(←−x t

)]
dt+

√
βtd
←−wt, (1b)

where←−x t,
−→x t ∈ Rd; −→x 0 ∼ ρdata and←−x T ∼ ρprior; f t de-

notes the vector field and is often set to 0 (a.k.a. VE-SDE)
or linear in x (a.k.a. VP-SDE); βt > 0 is the time-varying
scalar; −→w t is a forward Brownian motion from t ∈ [0, T ]
with ρT ≈ ρprior;←−w t is a backward Brownian motion from
time T to 0. The marginal density ρt of the forward process
(1a) is essential for generating the data but remains inacces-
sible in practice due to intractable normalizing constants.

Explicit Score Matching (ESM) Instead, the conditional
score function∇ log ρt|0 (·) ≡ ∇ log ρt

(
·|−→x 0

)
is estimated

by minimizing a user-friendly ESM loss (weighted by λ)
between the score estimator st ≡ sθ(·, t) and exact score
(Song et al., 2021b) such that

Et

[
λtE−→x 0

E−→x t|−→x 0
[∥st(−→x t)−∇ log ρt|0

(−→x t

)
∥22]
]
. (2)

Notably, both VP- and VE-SDEs yield closed-form expres-
sions for any −→x t given −→x 0 in the forward process (Song
et al., 2021b), which is instrumental for the scalability of
diffusion models in real-world large-scale generation tasks.

Implicit Score Matching (ISM) By integration by parts,
ESM is equivalent to the ISM loss (Hyvärinen, 2005; Huang
et al., 2021; Luo et al., 2024b) and the evidence lower bound
(ELBO) follows

log ρ0 (x0) ≥ EρT |0(·)
[
log ρT |0 (xT )

]
− 1

2

∫ T

0

Eρt|0(·)

[
βt ∥st∥22 + 2∇ · (βtst − f t)

]
dt.

ISM is naturally connected to Song et al. (2020), which
supports flexible marginals and nonlinear forward processes
but becomes significantly less scalable compared to ESM.

3.2. Schrödinger Bridge

The dynamic Schrödinger bridge aims to solve a full bridge

inf
P∈D(ρdata,ρprior)

KL(P|Q), (3)
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where D(ρdata, ρprior) is the family of path measures with
marginals ρdata and ρprior at t = 0 and t = T , respectively; Q
is the prior process driven by dxt = f t(xt)dt+

√
2βtεd

−→w t.
It also yields a stochastic control formulation (Chen et al.,
2021; Pavon et al., 2021; Caluya & Halder, 2022).

inf
u∈U

E
{∫ T

0

1

2
∥ut(
−→x t)∥22dt

}
s.t. d−→x t =

[
f t(
−→x ) +

√
βtut(

−→x )
]
dt+

√
2βtεd

−→wt (4)
−→x 0 ∼ ρdata,

−→x T ∼ ρprior,

where U is the family of controls. The expectation is taken
w.r.t −→ρ t(·), which denotes the PDF of the controlled dif-
fusion (4); ε is the temperature of the diffusion and the
regularizer in EOT (Chen et al., 2023c).

Solving the underlying Hamilton–Jacobi–Bellman (HJB)
equation and invoking the time reversal (Anderson, 1982)
with ε = 1

2 , Schrödinger system yields the desired
forward-backward stochastic differential equations (FB-
SDEs) (Chen et al., 2022b):

d−→x t =
[
f t(
−→x t) + βt∇ log

−→
ψ t(
−→x t)

]
dt+

√
βtd
−→wt, (5a)

d←−x t =
[
f t(
←−x t)− βt∇ log←−φ t(

←−x t)
]
dt+

√
βtd
←−wt, (5b)

where
−→
ψ t(·)←−φ t(·) = −→ρ t(·), ρ0(·) ∼ ρdata, ρT (·) ∼ ρprior.

To solve the optimal controls (scores) (∇ log
−→
ψ ,∇ log←−φ ),

a standard tool is to leverage the nonlinear Feynman-Kac
formula (Ma & Yong, 2007; Karatzas & Shreve, 1998; Chen
et al., 2022b) to learn a stochastic representation.
Proposition 1 (Nonlinear Feynman-Kac representation).
Assume Lipschitz smoothness and linear growth condition
on the drift f and diffusion g in the FB-SDE (5). Define
−→y t = log

−→
ψ t(xt) and←−y t = log←−φ t(xt). Then the stochas-

tic representation follows

←−y s = E
[
←−y T −

∫ T

s

Γζ(
←−z t;
−→z t)dt

∣∣∣∣−→x s = xs
]
,

Γζ(
←−z t;
−→z t)≡

1

2
∥←−z t∥22 +∇ ·

(√
βt
←−z t − f t

)
+ ζ⟨←−z t,

−→z t⟩,
(6)

where −→z t =
√
βt∇−→y t,←−z t =

√
βt∇←−y t, and ζ = 1.

4. Variational Schrödinger Diffusion Models
SB outperforms SGMs in the theoretical potential of optimal
transport and an intractable score function∇ log

−→
ψ t(xt) is

exploited in the forward SDE for more efficient transporta-
tion plans. However, there is no free lunch in achieving such
efficiency, and it comes with three notable downsides:

• Solving ∇ log
−→
ψ t in Eq.(5a) for optimal transport is

prohibitively costly and may not be necessary (Mar-
zouk et al., 2016; Liu et al., 2023).

• The nonlinear diffusion no longer yields closed-form
expression of −→x t given −→x 0 (Chen et al., 2022b).

• The ISM loss is inevitable and the estimator suffers
from a large variance issue (Hutchinson, 1989).

4.1. Variational Inference via Linear Approximation

FB-SDEs naturally connect to the alternating-projection
solver based on the IPF (a.k.a. Sinkhorn) algorithm, boiling
down the full bridge (3) to a half-bridge solver (Pavon et al.,
2021; De Bortoli et al., 2021; Vargas et al., 2021). With P1

given and k = 1, 2, ..., we have:

P2k := argmin
P∈D(ρdata, ·)

KL(P∥P2k−1), (7a)

P2k+1 := argmin
P∈D(·, ρprior)

KL(P∥P2k). (7b)

More specifically, Chen et al. (2022b) proposed a neural net-
work parameterization to model (←−z t,

−→z t) using (←−z θ
t ,
−→z ω

t ),
where θ and ω refer to the model parameters, respectively.
Each stage of the half-bridge solver proposes to solve the
models alternatingly as follows

←−
L (θ) = −

∫ T

0

E−→x t∽(5a)

[
Γ1(
←−z θ

t ;
−→z ω

t )dt

∣∣∣∣−→x 0 = x0
]

(8a)

−→
L (ω) = −

∫ T

0

E←−x t∽(5b)

[
Γ1(
−→z ω

t ;
←−z θ

t )dt

∣∣∣∣←−x T = xT
]
,

(8b)

where Γ1 is defined in Eq.(6) and ∽ denotes the approxi-
mate simulation parametrized by neural networks *

However, solving the backward score in Eq.(8a) through
simulations, akin to the ISM loss, is computationally de-
manding and affects the scalability in generative models.

To motivate simulation-free property, we leverage varia-
tional inference (Blei et al., 2017) and study a linear approx-
imation of the forward score ∇ log

−→
ψ (x, t) ≈ Atx with

f t(
−→x t) ≡ −1

2βt
−→x t, which ends up with the variational

FB-SDE (VFB-SDE):

d−→x t =

[
−1

2
βt
−→x t + βtAt

−→x t

]
dt+

√
βtd
−→w t, (9a)

d←−x t =

[
−1

2
βt
←−x t − βt∇ log−→ρ t(

←−x t)

]
dt+

√
βtd
←−w t,

(9b)

where t ∈ [0, T ] and ∇ log−→ρ t is the score function of (9a)
and the conditional version is to be derived in Eq.(15).

The half-bridge solver is restricted to a class of OU pro-
cesses OU(ρdata, ·) with the initial marginal ρdata.

argmin
P∈D(ρdata,·)

KL(P∥P2k−1)⇒ argmin
P̂∈OU(ρdata,·)

KL(P̂∥P2k−1).

*∼ (resp. ∽) denotes the exact (resp. parametrized) simulation.
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By the mode-seeking property of the exclusive (reverse) KL
divergence (Chan et al., 2022), we can expect the optimizer
P̂ to be a local estimator of the nonlinear solution in (7a).

Additionally, the loss function (8b) to learn the variational
score At, where t ∈ [0, T ], can be simplified to

−→
L (A) = −

∫ T

0

Ext∽(9b)

[
Γζ(Atxt;

←−z θ
t )dt

∣∣∣∣←−x T = xT

]
,

(10)

where Γζ is defined in Eq.(6). Since the structure property
−→
ψ t
←−φ t =

−→ρ t in Eq.(5) is compromised by the variational
inference, we propose to tune ζ in our experiments.

4.2. Closed-form Expression of Backward Score

Assume a prior knowledge of At is given, we can rewrite
the forward process (9a) in the VFB-SDE and derive a mul-
tivariate forward diffusion (Singhal et al., 2023):

d−→x t =

[
−1

2
βtI+ βtAt

]
−→x tdt+

√
βtd
−→w t

= −1

2
Dtβt

−→x tdt+
√
βtd
−→w t,

(11)

where Dt = I− 2At ∈ Rd×d is a positive-definite matrix †.
Consider the multivariate OU process (11). The mean and
covariance follow

dµt|0

dt
= −1

2
βtDtµt|0 (12a)

dΣt|0

dt
= −1

2
βt
(
DtΣt|0 +Σt|0D

⊺
t

)
+ βtI. (12b)

Solving the differential equations with the help of integra-
tion factors, the mean process follows

µt|0 = e−
1
2 [βD]tx0, (13)

where [βD]t =
∫ t

0
βsDsds. By matrix decomposition

Σt|0 = CtH
−1
t (Särkkä & Solin, 2019), the covariance

process follows that:(
Ct

Ht

)
= exp

[(
− 1

2 [βD]t [βI]t
0 1

2 [βD
⊺]t

)](
Σ0

I

)
, (14)

where the above matrix exponential can be easily com-
puted through modern computing libraries. Further, to
avoid computing the expensive matrix exponential for high-
dimensional problems, we can adopt a diagonal and time-
invariant Dt.

Suppose Σt|0 has the Cholesky decomposition Σt|0 =
LtL

⊺
t for some lower-triangular matrix Lt. We can have a

closed-form update that resembles the SGM.
−→x t = µt|0 + Ltϵ,

†Dt = −2At ∈ Rd×d when the forward SDE is VE-SDE.

where µt|0 is defined in Eq.(13) and ϵ is the standard d-
dimensional Gaussian vector. The score function follows

∇ log−→ρ t|0(
−→x t) = −

1

2
∇[(−→x t − µt)

⊺Σ−1t|0 (
−→x t − µt)]

= −Σ−1t|0 (
−→x t − µt) (15)

= −L−⊺t L−1t Ltϵ := −L−⊺t ϵ.

Invoking the ESM loss function in Eq.(2), we can learn the
score function ∇ log−→ρ t|0(

−→x t|−→x 0) using a neural network
parametrization st(·) and optimize the loss function:

∇A∥L−⊺t ϵ− st(xt)∥22. (16)

One may further consider preconditioning techniques (Kar-
ras et al., 2022) or variance reduction (Singhal et al., 2023)
to stabilize training and accelerate training speed.

Speed-ups via Time-invariant and Diagonal Dt If we
parametrize Dt as a time-invariant and diagonal positive-
definite matrix, the formula (14) has simpler explicit ex-
pressions that do not require calling matrix exponential
operators. We present such a result in Corollary 1. For the
image generation experiment in Section 7.3, we use such a
diagonal parametrization when implementing the VSDM.
Corollary 1. If Dt = Λ := diag(λ), where λi ≥ 0, ∀1 ≤
i ≤ d. If we denote the σ2

t :=
∫ t

0
βsds, then matrices Ct

and Ht has simpler expressions with

Ct = Λ−1
{
exp(

1

2
σ2
tΛ)− exp(−1

2
σ2
tΛ)

}
Ht = exp(

1

2
σ2
tΛ),

which leads to CtH
−1
t = Λ−1

{
I − exp(−σ2

tΛ)
}

. As a
result, the corresponding forward transition writes

µt|0 = exp(−1

2
σ2
tΛ)x0, Lt = Λ−

1
2

√
I− exp(−σ2

tΛ).

In Corrolary 1 detailed in Appendix A, since the matrix
Λ = diag(λ) is diagonal and time-invariant, the matrix ex-
ponential and square root can be directly calculated element-
wise on each diagonal elements λi independently.

4.2.1. BACKWARD SDE

Taking the time reversal (Anderson, 1982) of the forward
multivariate OU process (11), the backward SDE satisfies

d←−x t = (−1

2
Dtβt

←−x t − βtst(←−x t))dt+
√
βtd
←−w t. (17)

Notably, with a general PD matrix Dt, the prior distribution
follows that xT ∼ N(0,ΣT |0)

‡. We also note that the prior
is now limited to Gaussian distributions, which is not a
general bridge anymore.

‡See the Remark on the selection of ρprior in section B.1.
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4.2.2. PROBABILITY FLOW ODE

We can follow Song et al. (2021b) and obtain the determin-
istic process directly:

d←−x t =

(
− 1

2
Dtβt

←−x t −
1

2
βtst(

←−x t)

)
dt, (18)

where xT ∼ N(0,ΣT |0) and the sample trajectories follow
the same marginal densities −→ρ t(xt) as in the SDE.

4.3. Adaptive Diffusion via Stochastic Approximation

Our major goal is to generate high-fidelity data with efficient
transportation plans based on the optimal A⋆

t in the forward
process (11). However, the optimal A⋆

t is not known a pri-
ori. To tackle this issue, we leverage stochastic approxima-
tion (SA) (Robbins & Monro, 1951; Benveniste et al., 1990)
to adaptively optimize the variational score A

(k)
t through

optimal transport and simulate the backward trajectories.

(1) Simulate backward trajectoriest {←−x (k+1)
nh }N−1n=0 via the

Euler–Maruyama (EM) scheme of the backward pro-
cess (17) with a learning rate h.

(2) Optimize variational scores
{
A

(k)
nh }

N−1
n=0 :

A
(k+1)
nh = A

(k)
nh − ηk+1∇

−→
L nh(A

(k)
nh ;
←−x (k+1)

nh ),

where ∇
−→
L nh(A

(k)
nh ;
←−x (k+1)

nh ) is the loss function (10) at
time nh and is known as the random field. We expect
that the simulation of backward trajectories {←−x (k+1)

nh }N−1n=0

given s(k+1)
nh helps the optimization of A(k+1)

nh and the opti-
mized A

(k+1)
nh in turn contributes to a more efficient trans-

portation plan for estimating s(k+2)
nh and simulating the back-

ward trajectories {←−x (k+2)
nh }N−1n=0 .

Trajectory Averaging The stochastic approximation al-
gorithm is a standard framework to study adaptive sampling
algorithms (Liang et al., 2007). Moreover, the formulation
suggests to stabilize the trajectories (Polyak & Juditsky,
1992) with averaged parameters A

(k)

nh as follows

A
(k)

nh =

k∑
i=1

A
(i)
nh =

(
1− 1

k

)
A

(k−1)
nh +

1

k
A

(k)
nh ,

where A
(k)

nh is known to be an asymptotically efficient (opti-
mal) estimator (Polyak & Juditsky, 1992) in the local state
space A by assumption A1.

Exponential Moving Average (EMA) Despite guaran-
tees in convex scenarios, the parameter space differs tremen-
dously in different surfaces in non-convex state space A.

Empirically, if we want to exploit information from mul-
tiple modes, a standard extension is to employ the EMA
technique (Trivedi & Kondor, 2017):

A
(k)

nh = (1− η)A(k−1)
nh + ηA

(k)
nh ,where η ∈ (0, 1).

The EMA techniques are widely used empirically in dif-
fusion models and Schrödinger bridge (Song & Ermon,
2020; De Bortoli et al., 2021; Chen et al., 2022b) to avoid
oscillating trajectories. Now we are ready to present our
methodology in Algorithm 1.

Computational Cost Regarding the wall-clock compu-
tational time: i) training (linear) variational scores, albeit
in a simulation-based manner, becomes significantly faster
than estimating nonlinear forward scores in Schrödinger
bridge; ii) the variational parametrization greatly reduced
the number of model parameters, which yields a much-
reduced variance in the Hutchinson’s estimator (Hutchinson,
1989); iii) since we don’t need to update At as often as the
backward score model, we can further amortize the training
of At. In the simulation example in Figure.9(b), VSDM is
only 10% slower than the SGM with the same training com-
plexity of backward scores while still maintaining efficient
convergence of variational scores.

5. Convergence of Stochastic Approximation

In this section, we study the convergence of A(k)
t to the

optimal A⋆
t , where t ∈ [0, T ] §. The primary objective

is to show the iterates (19) follow the trajectories of the
dynamical system asymptotically:

dAt = ∇
−→
L t(At)ds, (20)

where dAt

ds = limη→0
A

(k+1)
t −A(k)

t

η and∇
−→
L t(·) is the mean

field at time t:

∇
−→
L t(At) =

∫
X
∇
−→
L t(At;

←−x (·)
t )←−ρ t(d

←−x (·)
t ), (21)

where X denotes the state space of data x and ∇
−→
L t de-

notes the gradient w.r.t. At; ←−ρ t is the distribution of the
continuous-time interpolation of the discretized backward
SDE (22) from t = T to 0. We denote by A⋆

t one of the
solutions of ∇

−→
L t(A

⋆
t ) = 0.

The aim is to find the optimal solution A⋆
t to the mean

field ∇
−→
L t(A

⋆
t ) = 0. However, we acknowledge that the

equilibrium is not unique in general nonlinear dynamical
systems. To tackle this issue, we focus our analysis around
a neighborhood Θ of the equilibrium by assumption A1.
After running sufficient many iterations with a small enough

§We slightly abuse the notation and generalize A
(k)
nh to A

(k)
t .
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Algorithm 1 Variational Schrödinger Diffusion Models (VSDM). ρprior is fixed to a Gaussian distribution. ηk is the step
size for SA and h is the learning rate for the backward sampling of Eq.(17). ξn denotes the standard Gaussian vector at the
sampling iteration n. The exponential moving averaging (EMA) technique can be used to further stabilize the algorithm.

repeat
Simulation-free Optimization of Backward Score
Draw x0 ∼ ρdata, n ∼ {0, 1, · · · , N − 1}, ϵ ∼ N(0, I).
Sample xnh|x0 ∼ N(µnh|0,Σnh|0) by Eq.(13) and (14) given A

(k)
nh .

Cache {µnh|0}N−1n=0 and {L−⊺nh }
N−1
n=0 via Cholesky decomposition of {Σnh}N−1n=0 to avoid repeated computations.

Optimize the score functions s(k+1)
nh sufficiently through the loss function∇θ∥L−⊺nh ϵ− s

(k+1)
nh (xnh)∥22.

Optimization of Variational Score via Stochastic Approximation (SA)
Simulate the backward trajectory←−x (k+1)

nh given A
(k)
nh via Eq.(22), where←−x (k+1)

(N−1) ∼ N(0,Σ
(k)
(N−1)h|0).

Optimize variational score A
(k+1)
nh using the loss function (10), where n ∈ {0, 1, · · · , N − 1}:

A
(k+1)
nh = A

(k)
nh − ηk+1∇

−→
L nh(A

(k)
nh ;
←−x (k+1)

nh ). (19)

until Stage k = kmax

Sample←−x 0 with stochastic (resp. deterministic) trajectories via the discretized Eq.(17) (resp. Eq.(18)).

step size ηk, suppose A
(k)
t ∈ Θ is somewhere near one

equilibrium A⋆
t (out of all equilibrium), then by the induc-

tion method, the iteration tends to get trapped in the same
region as shown in Eq.(32) and yields the convergence to
one equilibrium A⋆

t . We also present the variational gap of
the (sub)-optimal transport and show our transport is more
efficient than diffusion models with Gaussian marginals.

Next, we outline informal assumptions and sketch our main
results, reserving formal ones for readers interested in the
details in the appendix. We also formulate the optimization
of the variational score At using stochastic approximation
in Algorithm 2 in the supplementary material.

Assumption A1 (Regularity). (Positive definiteness) For
any t ≥ 0 and At ∈ A, Dt = I− 2At is positive definite.
(Locally strong convexity) For any stable local minimum A⋆

t

with ∇
−→
L t(A

⋆
t ) = 0, there is always a neighborhood Θ s.t.

A⋆
t ∈ Θ ⊂ A and

−→
L t is strongly convex in Θ.

By the mode-seeking property of the exclusive (reverse)
KL divergence (Chan et al., 2022), we only make a mild
assumption on a small neighborhood of the solution and
expect the convergence given proper regularities.

Assumption A2 (Lipschitz Score). For any t ∈ [0, T ], the
score ∇ log−→ρ t is L-Lipschitz.

Assumption A3 (Second Moment Bound). The data dis-
tribution has a bounded second moment.

Assumption A4 (Score Estimation Error). We have
bounded score estimation errors in L2 quantified by ϵscore.

We first use the multivariate diffusion to train our score

estimators {s(k)t }N−1n=0 via the loss function (16) based on
the pre-specified A

(k)
t at step k. Similar in spirit to Chen

et al. (2023a; 2022a), we can show the generated samples
based on {s(k)t }N−1n=0 are close in distribution to the ideal
samples in Theorem 1. The novelty lies in the extension of
single-variate diffusions to multi-variate diffusions.

Theorem 1 (Generation quality, informal). Assume as-
sumptions A1-A4 hold with a fixed A

(k)
t , the generated data

distribution is close to the data distributions ρdata such that

TV(←−ρ (k)
0 , ρdata) ≲ exp(−T ) + (

√
dh+ ϵscore)

√
T .

To show the convergence of A(k)
t to A⋆

t , the proof hinges
on a stability condition such that the solution asymptotically
tracks the equilibrium A⋆

t of the mean field (20).

Lemma 2 (Local stability, informal). Assume the assump-
tions A1 and A2 hold. For ∀t ∈ [0, T ] and ∀A ∈ Θ, the
solution satisfies a local stability condition such that

⟨A−A⋆
t ,∇
−→
L t(A)⟩ ≳ ∥A−A⋆

t ∥22.

The preceding result illustrates the convergence of the solu-
tion toward the equilibrium on average. The next assump-
tion assumes a standard slow update of the SA process,
which is standard for theoretical analysis but may not be
always needed in empirical evaluations.

Assumption A5 (Step size). The step size {ηk}k∈N is a
positive and decreasing sequence

ηk → 0,

∞∑
k=1

ηk = +∞,
∞∑
k=1

η2k < +∞.
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Next, we use the stochastic approximation theory to prove
the convergence of A(k)

t to an equilibrium A⋆
t .

Theorem 2 (Convergence in L2). Assume assumptions
A1-A5 hold. The variational score A

(k)
t converges to an

equilibrium A⋆
t in L2 such that

E[∥A(k)
t −A⋆

t ∥22] ≤ 2ηk,

where the expectation is taken w.r.t samples from←−ρ (k)
t .

In the end, we adapt Theorem 1 again to show the adaptively
generated samples are asymptotically close to the samples
based on the optimal A⋆

t in Theorem 3, which quantifies the
quality of data based on more efficient transportation plans.

Theorem 3 (Generation quality of adaptive samples).
Given assumptions A1-A5, the generated sample distribu-
tion at stage k is close to the exact sample distribution based
on the equilibrium A⋆

t such that

TV(←−ρ ⋆
0, ρdata) ≲ exp(−T ) + (

√
dh+ ϵscore +

√
ηk)
√
T .

6. Variational Gap
Recall that the optimal and variational forward SDEs follow

d−→x t =
[
f t(
−→x t) + βt∇ log

−→
ψ t(
−→x t)

]
dt+

√
βtd
−→w t,

d−→x t =
[
f t(
−→x t) + βtA

(k)
t
−→x t

]
dt+

√
βtd
−→w t,

d−→x t =
[
f t(
−→x t) + βtA

⋆
t
−→x t

]
dt+

√
βtd
−→w t,

where we abuse the notion of −→x t for the sake of clarity
and they represent three different processes. Despite the
improved efficiency based on the ideal A⋆

t compared to the
vanilla At ≡ 0, the variational score inevitably yields a
sub-optimal transport in general nonlinear transport. We
denote the law of the above processes by L, L(k), and L⋆.
To assess the disparity, we leverage the Girsanov theorem
to study the variational gap.

Theorem 4 (Variational gap). Assume the assumption A2
and Novikov’s condition hold. Assume f t and ∇ log

−→
ψ t

are Lipschitz smooth and satisfy the linear growth. The
variational gap follows that

KL(L∥L⋆) =
1

2

∫ T

0

E
[
βt∥A⋆

t
−→x t −∇ log

−→
ψ t(
−→x t)∥22

]
dt

KL(L∥L(k)) ≲ ηk +KL(L∥L⋆).

Connections to Gaussian Schrödinger bridge (GSB)
When data follows a Gaussian distribution, VSDM approxi-
mates the closed-form OT solution of Schrödinger bridge
(Janati et al., 2020; Bunne et al., 2023). We refer readers

to Theorem 3 (Bunne et al., 2023) for the detailed trans-
portation plans. Compared to the vanilla At ≡ 0, we can
significantly reduce the variational gap with KL(L∥L⋆) us-
ing proper parametrization and sufficient training.

We briefly compare VSDM to SGM and SB in the following:

Properties SGM SB VSDM
Entropic Optimal Transport × Optimal Sub-Optimal
Simulation-Free (backward) ✓ × ✓

7. Empirical Studies
7.1. Comparison to Gaussian Schrodinger Bridge

VSDM is approximating GSB (Bunne et al., 2023) when
both marginals are Gaussian distributions. To evaluate
the solutions, we run our VSDM with a fixed βt ≡ 4 in
Eq.(25) in Song et al. (2021b) and use the same marginals
to replicate the VPSDE of the Gaussian SB with αt ≡ 0
and ct ≡ −2 in Eq.(7) in Bunne et al. (2023). We train
VSDM with 20 stages and randomly pick 256 samples for
presentation. We compare the flow trajectories from both
models and observe in Figure 1 that the ground truth solu-
tion forms an almost linear path, while our VSDM sample
trajectories exhibit a consistent alignment with trajectories
from Gaussian SB. We attribute the bias predominantly to
score estimations and numerical discretization.

(a) GSB (b) VSDM

Figure 1. Gaussian SB (GSB) v.s. VSDM on the flow trajectories.

7.2. Synthetic Data

We test our variational Schrödinger diffusion models (VS-
DMs) on two synthetic datasets: spiral and checkerboard
(detailed in section D.2.1). We include SGMs as the baseline
models and aim to show the strength of VSDMs on general
shapes with straighter trajectories. As such, we stretch the
Y-axis of the spiral data by 8 times and the X-axis of the
checkerboard data by 6 times and denote them by spiral-8Y
and checkerboard-6X, respectively.

We adopt a monotone increasing {βnh}N−1n=0 similar to Song
et al. (2021b) and denote by βmin and βmax the minimum
and maximum of {βnh}N−1n=0 . We fix ζ = 0.75 and βmin =
0.1 and we focus on the study with different βmax. We find
that SGMs work pretty well with βmax = 10 (SGM-10)
on standard isotropic shapes. However, when it comes to

7
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spiral-8Y, the SGM-10 struggles to recover the boundary
regions on the spiral-8Y data as shown in Figure 2 (top).

Generations of Anisotropic Shapes To illustrate the ef-
fectiveness of our approach, Figure 2 (bottom) shows that
VSDM-10 accurately reconstructs the edges of the spiral
and generates high-quality samples.
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Figure 2. Variational Schrödinger diffusion models (VSDMs, bot-
tom) v.s. SGMs (top) with the same hyperparameters (βmax = 10).

Straighter Trajectories The SGM-10 fails to fully gen-
erate the anisotropic spiral-8Y and increasing βmax to 20
or 30 (SGM-20 and SGM-30) significantly alleviates this
issue. However, we observe that excessive βmax values in
SGMs compromise the straightness and leads to inefficient
transport, especially in the X-axis of spiral-8Y.
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(a) SGM-10
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(b) SGM-20
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(c) SGM-30
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(d) VSDM-10

Figure 3. Probability flow ODE via VSDMs and SGMs. SGM with
βmax = 10 is denoted by SGM-10 for convenience.

Instead of setting excessive βmax on both axes, our VSDM-
10, by contrast, proposes conservative diffusion scales on
the X-axis of spiral-8Y and explores more on the Y-axis of
spiral-8Y. As such, we obtain around 40% improvement on
the straightness in Figure 3 and Table 4.

Additional insights into a similar analysis of the checkboard
dataset, convergence analysis, computational time, assess-
ments of straightness, and evaluations via a smaller number
of function evaluations (NFEs) can be found in Appendix
D.2.

7.3. Image Data Modeling

Experiment Setup In this experiment, we evaluate the
performance of VSDM on image modeling tasks. We
choose the CIFAR10 datasetas representative image data
to demonstrate the scalability of the proposed VSDM on
generative modeling of high-dimensional distributions. We

Figure 4. Unconditional generated samples from VSDM on CI-
FAR10 (32×32 resolution) trained from scratch.

refer to the code base of FB-SDE (Chen et al., 2022b) and
use the same forward diffusion process of the EDM model
(Karras et al., 2022). Since the training of VSDM is an
alternative manner between forward and backward training,
we build our implementations based on the open-source
diffusion distillation code base (Luo et al., 2024a) ¶, which
provides a high-quality empirical implementation of alterna-
tive training with EDM model on CIFAR10 data. To make
the VSDM algorithm stable, we simplify the matrix Dt to
be diagonal with learnable diagonal elements, which is the
case as we introduced in Corollary 1. We train the VSDM
model from scratch on two NVIDIA A100-80G GPUs for
two days and generate images from the trained VSDM with
the Euler–Maruyama numerical solver with 200 discretized
steps for generation.

Performances. We measure the generative performances
in terms of the Fretchat Inception Score (FID (Heusel et al.,
2017), the lower the better), which is a widely used metric
for evaluating generative modeling performances.

Tables 2 summarize the FID values of VSDM along with
other optimal-transport-based and score-based generative
models on the CIFAR10 datasets (unconditional without
labels). The VSDM outperforms other optimal transport-
based models with an FID of 2.28. This demonstrates
that the VSDM has applicable scalability to model high-
dimensional distributions. Figure 7.3 shows some non-
cherry-picked unconditional generated samples from VSDM
trained on the CIFAR10 dataset.

Convergence Speed. To demonstrate the convergence
speed of VSDM along training processes, we record the
FID values in Table 1 for a training trail with no warmup
on CIFAR10 datasets (unconditional). We use a batch size
of 256 and a learning rate of 1e− 4. We use the 2nd-order
Heun numerical solver to sample. The result shows that
VSDM has a smooth convergence performance.

¶See code in https://github.com/pkulwj1994/diff_instruct
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Table 1. CONVERGENCE SPEED OF FID VALUES FOR VSDM.
K IMAGES 0 10K 20K 30K 40K 50K 100K 150K 200K CONVERGE

FID↓ (NFE=35) 406.13 13.13 8.65 6.83 5.66 5.21 3.62 3.29 3.01 2.28

Table 2. CIFAR10 EVALUATION USING SAMPLE QUALITY (FID
SCORE). OUR VSDM OUTPERFORMS OTHER OPTIMAL TRANS-
PORT BASELINES BY A LARGE MARGIN.

CLASS METHOD FID ↓

OT

VSDM (OURS) 2.28
SB-FBSDE (CHEN ET AL., 2022B) 3.01
DOT (TANAKA, 2019) 15.78
DGFLOW (ANSARI ET AL., 2020) 9.63

SGMS

SDE (SONG ET AL. (2021B)) 2.92
SCOREFLOW (SONG ET AL., 2021A) 5.7
VDM (KINGMA ET AL., 2021) 4.00
LSGM(VAHDAT ET AL., 2021) 2.10
EDM(KARRAS ET AL., 2022) 1.97

7.4. Time Series Forecasting

We use multivariate probabilistic forecasting as a real-world
conditional modeling task. Let {(t1,x1), . . . , (tn,xn)},
x ∈ Rd, denote a single multivariate time series. Given
a dataset of such time series we want to predict the next
P values xn+1, . . . ,xn+P . In probabilistic modeling, we
want to generate forecasts from learned p(xn+1:n+P |x1:n).

The usual approach is to have an encoder that represents a
sequence x1:i with a fixed-sized vector hi ∈ Rh, ∀i, and
then parameterize the output distribution p(xi+1|hi). At
inference time we encode the history into hn and sample
the next value from p(xn+1|hn), then use xn+1 to get the
updated hn+1 and repeat until we obtain xn+P .

In the previous works, the output distribution has been spec-
ified with a Copulas (Salinas et al., 2019) and denoising
diffusion (Rasul et al., 2021). We augment our approach to
allow conditional generation which requires only changing
the model to include the conditioning vector hi. For that
we adopt the U-Net architecture. We use the LSTM neural
network as a sequence encoder.

We use three real-world datasets, as described in Ap-
pendix D.3. We compare to the SGM and the denoising
diffusion approach from Rasul et al. (2021) which we refer
to as DDPM. Table 3 shows that our method matches or
outperforms the competitors. Figure 5 is a demo for condi-
tional time series generation and more details are presented
in Figure 12 to demonstrate the quality of the forecasts.

8. Conclusions and Future Works
The Schrödinger bridge diffusion model offers a princi-
pled approach to solving optimal transport, but estimat-

Table 3. FORECASTING RESULTS (LOWER IS BETTER).
CRPS-SUM ELECTRICITY EXCHANGE RATE SOLAR

DDPM 0.026±0.007 0.012±0.001 0.506±0.058

SGM 0.045±0.005 0.012±0.002 0.413±0.045

VSDM (OUR) 0.038±0.006 0.008±0.002 0.395±0.011

Figure 5. Example for Electricity for 2 (out of 370) dimensions.

ing the intractable forward score relies on implicit training
through costly simulated trajectories. To address this scala-
bility issue, we present the variational Schrödinger diffusion
model (VSDM), utilizing linear variational forward scores
for simulation-free training of backward score functions.
Theoretical foundations leverage stochastic approximation
theory, demonstrating the convergence of variational scores
to local equilibrium and highlighting the variational gap
in optimal transport. Empirically, VSDM showcases the
strength of generating data with anisotropic shapes and
yielding the desired straighter transport paths for reducing
the number of functional evaluations. VSDM also exhibits
scalability in handling large-scale image datasets without
requiring warm-up initializations. In future research, we
aim to explore the critically damped (momentum) accelera-
tion (Dockhorn et al., 2022) and Hessian approximations to
develop the “ADAM” alternative of diffusion models.
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Supplementary Material for “Variational Schrödinger Diffusion Models”

In section A, we study the closed-form expression of matrix exponential for diagonal and time-invariant Dt; In section
B, we study the convergence of the adaptive diffusion process; In section C, we study the variational gap of the optimal
transport and discuss its connections to Gaussian Schrödinger bridge; In section D, we present more details on the empirical
experiments.

Notations: X is the state space for the data x;←−x (k)
nh is the n-th backward sampling step with a learning rate h at the k-th

stage. ηk is the step size to optimize A. A is the (latent) state space of A; A(k)
t is the forward linear score estimator at

stage k and time t, A⋆
t is the equilibrium of Eq.(25) at time t. ∇

−→
L t is the random field in the stochastic approximation

process and also the loss (10) at time t; ∇
−→
L t is the mean field with the equilibrium A⋆

t . Given a fixed A
(k)
t at step k,

∇ log−→ρ (k)
t (resp. ∇ log−→ρ (k)

t|0 ) is the (resp. conditional) forward score function of Eq.(11) at time t and step k; A(k)
t yields

the approximated score function s(k)t and←−ρ (k)
t is the distribution of the continuous-time interpolation of the discretized

backward SDE (22).

A. Closed-form Expression with Diagonal and Time-Invariant Dt

In this section, we give the proof of Corollary 1.

Proof Denote Dt = Λ := diag(λ), where λi ≥ 0, ∀1 ≤ i ≤ d, and σ2
t :=

∫ t

0
βsds, then by Eq. (14), we have(

Ct

Ht

)
= exp

[(
− 1

2 [βD]t [βI]t
0 1

2 [βD
⊺]t

)](
Σ0

I

)
= exp(Mt)

(
Σ0

I

)
.

Here [βD]t =
∫ t

0
βsDtds = σ2

tΛ. The matrix Mt is defined as

Mt =

(
− 1

2σ
2
tΛ σ2

t I
0 1

2σ
2
tΛ

)
Therefore, we have

M2
t =

(
(− 1

2σ
2
tΛ)2 0
0 ( 12σ

2
tΛ)2

)
, M3

t =

(
(− 1

2σ
2
tΛ)3 σ2

t (
1
2σ

2
tΛ)2

0 ( 12σ
2
tΛ)3

)
,

M4
t =

(
(− 1

2σ
2
tΛ)4 0
0 ( 12σ

2
tΛ)4,

)
, M5

t =

(
(− 1

2σ
2
tΛ)5 σ2

t (
1
2σ

2
tΛ)4

0 ( 12σ
2
tΛ)5

)
, ...

According to the definition of matrix exponential, we have

exp(Mt) = [I+
1

1!
Mt +

1

2!
M2

t +
1

3!
M3

t + ...]

=

(
exp(− 1

2σ
2
tΛ)

[
σ2
t I+

1
3!σ

2
t (

1
2σ

2
tΛ)2 + 1

5! (
1
2σ

2
tΛ)4 + ...

]
0 exp( 12σ

2
tΛ)

)

=

(
exp(− 1

2σ
2
tΛ)

σ2
t

1
2σ

2
tΛ

[
( 12σ

2
tΛ)1 + 1

3!σ
2
t (

1
2σ

2
tΛ)3 + 1

5! (
1
2σ

2
tΛ)5 + ...

]
0 exp( 12σ

2
tΛ)

)

=

(
exp(− 1

2σ
2
tΛ) Λ−1

[
exp( 12σ

2
tΛ)− exp(− 1

2σ
2
tΛ)

]
0 exp( 12σ

2
tΛ)

)
.

Notice that, when we have Σ0 = 0, the expression can be simplified as follows(
Ct

Ht

)
= exp(Mt)

(
0
I

)
=

(
Λ−1

[
exp( 12σ

2
tΛ)− exp(− 1

2σ
2
tΛ)

]
exp( 12σ

2
tΛ)

)
.
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Therefore, CtH
−1
t = Λ−1

{
I− exp(−σ2

tΛ)
}

. As a result, the corresponding forward transition writes

µt|0 = exp(−1

2
σ2
tΛ)x0

Lt = σtΛ
− 1

2

√
I− exp(−σ2

tΛ).

B. Stochastic Approximation
Stochastic approximation (SA), also known as the Robbins–Monro algorithm (Robbins & Monro, 1951; Benveniste et al.,
1990) offers a conventional framework for the study of adaptive algorithms. The stochastic approximation algorithm works
by repeating the sampling-optimization iterations in the dynamic setting in terms of simulated trajectories. We present our
algorithm in Algorithm 2.

Algorithm 2 The (dynamic) stochastic approximation (SA) algorithm. The (dynamic) SA is a theoretical formulation of
Algorithm 1. We assume optimizing the loss function (16) yields proper score estimations s(k+1)

t at each stage k and time t
to approximate∇ log−→ρ (k)

t (−→x t|−→x 0) in Eq.(9b).
repeat

Simulation: Sample the backward process from (17) given a fixed A
(k)
nh

←−x (k+1)
(n−1)h =

(
−1

2

(
I− 2A

(k)
nh

)
βnh
←−x (k+1)

nh − βnhs(k+1)
nh

(←−x (k+1)
nh

))
h+

√
βnhhξn, (22)

where←−x (k+1)
(N−1) ∼ N(0,Σ

(k)
(N−1)h|0), n ∈ [1, 2, · · · , N − 1] and h is the learning rate for the backward sampling (17)

via the Euler–Maruyama (EM) discretization. ξn denotes the standard Gaussian vector at the sampling iteration n.
Optimization: Minimize the implicit forward loss function (10)

A
(k+1)
nh = A

(k)
nh − ηk+1∇

−→
L nh(A

(k)
nh ;
←−x (k+1)

nh ), (23)

where∇
−→
L nh(A

(k)
nh ;
←−x (k+1)

nh ) is the (dynamic) random field and ηk is the step size. n ∈ {0, 1, · · · , N − 1}.
until Stage k = kmax

To facilitate the analysis, we assume we only make a one-step sampling in Eq.(23). Note that it is not required in practice
and multiple-step extensions can be employed to exploit the cached data more efficiently. The theoretical extension is
straightforward and omitted in the proof. We also slightly abuse the notation for convenience and generalize Anh to At.

Theoretically, the primary objective is to show the iterates (19) follow the trajectories of the dynamical system asymptotically:

dAt = ∇
−→
L t(At)ds, (24)

where∇
−→
L t(At) is the mean field defined as follows:

∇
−→
L t(At) =

∫
X
∇
−→
L t(At;

←−x (·)
t )←−ρ t(d

←−x (·)
t ). (25)

We denote by A⋆
t the solution of ∇

−→
L t(A

⋆
t ) = 0. Since the samples simulated from ←−ρ t are slightly biased due to the

convergence of forward process, discretization error, and score estimation errors as shown in Theorem 1. We expect the
mean field is also biased with a perturbed equilibrium. However, by the perturbation theory (Vanden-Eijnden, 2001), the
perturbation is mild and controlled by the errors in Theorem 1. Hence although A⋆

t is not the optimal linear solution in
terms of optimal transport, it still yields efficient transportation plans.

Since the exclusive (reverse) KL divergence is known to approximate a single mode (denoted by A⋆
t ) in fitting multi-modal

distributions, we proceed to assume the following regularity conditions for the solution A⋆
t and the neighborhood of A⋆

t .

Assumption A1 (Regularity). (Positive definiteness) For any t ≥ 0 and At ∈ A, there exists a constant λmin > 0 s.t.
λminI ≼ Dt = I− 2At, where A ≼ B means B−A is semi positive definite. (Locally strong convexity) For any stable
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local minimum A⋆
t with ∇

−→
L t(A

⋆
t ) = 0, there is always a neighborhood Θ s.t. A⋆

t ∈ Θ ⊂ A and
−→
L t is strongly convex in

Θ, i.e. there exists fixed constants M > m > 0 s.t. for ∀A ∈ Θ, mI ≼ ∂2−→L t

∂A2 (A) ≼MI.

The first part of the above assumption is standard and can be achieved by an appropriate regularization during the training;
the second part only assumes the strong convexity for a small neighborhood Θ of the optimum A⋆

t . As such, when conditions
for Eq.(31) hold, we can apply the induction method to make sure all the subsequent iterates of A(k)

t stay in the same region
Θ and converge to the local minimum A⋆

t . For future works, we aim to explore the connection between m and λmin.

Next, we lay out three standard assumptions following Chen et al. (2023a) to conduct our analysis. Similar results are
studied by Lee et al. (2022); Chen et al. (2022a) with different score assumptions.
Assumption A2 (Lipschitz Score). The score function ∇ log−→ρ t (∇ log−→ρ t,A)|| is L-Lipschitz in both x and A for any
t ∈ [0, T ]. For any A,B ∈ A and any x,y ∈ X , we have

∥∇ log−→ρ t,A(x)−∇ log−→ρ t,A(y)∥2 ≤ L∥x− y∥2
∥∇ log−→ρ t,A(x)−∇ log−→ρ t,B(y)∥2 ≤ L∥A−B∥

where ∥ · ∥2 is the standard L2 norm and ∥ · ∥ is matrix norm.
Assumption A3 (Second Moment Bound). The data distribution has a bounded second moment m2

2 := Eρdata [∥ · ∥22] <∞.
Assumption A4 (Score Estimation Error). For all t ∈ [0, T ], and any At, we have some estimation error .

E−→ρ t
[∥st −∇ log−→ρ t∥22] ≤ ϵ2score.

We first use the multivariate diffusion to train our score estimators {s(k)t }N−1n=0 via the loss function (16) based on the
pre-specified A

(k)
t . Following Chen et al. (2023a), we can show the generated samples based on {s(k)t }N−1n=0 are close in

distribution to the ideal samples in Theorem 1. The novelty lies in the extension of single-variate diffusions to multi-variate
diffusions.

Next, we use the stochastic approximation theory to prove the convergence of A(k)
t to a local equilibrium A⋆

t in Theorem 2.
In the end, we adapt Theorem 1 again to show the adaptively generated samples are asymptotically close to the samples
based on the optimal A⋆

t in Theorem 3, which further optimizes the transportation plans through a variational formulation.
To facilitate the understanding, we summarize the details as follows

Sample via A
(k)
t Random Field Mean Field Convergence of A(k)

t Sample via A⋆
t

s
(k)
t

Backward Sampling
==========⇒

Theorem 1
∇−→L t(A

(k)
t ;←−x (k+1)

t )
Eq.(25)
====⇒ ∇−→L t(A

(k)
t )

Convergence
=======⇒

Theorem 2
A

(k)
t → A⋆

t
Adaptive Sampling
==========⇒

Theorem 3
lim
k→∞

←−x (k+1)
t .

Proof of Sketch

• Part B.1: The generated samples (backward trajectories) approximate the ideal samples from the fixed A
(k)
t .

• Part B.2: We employ the SA theory to show the convergence A
(k)
t to the optimal estimator A⋆

t .

• Part B.3: The adaptively generated samples approximate the ideal samples from the optimal A⋆
t asymptotically.

B.1. Convergence of Approximated Samples with a Fixed At

The following result is majorly adapted from Theorem 2.1 of Chen et al. (2023a), where the single-variate diffusions are
extended to the general multi-variate diffusions.

Recall that the forward samples xt are sampled by (11) given a fixed At, we denote the density of xt by−→ρ t with−→ρ 0 = ρdata.
To facilitate the proof, we introduce an auxiliary variable yt simulated from (11) with y0 ∼ N(0, I) such that yt is always
a Gaussian distribution at time t and KL(ρdata∥N(0, I)) is well defined (not applicable to deterministic initializations for
y0). We denote the auxiliary distribution of yt at time t by −→ρ ◦t . For a fixed T > 0 and score estimations st, let←−ρ t be the
distribution of the continuous-time interpolation of the discretized backward SDE from t = T to 0 with←−ρ T = −→ρ ◦T . Then
generation quality is measured by the distance between←−ρ 0 and ρdata.

||We abstain from using∇ log−→ρ t,At for the sake of clarity. The smoothness w.r.t. At is only used in Eq.(33). When its use may lead
to confusion elsewhere, we employ the∇ log−→ρ t,A notation.
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Theorem 1 (Generation quality). Assume assumptions A2, A3, and A4 hold. Given a fixed At by assumption A1, the
generated data distribution via the EM discretization of Eq.(17) is close to the data distributions ρdata such that

TV(←−ρ 0, ρdata) ≲
√
KL(ρdata∥γd) exp(−T )︸ ︷︷ ︸

convergence of forward process

+(L
√
dh+m2h)

√
T︸ ︷︷ ︸

EM discretization

+ ϵscore

√
T︸ ︷︷ ︸

score estimation

,

where γd is the standard Gaussian distribution.

Proof Following Chen et al. (2023a), we employ the chain rule for KL divergence and obtain:

KL(ρdata∥←−ρ 0) ≤ KL(−→ρ T ∥←−ρ T ) + E−→ρ T (x)[KL(−→ρ 0|T (·∥x)|←−ρ 0|T (·∥x)],

where −→ρ 0|T is the conditional distribution of x0 given xT and likewise for←−ρ 0|T . Note that the two terms correspond to the
convergence of the forward and reverse process respectively. We proceed to prove that

Part I: Forward process KL(−→ρ T ∥←−ρ T ) = KL(−→ρ T ∥−→ρ ◦T ) ≲ KL(ρdata∥γd)e−T ,
Part II: Backward process E−→ρ T (x)[KL(−→ρ 0|T (·|x)∥←−ρ 0|T (·|x)] ≲ (L2dh+m2

2h
2)T + ϵ2scoreT.

Part I: By the Fokker-Plank equation, we have

d

dt
KL(−→ρ t∥−→ρ ◦t ) = −

1

2
βtJ−→ρ ◦

t
(−→ρ t)

where

J−→ρ ◦
t
(−→ρ t) =

∫
−→ρ t(x)

∥∥∥∥∇ ln
−→ρ t(x)
−→ρ ◦t (x)

∥∥∥∥2dx
is the relative Fisher information of −→ρ t with respect to −→ρ ◦t . Note that for all t ≥ 0, −→ρ ◦t is a Gaussian distribution and hence
satisfies the log-Sobolev inequality (Vempala & Wibisono, 2022). It follows that

KL(−→ρ t∥−→ρ ◦t ) ≤
1

2αt
J−→ρ ◦

t
(−→ρ t),

where αt is the log-Sobolev constant of −→ρ ◦t . This implies that

d

dt
KL(−→ρ t∥−→ρ ◦t ) ≤ −αtβtKL(−→ρ t∥−→ρ ◦t ).

Applying the Grönwall’s inequality yields

KL(−→ρ t∥−→ρ ◦t ) ≤ e−
∫ t
0
αsβsdsKL(−→ρ 0∥−→ρ ◦0) ≤ e−α

∫ t
0
βsdsKL(−→ρ 0∥−→ρ ◦0),

where the last inequality is followed by Lemma 1 and α is a lower bound estimate of the LSI constant inft∈[0,T ] αt.

Then by Pinsker’s Inequality, we have

TV(−→ρ t,
−→ρ ◦t ) ≤

√
2KL(−→ρ t∥−→ρ ◦t ) ≤

√
2e−α

∫ t
0
βsdsKL(−→ρ 0∥−→ρ ◦0) ≲

√
KL(ρdata∥γd) exp(−t).

Part II: The proof for the convergence of the reverse process is essentially identical to Theorem 2.1 of Chen et al. (2023a),
with the only potential replacements being instances of ∥xt−xkh∥2 with ∥DT−t(xt−xkh)∥2. However, they are equivalent
due to Assumption A1. Therefore, we omit the proof here.

In conclusion, the convergence follows that

KL(ρdata∥←−ρ 0) ≲ KL(ρdata∥γd)e−T + (L2dh+m2
2h

2)T + ϵscoreT.

And we obtain the final result using the Pinsker’s Inequality.
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Lemma 1 (Lower bound of the log-Sobolev constant). Under the same assumptions and setups in Theorem 1, we have

inf
t∈[0,T ]

αt ≥ min{1, λmin} =: α ∼ O(1).

Proof Consider the auxiliary process for yt:

• Randomness from the initial: By the mean diffusion in Eq.(12a), the conditional mean diffusion of yt at time t, denoted
by µt,y, follows that µt,y = Dtµ0,y, where Dt = e−

1
2 [βD]t . Since y0 ∼ N(0, I), we know µt,y ∼ N(0,DtD⊺

t ).

• Randomness from Brownian motion: the covariance diffusion induced by Brownian motion follows from Σt|0 in
Eq.(12b).

Since y0 ∼ N(0, I) and yt is an OU process in Eq.(11), we know that yt is always a Gaussian distribution at time t ≥ 0
with mean 0. As such, we know that

−→ρ ◦t = N(0,DtD⊺
t +Σt|0). (26)

It follows that

TV(−→ρ t,
−→ρ ◦t ) ≤

√
2e−

∫ t
0
αsβsdsKL(−→ρ 0∥−→ρ ◦0).

Now we need to bound the log-Sobolev constant αt of −→ρ ◦t . Let Σt = DtD⊺
t + Σt|0. Recall that if a distribution p is

α-strongly log-concave, then it satisfies the log-Sobolev inequality (LSI) with LSI constant α (Vempala & Wibisono, 2022).
So for the Gaussian distribution −→ρ ◦t , it suffices to bound the (inverse of) smallest eigenvalue of Σt. Recall from Eq.(12b)
that Σt satisfies the ODE

dΣt

dt
= −1

2
βt(DtΣt +ΣtD

⊺
t ) + βtI, Σ0 = I.

Fix a normalized vector x ∈ Rd and denote ut = x⊺Σtx for t ∈ [0, T ]. By the cyclical property of the trace, we have

x⊺DtΣtx = Tr(x⊺DtΣtx) = Tr(DtΣtxx
⊺) ≥ λminTr(Σtxx

⊺) = λminut.

It follows that

dut
dt
≤ −λminβtut + βt.

Applying the Grönwall’s inequality tells us that

ut ≤
1

λmin
(1− e−λmin

∫ T
0

βsds) + e−λmin

∫ T
0

βsds ≤ max{1, 1/λmin}.

Since x can be any normalized vector, we have that the largest eigenvalue of Σt is bounded by max{1, 1/λmin} and hence

inf
t∈[0,T ]

αt ≥ min{1, λmin} =: α ∼ O(1),

where αt is the log-Sobolev constant of −→ρ ◦t .

Remark: In our theoretical analysis, we introduced an auxiliary variable y0 ∼ γd to make sure KL(ρdata∥γd) is well
defined. Moreover, the distribution of yT is set to −→ρ ◦T in Eq.(26). However, we emphasize that the introduction of yt is only
for theoretical analysis and we adopt a simpler prior N(0,ΣT |0) instead of N(0,DTD⊺

T +ΣT |0) in Eq.(26) for convenience.
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B.2. Part II: Stochastic Approximation Convergence

A
(k)
t converges to A⋆

t by tracking a mean-field ODE with some fluctuations along the trajectory. Before we prove the
convergence, we need to show the stability property of the mean-field ODE such that small fluctuations of earlier iterates do
not affect the convergence to the equilibrium. To that end, we construct a Lyapunov function Vt(A) = 1

2m∥A−A⋆
t ∥22 to

analyze the local stability condition of the solution. This result shows that when the solution is close to the equilibrium
A⋆

t ∈ Θ ⊂ A, At will asymptotically track the trajectory of the mean field (24) within Θ when the step size ηk → 0.

Lemma 2 (Local stabiltity). Assume the assumptions A1 and A2 hold. For any A ∈ Θ, the solution satisfies a local stability
condition such that

⟨A−A⋆
t ,∇Vt(A)⟩ = ⟨A−A⋆,∇

−→
L t(A)⟩ ≥ m∥A−A⋆∥22.

Proof By the smoothness assumption A2 and Taylor expansion, for any A ∈ Θ, we have

∇
−→
L t(A) = ∇

−→
L t(A

⋆) + Hess
[−→
L t

(
Ã
)]
(A−A⋆) = Hess

[−→
L t

(
Ã
)]
(A−A⋆), (27)

where Hess
[−→
L t

(
A
)]

denotes the Hessian of
−→
L t with A at time t; Ã is some value between A and A⋆

t by the mean-value
theorem. Next, we can get

⟨A−A⋆
t ,∇
−→
L t(A)⟩ = Hess

[−→
L t

(
Ã
)]
∥A−A⋆∥22 ≥ m∥A−A⋆∥22,

where the last inequality follows by assumption A1.

Additionally, we show the random field satisfies a linear growth condition to avoid blow up in tails.

Lemma 3 (Linear growth). Assume the assumptions A2 and A3 hold. There exists a constant C > 0 such that ∀A(k)
t ∈ Θ

at the SA step k and time t, the random field is upper bounded in L2 such that

E[∥∇
−→
Lt(A

(k)
t ,←−x (k+1)

t )∥22|Fk] ≤ C(1 + ∥A(k)
t −A⋆

t ∥22) := C(1 + ∥G(k)
t ∥22),

where the trajectory←−x (k+1)
t is simulated by (22); Fk is a σ-filtration formed by (←−x (1)

t ,A
(1)
t ,←−x (2)

t ,A
(2)
t , · · · ,←−x (k)

t ,A
(k)
t ).

Proof By the unbiasedness of the random field, we have

E[∇
−→
L t(A

(k)
t ;←−x (k+1)

t )−∇
−→
L t(A

(k)
t )|Fk] = 0. (28)

It follows that

E[∥∇
−→
L t(A

(k)
t ;←−x (k+1)

t )∥22|Fk] = E[∥∇
−→
L t(A

(k)
t ;←−x (k+1)

t )−∇
−→
L t(A

(k)
t ) +∇

−→
L t(A

(k)
t ))∥22|Fk]

= E[∥∇
−→
L t(A

(k)
t ;←−x (k+1)

t )−∇
−→
L t(A

(k)
t )∥22|Fk] + ∥∇

−→
L t(A

(k)
t )∥22

≤ supE[∥∇
−→
L t(A

(k)
t ;←−x (k+1)

t )−∇
−→
L t(A

(k)
t )∥22|Fk] +M2∥A(k)

t −A⋆
t ∥22,

(29)

where the last inequality follows by assumption A1 and Eq.(27).

By assumption A2 and A3 and the process (17), we know supE[∥∇
−→
L t(A

(k)
t ;←−x (k+1)

t )−∇
−→
L t(A

(k)
t )∥22|Fk] <∞. Denote

by C := max{supE[∥∇
−→
L t(A

(k)
t ;←−x (k+1)

t )−∇
−→
L t(A

(k)
t )∥22|Fk],M

2}, we can conclude that

E[∥∇
−→
L t(A

(k)
t ;←−x (k+1)

t )∥22|Fk] ≤ C(1 + ∥A(k)
t −A⋆

t ∥22).

Next, we make standard assumptions on the step size following Benveniste et al. (1990) (page 245).

Assumption A5 (Step size). The step size {ηk}k∈N is a positive and decreasing sequence

ηk → 0,

∞∑
k=1

ηk = +∞, lim
k→∞

inf

(
2m

ηk
ηk+1

+
ηk+1 − ηk
η2k+1

)
:= κ > 0.

A standard choice is to set ηk := A
kα+B for some α ∈ ( 12 , 1] and some suitable constants A > 0 and B > 0.
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Theorem 2 (Convergence in L2). Assume assumptions A1, A2, A3, A4, and A5 hold. The variational score A(k)
t in algorithm

2 converges to a local minimizer A⋆
t . In other words, given a large enough k ≥ k0, where ηk0

≤ 1
2 , we have

E[∥A(k)
t −A⋆

t ∥22] ≤ 2ηk,

where the expectation is taken w.r.t samples from←−ρ (k)
t .

Proof To show A
(k)
t converges to A⋆

t , we first denote G
(k)
t = A

(k)
t −A⋆

t . Subtracting A⋆ on both sides of Eq.(23):

G
(k+1)
t = G

(k)
t − ηk+1∇

−→
Lt(A

(k)
t ;←−x (k+1)

t ).

By the unbiasedness of the random field, we have

E[∇
−→
Lt(A

(k)
t ;←−x (k+1)

t )−∇
−→
L t(A

(k)
t )|Fk] = 0. (30)

Taking the expectation in L2, we have

E[∥G(k+1)
t ∥22|Fk] = ∥G(k+1)

t ∥22 − 2ηk+1E
[
⟨G(k)

t ,∇
−→
Lt(A

(k);←−x (k+1)
t )⟩

]
+ η2k+1E

[
∥∇
−→
Lt(A

(k)
t ;←−x (k+1)

t )∥22|Fk

]
= ∥G(k+1)

t ∥22 − 2ηk+1⟨G(k)
t ,∇

−→
L t(A

(k)
t )⟩+ η2k+1E

[
∥∇
−→
Lt(A

(k)
t ;←−x (k+1)

t )∥22|Fk

]
,

where the second equality is followed by the unbiasedness property in Eq.(30).

Applying the stepsize assumption A5, we have

ηk+1 − ηk + 2mηkηk+1 ≥ Cη2k+1.

Then for ηk ≤ 1
2 , we have

2(ηk+1 − ηk + ηkηk+1(2m− ηk+1C)) ≥ Cη2k+1.

Rewrite the above equation as follows

2ηk+1 ≥ (1− 2ηk+1m+ Cη2k+1)(2ηk) + Cη2k+1.

By the induction method, we have

• Given some large enough k ≥ k0, where ηk0 ≤ 1
2 , A(k)

t is in some subset Θ ** of A that follows

E[∥Gk
t ∥22] ≤ 2ηk. (31)

• Applying Eq.(B.2) and Eq.(B.2), respectively, we have

E[∥G(k+1)
t ∥22|Fk] ≤ (1− 2ηk+1m)E[∥G(k)

t ∥22] + η2k+1E
[
∥∇
−→
Lt(A

(k)
t ;←−x (k+1)

t )∥22|Fk

]
≤ (1− 2ηk+1m+ Cη2k+1)E[∥G

(k)
t ∥22] + Cη2k+1,

≤ (1− 2ηk+1m+ Cη2k+1)(2ηk) + Cη2k+1 (32)
≤ 2ηk+1,

where the first inequality is held by the stability property in Lemma 2 and the last inequality is followed by the growth
property in Lemma 3.

Since A⋆
t ,A

(k)
t ∈ Θ, Eq.(32) implies that A(k+1)

t ∈ Θ, which concludes the proof.

**By assumption A1, such Θ ⊂ A exists, otherwise it implies that the mean field function is a constant and conclusion holds as well.
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B.3. Part III: Convergence of Adaptive Samples based on The Optimal A⋆

We have evaluated the sample quality in Theorem 1 based on a fixed At, which, however, may not be efficient in terms of
transportation plans. To evaluate the sample quality in terms of the limiting optimal A⋆, we provide the result as follows:

Theorem 3. Given assumptions A1-A5, the generated sample distribution at stage k is ϵ-close to the exact sample distribution
−→ρ ⋆

T based on the equilibrium A⋆
t such that

TV(←−ρ ⋆
0, ρdata) ≲

√
KL(ρdata∥γd) exp(−T ) + (L

√
dh+ Lm2h)

√
T + (ϵscore +

√
ηk)
√
T .

Proof By assumption A4, for any A
(k)
t ∈ A, we have

E−→ρ (k)
t

[∥s(k)t −∇ log−→ρ (k)
t ∥22] ≤ ϵ2score.

Combining Theorem 2 and the smoothness assumption A2 of the score function∇ log−→ρ (k)
t w.r.t A(k)

t , we have

E−→ρ (k)
t

[∥∇ log−→ρ (k)
t −∇ log−→ρ ⋆

t ∥22] ≲ ηk. (33)

It follows that the score function s(k)t is also close to the optimal∇ log−→ρ ⋆
t in the sense that

E−→ρ (k)
t

[∥s(k)t −∇ log−→ρ ⋆
t ∥22]

≲ E−→ρ (k)
t

[∥s(k)t −∇ log−→ρ t∥22︸ ︷︷ ︸
by Assumption A4

] + E−→ρ (k)
t

[∥∇ log−→ρ (k)
t −∇ log−→ρ ⋆

t ∥22︸ ︷︷ ︸
by Eq.(33)

]

≲ ϵ2score + ηk.

(34)

Applying Theorem 1 with the adaptive score error in Eq.(34) to replace ϵ2score concludes the proof.

Remark: The convergence of samples based on the adaptive algorithms is slightly weaker than the standard one due to the
adaptive update, but this is necessary because A⋆

t is more transport efficient than a vanilla At.

C. Variational Gap
Recall that the optimal forward SDE in the forward-backward SDEs (5) follows that

d−→x t =
[
f t(
−→x t) + βt∇ log

−→
ψ t(
−→x t)

]
dt+

√
βtd
−→w t. (35)

The optimal variational forward SDE follows that

d−→x t =
[
f t(
−→x t) + βtA

⋆
t
−→x t

]
dt+

√
βtd
−→w t. (36)

The variational forward SDE at the k-th step follows that

d−→x t =
[
f t(
−→x t) + βtA

(k)
t
−→x t

]
dt+

√
βtd
−→w t. (37)

Since we only employ a linear approximation of the forward score function, our transport is only sub-optimal. To assess the
extent of this discrepancy, we leverage the Girsanov theorem to study the variational gap.

We denote the law of the processes by L(·) in Eq.(35), L⋆(·) in Eq.(36) and L(k)(·) in Eq.(37), respectively.

Theorem 4. Assume assumptions A2 and A3 hold. Assume f t and ∇ log
−→
ψ t are Lipschitz smooth and satisfy the linear

growth condition. Assume the Novikov’s condition holds for ∀At ∈ A, where t ∈ [0, T ]:

E
[
exp

(
1

2

∫ T

0

∥βtAt
−→x t − βt∇ log

−→
ψ t(
−→x t)∥22dt

)]
<∞.
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The variational gap (VG) via the linear parametrization is upper bounded by

KL(L∥L⋆) =
1

2

∫ T

0

E−→ρ t

[
βt∥A⋆

t
−→x t −∇ log

−→
ψ t(
−→x t)∥22dt

]
KL(L∥L(k)) ≲ ηk +KL(L∥L⋆).

Proof

By Girsanov’s formula (Liptser & Shiryaev, 2001), the Radon–Nikodym derivative of L(·) w.r.t. L⋆(·) follows that

dL

dL⋆

(−→x ) = exp

(∫ T

0

√
βt

(
A⋆

t
−→x t −∇ log

−→
ψ t(
−→x t)

)
dwt −

1

2

∫ T

0

βt∥A⋆
t
−→x t −∇ log

−→
ψ t(
−→x t)∥22dt

)
,

where wt is the Brownian motion under the Wiener measure. Consider a change of measure (Øksendal, 2003; Chewi, 2023)

wt = w̃t − d
[
w,M

]
t
, dMt =

〈√
βt
(
A⋆

t
−→x t −∇ log

−→
ψ t(
−→x t)

)
,dwt

〉
,

where w̃t is a L-standard Brownian motion and satisfies martingale property under the L measure.

Now the variational gap is upper bounded by

KL(L(·)∥L⋆(·)) = −EL(·)

[
log

dL(·)
dL⋆(·)

]
= EL(·)

[ ∫ T

0

√
βt

(
A⋆

t
−→x t −∇ log

−→
ψ t(
−→x t)

)
dw̃t +

1

2

∫ T

0

βt∥A⋆
t
−→x t −∇ log

−→
ψ t(
−→x t)∥22dt

]
=

1

2
EL(·)

[ ∫ T

0

βt∥A⋆
t
−→x t −∇ log

−→
ψ t(
−→x t)∥22dt

]
=

1

2

∫ T

0

E
[
βt∥A⋆

t
−→x t −∇ log

−→
ψ t(
−→x t)∥22

]
dt.

Similarly, applying (a+ b)2 ≤ 2a2 + 2b2, we have

KL(L(·)∥L(k)(·)) ≤ 3

2

∫ T

0

E
[
βt
(
∥A(k)

t
−→x t −A⋆

t
−→x t∥22︸ ︷︷ ︸

convergence of SA

+ ∥A⋆
t
−→x t −∇ log

−→
ψ t(
−→x t)∥22︸ ︷︷ ︸

variational gap based on A⋆
t

)]
dt

≲ ηk +

∫ T

0

E
[
βt∥A⋆

t
−→x t −∇ log

−→
ψ t(
−→x t)∥22

]
dt.

D. Experimental Details
D.1. Parametrization of the Variational Score

For the general transport, there is no closed-form update and we adopt an SVD decomposition with time embeddings to
learn the linear dynamics in Figure 6. The number of parameters is reduced by thousands of times, which have greatly
reduced the training variance (Grathwohl et al., 2019).

D.2. Synthetic Data

D.2.1. CHECKERBOARD DATA

The generation of the checkerboard data is presented in Figure. 7. The probability path is presented in Figure. 8. The
conclusion is similar to the spiral data.
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Figure 6. Architecture of the linear module. Both U and V are orthogonal matrices and Λ denotes the singular values.
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Figure 7. Variational Schrödinger diffusion models (VSDMs, right) v.s. SGMs (left) with the same hyperparameters (βmax = 10).
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Figure 8. Probability flow ODE via VSDMs and SGMs. SGM with βmax = 10 is denoted by SGM-10 for convenience.

D.2.2. CONVERGENCE AND COMPUTATIONAL TIME

Convergence Study Under the same setup, VSDM-10 adaptively learns At (and Dt) on the fly and adapts through the
pathological geometry via optimal transport. For the spiral-8Y data, the Y-axis of the singular values of Dt (scaled by βmax)
converges from 10 to around 19 as shown in Figure 9. The singular value of the X-axis quickly converges from 10 to a
conservative scale of 7. We also tried VSDM-20 and found that both the Y-axis and X-axis converge to similar scales, which
justifies the stability.

(a) Spiral-8Y (b) Convergence v.s. time (c) Checkboard-6X

Figure 9. Optimization of Λ of D scaled by βmax (scaled lambda of D) of VSDM-10 and VSDM-20.

Computational Time We tried different budgets to train the variational scores and observed in Figure 9(b) that 300
iterations yield the fastest convergence among the 4 choices but also lead to 23% extra time compared to SGM. Reducing the
number of iterations impacts convergence minimally due to the linearity of the variational scores and significantly reduces
the training time.

D.2.3. EVALUATION OF THE STRAIGHTNESS

Straighter trajectories lead to a smaller number of functional evaluations (NFEs). In section D.2.3, we compare VSDM-20
with SGM-20 with NFE=6 and NFE=8 using the same computational budget and observe in Figure 10 and 11 the superiority
of the VSDM model in generating more details.

To evaluate the straightness of the probability flow ODE, similar in spirit to Pooladian et al. (2023), we define our straightness
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metric by approximating the second derivative of the probability flow (18) as follows

S(i) =
∫ T

0

E←−x t∼←−ρ t

[∣∣∣∣d2←−x t(i)

dt2

∣∣∣∣]dt, (38)

where i ∈ {1, 2},←−x t(1) and←−x t(2) denote the X-axis and Y-axis, respectively. S ≥ 0 and S = 0 only when the transport is
a straight path.

We report the straightness in Table 4 and find the improvement of VSDM-10 over SGM-20 and SGM-30 is around 40%.
We also tried VSDM-20 on both datasets and found a significant improvement over the baseline SGM methods. However,
despite the consistent convergence in Figure 9, we found VSDM-20 still performs slightly worse than VSDM-10, which
implies the potential to tune βmax to further enhance the performance.

Table 4. STRAIGHTNESS METRIC DEFINED IN EQ.(38) VIA SGMS AND VSDM WITH DIFFERENT βmax’S. SGM WITH βmax = 10
(SGM-10) FAILS TO GENERATE DATA OF ANISOTROPIC SHAPES AND IS NOT REPORTED.

STRAIGHTNESS (X / Y) SPIRAL-8Y CHECKERBOARD-6X
SGM-20 8.3 / 49.3 53.5 / 11.0
SGM-30 9.4 / 57.3 64.6 / 13.1

VSDM-20 6.3 / 45.6 49.4 / 7.4
VSDM-10 5.5 / 38.7 43.9 / 6.5

D.2.4. A SMALLER NUMBER OF FUNCTION EVALUATIONS

We also compare our VSDM-20 with SGM-20 based on a small number of function evaluations (NFE). We use probability
flow to conduct the experiments and choose a uniform time grid for convenience. We find that both models cannot fully
generate the desired data with NFE=6 in Figure 10 and VSDM appears to recover more details, especially on the top and
bottom of the spiral. For the checkboard data, both models work nicely under the same setting and we cannot see a visual
difference. With NFE=8 in Figure 11, we observe that our VSDM-20 works remarkably well on both datasets and is slightly
superior to SGM-20 in generating the corner details.
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Figure 10. Variational Schrödinger diffusion models (bottom) v.s. SGMs (top) with the same hyperparameters (βmax = 20) and six
function evaluations (NFE=6). Both models are generated by probability flow ODE.
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Figure 11. Variational Schrödinger diffusion models (bottom) v.s. SGMs (top) with the same hyperparameters (βmax = 20) and eight
function evaluations (NFE=8). Both models are generated by probability flow ODE.

23



Variational Schrödinger Diffusion Models

D.3. Multivariate Probabilistic Forecasting

Data. We use publicly available datasets. Exchange rate has 6071 8-dimensional measurements and a daily frequency. The
goal is to predict the value over the next 30 days. Solar is an hourly 137-dimensional dataset with 7009 values. Electricity is
also hourly, with 370 dimensions and 5833 measurements. For both, we predict the values over the next day.

Training. We adopt the encoder-decoder architecture as described in the main text, and change the decoder to either
our generative model or one of the competitors. The encoder is an LSTM with 2 layers and a hidden dimension size 64.
We train the model for 200 epochs, where each epoch takes 50 model updates. In case of our model we also alternate
between two training directions at a predefined rate. The neural network parameterizing the backward direction has the same
hyperparameters as in (Rasul et al., 2021), that is, it has 8 layers, 8 channels, and a hidden dimension of 64. The DDPM
baseline uses a standard setting for the linear beta-scheduler: βmin = 0.0001, βmax = 0.1 and 150 steps.
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Figure 12. Example forecasts for Electricity (top), Exchange (middle), and Solar (bottom) datasets using our VSDM model. We show 3
out of 370, 8, and 137 dimensions, respectively.
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