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Abstract

Although recent advances in higher-order Graph
Neural Networks (GNNs) improve the theoreti-
cal expressiveness and molecular property pre-
dictive performance, they often fall short of the
empirical performance of models that explicitly
use fragment information as inductive bias. How-
ever, for these approaches, there exists no the-
oretic expressivity study. In this work, we pro-
pose the Fragment-WL test, an extension to the
well-known Weisfeiler & Leman (WL) test, which
enables the theoretic analysis of these fragment-
biased GNNs. Building on the insights gained
from the Fragment-WL test, we develop a new
GNN architecture and a fragmentation with infi-
nite vocabulary that significantly boosts expres-
siveness. We show the effectiveness of our model
on synthetic and real-world data where we outper-
form all GNNs on Peptides and have 12% lower
error than all GNNs on ZINC and 34% lower
error than other fragment-biased models. Further-
more, we show that our model exhibits superior
generalization capabilities compared to the lat-
est transformer-based architectures, positioning
it as a robust solution for a range of molecular
modeling tasks.

1. Introduction

A common issue with Graph Neural Networks (GNNs) is
their lack of expressiveness, including their inability to rec-
ognize substructures, which could limit their empirical per-
formance (Morris et al., 2021). In chemistry and machine
learning for chemistry, frequently occurring substructures,
or fragments, are commonly used to improve expressivity,
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as they can be powerful predictors of the functional prop-
erties of molecules (Merlot et al., 2003). The beneficial
effect of fragments becomes even more apparent in larger
systems, such as proteins, where individual components
often resemble whole residues (Singh & Saha, 2003).

To give GNNs the predictive power of substructures, re-
cent work has introduced more powerful methods that relate
expressive power to the ability to distinguish isomorphic
graphs. For these higher-order GNNs, the Weisfeiler &
Leman (WL) test serves as a measure of expressivity. Em-
pirical evaluations analyze the ability of these models to
count substructures and predict molecular properties (Zhang
et al., 2023; Morris et al., 2021). However, many of these
works focus primarily on theoretical expressiveness analysis,
often neglecting practical implications.

Recently, Campi et al. (2023) showed that these models
suffer from poor generalization to data that do not perfectly
fit the training distribution. This often results in sub-par per-
formance on real-world data (Maron et al., 2019; Gasteiger
et al., 2020). At the same time, models that explicitly in-
corporate fragment information as inductive biases perform
better overall (Fey et al., 2020), but are often limited to a
single substructure and lack a theoretical analysis of their
expressiveness, leading to a mismatch between theory and
practical performance (Zhu et al., 2022; Fey et al., 2020;
Zang et al., 2023).

In this work, we address the gap between theory and practi-
cal performance by introducing the Fragment-WL test, an
extension of the standard WL test that enables a unified anal-
ysis of existing (fragment-biased) models. In addition, we in-
troduce a new powerful model that directly leverages graph
fragments within its message-passing framework. Thereby,
our model becomes more robust to varying graph structures
and can generalize better to out-of-distribution data. Lastly,
our model enables a new fragmentation to represent molecu-
lar graphs with an infinite vocabulary consisting only of ba-
sic building blocks. We show the usefulness of our approach
across a range of molecular datasets and tasks. We analyze
both short- and long-range interactions, where we achieve
state-of-the-art performance compared to graph-based mod-
els and even outperform transformer-based architectures in
some scenarios.'

'Find our code at cs.cit.tum.de/daml/fragment-biased-gnns/
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Our core contributions can be summarized as follows:

* We provide a more fine-grained hierarchy on the ex-
pressiveness for a multitude of models that incorporate
substructures as inductive bias, such as including them
as node features, learning an individual representation,
or performing operations on higher-level structures.

* We propose a new architecture that performs message
passing along substructures and improves expressivity
and generalization while retaining linear complexity.

e With our new architecture, we can propose a novel
fragmentation for molecules that handles an infinite
number of substructures based on simple yet flexible
building blocks but still generalizes well.

* We study predictive power, long-range performance,
and generalization through extensive experiments.

2. Background

Notation. A graph G = (V,&,X) consists of a set
of vertices V, a set of (undirected) edges £ CV x V
and d node features X € RIVI*? for every node v € V.
The set of nodes that are adjacent to v is de-
noted by N(v). Two graphs G' = (V! €L, X1) and
G? = (V?,£2, X?) are isomorphic if there exists a bijec-
tion b : V1 — V? that preserves edges and node features,
that is, {v,w} € €' < {b(v),b(w)} € £? and X! = X2.
For a subset of nodes &4 C V, we denote the induced sub-
graph with respect to these nodes by G[U].

Expressiveness. We can classify the expressiveness of
functions over graphs by their capability to distinguish
non-isomorphic graphs. We say that a function f is (in
parts) more powerful than a function g if there exist two
non-isomorphic graphs G, G? such that f(G') # f(G?)
whereas g(G') = g(G?). The function f is strictly more
powerful than g (we write f > g) if f is more powerful than
g and g is not (in parts) more powerful than f.

Weisfeiler & Leman. The Weisfeiler & Leman graph iso-
morphism test is an iterative graph coloring algorithm that
bounds the expressive power of MPNNs (Kiefer & Neuen,
2022). In each iteration, it produces a color for each node
based on its neighboring nodes’ colors. Starting with a
vertex color based only on features ¢ = HASH(X,), we
calculate the update for the color ¢ of node v in iteration ¢:

Cg)t) — HASH (Cg‘f*l)7 {{cgfl) |w e N(v)}}) (D

The algorithm terminates once the set of unique colors does
not increase. Two non-isomorphic graphs can be distin-
guished if the multiset of colors differs at the end. As this
test cannot distinguish all non-isomorphic graphs, it can be

extended to strictly more powerful versions, k-WL, incor-
porating k-tuples of nodes to determine the color. For more
background information, we refer to Morris et al. (2021).
Importantly, 2-WL is equivalent to the previously described
WL test (Huang & Villar, 2021).

Fragmentations. A vocabulary ) is a set of graphs (po-
tentially including node features) representing important
substructures, e.g., cycles. A fragment of a graph G is an
induced subgraph G|f] isomorphic to a graph from the vo-
cabulary. We will identify a fragment simply by the subset
of nodes f C V. All fragments f that are isomorphic to
the same graph of the vocabulary have the same type(f). A
fragmentation scheme F is a permutation invariant function
that maps a graph G to a set of fragments F(G) =: F,
which is called a fragmentation. Note that there might exist
subgraphs isomorphic to a graph in ) that are not in F(G).
For example, even if ) contains 5-cycles, not all 5-cycles in
G need to be in F(G). If, for all graphs G, F(G) includes
every subgraph isomorphic to a graph V' € ), we say that
the fragmentation scheme F recovers V.

3. Related work

Expressiveness of GNNs. Message-Passing Neural Net-
works (MPNN)? are limited in their expressiveness. Their
ability to distinguish between non-isomorphic graphs is con-
fined to the 2-WL algorithm, restricting their discriminative
power (Xu et al., 2019). Moreover, when it comes to rec-
ognizing substructures, MPNNs are unable to accurately
count almost all types of substructures (Chen et al., 2020).
This limitation stems from their reliance on purely local
messages, which—despite facilitating excellent linear space
and time complexity—renders them blind to higher-level
structural information within graphs.

Higher-order GNNs. In response to the inability to effec-
tively learn substructures, the introduction of more powerful
GNN architectures aims to overcome this limitation and
enable comprehensive substructure learning. Morris et al.
(2021) draw inspiration from the multidimensional k-WL
algorithm and diverge from learning node-specific repre-
sentations by considering each k-tuple of nodes instead.
Although this improves expressiveness, its complexity in-
creases exponentially. Subgraph GNNs comprise an alter-
native to improve substructure identification, decomposing
a graph into smaller subgraphs for GNN application. The
resulting subgraph representations are pooled before a final
graph level representation is derived (Huang et al., 2022;
Frasca et al., 2022). With some strategies for extracting
subgraphs, subgraph GNNs can identify basic substructures
such as 4-cycles (Huang et al., 2022). Puny et al. (2023)
extend the WL test for higher-order GNNs to the graph

2We use MPNNs and GNNs interchangeably.
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polynomial counting problem as a new expressivity mea-
sure, highlighting the importance of more fine-grained tests
for GNNs. However, the limitations of higher-order GNN’s
lie in their inability to effectively learn more intricate sub-
structures, accompanied by an increase in time complexity.
Recent findings also suggest susceptibility to adversarial
attacks and out-of-distribution data, hinting at challenges in
robustly learning substructures (Campi et al., 2023).

Fragment-Biased GNNs. Another line of work provides
fragment information to GNNs as an explicit inductive bias.
These fragment-biased models vary not only in their vo-
cabulary but also in the way fragmentation information is
integrated into the model. Node features: Bouritsas et al.
(2023) introduce GSN-v, which uses the number of cycles
or cliques as an additional node feature. Learned fragment
representation: Instead of treating fragmentation informa-
tion as a fixed feature, other models learn representations for
each fragment by aggregating information from the corre-
sponding nodes. Zhu et al. (2022) use a vocabulary of only
cycles whereas Zang et al. (2023) present HiMol, which
fragments a molecular graph, based on chemical properties.
Higher-level graph: A natural extension of the learned frag-
ment representation is a higher-level graph of fragments
where neighboring fragments influence each other. Thiede
et al. (2021) use equivariant computations along the paths
of length 3 to 6 and cycles of sizes 5 and 6. Fey et al. (2020)
build a higher-level junction tree using rings and edges.
Yet, none of the existing works compare—theoretically or
experimentally—how to encode and use substructure infor-
mation in the model. Additionally, most works only focus
on a single substructure that does not allow to fragment the
complete graph.

Topological GNNs use higher-level topological structures
such as simplicial complexes (Bodnar et al., 2021) or CW-
Networks (Bodnar et al., 2022; Giusti et al., 2023) in their
message-passing schemes. While coming from a differ-
ent theoretical direction than substructure-biased GNNs,
in practice, they use cliques or cycles as learned fragment
representations or in a higher-level graph.

Graph Transformer. Recently, models such as Graph
Transformers (Ying et al., 2021; Ma et al., 2023; Geisler
et al., 2023) and ViT/MLP-Mixers (He et al., 2023) for
graphs adapted successful models from other domains to
graph data. Their ability to recognize substructures depends
on the positional encoding used. Almost all recent models
use random walk encodings, which can help to discover
simple substructures like cycles.

Fragmentation Schemes. Fragmentation methods in the
chemical domain aim to divide a molecular graph into sub-
graphs with distinct structures or properties. There are var-
ious strategies to achieve this, such as separating proba-
ble reactants (Degen et al., 2008a), categorizing molecules

into distinct structural classes (Bemis & Murcko, 1996), or
breaking apart acyclic bonds (Maziarz et al., 2022; Jin et al.,
2019). Unlike these methods, data-driven approaches like
those outlined in Kong et al. (2022) and Geng et al. (2023)
focus on deriving subgraphs directly from a dataset without
relying on predefined rules for decomposition.

4. Weisfeiler & Leman Go Fragments

Existing fragment-biased MPNNs vary in their underlying
fragmentation scheme and how the fragment information is
incorporated into the model. This variability makes a direct
comparison of the expressiveness of these models difficult.
To address this challenge, we propose a new, more fine-
grained version of the WL test, called Fragment-WL test,
that incorporates detailed structural elements. We derive a
hierarchy of tests that capture how fragmentation informa-
tion is incorporated into existing substructure-biased models,
while leaving out all variability that does not influence the
expressivity.

Our Fragment-WL test also subsumes existing WL variants
designed for simplicial complexes and CW-cells (Bodnar
et al., 2021; 2022), providing a more unified framework for
assessing the expressiveness of both substructure-biased and
topological GNNs. Furthermore, our proposed Fragment-
WL test highlights the significance of how fragment infor-
mation is incorporated into the model, emphasizing that the
integration methodology plays a crucial role for determining
the model’s expressive power.

Fragment-WL entails multiple variants with increasing ex-
pressiveness in distinguishing isomorphic graphs. In the
following, we first provide a general framework and then
define the individual Fragment-WL versions that perform
the original WL test on different augmented graphs. We
start with a definition of WL tests on augmented graphs:

Definition 4.1. A g-WL test is a function that performs the
WL test on the augmented graph g(G), i.e.

¢-WL(G) = WL(g(G))

where g is a function mapping from graphs to graphs, i.e.,
g: (V,EX)— (V, & X).

There are three ways in which a fragmentation F' is used
in existing fragment-biased GNNs: as an additional node
feature, as learned fragment representation, and as a higher-
level graph. We instantiate g with the corresponding func-
tions to augment the graph with the respective features. First,
we use additional node features. We extend the individual
node features with the information of the fragments that
the node is contained in. We concatenate this information
to the already existing features. Formally, we define this
augmentation function in the following way.
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Figure 1. Example graph G with corresponding augmented vari-
ants. NF(G) includes node features, FR(G) also includes a rep-
resentation for each fragment and HLG(G) also has connections
between neighboring fragment represenations.

Definition 4.2. We define the node feature function as
NF(V, &, X) = (V, &, XNF) with:

X0" =X | A(ftype(f) v e f,f € F}),

where A represents any injective function and || indicates
the concatenation operation. We instantiate g with NF to
create the NF-WL test.

Another prominent way is using representations for each
fragment and messages that are flowing from the lower
level nodes to their entailing fragment and backwards. This
means that we introduce a new vertex for each fragment and
connect it to all its corresponding vertices in the original
graph. We depict this graph FR(G) in Figure 1. We define
this augmentation function in the following.

Definition 4.3. We define the fragment representation func-
tion as FR(V, &, X) = (VIR EMR XR) with:

VIR .—VYUF,
EFR::5U{{f,v}|Vf€F,Vv€f},
. X ey

! type(i) i€ F

Lastly, we allow messages to be exchanged between neigh-
boring fragments, thus creating a higher-level graph on
which information can flow. To this end, we add edges
between fragments that have neighboring nodes in G and
thus construct a graph of the higher-level fragments, see
HLG(G) in Figure 1.

Definition 4.4. The higher-level graph augmentation func-
tions is HLG(V, £, X ) = (VHLG gHLG XHLG) ith:

HLG .__ y)FR HLG .__ FR
PHLG . PFR X HLG . xFR

EMO = e U{{f,k} | fke F, fnk#0}

Equipped with the formal definitions, we will now compare
the power of performing the WL test on these transformed
graphs to the original graph?®. The power of the Fragment-
WL test depends on the fragmentation scheme F. With a

3 All proofs are detailed in Appendix A

sufficiently advanced fragmentation scheme, even NF-WL
can become arbitrarily powerful.

Theorem 4.5. There exist fragmentation schemes such that
NF-WL, FR-WL and HLG-WL are all strictly more powerful
than k-WL for any k.

However, in practice, mostly fragmentation schemes with a
vocabulary of rings, paths, and cliques are used for fragment-
biased GNNs (Fey et al., 2020; Bouritsas et al., 2023; Zhu
et al., 2022). So, from now on, we will restrict ourselves
to such fragmentation in our theoretical analysis. Next,
we show that it matters how to incorporate fragment infor-
mation and that the WL variants become more powerful
through higher-level abstraction.

Integrating fragment information from any non-trivial sub-
structure as an additional node feature already increases
expressiveness beyond 2-WL.

Theorem 4.6. NF-WL is strictly more powerful than 2-WL
for fragmentation schemes JF that recover any substructure
with more than two nodes.

This shows that the classical 2-WL test cannot reveal dif-
ferences in the expressivity of fragment-biased GNNs since
using any substructure as a node feature already increases
expressivity beyond 2-WL. Our Fragment-WL test, how-
ever, provides a more fine-grained alternative that reveals
that higher-level abstraction through a learned fragment rep-
resentation strictly increases the expressivity compared to
node features:

Theorem 4.7. FR-WL is strictly more powerful than NF-WL
for fragmentation schemes F recovering 3-cycles.

Building a higher-level graph of fragments further increases
the expressivity. Figure 2 shows an example of two graphs
that are indistinguishable by 2-WL, NF-WL, and FR-WL
but distinguishable by HLG-WL. Formally, we express this
in the following theorem.

Theorem 4.8. HLG-WL is strictly more powerful than FR-
WL for fragmentation schemes F recovering 3-cycles.

Hence, we have shown that the expressivity increases strictly
monotonically from 2-WL to HLG-WL for fragmentation
schemes recovering 3-cycles:

2-WL < NF-WL < FR-WL < HLG-WL 2)

Regarding the higher-dimensional k-WL hierarchy, our
Fragment-WL hierarchy cannot be bounded by 3-WL if
the fragmentation can recover 5 cycles.

Theorem 4.9. HLG-WL is in parts more powerful than
3-WL for fragmentation schemes F recovering 5-cycles.

Our developed Fragment-WL hierarchy models the differ-
ent ways in which fragment information is used in most
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Figure 2. Graphs G* and G* with their corresponding higher-level
graph of fragments. The edges of the fragment representation
to the vertices of G* and G? are omitted. G* and G? are indis-
tinguishable by WL, NF-WL and FR-WL but distinguishable by
HLG-WL as the higher-level graphs exhibit different connections
from the 3-ring nodes to the 4-ring node.

fragment-biased and topological GNNs. This new measure
of expressiveness allows the comparison and ordering of
these existing methods; see Table 7 for an overview.

In summary, our Fragment-WL test provides a new alterna-
tive measure of expressivity compared to the original WL
test. Our developed hierarchy reveals that it matters how
to incorporate fragmentation information, i.e., higher-level
abstraction increases expressivity. Additionally, it allows
for a comparison of the expressiveness of most existing
fragment-biased and topological GNNS.

5. Fragment Graph Neural Network

Based on the insights of the previous section, we propose
our new model architecture and a new fragmentation scheme
with infinite vocabulary consisting of only basic building
blocks. Given the higher expressiveness, our model can
differentiate complex substructures given only these basic
building blocks, as it is able to learn the dependencies on the
higher-level graph. We empirically confirm this in Section 6.

5.1. Model

Building on the theoretical findings that a higher-level graph
(see Theorem 4.8) improves expressiveness, we propose
FragNet, a general model for any fragmentation F' that per-
forms message-passing on the original graph and a higher-
level graph of fragments that are also connected, i.e., we are
using the HLG augmented graph.

The learned representation h!, at step or layer ¢ of a node
receives a message from neighboring nodes mf,_,  and
fragments mY, . . Similarly, the learned representation
hﬁf of a fragment receives a message from neighboring

Figure 3. Overview of our model and our fragmentation. The
molecular graph is fragmented with our rings-paths fragmentation
into three cycles, three paths, and a junction node. The figure
shows the messages mb%_, s mb,_, ¢ to one fragment f, and the
messages ml,_,,, mh_,, to one vertex v.

fragments m?._, 7 and nodes mt, S

My, = AGG({MLP(hy " he™") [ e = {u,v} € £})
mip_,; = AGG({{hy " | g € Nr(f)})

my_, = AGG({hy " [ve f,f e F})

my_; =AGG({hi! [ve fveV])
where N (f) denotes the neighbors of fragment f in the
higher-level graph of fragments. The hidden representations

are updated by combining the incoming messages with the
previous hidden representation:

hf} = MLP(hf;_17 mg)am th*}’U)
h% = MLP(h§~ mi, ;o mb_, f)
ht = MLP(hi=t pt=1 i1

The final graph-level readout after 7' layers is computed
by aggregating the multiset of node representation, edge
representations, and fragment representations:

OUT({{hy |v eV} {he e &}y | feF})

Note that the complexity of our FragNet model is linear
in the number of nodes and fragments (assuming that each
node is only part of a constant number of fragments).

Additionally, our FragNet model achieves the highest expres-
siveness in our Fragment-WL hierarchy and also compared
to other fragment-biased GNNs.

Theorem 5.1. FragNets are at most as powerful as HLG-
WL. Additionally, when using injective neighborhood aggre-
gators and a sufficient number of layers, FragNets are as
powerful as HLG-WL.
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5.2. Molecular fragmentation

Apart from the question of how to use a fragmentation, there
is the equally important question of how to fragment the
graph in the first place. A fragmentation F' has to fulfill two
seemingly conflicting goals:

1. F should contain all important substructures.

2. F should facilitate generalization.

On the one hand, if the fragmentation is too coarse-grained,
important structural features that the model cannot learn
may be missed. On the other hand, if the fragmentation
is too fine-grained, it is harder to find similarities between
graphs, and it exposes the model to the risk of overfitting.
Of course, the right level of detail and the right fragmen-
tation scheme critically depend on the application domain.
Existing approaches to fragment molecules focus either only
on a single substructure (Zhu et al., 2022) or fragment the
molecule based on chemical properties (Degen et al., 2008b),
which requires a huge vocabulary.

Our approach is capable of fragmenting the complete graph
with only two classes of substructures: rings and paths. At
a conceptual level, first, all minimal rings are extracted.
Second, the remaining edges are connected at nodes of
degree two to form paths. Third, whenever three or more
fragments meet at a node, a junction node is introduced in
the higher-level graph and the fragments are only connected
to the junction nodes. This prevents most cycles in the
higher-level graph. Figure 3 shows our fragmentation on an
example molecule.

Since our rings-paths fragmentation scheme recovers 5-
cycles, we derive the following Corollary from Theorem 4.9.

Corollary 5.2. FragNet with our rings-paths fragmentation
scheme is in parts more powerful than 3-WL.

While this fragmentation increases the expressiveness and
makes it possible to fragment the complete graph, it could
require a very large vocabulary, as it has to include paths and
cycles of any size found in the dataset. To still effectively
encode the fragment type, we introduce a novel ordinal
encoding.

Ordinal encoding. Previous works either use no encoding
for the types of fragments (Fey et al., 2020) or a simple one-
hot encoding (Bouritsas et al., 2023). However, to facilitate
the generalization capabilities of a model, the encodings of
similar fragments should also be similar. In our approach,
we introduce an ordinal fragment encoding, which accom-
plishes this by incorporating two embeddings: one for the
fragment class (i.e., class(f) € {path, cycle, junction}) and
another that is proportionally scaled based on the fragment

/\ E }()'puth /\/\ E } Cpu(h

} 2- Spath } 4- Spath

Figure 4. Ordinal encoding applied to a 2-path, 4-path, 5-ring, and
6-ring. The encoding comprises two components: one learned
embedding e for every fragment class (i.e., path, cycle, or junction)
and another learned embedding s that is proportionally scaled
based on the fragment size.

} Cring

} 5 - Sring

} €ring

} 6- Sring

size; see Figure 4. More formally:

h(} = (eclass(f)a |f‘ : Sclass(f))v

where s and e are different learned embeddings for the
classes of cycle, path, and junction fragments. This ap-
proach enables the encoding of an infinite vocabulary, ac-
commodating even completely unseen fragments while con-
currently supporting effective model generalization.

5.3. Long-range interaction

Many graph-related tasks demand the capability to capture
long-range interactions among distant nodes (Dwivedi et al.,
2023). However, GNNs suffer from a phenomenon called
over-squashing, where nodes are insensitive to information
from distant nodes. This occurs because, in GNNs, the
computational graph is equal to the input graph, requiring
L layers to exchange information between nodes separated
by a distance of L. Di Giovanni et al. (2023) show that
increasing the number of layers does not help prevent this
phenomenon, as GNNs suffer from vanishing gradients. Ad-
ditionally, their work introduces the commute time between
nodes as an indicator for over-squashing.

Our rings-paths fragmentation, together with the higher-
level graph, create shortcuts that can help mitigate over-
squashing. Messages can traverse the smaller, higher-level
graph of fragments, while the message path still has se-
mantic meaning. In Section 6, we demonstrate that our
rings-paths fragmentation reduces the commute time in both
synthetic and real-world datasets, enhances the recoverabil-
ity of messages from distant nodes, and shows strong per-
formance on benchmarks requiring long-range interactions.

6. Results

While we have theoretically demonstrated that our model
attains the highest expressiveness within our Fragment-WL
hierarchy, we also empirically evaluate its expressiveness by
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Table 1. Our model predicting the number of different substruc-
tures occurring in ZINC test dataset.

Fragment { \ [ [l]
Counts 5629 3904 1799 1772 1071
Accuracy | 0.986 0.99 0999 1.0 0.997

examining its ability to count substructures. Additionally,
we explore its ability to communicate over long distances,
its overall predictive effectiveness, and its capacity to gener-
alize.

Expressiveness. To evaluate how well our model can learn
to recognize chemically important substructures in molecu-
lar graphs, we first identify the most common substructures
in the ZINC 10k dataset (Gémez-Bombarelli et al., 2017)
using a chemically-inspired fragmentation scheme, specifi-
cally MAGNet (Hetzel et al., 2023). Subsequently, we train
our model to predict substructure counts. Our model is able
to identify all substructures close to perfection as demon-
strated in Table 1 on a subset of fragments; performance
details for all substructures are available in Appendix B. No-
tably, our model achieves high accuracy even for intricate
substructures not present in our vocabulary. This under-
scores that our fragmentation, based solely on rings and
paths, together with our ordinal encoding and the higher-
level message passing, proves sufficient for the model to
recognize more complex substructures. This is essential for
application in, e.g., fragment-based molecule generation, as
the task of the encoder is to encode information about such
substructures.

Long-Range Interactions. Inspired by Di Giovanni et al.
(2023), we investigate the long-range capacity by training
models to recover messages sent from a designated node to
another node in a graph. As over-squashing is particularly
prone to happen at bottlenecks (Topping et al., 2022), we
are considering a graph consisting of two cycles connected
by a bottleneck in the form of a path. This graph structure
also matches many substructures found in molecules.

Figure 5 shows the recovery rates for a GNN using no frag-
mentation, a ring fragmentation, as used by CIN (Bodnar
et al., 2022), and our rings-paths fragmentation. A standard
GNN is able to recover messages from the neighborhood
perfectly, but the performance deteriorates with increasing
distance. After the path bottleneck, the performance is
equivalent to random guessing. A model with rings frag-
mentation exhibits a behavior very similar to the baseline.
In particular, it performs worse on one node on the path. We
assume that this happens due to the additional messages on
the rings, creating even more messages that traverse the bot-
tleneck. For our fragmentation with the higher-level graph,

No Fragmentation Rings (CIN) Rings-Paths (ours) 1.0
0.9
0.8
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Figure 5. Recovery rate of messages sent from the star node to
all other nodes. A recovery rate of 0.1 corresponds to random
guessing. The first graph has no fragmentation, the second one
arings fragmentation (like in CIN/CIN++), the third a rings and
paths fragmentation (like in our model).

we observe that all nodes can recover the messages nearly
perfectly. The results closely mirror the commute times on
those graphs (see Figure 7 in Appendix B), validating the
theoretical work by Di Giovanni et al. (2023) that proposed
the commute time as an indicator for over-squashing.

Predictive Performance. To evaluate the predictive per-
formance on real-world molecular dataset, we use the long-
range peptides benchmark (Dwivedi et al., 2022) and the
large-scale molecular benchmark ZINC (Sterling & Irwin,
2015). We compare our model against standard GNNss,
like GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019)
or GatedGCN (Bresson & Laurent, 2018), higher-order
GNNs such as RingGNN (Chen et al., 2023) or 3WL-
GNN (Maron et al., 2019), topological GNNs, especially
CIN and CIN++ (Bodnar et al., 2021; 2022) and other
fragment-biased GNNs such as HIMP (Fey et al., 2020)
and GSN (Bouritsas et al., 2023). While our main focus
lies on the evaluation against other message-passing GNNGs,
especially the group of fragment-biased GNNs, we compare
against Transformer architectures for completeness. We test
Graphormer (Ying et al., 2021), GPS (Rampések et al.,
2023), GT (Dwivedi & Bresson, 2021), SAN (Kreuzer et al.,
2021) and GRIT (Ma et al., 2023).

A summary of the used hyperparameters of our model and
the experimental details for each experiment can be found in
Appendix C. All our models adhere to the 500k parameter
budget for both datasets. We do not use any additional
feature augmentation, such as positional encodings.

To further investigate the long-range capabilities of our
model, we empirically measure the performance on the
Long-Range Graph Benchmark (LRGB), where the re-
gression performance depends on these capabilities. The
datasets we use are the LRGB Peptides-struct and Peptides-
func (Dwivedi et al., 2022). The peptides datasets comprise
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Table 2. Predictive performance for multiple models on Peptides-
struct and func. Best Transformer and best GNN are highlighted.

Table 3. Predictive performance for multiple models on ZINC 10k
and ZINC full. Best Transformer and best GNN are highlighted.

Peptides- ZINC
Type Model Struct Func Type Model 10k Full
(MAE }) (AP 1) (MAE ) (MAE |)
GPS 0.2500 + 0.0012  0.6535 £ 0.0041 Graphormer 0.122 £ 0.006  0.052 & 0.005
SAN+LapPE 0.2683 £0.0043  0.6384 £ 0.0121 GPS 0.070 = 0.006 -
Transformer SAN+RWSE 0.2545 +0.0012  0.6439 + 0.0075 GT 0226 + 0014 -
GRIT 0.2460 = 0.0012  0.6988 = 0.0082 Transformer SAN 0.139 £ 0006 -
GCN 0.3496 + 0.0013  0.5930 + 0.0023 Graphormer-URPE  0.086 £+ 0.007  0.028 & 0.002
Basic GNNs GIN 0.3547 + 0.0045  0.5498 + 0.0079 Graphormer-GD 0.081 £+ 0.009 0.025 4+ 0.004
aste GRNs GatedGCN 0.3420 4+ 0.0013 05864 + 0.0035 GRIT 0.059 +£0.002  0.023 + 0.001
GatedGCN+RWSE  0.3357 + 0.0006  0.6069 = 0.0035
Te GCN 0367 0011  0.113 + 0.002
Topological CIN++ 0.2523 £0.0013  0.6569 £ 0.0117 . GIN 0.526 + 0.051 0.088 + 0.002
FrasmentBisseg  HIMP 0.2503 + 0.0008  0.5668 = 0.0149 Basic GNNs GAT 038440007 0.111 + 0.002
rag 145¢¢ " BragNet (ours) 0.2462 + 0.0021  0.6678 + 0.005 GraphSAGE 0.398 +£0.002  0.126 & 0.003
Hicher-order RingGNN 0.353+0.019 -
gher-orde 3WLGNN 0303 +0.068 -
Topological CIN-Small 0.094 + 0.004  0.044 + 0.003
_ . polog CIN++ 0.077 +0.004  0.027 £ 0.007
155'35. peptldes? each' with an average of 150 nodes, that HIMP 0151 £ 0,006 0,036 £ 0.002
exhibit long amino acid chains with a lower average degree. . Biased OSN 0.115+ 0012 -
. eqe . . . ragment-biase
As the molecules have a strong variability in their diame- £ Autobahn 0.106 +0.004  0.029 +0.001
FragNet (ours) 0.0775 + 0.005  0.0237 + 0.00

ters, the models must generalize well to graphs of different
sizes. These datasets are commonly utilized to benchmark
the long-range capabilities of graph transformers against
GNNS.

The peptides-struct task is a multi-label graph regression
dataset where the objective is to predict various structural
properties of the 3-dimensional molecules, including spatial
lengths. Note that the node and edge features of the graphs
do not contain any 3D information. Performance is evalu-
ated using the mean absolute error (MAE). The peptides-
func dataset consists of the same graphs, but requires the
models to predict functional properties of the peptides. It
is a multi-label classification task with 10 classes such as
Antiviral or Antibacterial. The performance metric is the
unweighted mean average precision (AP).

The results presented in Table 2 demonstrate that our model
achieves state-of-the-art performance for GNNs on both
datasets. Notably, our model surpasses almost all graph
transformers, even though transformers have an advantage
in capturing long-range interactions due to their consider-
ation of messages between all pairs of nodes, resulting in
quadratic complexity. GRIT stands out as the only model
that surpasses our performance, displaying exceptional re-
sults across all datasets.

Furthermore, we evaluate our model on ZINC (Sterling &
Irwin, 2015), a collection of chemical compounds. The
benchmark consists of a dataset that contains only a sub-
set of 10,000 molecules and a dataset consisting of all
250,000 molecules. For both, we predict the penalized
logP, which characterizes the drug-likeness of a molecule
(G6émez-Bombarelli et al., 2017), and measure performance
using MAE.

As shown in Table 3, basic GNNs, which lack both high
expressiveness and strong long-range capacity, exhibit sig-
nificantly inferior performance. All fragment-biased ap-
proaches outperform the higher-order GNNs despite being
less computationally demanding. Our model shows the best
performance among all GNNs, with very similar results to
CIN++ on ZINC-subset. In addition, our model outperforms
most transformer architectures as well and achieves results
comparable to those of GRIT on the full dataset.

Generalization. To test the generalization capabili-
ties of our model with the ordinal fragment encod-
ing, we use a test set containing out-of-distribution
molecules with completely unseen fragments. For this,
we use the ZINC dataset and remove all molecules
containing a 7-ring
from the training data.
After training, we test
on all molecules from
the test set, thus also

Table 4. We remove all molecules
that contain 7-rings from the train-
ing set and test on all molecules, i.e.,
also the ones with 7-rings.

containing 7-rings that Model  ZINC10k
were not seen dur- ode training test
. .. MAE MAE
ing training. The re- ( b« )
sults in Table 4 demon- ~ SRIT 0.02 0.61
strate that our model FragNet (ours) ~ 0.08 0.34

achieves an error 1.8

times lower than GRIT, showcasing the superior general-
ization capabilities. Our better generalization capabilities
can also be seen in the normal ZINC benchmark. In Ta-
ble 5, we group the ZINC dataset into groups based on the
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Table 5. Comparison of the MAE of GRIT and our model on ZINC-
full. Graphs are grouped by the frequency of their rarest fragment.

Frequency of

<01% <1% <10% >10%
rarest Fragment
HIMP (MAE) 14.4 0.48 0.15 0.030
GRIT (MAE) 9.5 0.26 0.026 0.018
FragNet (ours) (MAE) 5.3 0.15 0.045 0.021

frequency of the rarest fragment. Our model outperforms
HIMP everywhere and GRIT for graphs containing rare
fragments.

Lastly, we test our model’s capability to transfer the
knowledge to a completely different dataset. We train
on ZINC and predict the penalized logP on QM9 (Wu
et al., 2017). In Table 6, we see that FragNet achieves
the lowest MAE of 1.12, outperforming GRIT and HIMP,
suggesting that our model
generalizes better to unseen
data distributions due to our

Table 6. Zero shot general-
ization to QM9

Model QM9 MAE |)  inductive bias and correspond-
HIMP 3.43 ing fragmentation. In sum-
GRIT 1.22 mary, we showcased the gen-
FragNet (ours) 1.12

eralization capabilities of our
model on both a completely
unseen dataset and a slightly shifted data distribution. The
generalization capabilities also help our model perform bet-
ter on rare fragments.

7. Limitations

While our method has strong predictive performance, it can
further be improved: first, our fragmentation method and
ordinal encoding is tailored towards molecules and not ap-
plicable to large densely connected graphs such as citation
or social networks as one will find vast amount of meaning-
less fragments, introducing a lot of noise. Second, while
our generalization experiments show superior performance
over GRIT, Table 5 also shows that GRIT performs slightly
better on molecules with frequent fragments. We leave it
for future work to further improve fragment-biased models
on those data.

8. Conclusion

In this work, we proposed a new expressivity measure, the
Fragment-WL test, which provides a hierarchy on exist-
ing fragment-biased GNNs. Based on these insights, we
proposed an expressive new model, which, together with
our new fragmentation, outperforms all GNN approaches
and most transformer architectures. Moreover, our model
demonstrates predictive performance comparable to that of
the best transformer model, while surpassing it in terms of

generalization capabilities, despite having only linear com-
plexity. This positions our approach as a robust solution for
a variety of molecular modeling tasks.

We believe that our work lays the foundation for several
promising future directions. These include extending the
expressivity hierarchy to, for example, incorporate orbit
information (Bouritsas et al., 2023). In addition, future work
could seek to further improve the predictive performance
on frequent data, or using fragment-biases in multi-task or
meta-learning settings.
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A. Proofs

This chapter presents the proofs for the theorems introduced in Section 4, and the expressiveness analysis of existing fragment-
biased and topological GNNs. We will first introduce general concepts that will later help to bound the expressiveness of
different models and our Fragment WL test.

A.1. Color refinement and expressiveness: Useful definitions and lemmas
To prove the power of different graph coloring algorithms, it will be useful to first introduce the definition of color refinement.
The intuition is that a ’finer” coloring contains more information than a “corser” coloring.

Definition A.1. Let ¢, d be colorings of a graph G. The coloring c refines d (we write ¢ C d) if there exists a function h
such that h(c,) = d, forallv € V.

We will sometimes write ¢, = d,, if ¢ C d and the set of vertices V is clear from the context.
Example A.1. Let c® be the coloring of iteration ¢ of the WL test. Then one can easily show that cg,t) C cq()l) forl < tas

cq(f) contains the information of all previous colorings cg,l).

Note that an alternative definition of color refinement (Bodnar et al., 2021) is: ¢ C d iff ¢, = ¢,, implies d,, = d,, for all
v,w € V. Itis easy to see that the two definitions are equivalent. Next, we extend our definition to arbitrary functions and
not just colorings.

Definition A.2. Let a, b be two functions over the set of vertices V. Then a C b if there exists a function h such that
h(a(v)) = b(v) for all v € V.

Intuitively, a C b means that we can compute b(v) from the result of a(v). So a(v) contains more or the same information
as b(v). Again, we will sometimes simply write a,, C b, with a,, := a(v), b, := b(v) if a C b and if the set of vertices V is
clear from the context.

Example A.2. Let ¢(*) be the coloring of iteration ¢ of the WL test. Then, because of the injectiveness of the hash function
HASH in Equation (1):

) C el [weN (@)}

Note that we use the simplified notation here. The right and left-hand side are actually the functions that map from v € V to
these terms. Intuitively, this shows that one can compute the previous color of all neighbors from the color of a node.

It is easy to see that the refinement relation is transitive, i.e.,a C band b C cimply a C c.

We will now formally define the expressive power of an algorithm with respect to the ability to distinguish non-isomorphic
subgraphs.

Definition A.3. A function f is (in parts) more powerful than a function g if there exist two non-isomorphic graphs G, G?
such that f can distinguish them

FIGY) # £(G?)
whereas g cannot distinguish them
9(G") = g(G?).

Note that this relation is not anti-symmetric, i.e. f can be (in parts) more powerful than g, and conversely, g can also be (in
parts) more powerful than f. Hence, we introduce the following stronger anti-symmetric relation:

Definition A.4. A function f is strictly more powerful than g (denoted as f > g) if

1. f is more powerful than g

2. and g is not (in parts) more powerful than f.

Additionally, we write we write g < f if a function g is not more powerful than f.

Next, we will prove a connection between color refinement and expressiveness: a function that always produces a finer
coloring cannot be less powerful than a function with a coarser coloring.
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Lemma A.5. Let f, g be functions with f T g for all graphs. Then, g is not more powerful than f, i.e., g < f.

Proof. Assume for the sake of contradiction that there exist non-isomorphic graphs G', G? that can be distinguished by g
but not by f. Let d be the coloring obtained with g, and ¢ be the coloring obtained with f. The multiset of colors d has to
differ for G! and G?, i.e. there exists a color a: with

D! :={v|d,=a,veV}

D? :={v|d,=a,veV?}

such that
ID}| # |DZ. 3)

Since c refines d no node v in D}, and D? can share a color ¢, with another node not in D} and D?. Hence, the set of
colors ¢ of nodes in D}, and D? is disjoint from the set of colors c for the other nodes in the graph. But because of 3 there
has to exist a color 3 with

Oé::{v|c1,:5,U€V1}QD(IX
Ci={v|c,=BveV}CD]

and
|Cil # |C3l.

This contradicts the initial assumption. O

Note that all our augmentation functions introduced in Section 4 only add information to the graph, or more formally:

Definition A.6. A function g from graphs to graphs is called additive if the set of nodes and edges does not decrease, i.e.,
gV, E,X) =V, E, X )withY CV' and € C &',

But by adding too much information, one could completely destroy the initial structure of the graph (e.g., make every graph
a complete graph). Hence, we need the additional condition that it should be possible to recover the original graph from the
augmented graph.

Definition A.7. An additive function g from graphs to graphs (i.e, g(G) = G’) is called reversible if there exists a function
h for vertices v € V'’ such that

X, vey
X)) =" 4
and a function ¢ for edges e = {u,v} € & such that
1 eef
X', X!) = 5
(XL X0) {0 e ®

By only adding such reversible information the WL test cannot become less powerful:

Lemma A.8. Let g be a reversible function. Then g-WL is not less powerful than WL.

Proof. Let ¢! be the coloring obtained by the ¢-th iteration of the WL-test, and d*) the coloring of g-WL. We will show
by induction that there exists a function A such that h(dq(f)) = cq()t) forv € V, i.e dq(,t) C cq(,t). For t = 0, this follows
immediately from Equation (4). For the induction step, note

dy) Sy | ue Ner(v)}-
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Now note that the function e (Equation (5)) makes it possible to reconstruct the neighborhood in G based on the features X’
and neighborhood in G”. Since d*) only refines the features X', we can also reconstruct the neighborhood in G based on
d® and, hence,

fdY | ue Nor(0)} C {dl ™) |ue Na(v)h
and by induction hypothesis
fdl ™" [ue No()} C e |ue Na(v)}-

So, taken together, we have

dP T eV | ue Na()}. (©6)
Additionally, note that
40 = gt E =), )

By combining Equation (6) and Equation (7), we get
a9 C (70, el | we No()}) E e,
Hence, d refines ¢, and by Lemma A.5 g-WL is not less powerful than WL. O

Now that we have found a lower bound of the expressiveness, we will also give an upper bound of the expressiveness. The
idea is that a graph augmentation function does not increase the power of a coloring algorithm f (e.g., the WL test) if
all the information added by ¢ can also be computed from the coloring obtained with f. Or, to put it differently, a graph
augmentation function g does not increase the expressiveness if it is possible to compute the set of colors on g(G) from the
set of colors on G.

Lemma A.9. Let g be a function that augments a graph, i.e., a function from graphs to graphs. Let f be a coloring function.
If there exists a function h such that

then f o g is not more powerful than f.

Proof. Let G', G? be two non-isomorphic graphs that are distinguishable by f o g. Then

f(g(GY) # f(g(G?))
h(f(GY)) # h(f(G?))

It follows that f(G') # f(G?). Hence, f o g is not more powerful than f. O

Note that the condition in the lemma is similar to the definition of color refinement. However, we cannot use color refinement
directly because the function g could add or delete nodes, making a direct comparison of nodes between G* and G?
impossible. Consequently, we have to use a more global view rather than the more localized approach of color refinement.

A.2. Graph augmentation functions

We will now analyze the change in expressiveness with some graph augmentation functions that model message-passing
schemes that are frequently used in practice.

A.2.1. FRAGMENT AUGMENTATIONS

We will first give the proofs for the augmentation functions from Section 4 that incorporate fragment information.
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Proof of Theorem 4.5

Theorem 4.5. There exist fragmentation schemes such that NF-WL, FR-WL and HLG-WL are all strictly more powerful
than k-WL for any k.

Proof. Consider a fragmentation scheme that decomposes a graph into every possible subgraph (so the vocabulary is
the set of all possible graphs). It is known that for every k there exist two non-isomorphic graphs G' and G? that are
indistinguishable by k-WL. But as G' and G are themselves part of the vocabulary and the fragmentation, they are trivially
distinguishable by NF-WL, FR-WL, and HLG-WL. O

Proof of Theorem 4.6

Theorem 4.6. NF-WL is strictly more powerful than 2-WL for fragmentation schemes F that recover any substructure with
more than two nodes.

Proof. Chen et al. (2020) showed that the WL test cannot count the number of (induced) subgraphs with at least three nodes,
i.e. for any substructure S with more than three nodes, there exist non-isomorphic graphs G and G* such that 2-WL cannot
distinguish them but they have a different count of S. So, let X be the substructure that F recovers. Then, WL cannot count
the number of occurrences of X, whereas NF-WL can trivially count the number of X in a graph. Hence, NF-WL is more
powerful than WL. Since NF is a reversible function, NF-WL is by Lemma A.8 also not less powerful than WL, making
NF-WL strictly more powerful than WL. O

Proof of Theorem 4.7 Before coming to the proof of Theorem 4.7, we will prove the following useful lemma:

Lemma A.10. Two graphs G* = (V! €L, X1, G% = (V?, 2, X?) are undistinguishable by WL if the set of node features
is the same

X'=X*=X
and all nodes with the same node feature have the same neighborhood

Vi, j e VIuV?:
X, =X;={X,|ne NG} ={Xm|meN(3)} (8)

Proof. We will show by induction over ¢ that the color of all nodes with the same node features is the same:

Vi, j e VIuy?:

— t_ ot
Xi=Xj=c¢=c.

For t = 0, this follows immediately from ¢ = HASH(X).
For ¢t > 0, we have for nodes 7, j with X; = X;

et =HASH(c{ ', {c!7' |ne N(i)})
= HASH(c/ ', {ci, " | n € N(i)}) (by IH)
= HASH(c;*l7 {7 |meN(G)}) (by 8 and IH)

:C]

As both graphs have the same node features X' = X2 the set of colors is also the same in each iteration ¢ of the WL-test.
Hence, the graphs are indistinguishable by the WL-test O

Theorem 4.7. FR-WL is strictly more powerful than NF-WL for fragmentation schemes F recovering 3-cycles.
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G G?

Figure 6. Graph G* and graph G? that are indistinguishable by NF-WL but distinguishable by FR-WL. Node features are represented by
the color of the nodes.

Proof. With Lemma A.10 we can now prove Theorem 4.7: We first show that FR-WL is more powerful than NF-WL.
Consider the two graphs G, G2 depicted in Figure 6 with two different node features colored violet and blue. Note that
when not considering the node features the graphs are identical and each node is isomorphic to every other node. As every
fragmentation scheme has to be permutation invariant, every node is assigned the same additional node feature in NF (which,
thus, holds no additional information to distinguish the graphs). Now, observe that the two graphs fulfill the conditions of
Lemma A.10. Therefore, the graphs are indistinguishable by NF-WL. In contrast, FR-WL can distinguish the two graphs as
G contains 3-cycles with three violet nodes whereas G does not contain such 3-cycles. Hence, the fragment representation
for these 3-cycles differs and distinguishes the two graphs.

Now, it remains to show that NF-WL is not more powerful than FR-WL. Let ¢!, d’, be the colorings of the ¢-th iteration
of FR-WL and NF-WL, respectively. We will show by induction over ¢ that c{*! C d. To simplify the notation, let
Ni(v) :={f |v € f, f € F} be the set of fragments that v is part of. For ¢ = 0, note that after the first iteration of the
FR-WL test each vertex v € G receives information about the fragment it is part of

¢y = HASH(), {2 | n € Ng(v) W N (v)})
= HASH(cy, ey [ n e N(o)}w {{c} | f € N3(0)})
C (co. fic} | f e Ny(v)})
= (Xo. fltype(f) | f € N3(v)})
C d,
For the induction step (¢t — 1) — ¢, we have
ch, =HASH(c\ ™ (" | n € Na(v) W NG (v) B)
C (¢ el [ n e No()})
C (d)72,{{d,* | n € No(v)})
Cd,~

This concludes the induction step. Hence, we have ¢ C d, and by Lemma A.8 NF-WL is not more powerful than FR-WL. [

Proof of Theorem 4.8
Theorem 4.8. HLG-WL is strictly more powerful than FR-WL for fragmentation schemes F recovering 3-cycles.

Proof. Consider the two graphs G, G? depicted in Figure 2 with two different node features colored green and red. Note
that the two graphs fulfill the conditions of Lemma A.10. Furthermore, even the graphs FR(G') and FR(G?) fulfill these
conditions. Hence, the graphs G 1 G? cannot be distinguished by FR-WL.

In the higher level graph of G each 3-cycle representation is connected to two other 3-cycle representations. Contrarily,
in the higher level graph of G? each 3-cycle representation is connected to only one 3-cycle representations. Hence, the
coloring will differ and HLG-WL distinguishes the two graphs.
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Now, it remains to show that FR-WL is not more powerful than HLG-WL. This follows immediately from Lemma A.8 and
the fact that the change in the graph from FR to HLG is reversible. O

Proof of Theorem 4.9
Theorem 4.9. HLG-WL is in parts more powerful than 3-WL for fragmentation schemes F recovering 5-cycles.

Proof. The proof follows a similar proof by Bodnar et al. (2022). Consider the Rook’s 4x4 and Shrikhande graph (both in
the family of strongly regular graphs SR(16, 6,2, 2)). The Shrikhande graph possesses 5-cycles while the Rook’s graph
does not. Hence, HLG-WL can trivially disitnguish those two graphs with a fragmentation recovering 5-cycles. However, it
is known that 3-WL cannot distinguish those two graphs (Bodnar et al., 2022). O

A.3. Additional graph augmentation function

We will now consider two additional graph augmentation functions that are often used in practice: a learned representation
for each edge and a learned representation for the complete graph that is connected to all other nodes. While these
augmentations might be beneficial in practice, we will show that they do not increase expressiveness.

Edge representation We will first formally define the edge representation augmentation (ER). For every edge, we
introduce a new node that is connected to its two endpoints.

Definition A.11. The edge representation graph augmentation function is ER(V, £, X) = (VER £ER XER) with
VER .—pu€,
ER=gu{{e,v} | e={u,v} €&}
KR {Xi i€V
! a €€
where « is some new label.

Now, we can show that this augmentation does not increase expressiveness compared to the WL test.
Lemma A.12. ER-WL is as powerful as WL.

Proof. We will first show that ER-WL is not more powerful than WL: Let ¢(), d(*) be the colorings of the WL test and of
the ER-WL test, respectively. Then we will show that

We will use Lemma A.9 and give a function / that maps a coloring ¢(*) of the WL test without edge representation to a

coloring d*) of ER-WL: Note that with the color cg,i) of a node v one can compute the colors ch‘” of all neighboring nodes

u. Hence, we can determine from c(¥) the following multiset
(e, i) e = (u,0) € €}
which allows us to compute the corresponding edge representations d((f).
We will now show that ER-WL is not less powerful than WL. This follows directly from Lemma A.8 as ER is a reversible
function. O

Graph representation We will now formally define the learned graph representation (GR), sometimes called virtual node.

Definition A.13. The graph rerpesentation augmentation function is GR(V, £, X) = (VOR, £9R X OR) with
VOR .=V U {g},
ER=eu{{v,g}|veV}

or [ Xi i€V
o la i=g

where « is some new label.
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Table 7. Overview of the vocabulary and expressiveness of existing topological and fragment-biased models. The bounds for GSN-v,
O-GNN, and HIMP are tight, i.e. when using a sufficient number of layers and injective neighborhood aggregators, the models are as
powertful as the corresponding Fragment-WL test.

Model | Bounded by Vocabulary
GSN-v* | < NF-WL Cliques or Rings
O-GNN | <FR-WL  Rings

HIMP | <HLG-WL Rings

Simplicial complexes

MPSN <HLG-WL . . .
(in practice cliques)

CW complexes

< -
CIN SHLG-WL o) practice rings & edges)

CW complexes

< -
CIN++ | <HLG-WL (in practice rings & edges)

Similar to the edge representation, the graph representation does not increase expressiveness:
Lemma A.14. GR-WL is as powerful as WL.

Proof. We will first show that GR-WL is not more powerful than WL. We will use Lemma A.9 and give a function h
that maps a coloring ¢(*) of the WL test without graph representation to a coloring d*) of GR-WL: We will show this by
induction over ¢. For ¢ = 0, this follows immediately from the definition of GR. For the induction step, assume that there

exists such a function from ¢(*=1 to d(*~1). Note that the graph representation dét) is computed as:

d{ = HASH (™), {d~V | v e N (9)})
= HASH(d{™", {dl{™" | v € V}).

which can be derived from ¢(*~1) by induction hypothesis. With this we can trivially compute dff) from ¢ for all other
nodes v, too.

Since GR is a reversible function, by Lemma A.8 GR-WL is not less powerful than WL. Hence, GR-WL is as powerful as
WL. O

A.4. Expressiveness of existing models

We will use our Fragment-WL tests to compare the expressiveness of existing fragment-biased GNN models. Table 7 gives
an overview of the vocabulary of existing fragment-biased and topological GNNs. Additionally, it shows the expressiveness
in our Fragment-WL hierarchy.

A.4.1. GSN-v

GSN-v (Bouritsas et al., 2023) incorporate fragment information as an additional node feature. The additional node
features consist of the counts of fragment types a node is part of. Their framework also differentiates between different
(non-symmetric) positions inside the fragment (e.g., first node in path vs. second node in path) that correspond to different
orbits. While their framework can use any fragmentation scheme, in all real-world experiments, they only use rings or
cliques. Note that for rings and cliques, no different orbits exist, i.e., each node in the substructure has the same orbit. Hence,
this information becomes irrelevant.

Theorem A.15. GSN-v using rings and/or cliques as vocabulary is at most as powerful as NF-WL. Additionally, when using
injective neighborhood aggregators and a sufficient number of layers, GNSs are as powerful as NF-WL with a fragmentation
scheme based on rings and cliques.

*We evaluate the GSN-v that is used in practice, i.e. with a vocabulary of cliques and rings. Note that the theory of the authors allows
for potentially more expressive instantiations.
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Proof. GSN-v appends the node features by the counts of substructures and the respective orbits each node is part of. After
that, a standard GNN is applied to the graph.

Note that in a ring or a clique, each node has exactly the same orbit. So, for a vocabulary based on cliques and rings the
appended information degenerates to solely the substructure counts. Further, note that this substructure count function is an
injective function A as defined in Definition 4.2. Hence, when using injective neighborhood aggregators and an MLP update
function with a sufficiently large number of layers such that it can approximate the HASH function, GSN-v exactly models
the NF-WL test. Hence, GSN-v is exactly as powerful as NF-WL. O

A.4.2. O-GNNs

Besides representations for nodes, O-GNNs (Zhu et al., 2022) use explicit representation for rings, edges, and the whole
graph.

Theorem A.16. O-GNNs (Zhu et al., 2022) are at most as powerful as FR-WL. Additionally, when using injective
neighborhood aggregators and a sufficient number of layers, O-GNNs are as powerful as FR-WL with a fragmentation
scheme based solely on rings.

Proof. O-GNNs (when using injective neighborhood aggregators instead of their original sum aggregators and an MLP
with a sufficiently large number of layers such that it can approximate the HASH function) models performing the WL
test on an FR, ER, and GR augmented graph. As shown in Lemmas A.12 and A.14, the edge representation and the graph
representation do not influence the expressivity. Hence, O-GNNs are exactly as powerful as FR-WL with a fragmentation
scheme based solely on rings. O

A.4.3. HIMP

HIMP (Fey et al., 2020) builds a higher-level junction tree based on rings and edges for message passing on the original
graph, the higher-level junction tree, and between those two.

Theorem A.17. HIMP is at most as powerful as HLG-WL. Additionally, when using injective neighborhood aggregators
and a sufficient number of layers, HIMP is as powerful as HLG-WL with a fragmentation scheme based on rings and edges.

Proof. HIMP (when using injective neighborhood aggregators instead of their original sum aggregators and an MLP with a
sufficiently large number of layers such that it can approximate the HASH function) exactly models performing the WL test
on an HLG augmented graph. Hence, HIMP is exactly as powerful as FR-WL with a fragmentation scheme based on rings
and edges. O

A.4.4. FRAGNET

Next, we consider the expressiveness of our FragNet model:

Theorem 5.1. FragNets are at most as powerful as HLG-WL. Additionally, when using injective neighborhood aggregators
and a sufficient number of layers, FragNets are as powerful as HLG-WL.

Proof. For the proof, we rely on Lemma A.12, the finding that an explicit edge representation does not augment expressive-
ness. Notice that our model, when using injective neighborhood aggregators and an MLP with a sufficiently large number
of layers such that it can approximate the HASH function, exactly models performing the WL test on an HLG and ER
augmented graph. As shown in Lemma A.12, ER does not change the expressiveness. Hence, our model is exactly as
powerful as HLG-WL. O

A.4.5. ToPOLOGICAL GNNSs

We will now consider topological GNNs. We will start by comparing HLG-WL with CWL, a variant of the WL test operating
on CW complexes (Bodnar et al., 2022). In the CWL framework, every graph is (permutation invariantly) mapped to a set of
cells X', a CW complex (using a skeleton-preserving lifting map). Let X; denote the set of cells with dimension ¢. Then, X,
corresponds to all vertices V and X to all edges £. For higher dimensions, the results depend on the particular cellular
lifting map. For instance, A5 could correspond to all cycles.
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Theorem A.18. HLG-WL is not less powerful than CWL, with a fragmentation scheme F that corresponds to the cellular
lifting map used by CWL.

Proof. Let F be the fragmentation that corresponds to X’ without the vertices: F' = X \ V. Let ¢(), b(®) be the coloring of
iteration ¢ of HLG-WL and CWL, respectively. We will show that b® = () which implies that b C c after termination.

We will show this by induction over . For ¢ = 0, this follows immediately from the fact that the node features in HLG-WL
are finer than the features of cells in CWL.

Now we will show ¢(¥) T b2 assuming c(*=1) T p(2t=2);

The idea of the induction step is that the hash update function HASH receives more information in HLG-WL compared to
CWL. Let us first consider vertices, i.e., Xj. The update function in CWL for v € V = A} is:

by = HASH(b{! =V, (051,007 V) | e = {v,w} € £})
Now note that the update function in HLG-WL for v € V is:
el = HASH (P, {(c&" Y | w € Moe)(v)})

C HASH(c}; 2= gD e = {v,w} € &)

C HASH (P, {(c7,c37) | e = {v,w} € £})

C HASH(Y, 009,00 7Y) | e = {v,w} € £})

= bV
The first step follows from e € NHL(;(G) (v) as the edges are part of the fragmentation F'. The second step follows from
céQt*l) C (022’%2), cg t72), 1(,2t 2) The third step uses the induction hypothesis.
Now, we will consider a cell x € X}, C F. The update function in CWL is

b = HASH (b1 (68D, 60 D) & < u, o < ul}, {b" " |1 < 2})

where r < y means that x with dimension k is part of the cell y of dimension k£ + 1. For example, e < r if e is an edge in a
ring 7 € Xy 1. For details, we refer to Bodnar et al. (2021).

The update function in HLG-WL for a fragment z € F'N A}, in G’ := HLG(G) is:
¢ = HASH (™Y, {27 | w € N (2)})
C HASH (=1 (@Y | u € Nor(2) N X I, (e |1 € Nov () N X1 B)
C HASH (29 @D | & < u}, {7V |1 < 2})
C HASH (el 9 (@2, e |z < u, o < ul}, {7 | 1 < 2})
C HASH (0D, {6~ 1>,b(t DNz <u, o< ul, o |1 <))

o

= b
The steps are very similar to the vertex case above. This concludes the proof that c refines b. By Lemma A.5 this implies
that HLG-WL is not less powerful than CWL using a fragmentation that corresponds to the cellular complex. O

As CWL bounds the expressiveness of CIN (Bodnar et al., 2022) and CIN++ (Giusti et al., 2023), we get the following
corollary:

Corollary A.19. CIN and CIN++ are at most as powerful as HLG-WL with a fragmentation scheme that corresponds to the
cellular lifting map.

Additionally, CWL subsumes the WL version, SWL, introduced by Bodnar et al. (2021) for simplicial complexes. The
cellular complex just corresponds to all cliques of the graph.

Corollary A.20. HLG-WL, with a fragmentation scheme recovering cliques, is not less powerful than SWL.

As MPSNs (Bodnar et al., 2021) are bounded by SWL, we have the following result for MPSNs:
Corollary A.21. MPSNs are at most as powerful as HLG-WL with a fragmentation scheme based on cliques.
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No Fragmentation Rings (CIN) Rings-Paths (ours)
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Figure 7. Commute time from the star node to all other nodes. The first graph has no fragmentation, the second one a rings fragmentation
(like in CIN/CIN++), the third a rings and paths fragmentation (like our model).

B. Further experiments

B.1. Long-Range tests

We provide more experiments to measure the long-range capabilities of FragNet.
Commute time

In addition to the recovery rates in Figure 5, we also consider commute times. The commute time between the nodes a
and b is the expected time for a random walker from a to reach b and return again to a. Di Giovanni et al. (2023) have
proposed the commute time as a measure for over-squashing. To compute and compare commute times across different
fragmentations, we connected all nodes in each fragmentation that could exchange a message within one layer. Figure 7
shows the commute from the star node to every other node for the same graph as in Figure 5. The close alignment between
commute time and recovery rate supports the theoretical findings by Di Giovanni et al. (2023) and further emphasizes the
potentially enhanced long-range capabilities of our model. Additionally, we also compute commute times on a molecule
from the ZINC dataset that contains more fragments (see Figure 8).

Quantitatively, we compute average commute times on a random sample of molecules from the peptides dataset for a model
without any fragmentation and for FragNet (RingsPaths fragmentation with a higher-level graph). We observe that the
addition of a higher-level graph reduces commute times by 16%.

Table 8. Average commute times between all nodes on a random sample of 50 molecular graphs from the peptides dataset with and
without the higher-level graph.

Normal Molecular Graph | 5056
Molecular Graph + HLG | 4253

B.2. Distribution of Fragments

Figure 9 illustrates the distribution of fragment sizes, i.e., path lengths and ring lengths, extracted by our RingsPaths
fragmentation method across the ZINC-10k, ZINC-full, and peptides datasets. It is worth noting that the peptides dataset
features some exceptionally large rings.

B.3. Ablation Studies

In the following, we test the design choices of our model and fragmentation. First, we test FragNet without the different
fragment information or ordinal encoding on ZINC and Peptides. We show the results in Table 9. We observe that a reduction
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in expressiveness generally leads to a reduction in performance. An exception is the use of fragment representations (FR-WL,
i.e. FragNet - Higher-level graph) which shows a higher error on ZINC 10k and Peptides Struct. This is similar to the
pattern that we observe in the message reconstruction toy experiment we show in Figure 5 where the additional fragment
representations increase the importance of the current substructure and do not contain a message from other parts of the
molecule.

Table 9. Ablation of different expressivity choices for FragNet. Additionally, we ablate the ordinal encoding.

Model ZINC Peptides

‘ 10k (MAE |) Struct MAE |) Func (AP 1)
FragNet (=HLG-WL) 0.0775 £0.004  0.246 +=0.002  0.668 £ 0.003
— Higher-level graph (=FR-WL) 0.0872 £0.004  0.256 £0.003  0.661 + 0.005
— Fragment representation (=NF-WL) | 0.0994 = 0.007  0.247 £ 0.003  0.654 £ 0.005
— All fragment information (=WL) 0.1609 £ 0.003  0.249 +£0.001  0.652 £ 0.005
FragNet — ordinal encoding ‘ 0.0945 £0.006  0.249 £0.001  0.666 + 0.004

Furthermore, we compare different fragmentation schemes in combination with FragNet. In Table 10, we observe that our

RingsPath fragmentation scheme performs the best across the different datasets.

Table 10. Performance of FragNet with different fragmentation schemes.

Fragmentation Scheme ‘ ZINC Peptides

‘ 10k MAE |) Struct MAE|) Func (AP 1)
BBB 0.127 0.252 £0.002  0.637 £ 0.003
BRICS 0.127 0.247 £0.008  0.658 £ 0.011
Magnet 0.098 - -
Rings 0.078 0.249 £ 0.001  0.659 + 0.007
RingsPaths (ours) 0.077 0.246 £ 0.002  0.668 + 0.005

In Figure 10, we look at how large the vocabulary size has to be per fraction of fragmented atoms. That is, for an increasing
vocabulary, we observce how many atoms belong to a fragment. The steeper the increase the better. We can observe that
on ZINC-10k BBB, BRICS and Rings are not able to assign a fragment to each atom no matter how large the vocabulary
size. Magnet achieves full fragmentation but slower compared to our RingsPaths which is the most vocabulary efficient. We
further show the necessary vocabulary size on ZINC-Full and Peptides for RingsPaths in Table 11.

Table 11. Vocabulary sizes for RingsPaths on different datasets.
| ZINC-10k  ZINC-Full

Vocabulary Size | 18 28

Peptides
100

C. Experimental details

In the following, we will describe details for all our experiments. Unless otherwise stated, for our FragNet, we use a 2-layer
fully connected neural network with ReLLU activations and batch norm as the MLP update function. For the aggregation
method AGG, we use a sum aggregation for messages within the original or higher-level graph and a mean aggregation for
messages between the original graph and the higher-level graph. For training, we use the AdamW (Loshchilov & Hutter,
2017) optimizer and gradient clipping with a value of 1. The model has been implemented in PyTorch (Paszke et al., 2019)
using the PyTorchGeometric (Fey & Lenssen, 2019) and the PyTorch Lightning (Falcon & The PyTorch Lightning team,
2019) library. It is in parts adapted from HIMP (Fey et al., 2020). All results for other methods are taken from Rampasek
et al. (2023) and Giusti et al. (2023).
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peptides-struct  peptides-func ZINC-10k  ZINC-full
num_layers 3 2 5 3
hidden_channels | 110 128 64 120
num_layers_out | 3 3 3 2
frag-reduction sum sum max max
out-reduction mean mean mean mean
dropout 0.05 0.15 0 0
Ir 0.001 0.001 0.001 0.001
weight decay 0 0 0.001 0
ema decay 0.99 0.99 0.99 0.99
scheduler Cosine ReduceonPlateau  Cosine ReduceonPlateau
patience - 30 - 15
factor - 0.5 - 0.9
batchsize 32 128 32 128
max epochs 300 400 2000 1000
num parameters | 440K 440K 221K 494K

Table 12. Hyperparameter configuration of our model for the ZINC and peptides benchmarks

Table 13. Fragment counts for the 42 most common MagNet fragments in ZINC and accuracy scores of our model in predicting the
counts.

Fragment

Count 12862 7548 6198 5629 3904 2204 1799 1772 1348 1330 1071 741 573 375
Accuracy | 1.0 0.997 0999 098 0.99 0969 0999 1.0 0.963 0997 0997 0933 0.999 0.954
Fragment | | - (X ’ . S8 O - /

Count 208 204 176 156 113 113 90 80 77 66 54 45 37 32

Accuracy | 0.999 0988 0.983 0982 0.996 0.995 0.993 0991 0998 0.995 0996 0.996 0.996 0.998

v / \ ~ ) %

Fragment ‘

S > : G AL L
Count 32 31 28 25 23 19 19 18 18 17 15 15 15 13
Accuracy | 0.998 0.998 0.996 0.997 1.0 0.998 0997 0998 1.0 1.0 0.998 0.998 1.0 0.999
C.1. ZINC and peptides

The hyperparameters of our model for ZINC (10k and full) and peptides (struct and func) can be found in 12. Note that
we adhere to the S00K parameter budget. Each experiment is repeated over three different seeds except for the ZINC-full
experiment, where we only have a single run because of computational and time limitations.

C.2. Expressiveness

We use the MagNet (Hetzel et al., 2023) fragmentation to fragment all graphs in the ZINC-subset dataset. We sort the
fragments by number of occurrences in the training set. For each of the 28 most common substructure we train our model
to predict the counts of these substructures. As model parameters we use three layers of message passing with a hidden
dimension of 120. For the final readout function we use a sum aggregation and a two layer MLP. We train our model using
the MAE loss for 200 epochs with a learning rate of 0.001 and a reduce-on-plateau learning rate scheduling. We report the
accuracy (percentage of graphs where rounded prediction equals the ground-truth count) on the test set. Table 13 shows the
complete table of all substructures.
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C.3. Long-range Interaction: Recovery rate

In our synthetic long-range experiment, we consider a graph consisting of two rings connected by a path Figure 5. One
node in the graph is the designated source node (marked by a star). The feature of the source node is initialized with
one-hot-encoding of one of 10 different classes. All other node features are initialized with a constant encoding. For every
node ¢ in the graph, we train a separate model to predict the class of the source node s, i.e. the target node ¢ has to reconstruct
a message from the source node. The number of layers of the models is max(d(s, t), 3), ensuring that the target can receive
messages from the source. We train the model with the cross entropy loss between the prediction at the target node and the
true class of the source. We compare the results of models that have no fragmentation, a ring fragmentation and a ring-path
fragmentation. We use a our model without batchnorm and a hidden dimension of 64. We train the model for a maximum of
200 epochs with a starting learn rate of 0.001 and average the results over at least five seeds.

C.4. Generalization: Rarity

For the experiment in Table 5, we report the MAE of the ZINC-full validation set grouped by the frequency of the rarest
fragment in the molecule. The frequency of a fragment is defined as the fraction of molecules that contain the fragment. As
the fragmentation scheme, we use the simple Rings fragmentation.

C.5. Generalization: QM9

To perform our generalization experiment on QM9, we transform the edge and node features of the molecular graphs in
QMO so that they have the same node features and edge features as the graphs in the ZINC dataset. Additionally, we do not
use any molecular graphs that contain atom types that do not appear in the ZINC dataset. We calculate penalized logP as
ground truth. Then, we trained our model and GRIT on ZINC-full and tested them on the transformed QM9 dataset.

D. Downstream tasks using substructures

Many other molecular tasks beyond property prediction can benefit from substructure information, highlighting the broader
potential applications of our model.

Motifs for Drug Discovery Motifs and specific substructures are important inductive biases in molecular generation,
optimization, and scaffolding tasks (Hu et al., 2023; Sommer et al., 2023; Du et al., 2022). Employing a set of fragments
can simplify the generation process and increase the chemical validity of the generated molecules. Given a fragmentation
procedure, the fragments are aggregated into a vocabulary of motifs through complete enumeration of the dataset (Jin
et al., 2019; 2020; Geng et al., 2023), top-k selection (Kong et al., 2022; Maziarz et al., 2022) or consolidation into
Murcko scaffolds (Hetzel et al., 2023). Encoders for molecule generation often integrate motifs as node features or via
additional higher-level encoder networks, as the decoder is explicitly tasked with reconstructing the set of motifs from a
given embedding.

Pretaining In the context of using GNNs for drug discovery, incorporating motifs as part of a pretraining phase has been
shown to improve representation learning capabilities. Zang et al. (2023) integrates higher-level structures as nodes in a
graph and leverages the graph’s hierarchy for self-supervised pretraining. Similarly, Zhang et al. (2021) propose a GNN that
operates on a two-tiered graph and predicts the sequence of motifs during network pretraining. To improve the encoding of
higher-level structures, Inae et al. (2023) suggest a motif-aware pretraining technique, which masks entire motifs during the
pretraining phase.
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Figure 8. Commute time from the star node to all other nodes. The first graph has no fragmentation, the second one a rings fragmentation
(like in CIN/CIN++), the third a rings and paths fragmentation (like our model).

25



Expressivity and Generalization: Fragment-Biases for Molecular GNNs

a ZINC-10k
Distribution of Ring Sizes Distribution of Path Sizes
104 4
104 4
10° 4
103 4
> >
g g
e e
] E]
B £
10) -
10! 4
10! 4
10° 4
2 4 6 8 10 12 14 16 18
Size Size
ZINC-Full
b Distribution of Ring Sizes Distribution of Path Sizes
106 4
105 4
105 9
104 4
104 4
> >
34
“gl_ “g; 10
& &
102 4
1024
10! § 10! 4
10° § 10° 5
5 10 15 20 25
Size Size
Peptides
C Distribution of Ring Sizes Distribution of Path Sizes
106 4
104 4
105 4
3
10 10* 4
> >
g g
2 2
E E
% 107 4 g1
& &
102 4
10! 4
10! 4
100 4

Size Size

Figure 9. Distribution of sizes of path and ring fragments for the a) ZINC-10k, b) ZINC-full, and c) Peptides dataset.
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Figure 10. Fraction of atoms in ZINC-10k dataset that are part of a fragment as a function of vocabulary size. A fraction of 1 indicates
that all molecules in the dataset can be completely fragmented. We compare the chemically inspired fragmentation schemes BBB, BRICS,
and MagNet with a fragmentation based just on rings and our RingsPaths fragmentation. The substructures in the vocabulary are sorted by
the frequency in which they appear in the molecules.
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