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Abstract

In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for
sparse federated learning with efficient communication. SSFL identifies a sparse subnetwork
prior to training, leveraging parameter saliency scores computed separately on local client
data in non-IID scenarios, and then aggregated, to determine a global mask. Only the
sparse model weights are trained and communicated each round between the clients and
the server. On standard benchmarks including CIFAR-10, CIFAR-100, and Tiny-ImageNet,
SSFL consistently improves the accuracy—sparsity trade-off, achieving more than 20% relative
error reduction on CIFAR-10 compared to the strongest sparse baseline, while reducing
communication costs by 2x relative to dense FL. Finally, in a real-world federated learning
deployment, SSFL delivers over 2.3x faster communication time, underscoring its practical
efficiency. Our code is available at: https://github.com/riohib/SSFL

Keywords: Federated Learning, Sparse Neural Networks, Model Pruning, Pruning at Initialization, Sparse
Subspaces, Communication Efficiency, Non-IID Data.

1 Introduction

The success of deep learning has been propelled by ever-larger models trained on centralized datasets. Yet,
in critical domains such as healthcare, finance, and mobile computing, data is inherently decentralized,
privacy-sensitive, and distributed across millions of user devices or institutional silos. Federated Learning (FL)
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has emerged as a compelling paradigm for such settings, enabling collaborative model training without direct
data sharing (McMahan & Ramage, 2017). By orchestrating learning across clients who retain their local
data, FL promises privacy preservation and data locality. However, practical deployment of FL, especially in
cross-device scenarios, remains fraught with challenges.

FL systems must contend with severe system heterogeneity, where client devices exhibit widely varying
compute, memory, and energy resources. This is compounded by statistical heterogeneity, as data across
clients is typically non-IID and differently balanced, making it difficult to train a single global model that
generalizes well across users (Kairouz et al., 2021). These challenges often manifest as communication
bottlenecks, poor convergence behavior, and brittle hyperparameter tuning (Khodak et al., 2021).

One promising approach to alleviating these bottlenecks is through sparse training, which reduces both
the on-device computation and the communication payload (Lin et al., 2017; Wang et al., 2020; Evci
et al., 2020a). Among sparse FL methods, there has been considerable progress in dynamic sparsification
strategies that evolve sparse masks over the course of training (Bibikar et al., 2022; Dai et al., 2022; Guastella
et al., 2025). However, these methods typically rely on iterative coordination, complex heuristics such as
prune-and-grow schedules, and introduce additional hyperparameters that require tuning. Moreover, certain
pruning-at-initialization (Pal) approaches resort to using public proxy datasets to identify subnetworks, which
violates the privacy-preserving ethos of FL (Huang et al., 2022). Beyond operational complexity, dynamic
masking approaches may suffer from a more fundamental challenge: as masks evolve independently across
clients, parameter updates occur in shifting subspaces, potentially hindering the formation of coherent global
representations.

In this work, we address a fundamental open problem in sparse and efficient FL: how can one identify a
performant, static sparse subnetwork at initialization using only private, non-IID data across clients with
minimal communication and no auxiliary dataset? To this end, we propose Salient Sparse Federated Learning
(SSFL), a simple yet effective method that discovers a globally shared sparse mask prior to training via a
single step of distributed saliency aggregation at the start of the learning process. Each client computes
local gradient-based parameter importance scores on private data and transmits them once to the server,
which averages them in a data-proportional manner to construct a global heatmap of saliency scores. The
Top-k operation on the aggregated saliency heatmap defines a fixed binary mask, establishing a common
sparse subnetwork for all clients that is preserved for the duration of training. By constraining the federation
to this unified sparse topology, we ensure optimization proceeds within a consistent parameter subspace,
avoiding the potential instability of shifting masks found in dynamic approaches. This leads to a highly
communication-efficient and privacy-compliant static sparse FL pipeline, with zero overhead beyond the
initial mask discovery.

Extensive experiments across CIFAR-10, CIFAR-100, and Tiny-ImageNet under realistic non-1ID settings
demonstrate that SSFL significantly outperforms both dense and sparse FL baselines, including state-of-the-art
dynamic sparsity methods such as DisPFL (Dai et al., 2022), SparsyFed (Guastella et al., 2025) and Flash
(Babakniya et al., 2023). Moreover, we validate the practical efficiency of SSFL in a real-world FL deployment,
achieving over 2.3x wall-clock communication speedups on larger models. To the best our knowledge, SSFL
is the first method to offer a single-shot, fully decentralized, and privacy-preserving sparse FL strategy with
competitive performance across standard benchmarks.

Contributions We summarize our contributions as follows:

e We introduce SSFL, the first single-shot sparse federated learning framework that discovers a globally
shared sparse subnetwork at initialization using only local client data. Our approach avoids the need for
public auxiliary datasets, iterative pruning cycles and additional hyperparameters.

e We develop a communication-efficient mechanism to compute globally representative importance scores
by aggregating local saliency scores in a single round of coordination. This aggregation respects both
data heterogeneity and client privacy, providing a practical solution for stable sparsity in federated
learning.
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e We demonstrate that SSFL consistently outperforms state-of-the-art sparse federated learning baselines,
including recent dynamic methods such as DisPFL and SparsyFed (Section 4.1). On CIFAR-10, SSFL
achieves over 20% relative error reduction compared to the strongest sparse baseline, and it delivers
similarly strong accuracy—sparsity improvements across CIFAR-100, Tiny-ImageNet, and diverse non-I1TD
partitions. On ResNet-50, the performance gap widens over DisPFL from +23% at 50% sparsity to
+35% at 95% sparsity, where DisPFL collapses to 12% while SSFL maintains around 48% accuracy.

o We validate SSFL’s effectiveness through ablation studies showing: (D SSFL approaches oracle salient
subspace quality with increasing client participation in Section 4.2.3 () the discovered subspaces encode
meaningful structure, as evidenced by performance degradation under permutation in Section 4.2.2 @
the framework can adapt to out-of-distribution data when needed in Section 4.3.

e« We deploy SSFL in a real-world federated learning system and observe over 2x faster wall-clock
communication compared to dense baselines (Section 4.1.1), underscoring the method’s practical impact.

2 Related Work

Our work lies at the intersection of model pruning and communication-efficient federated learning (FL). We
group related efforts based on how they impose sparsity and highlight how SSFL enables one-shot global
sparse training using only private, non-IID data and a single round of communication.

Dynamic sparsity in federated learning. A growing body of work explores dynamic sparsity, where
sparse masks evolve during training. These methods are designed to adapt to changing data distributions but
typically require repeated coordination between clients and the server. For example, SparsyFed (Guastella
et al., 2025) combines activation pruning with adaptive reparameterization, while DisPFL (Dai et al., 2022)
and FedDST (Bibikar et al., 2022) adopt the RigL strategy (Evci et al., 2020a), periodically regrowing
pruned weights during training. DSFL (Beitollahi et al., 2022) introduces user-adaptive compression rates,
MADS (Yan et al., 2025) proposes mobility-aware sparsification that adjusts based on contact time and
model staleness, and DSFedCon (Li et al., 2025) integrates dynamic sparse training with federated contrastive
learning.

Although effective, such methods introduce additional hyperparameters and require multiple rounds of
communication for mask updates. Moreover, because clients maintain different and evolving masks, the
server must aggregate updates defined over partially non-overlapping parameter subspaces, complicating
aggregation and often leading to denser effective global models. In contrast, SSFL discovers a single global
mask at initialization, ensuring that all updates are aligned in the same sparse subspace and avoiding iterative
coordination altogether. This also provides a more stable optimization trajectory, as clients remain in a
common subspace throughout training.

Structured sparsity and specialization. Some FL methods impose structured sparsity by pruning
filters, blocks, or layers to reduce memory and inference costs on constrained devices. HeteroFL (Diao et al.,
2021) assigns clients submodels based on compute budgets, while AdaptCL (Zhou et al., 2021) employs
adaptive structured pruning to synchronize FL processes across heterogeneous environments. Sub-FedAvg
(Vahidian et al., 2021) combines both structured and unstructured pruning for personalized federated learning
under data heterogeneity. More recent work includes subMFL (Oz et al., 2024), which generates compatible
submodels through server-side structured pruning, and AdaPruneFL (Fan et al., 2024), which proposes
data-free adaptive structured pruning for heterogeneous client capabilities.

While structured sparsity primarily targets computational efficiency, the dominant bottleneck in federated
learning lies in communication. Unstructured sparsity better addresses this by maximizing parameter
reduction without hardware-specific constraints. Importantly, the sparse local models produced by SSFL
can still benefit from unstructured-sparsity-aware accelerators (e.g., SPMM kernels), enabling device-level
speedups(Nakahara et al., 2019; Thangarasa et al., 2023; Gale et al., 2020; NVIDIA, 2021; 2020a) . Thus,
whereas structured approaches emphasize client specialization and hardware compatibility, SSFL focuses on
global communication savings while remaining compatible with hardware acceleration.
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Figure 1: Illustration of the distributed connection importance in the non-IID setting. The parameter saliency
scores from each site calculated on local minibatches of equal class distribution are aggregated, weighing
them with the proportion of the data available at that site. The common mask generated from that score is
applied to local client models.

Static sparsity and pruning-at-initialization in FL. Pruning-at-initialization (Pal) techniques aim to
identify a sparse subnetwork before training begins. Although well-studied in centralized training (Lee et al.,
2018; Wang et al., 2020; Tanaka et al., 2020), their application in federated learning remains limited. Several
methods circumvent the challenge by relying on public proxy datasets to estimate parameter importance, as
in FedTiny (Huang et al., 2022). Others compute masks locally but struggle to generalize across clients under
non-I1D distributions (Jiang et al., 2022). FedPal (Wang et al., 2025) proposes a progressive, multi-round
pruning strategy, but this introduces additional pruning stages and communication costs. SSFL addresses
this gap by introducing a single-shot, privacy-preserving approach to identify a high-quality global mask
using only local client data. To the best of our knowledge, it is the first to demonstrate that gradient-based
saliency scores, when aggregated keeping the data disparity in mind, can enable static sparse training in FL
without auxiliary public datasets or iterative coordination during the training process.

A more detailed survey of related pruning and sparse federated learning approaches, including additional
variants and historical context, is provided in Appendix B.

3 The Salient Sparse Federated Learning (SSFL) Method

Federated learning poses unique challenges for sparsity: decentralized data, non-IID samples, and limited
communication make it difficult to identify globally effective sparse subnetworks. In particular, pruning-at-
initialization (Pal) strategies, while effective in centralized settings, require careful adaptation to function
under these constraints. SSFL addresses this challenge by introducing a single-shot, communication-efficient
method that constructs a shared sparse subnetwork before training begins. The approach requires only a
single round of client—server interaction, using local saliency scores to discover a globally important subset of
parameters. Once the mask is generated, all further training proceeds on the same sparse subnetwork using
standard federated averaging.



Published in Transactions on Machine Learning Research (12/2025)

Our method consists of two main phases: (i) a one-time sparse mask discovery phase based on distributed
gradient saliency aggregation, and (ii) a sparse training phase where clients perform local updates and global
aggregation restricted to the space of parameters selected through the mask.

3.1 Parameter Saliency at Initialization

We begin by defining the importance criterion used to identify salient parameters prior to training. Saliency-
based pruning methods estimate how much each parameter contributes to the loss at initialization. This idea,
initially proposed in early neural network pruning work (Mozer & Smolensky, 1988) and refined in methods
like SNIP (Lee et al., 2018), is central to SSFL’s mask discovery phase.

Given a randomly initialized model wy € R? and a loss function £(w) evaluated on a dataset D, the saliency
score s; for a parameter w; is defined as:

8£(w0; D) )
8’LUj

(1)

Sj:‘

This score captures the first-order sensitivity of the loss to removing parameter w; at initialization. Parameters
with larger magnitudes of s; are considered more important and are prioritized for retention.

In SSFL, each client computes this saliency score locally on a minibatch sampled from its private data.
Because this estimation is done only once, at initialization, the method incurs no additional runtime overhead
during training. The main challenge lies in extending this centralized scoring mechanism to a federated
setting in a way that respects data heterogeneity and avoids repeated communication.

3.2 The SSFL Process: Single-Shot Mask Discovery and Sparse Training

SSFL extends the saliency criterion from centralized training to federated settings through a single-shot
distributed process. This involves computing local importance scores at each client, aggregating them in a
data-weighted manner to produce a global importance vector, and selecting the top-scoring parameters to
define a shared sparse subnetwork. The full procedure consists of four stages:

Local Saliency Estimation

At initialization, all clients synchronize to a common model wy € R%. Each client k samples a minibatch
By, C Dy, of size B from its private data and computes the local empirical loss for the obtained batch

Lwn B =5 3 lwyey), @)

(z,y)EB

Using this loss, client & computes local saliency scores s, € R? by applying the importance criterion in
Equation (1) to its minibatch:
oL (’wo; Bk)

wo. | -
awo’j 5]
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This process is fully local and requires no communication. We use only a single minibatch per client to
minimize computation and preserve privacy. A detailed analysis of the saliency estimation is provided in
Appendix A.1.

Aggregation of Saliency Scores.

Each client transmits its saliency scores sy and local dataset size ny = |Dg| to the server. A global saliency
vector s € R? is then computed via a weighted average:

K

s= g PkSk, Where pp = —F%—
k=1 Dim1 M

ng

. (3)
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This data-weighted aggregation ensures that clients with more examples exert proportionally greater influence
on the final importance scores, which helps mitigate heterogeneity bias. The class-balanced minibatch
sampling further ensures that the computed saliency scores are representative of all classes available in the
local clients.

Global Mask Selection.

Given a target sparsity level o € (0, 1), the number of active parameters is # = [(1 — 0) - d]. A binary mask
m € {0,1}¢ is then computed as:
m = TopK(s, %),

where TopK(-, %) returns a binary vector with ones at the indices of the % largest values in s. This mask is
broadcast to all clients and remains fixed throughout training.

Sparse Federated Training.

Training proceeds in standard rounds of local updates and model aggregation, with all operations restricted
to the masked subnetwork. At communication round r, each participating client k receives the global sparse
model wy ,,, and performs 7" local update steps.

During training, both forward and backward propagation operate exclusively on the sparse subnetwork
defined by the mask m. At local step t, the forward pass computes the loss using only the active (non-zero)
parameters:

‘C(wtk,m, ©mj Bk,t)v

where wj, ,, © m ensures that masked-out parameters contribute zero to the network computation. The
corresponding masked gradient update is then applied as:

with — wy,, — 1 (Ve Ll(w),, ®m;Br) ©m),

k,m

where By ; is a local minibatch. This ensures that gradients are computed and applied only for the active
parameters, while masked parameters remain fixed at zero throughout training.

After T steps, each client sends its sparse model back to the server, and aggregation proceeds as in standard
FedAvg. Because the mask is fixed, all communication and computation can be compressed accordingly using
standard sparse encodings (e.g., CSR, COO, or bitmask formats); we discuss the communication accounting
protocol in detail in the Section 4.

3.3 Dataset and non-l1ID partition

We evaluate SSFL on CIFAR-10, CIFAR-100 Krizhevsky et al. (2009) and the Tinylmagenet dataset. For
simulating non-identical data distributions across the federating clients we use two separate data partition
strategies. We next present these non-IID data partition generating strategies and provide a more detailed
treatment in Appendix A.2.

Dirichlet Partition We use the Dirichlet distribution to simulate non-IID distribution of data among
the clients Hsu et al. (2019) and call this the Dirichlet Partition in our experiments. We assume that each
client selects training examples independently, with class labels distributed across N classes according to a
categorical distribution defined by the vector q, where each ¢; > 0 for i € {1,2,3,..., N} and ||q||; = 1.

To model a diverse set of clients, each with distinct data, we draw g ~ Dir(ap) from the Dirichlet distribution
to determine the class distribution vector q. Here, the vector p establishes the baseline distribution across the
N classes, while the concentration parameter o > 0, dictates the degree of variation or the property of IID in
class distribution among clients. By adjusting «, we can simulate client populations with varying degrees of
data uniformity. Specifically, as o — oo , the class distributions of the clients converge to the baseline prior
distribution p; conversely, as « is chosen to be smaller, increasing fewer classes chosen at random dominates
the proportion of data at each class, representing a higher degree of non-IID distribution. As o — 0, each
client holds data from one particular class chosen at random.
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Algorithm 1 SSFL: One-shot sparse subnetwork discovery and training

Require: Number of clients K, communication rounds R, local update steps T', sparsity level o
Ensure: Final sparse global model w_fj’m
Phase 1: One-Time Mask Generation
Server initializes model wy and broadcasts it to all clients.
for all clients k € {1,..., K} in parallel do
Sample a minibatch By C Dy
Compute local saliency vector s using equation 1
Send s, and local data size ny = |Dg| to the server
end for
Server computes data proportions pg = ny/ Zfil n;
Server aggregates global saliency: s « Zszl DSk
Server sets number of active parameters & < | (1 — o) - d|
Server generates global mask m < TopK(s, &)
: Server broadcasts mask m to all clients
: Server initializes sparse global model: 'wgm +— wo O m
Phase 2: Sparse Federated Training
13: forr=0to R—1 do

— e

14: Server selects a subset of clients ¢’ C {1,..., K}

15: Server sends current sparse global model wy ,,, to all clients in c’
16: for all clients k € C’' in parallel do

17: Initialize local model wy < wy ,,

18: fort=0toT —1do

19: Sample minibatch By ; C Dy

20: Compute masked gradient: VL(wyg; By) © m

21: Update local model: wy < wr — nVL O m

22: end for

23: Send updated local model wy, to server

24: end forServer aggregates client models: wgfr% D hecr ﬁ Wy
25: end for e

In this work, we partition the training data according to a Dirichlet distribution Dir(«) for each client
and generate the corresponding test data for each client following the same distribution. We set the prior
distribution p to be uniform over N classes and specify the o = 0.3 for CIFAR10 and o = 0.2 for the
CIFAR-100 for fair comparison to previous work (Dai et al., 2022; Bibikar et al., 2022). A detailed description
of the Dirichlet partitioning scheme with a figure depicting client data allocation is provided in Appendix A.2.

Pathological Partition Following prior work on non-IID federated learning settings (McMahan et al.,
2017; Zhang et al., 2020), we simulate pathological data partitions, where each client is randomly assigned
only a limited number of classes from the total number of classes. In particular, each client receives at most 2
classes for CIFAR-10 and 10 classes for CIFAR-100.

4 Experiments

We evaluate SSFL against a broad range of federated learning methods to demonstrate its effectiveness.
Our experimental design is four-fold: (1) We first compare SSFL with state-of-the-art sparse and dense FL
baselines on non-I1ID distributions of CIFAR-10, CIFAR-100, and TinyImageNet. (2) We then study the
performance of SSFL under varying sparsity levels up to 95% and compare it to other sparse FL methods.
(3) We deploy our method in a real-world FL framework to report wall-clock time improvements. (4) Finally,
we analyze the structural properties of the discovered sparse mask by studying the effect of intra-layer
permutations and the quality of the generated mask.
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4.1 Main Results

Our primary results are organized by the data partitioning strategy to clearly delineate performance under
different non-IID conditions. All experiments in this subsection use a ResNet18 architecture with 50%
sparsity.

4.1.1 Performance on varying dataset and partitioning schemes

Performance on Dirichlet Partition. Table 1 shows the performance of all methods under the Dirichlet
non-IID data partition. On CIFAR-10, SSFL achieves the highest accuracy (88.29%) among all sparse
methods and also outperforms the strongest dense baseline, Fed Avg-FT (88.02%). On CIFAR-100, SSFL
reaches 61.37% accuracy, again surpassing all sparse and dense techniques. This corresponds to more than a
20% relative error reduction compared to the strongest sparse baseline (DisPFL), underscoring the substantial
margin by which SSFL improves over prior work. These results demonstrate that the global mask discovered
by SSFL effectively captures salient features that generalize well across clients with heterogeneous data
distributions. Results are averaged over five runs.

Performance on Pathological Partition. We further stress-test our method using a pathological non-I1TD
partition, where each client holds data from a very limited number of classes. The results, shown in Table 2,
highlight SSFL’s robustness. SSFL achieves the highest accuracy on CIFAR-10 with 94.61%. On CIFAR-100,
its performance (52.01%) is highly competitive with the top-performing dense baseline, FedAvg-FT (52.47%),
while significantly exceeding other sparse methods like DisPFL (44.74%). This indicates that SSFL’s saliency
aggregation mechanism can construct a high-quality global subnetwork even when clients have extremely
skewed, non-overlapping data distributions.

Performance on TinyImageNet. To evaluate scalability, we conducted experiments on the more chal-
lenging Tiny-ImageNet dataset. As detailed in Table 2, SSFL again achieves the best performance with
19.4% accuracy, outperforming both dense and sparse counterparts. For this dataset we report results for
the strongest baselines from our CIFAR-10/100 experiments. These result confirm that SSFL’s data-driven
subnetwork discovery is effective not just on smaller datasets but also scales successfully to more complex
image classification tasks.

Experiments on the larger ResNet-50 architecture To demonstrate the scalability of SSFL beyond
standard benchmarks, we conduct experiments using ResNet-50 on CIFAR-100. This represents a significantly
more challenging optimization landscape with a deeper architecture. We compared SSFL against the dense
baseline (FedAvg) and the strongest sparse baseline (DisPFL) across the full sparsity spectrum (50% — 95%).

Table 1: Comprehensive comparison of SSFL with FL and sparse FL baselines on CIFAR-10 and CIFAR-
100 under a Dirichlet partition using ResNet18 at 50% sparsity. Highlighted values indicate the best
performance.

Method | CIFAR-10 (%) | CIFAR-100 (%) | Comms (MB) | Sparse
FedAvg 86.04 +1.35 59.30 +2.02 446.9 X
FedAvg-FT 88.02 +0.57 59.42 +3.72 446.9 X
D-PSGD-FT |  83.05 £1.99 50.27 +1.61 446.9 X
Ditto 83.50 +0.99 43.50 +£2.04 446.9 X
FOMO 66.21 +1.54 32.50 +3.65 446.9 X
SSFL 88.29 +0.42 61.37 +2.01 223.4 v
DisPFL 85.12 +1.05 59.21 +1.97 224.0 v
SparsyFed 80.94 +1.20 50.64 +2.10 224.0 v
Flash 81.13 +0.95 51.81 +2.35 224.0 v
SubFedAvg 76.50 +1.74 47.25 +£2.84 346.6 v
Random 41.61 £1.62 48.62 +1.33 223.4 v
Fed-PM 46.44 +2.50 15.88 £3.10 optimal | optimal
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Table 2: Performance comparison on Pathological partition (CIFAR-10/100) and Dirichlet partition (TinyIm-
ageNet) using ResNet18 at 50% sparsity. Highlighted values indicate best performance.

Pathological Partition

TinyImageNet (Dirichlet)

Method CIFAR-10 CIFAR-100 | Comms Sparse || Method Acc. Comms Sparse
(%) (%) (MB) (%) (MB)
FedAvg 92.48 £0.25 52.47 +2.68 446.9 X FedAvg 16.92 +0.43 446.9 X
FedAve-FT 92.90 £1.33 52.47 +2.04 446.9 X FedAvg-FT 18.21 +0.48 446.9 X
D-PSGD-FT 88.74 +1.60 27.58 +1.88 446.9 X D-PSGD-FT | 11.98 +0.62 446.9 X
Ditto 83.54 £1.28 51.90 £2.20 446.9 X Ditto 17.80 +0.39 446.9 X
FOMO 88.25 £1.10 45.25 +2.09 446.9 X FOMO 4.27* 446.9 X
SSFL 94.61 +1.00 52.01 +1.64 223.4 v SSFL 19.4 +0.30 223.4 v
DisPFL 91.25 +1.10 44.74 +1.56 224.0 v DisPFL 8.27 £0.29 224.0 v
SubFedAvg 91.20 £0.60 46.04 +2.89 346.6 v SubFedAvg 18.76 +0.28 346.6 v
Random 55.34 £1.25 46.22 +4.59 223.4 v Random 16.76 +0.53 223.4 v

*Single run; method failed to converge.

The results in Table 3 demonstrate that SSFL’s advantages amplify with the increase in model size when
compared DisPFL, the best performing dynamic method in our analysis so far. SSFL consistently outperforms
DisPFL across all sparsity levels, with the performance gap widening as networks become sparser from
a +24.39% improvement at 50% sparsity to +35.49% at 95% sparsity. Notably, at 70% sparsity, SSFL
achieves 60.82% accuracy, coming within 1.21% of the dense baseline while reducing communication by
3.3x. At extreme sparsity (95%), DisPFL’s dynamic masking collapsed to 12.04%, while SSFL maintains
good performance at 47.53%. These results indicate that a stable, globally shared sparse subspace becomes
increasingly critical as models scale and sparsity increases.

Table 3: ResNet-50 on CIFAR-100. SSFL significantly outperforms DisPFL, with the performance gap
widening at higher sparsity levels.

Method 50% 70% 80% 90% 95%

FedAvg (Dense)  62.03% 62.03% 62.03% 62.03% 62.03%
DisPFL 36.55% 32.96% 30.65% 21.87% 12.04%
SSFL (Ours) 59.76% 60.82% 56.73% 55.93% 47.53%
Improvement +2321% +27.86% +26.08% +34.06% +35.49%

Experiment Details and Baselines. We use the SGD optimizer for all techniques with a weight decay of
0.0005. All methods use 5 local epochs, except for Ditto, which uses 3 epochs for the local model and 2 for
the global model. The initial learning rate is 0.1, decaying by a factor of 0.998 after each communication
round. We use a batch size of 16 for all experiments. A total of R = 500 global communication rounds are
executed for CIFAR-10 and CIFAR-100.Following standard practice (Dai et al., 2022; Liu et al., 2025; Lin
et al., 2018), we report communication cost under the values-only encoding assumption, where only non-zero
weights are transmitted each round. This convention is conservative for SSFL, which broadcasts its global
mask only once, while dynamic methods must repeatedly transmit mask indices, thereby incurring additional
communication costs. We nevertheless adopt values-only encoding for all methods to ensure fair and widely
comparable benchmarks, with detailed overhead analysis provided in Appendix A.4.

Our dense baselines include FedAvg (McMahan et al., 2017), FedAvg-FT (Cheng et al., 2021), Ditto (Li et al.,
2021), FOMO(Zhang et al., 2020), and D-PSGD (Lian et al., 2017). Our sparse baselines are Dis-PFL(Dai
et al., 2022), SubFedAvg (Vahidian et al., 2021), SparsyFed (Liu et al., 2025), Flash (Babakniya et al., 2023)
and FedPM (Isik et al., 2022). Among the sparse baselines, FedPM (Isik et al., 2022) is unique in that
it freezes the randomly initialized dense network and instead trains a probability mask over connections.
The final subnetwork and its sparsity emerge from this process rather than being preset, so we report its
communication and sparsity as optimal in Table 1. A detailed explanation of the baselines and experimental
setup is available in Appendix A.8.
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Effect of varying levels of sparsity on performance We evaluate how SSFL’s performance varies
across sparsity levels from 50% to 95% on CIFAR-10 and CIFAR-100, as shown in Figure 2. We compare
SSFL against sparse FL baselines DisPFL, SubFedAvg, and FedPM, along with a random masking baseline.
SSFL consistently outperforms all sparse baselines across the entire sparsity spectrum. Notably, it maintains
robust performance even at high sparsity levels where other methods degrade significantly, indicating that the
global mask captures informative and transferable structure. Unlike DisPFL, which aggregates heterogeneous
masks into a denser global model, SSFL’s shared mask both simplifies training and preserves a truly sparse
global model that can further benefit from hardware acceleration (e.g., SPMM kernels on GPUs/TPUs and
custom accelerators) (Nakahara et al., 2019; Thangarasa et al., 2023; Gale et al., 2020; NVIDIA, 2021; 2020a).

1o Performance at varying sparsity levels (CIFAR-10) Performance at varying sparsity levels (CIFAR-100)
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Figure 2: Performance comparison at varying levels of sparsity for SSFL with similar sparse FL methods on
ResNet18 on the (a) CIFAR-10 and (b) CIFAR-100 non-IID dataset.

Wall-clock gains under real-world network conditions. We deployed experiments on Amazon Web
Services (AWS) across five geographically distributed regions (North Virginia, Ohio, Oregon, London, and
Frankfurt). This setup emulates a realistic FL environment where clients experience substantial network
latencies. We measured the average server aggregation time per round, i.e., the time required to collect all
client model updates. As shown in Figure 3 (b), SSFL consistently reduces communication time relative
to dense communication (FedAvg), with the gap widening as model size increases. At 90% sparsity, SSFL
achieves a speedup of approximately 2.3x on the 1.73M-parameter model, reducing the average aggregation
latency from 1.91s to 0.82s per round. This highlights its practical impact in real-world deployments.

4.2 Structural Alignment and Robustness of the Global Sparse Mask

A central tenet of SSFL is the enforcement of a single, globally shared sparse structure discovered at
initialization using limited data. We investigate the validity of this design choice by examining: (O the
necessity of structural alignment compared to local masking @ the importance of specific mask topology
versus layer-wise density @) the sufficiency of our single-minibatch estimation strategy and @ the mask’s
generalization across heterogeneous clients.

4.2.1 Global vs. Local Masks: A Case for Structural Alignment

A natural alternative to SSFL is to allow each client to maintain its own sparse subnetwork. Indeed, using
client-specific masks is intuitively appealing and has been a popular choice in prior dynamic sparse training
works (Dai et al., 2022; Liu et al., 2025; Evci et al., 2020a).

To isolate the importance of structural consensus, we conducted a controlled experiment comparing a shared
global random mask against unique client-wise random masks (see Figure 3-a). The results demonstrate
an interesting outcome: the global random mask significantly outperforms the client-specific local random
masks. This highlights an important insight: structural alignment within a unified subspace is essential for
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effective aggregation. By enforcing a shared global mask, SSFL ensures that all clients operate within the
same sparse subspace. This enables SGD to optimize a consistent set of parameters from start to finish,
avoiding the optimization instability and destructive interference caused by the haphazard aggregation of
disjoint parameter updates from misaligned subspaces, which occurs in dynamic masking approaches.

4.2.2 Importance of mask topology: Effect of intra-layer mask permutation

While the previous experiment confirms the effectiveness of a shared global structure, it raises a secondary
question: does the specific topology of the mask matter, or merely the sparsity ratios allocated to each
layer? Previous work in centralized pruning (Frankle et al., 2021) suggests that for pruning-at-initialization,
identifying correct layer-wise densities is often the primary driver of performance. We test this in the
non-I1ID FL setting by randomly shuffling the SSFL mask within each layer (preserving layer-wise density
but destroying specific structural topology). As shown in Figure 3 (a), the shuffled variant outperforms the
uniform global random mask, confirming that our aggregated saliency scores successfully identify optimal
layer-wise capacities. Importantly, however, the original, unshuffled SSFL mask consistently performs best,
indicating that SSFL captures meaningful information about individual connection importance beyond just
the layer-wise sparsity ratio.

4.2.3 Global Saliency Estimation via K Distributed Minibatches

SSFL requires only one local minibatch per client to construct the global sparse mask, but this does not mean
the mask is computed from a single minibatch overall. With K participating clients, the server aggregates
saliency scores from K distinct minibatches, which in our cross-device setting (e.g., K = 100) corresponds to
several thousand samples, comparable to the data budgets used in single-shot pruning methods such as SNIP.
Since saliency is derived from first-order gradients, which concentrate rapidly with sample size, aggregating
gradients across clients produces a stable and low-variance estimate of the global saliency distribution, even
under severe non-i.i.d. partitions.

Empirical validation. We further quantify this by approximating an oracle mask M* computed using the
full training set, and evaluating how well masks estimated from &k € {1,...,400} minibatches recover M*. As
shown in Figure 4 (a-b), the mask error decays sharply and plateaus after roughly 80-100 minibatches on
both CIFAR-10 and CIFAR-100, with additional data yielding negligible improvements beyond this point. In
our experiments, following the standard setting in the literature (Dai et al., 2022), we use K = 100 clients,
meaning SSFL aggregates exactly K = 100 minibatches (one per client) and thus operates precisely in this
convergence regime. This provides strong evidence that one minibatch per client is sufficient to recover a
near-oracle sparse subnetwork at initialization when the client pool is sufficiently large (K 2> 80), enabling

Effect of Random Intra-Layer Shuffling Communication Time Comparison on CIFAR-10

% | —#- Dense (Fedavg)
o =@~ SSFL (Ours)
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20 =% SSFL

SSFL with Intra-layer shuffled
—&- global random masks 0.25
101 = local random masks

0.46M 0.66M 0.85M 1.73M

50 60 70 80 90 Model Parameters

Sparsity Level

(a) SSFL vs. layer-wise shuffling (b) Communication time comparison

Figure 3: Analysis of SSFL in different scenarios. (a) Effect of random intra-layer shuffling on SSFL masks.
(b) Wall-time communication comparison between baseline dense communication and SSFL on CIFAR-10
across ResNet models of varying complexities.

11



Published in Transactions on Machine Learning Research (12/2025)

30000 gy = :rawtn
s

25000

20000

15000

Weight (py)
Samples

Mask Error

10000 -—

5000 B

ol ]
i 5 6 71 8 9
Client ID

107 01 2 7 8 9 o 1 2 3

3 4 5 6
Client ID

10t
Batches Processed

(a) CIFAR-10 (b) CIFAR-100 (¢) Client accuracy (d) Samples per client

10* 107
Batches Processed

Figure 4: (a-b) Mask Convergence. Mask error relative to the oracle decreases exponentially, stabilizing
near K ~ 80-100 (vertical line). We use K = 100 for all experiments. (c-d). Experiments done with 5 random
seeds. Client Performance. Local accuracy (c, bars) plotted against aggregation weights py (orange line),
alongside sample counts (d). SSFL maintains high performance even on minimal data partitions (e.g., Clients
8 and 9).

SSFL to achieve high accuracy without any iterative mask refinement or additional communication. The
framework naturally extends to settings with fewer clients by increasing the number of minibatches per client
to maintain oracle mask approximation quality.

4.2.4 Quality of the discovered mask in the non-1ID setting.

We examine the effect of a shared global mask on local model performance under uneven client data
distributions. Figure 4 (c-d) shows that, despite large disparities in client data volumes, SSFL yields
competitive accuracy even for clients with very limited data. This indicates that aggregated saliency scores
capture structure that generalizes across heterogeneous clients rather than overfitting to high-data participants.
We further confirm this in Appendix A.10, which reports local accuracy alongside class distributions for
random clients as well as the top and bottom-performing sites.

4.3 Out-of-Distribution (OOD) Adaptation

The one-time mask computation in SSFL facilitates adaptation to
non-stationary environments, such as shifts in data distribution or
the arrival of new clients with novel classes. To handle these scenarios,
we extend SSFL to One-Shot OOD Adaptation, a mechanism that
triggers a mask refresh upon detecting distribution shifts. To identify
the new optimal subnetwork, clients compute saliency scores on the
full local model state by temporarily unmasking pruned parameters,
which retain their original initialization values. This approach allows
the model to recruit connections outside the set of current mask if
necessary for incoming data with negligible overhead compared to
fully dynamic methods.

00D Classes vs Al Classes: Adaptation Comparison

Figure 5: OOD classes are introduced
Figure 5 validates this approach where two new OOD classes (classe 8 at round 225 (dotted vertical line). Fol-
and 9) are introduced at round 225. Following the single mask update, lowing the single mask update, the
the global model rapidly adapts to the new classes (Red curve), rising model rapidly acquires the new con-
from 0% to over 80% accuracy, while maintaining stable global cepts (Red curve), rising from 0% to
performance (Green curve). This alludes to SSFL accommodating to over 80% accuracy, while maintain-
distribution shifts through a single, efficient topology update. Further ing stable global performance (Green
analysis on OOD adaptation, including the OOD Algorithm 2 is curve).

detailed in Appendix A.6 including direction of future work.

4.4 Further Analysis

We provide further analysis of SSFL’s design choices, computational analysis, sensitivity to warmup and
practical deployment factors in Appendix A. Specifically, we detail computational complexity in Appendix A.3
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and communication encoding costs in Appendix A.4, demonstrating SSFL’s theoretical and empirical efficiency
gains over dynamic methods. Additionally, Appendix A.7 investigates the sensitivity of saliency estimation to
initialization by comparing our standard random initialization against warmup strategies.

5 Limitations and Future Work

While SSFL demonstrates the effectiveness of static sparse subnetwork discovery, several natural extensions
remain. First, while we introduced a one-shot OOD adaptation mechanism to handle distinct distribution
shifts, the core SSFL framework prioritizes stability via a static mask. In scenarios with highly volatile,
continuous concept drift, more granular or automated adaptation strategies may be required to balance the
trade-off between mask stability and plasticity.

Second, our warmup analysis (Appendix A.7) validates the robustness of initialization-based mask discovery,
showing negligible performance differences (+1%) compared to post-warmup approaches. This finding
reinforces the stability of our method, consistent with the low variance observed across experiments with
five different random seeds. However, investigating alternative saliency criteria or ensembles beyond our
gradient-based approach may yield even stronger subnetworks in distributed non-IID settings.

Beyond these limitations, we identify several promising research directions. While our experiments on
ResNet-50 demonstrate that SSFL’s advantages over dynamic methods amplify with model scale (widening
from +23% to +35% as sparsity increases), extending this to foundation models remains an exciting avenue.
Furthermore, extending SSFL to structured sparsity patterns could unlock greater speedups on modern
accelerators. SSFL naturally complements differential privacy, since it requires only a single noisy saliency
aggregation step, thereby minimizing privacy breach while preserving communication efficiency. Finally,
integrating personalization on top of a shared global mask may provide more robust performance under
extreme heterogeneity across clients.

6 Conclusion

We presented Salient Sparse Federated Learning (SSFL), a streamlined framework that mitigates communica-
tion bottlenecks in federated learning by identifying a high-quality global sparse subnetwork before training.
SSFL requires only a single, privacy-preserving round of communication where local gradient-based saliency
scores are aggregated into a shared mask. This static initialization eliminates the hyperparameter tuning and
iterative coordination typical of dynamic sparsity methods.

SSFL achieves substantial communication savings across CIFAR-10, CIFAR-100, and Tiny-ImageNet, while
matching or exceeding dense baselines. More importantly, we demonstrated that these benefits scale to deeper
architectures (ResNet-50), where SSFL maintains superior accuracy-sparsity trade-offs compared to dynamic
approache DisPFL. Furthermore, our introduction of a one-shot OOD adaptation mechanism shows that
SSFL has the flexibility to readily handle distribution shifts without abandoning the efficiency of a static
mask during training.

Real-world deployment on geographically distributed AWS regions further shows up to 2.3x wall-clock
speedups, underscoring practical efficiency. These results challenge the assumption that complex, iterative
mask adjustments are required for strong sparse FL performance. Instead, they demonstrate that a well-chosen
static subnetwork, identified collectively at initialization, enables a simpler, more stable, and highly effective
training trajectory. Looking ahead, SSFL offers a robust foundation for hybrid static-adaptive refinements,
personalized sparse models, and structured sparsity for hardware acceleration.
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7 Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. Our primary objective is to
study and improve efficiency associated with distributed federated learning.

Broader Impact Statement

This work aims to improve the efficiency of federated learning by reducing communication and computation
costs. More efficient FL can broaden access to collaborative training in settings with limited resources, such as
mobile or healthcare applications, and may help reduce the environmental footprint of large-scale distributed
training. As with any federated approach, care is required to ensure privacy protections (e.g., differential
privacy or secure aggregation) and to prevent efficiency gains from coming at the expense of marginalized
users.
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A Appendix

A.1 Detailed analysis of the Connection Saliency Criterion

This section provides a detailed derivation of the gradient-based connection saliency metric used in SSFL, as
defined in Equation (1). The fundamental goal of pruning at initialization is to identify the most important
parameters in a randomly initialized network, wg, without performing any training. This line of work traces
back to the early idea of skeletonization by Mozer and Smolensky (Mozer & Smolensky, 1988) and was later
refined in single-shot pruning methods such as SNIP (Lee et al., 2018).

The importance of a single parameter, wg ;, can be defined as the change in the total loss, £, that would
occur if that parameter were removed from the network. Formally, this change AL; is:

Aﬁj = E(’me) — C(wo — U)oJ@ij), (4)

where e; is the one-hot vector for the j-th parameter. However, computing this value for every parameter is
computationally prohibitive, as it would require d 4+ 1 forward passes over the data D, where d is the number
of parameters.

To create a tractable importance score, we approximate AL; using a first-order Taylor expansion. This
approach reframes the question from "what is the effect of removing a parameter?" to "how sensitive is the
loss to the presence of a parameter at initialization?". To formalize this, we introduce an auxiliary "gating"
vector ¢ € [0, 1]¢, which multiplies the model’s weights wy. The loss is now a function of the masked weights:
L(c ®wop; D).

The sensitivity of the loss to the j-th parameter can be measured by the derivative of £ with respect to
¢;, evaluated at ¢ = 1 (the initial state where all connections are fully active). This derivative, which we
denote as the saliency g;, approximates the effect of a small perturbation on connection j. We can compute
it directly using the chain rule:

0L(c ® wy; D
9; (wo; D) = % (5)
J c=1
_ (9;6(11)0,7)) ) 8((2]‘11)07]') (6)
('“)wo,j aCj c=1
- 8£('w0,D) .
= awOJ ’wo’j. (7)

This result, g;, provides a computationally efficient, single-pass estimate of the importance of parameter wyo ;.
The final saliency score s; used in SSFL is the magnitude of this term, preserving parameters that have the
largest estimated impact on the loss:
s; = |gj(wo; D)| = | ——— - wo ;| - 8

i = 9j(wo; D) dwo,; 0,7 (8)
It is important to note that while these scores could be normalized (e.g., by dividing by their sum), this step
is unnecessary for our method, as the Top-k selection procedure only depends on the relative ranking of the
scores.

A.2 Generating non-11D data partition with Dirichlet Distribution

In this section, we provide the necessary background on generating non-identical data distribution in the
client sites using the Dirichlet Distribution, specifically for the context of federated learning.

non-IID data in FL Federated Learning (FL), as introduced by McMahan & Ramage (2017), is a
framework designed for training models on decentralized data while preserving privacy. It utilizes the
Federated Averaging (FedAvg) algorithm where each device, or client, receives a model from a central server,
performs stochastic gradient descent (SGD) on its local data, and sends the models back for aggregation.
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Unlike data-center training where data batches are often IID (independent and identically distributed), FL
typically deals with non-IID data distributions across different clients. Hence, to evaluate federated learning
it is crucial to not make the IID assumption and instead generate non-IID data among clients for evaluation
Hsu et al. (2019).

Generating non-IID data from Dirichlet Distribution In this study, we assume that each client
independently chooses training samples. These samples are classified into N distinct classes, with the
distribution of class labels governed by a probability vector g, which is non-negative and whose components
sum to 1, that is, ¢; > 0, 7 € [1, N] and ||g||; = 1. For generating a group of non-identical clients, ¢ ~ Dir(ap)
is drawn from the Dirichlet Distribution, with p characterizing a prior distribution over the IV classes and «
controls the degree of identicality among the existing clients and is known as the concentration parameter.

In this section, we generate a range of client data partitions from the Dirichlet distribution with a range of
values for the concentration parameter « for exposition. In Figure 6, we generate a group of 10 balanced
clients, each holding equal number of total samples. Similar to Hsu et al. (2019) the prior distribution p is
assumed to be uniform across all classes. For each client, given a concentration parameter «, we sample a
g from Dir(«) and allocate the corresponding fraction of samples from each client to that client. Figure 6
illustrates the effect of the concentration parameter o on the class distribution drawn from the Dirichlet
distribution on different clients, for the CIFAR-10 dataset. When o — oo, identical class distribution is
assigned to each classes. With decreasing a, more non-identicalness is introduced in the class distribution
among the client population. At the other extreme with o — 0, each class only consists of one particular
class.

Non-IID Client Data Partitions using Dirichlet Distribution for CIFAR-10
(10 clients, 10 classes)

Dirichlet, a@— « Dirichlet, @ =100.0 Dirichlet, a=1.0 Dirichlet, = 0.3 Dirichlet, =0

C10 + C10 - C10 + C10 C10 +
C9 - C9 -~ C9 - C9 -~ C9 -
C8 - C8 - C8 - C8 - C8 -
C7 - C7 - C7 - C7 - C7 -
C6 - C6 C6 - C6 - C6 -
G5 G5 G5 G5 5
c4 - c4 - c4 - c4 - c4 -
C3 - C3 - C3 - C3 - C3 -
C2 - C2 - C2 - C2 - C2
C1 C1 C1 - C1 - Cl1 -
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Class distribution Class distribution Class distribution Class distribution Class distribution

Class 0 Class 2 Class 4 Class 6 Class 8
Class 1 Class 3 Class 5 Class 7 Class 9

Figure 6: Generating non-identical client data partitions using the Dirichlet Distribution for the CIFAR-10
dataset among 10 clients. Distribution among classes is represented using different colors. (a) Dirichlet,
a — oo results in identical clients (b—d) Client distributions generated from Dirichlet distributions with
different concentration parameters « (e) Dirichlet, & — 0.0 results in each client being assigned only one
class.

A.3 Computational Complexity and Communication Analysis

To rigorously evaluate the efficiency of SSFL, we analyze the computational cost under two distinct execution
regimes: Standard Dense Execution and Accelerated Sparse Erecution. Let P denote the number of model
parameters, E the number of local epochs, B the number of batches per epoch, and s € (0, 1] the density of
the model. We decompose the total cost per training round into three components: gradient computation
(Cgrad), dynamic topology overhead (Coverhead), and communication cost.

Dynamic sparse training methods incur structural overheads to update masks, such as sorting, pruning,
and regrowth that often bottleneck accelerated execution. SparsyFed incurs a high overhead, as it applies

22



Published in Transactions on Machine Learning Research (12/2025)

weight re-parameterization and activation pruning during every forward pass of every batch, scaling as
Coverhead = O(EB - P). Tterative pruning methods like DisPFL and the FLASH-JMWST variant rely on
periodic prune-and-regrow cycles that require magnitude-based sorting of weights, resulting in a moderate
overhead of Coyerheaa = O(P log P) per round. In contrast, SSFL (Ours) and FLASH-SPDST utilize a static
mask. Consequently, the topology remains fixed during the training phase, eliminating dynamic overhead
entirely (Coverhead = 0)

A critical distinction lies in the initialization cost. While FLASH-SPDST shares the per-round efficiency of a
static mask, it requires a computationally expensive “Warm-up” Stage involving E; epochs of training on a
subset of clients to estimate sensitivity. Conversely, SSFL is single-shot, estimating saliency using only one
minibatch per client at initialization (requiring K ~ 80 — 100 clients for mask convergence, a constant factor).
Since 1 < Fy4, SSFL is significantly more lightweight to deploy.

In terms of communication bandwidth, SSFL transmits only the non-zero values (sP) in the uplink since
the indices are fixed and globally synchronized. Dynamic methods such as DisPFL, FLASH-JMWST, and
SparsyFed lack this global index synchronization, requiring the transmission of both values and updated
mask indices (sP + Idx). Uniquely, because SSFL and FLASH-SPDST enforce a fixed global mask, the server
broadcasts only the updated sparse values (sP), achieving symmetric sparsity in the downlink. In contrast,
DisPFL and FLASH-JMWST typically require synchronizing dense or dynamic structures, increasing the
downlink load to O(P) or requiring index transmission.

Table 4: Per-round computational complexity and communication costs. SSFL achieves the minimum
accelerated compute cost and communication volume without the dynamic overheads of SparsyFed/JMWST
or the initialization warm-up cost of FLASH-SPDST.

Method Accelerated Dynamic Init. Communication
Compute Overhead Cost Uplink Downlink

FedAvg O(1-P) - None O(P) O(P)
SSFL O(s- P) 0 Low O(sP) O(sP)
SparsyFed O(s- P) O(EB-P) None O(sP)+Idx O(sP) + Idx
DisPFL O(s- P) O(PlogP) None O(sP)+Idx O(sP) + 1dx
FLASH-JMWST O(s- P) O(PlogP) High O(sP)+ Idx O(sP) + Idx
FLASH-SPDST O(s- P) 0 High O(sP) O(sP)

*FLASH-SPDST/JMWST require a "Warm-up" Stage (E4 epochs training), whereas SSFL is single-shot or constant minibatch.

A.4 Communication Encoding Overheads

In the main body, we adopt the standard values-only encoding assumption (counting only non-zero weight
values, not their structural indices), consistent with prior work on sparsity and federated optimization (Dai
et al., 2022; Liu et al., 2025; Lin et al., 2018). This isolates the savings due to sparsity itself, while recognizing
that efficient communication and encoding schemes are an orthogonal line of work (Wen et al., 2017; Bernstein
et al., 2018). Here, we quantify the specific overheads of dynamic topology transmission.

Let P be the number of model parameters and s € (0, 1] be the density (fraction of non-zero elements). A
dense model transmitted in £p32 requires:

Costgense = 4P bytes.

For sparse models, dynamic methods must transmit the topology. Under coordinate (COO) encoding, the
cost for k = sP non-zeros is:

Costcoo = 4k (vals) + 4k (idxs) = 8sP  bytes.
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Bitmask encoding sends a dense binary mask of length P alongside the values:
P
Costpitmask = 4k + 3= 4sP + 0.125P bytes.

Dynamic sparsity methods (e.g., DisPFL, SparsyFed) must pay one of these overheads at every round to
update the mask. In contrast, SSFL discovers a global mask once at initialization. After this one-time
broadcast, the topology is static, and clients strictly transmit values:

COStSSFL =4k = 4sP bytes.

Table 5 compares these costs. At moderate density (s = 0.5), SSFL matches the theoretical limit of sparse
compression. Crucially, at high sparsity (s = 0.05), SSFL achieves the theoretical minimum cost (5.0%),
outperforming bitmasks (8.1%) which are limited by fixed overheads, and maintaining a 2x advantage over
COO encoding (10.0%).

Table 5: Communication cost (bytes) under different encoding schemes. SSFL achieves the minimal theoretical
cost (4sP) by eliminating the recurring structural overhead required by dynamic methods.

Encoding scheme Formula Cost at s=0.5 Cost at s =0.05
Dense 4P 100.0% 100.0%
Bitmask (Dynamic) 4sP + P/8 53.1% 8.1%

COO (Dynamic) 8sP 100.0% 10.0%
SSFL (Fixed Mask) 4sP 50.0% 5.0%

A.5 Static Sparsity and Hardware Acceleration

A critical advantage of SSFL’s static masking approach is its compatibility with hardware acceleration on
modern AT accelerators. Static sparsity patterns enable substantial performance gains that are difficult or
impossible to achieve with dynamic sparse training methods.

Hardware Support for Static Sparsity. Modern Al accelerators increasingly provide native support for
sparse operations with fixed patterns. NVIDIA’s Ampere and Hopper architectures introduced Sparse Tensor
Cores (Mishra et al., 2021) that exploit 2:4 structured sparsity to achieve 2x math throughput compared
to dense operations. Similarly, Graphcore’s Intelligence Processing Units (IPUs) provide optimized kernels
for static block sparsity (Li et al., 2023), demonstrating that static sparse implementations can outperform
dense equivalents at 90% sparsity. These hardware optimizations rely fundamentally on knowing the sparsity
pattern at compile time, enabling efficient memory layout, vectorized operations, and optimized instruction
scheduling (NVIDIA, 2020b).

Why Static Masks Enable Acceleration. Static sparsity patterns provide three key advantages for
hardware acceleration: (1) Compile-time optimization: fixed masks allow compilers to generate optimized
code with predictable memory access patterns and efficient sparse data structures (Gale et al., 2020); (2)
Zero runtime overhead: the mask need not be recomputed, compressed, or communicated during training,
eliminating dynamic topology management costs (PyTorch Team, 2024); and (3) Hardware-friendly formats:
static patterns can be stored in compressed formats (e.g., CSR, blocked layouts) that align with specialized
hardware instructions (NVIDIA Corporation, 2023b;a). For instance, NVIDIA’s cuSPARSELt library achieves
near-linear speedup with sparsity when using static patterns, as the compressed representation can be
pre-computed and the metadata efficiently organized for Tensor Core operations (NVIDIA Corporation,
2022).

Limitations of Dynamic Sparsity for Hardware Acceleration. In contrast, dynamic sparse training
methods face fundamental barriers to hardware acceleration. Dynamic methods must repeatedly prune
and regrow connections during training, which introduces several sources of overhead: (1) Runtime mask
recomputation: dynamic methods incur O(P log P) sorting costs or O(B - P) per-batch costs for topology

24



Published in Transactions on Machine Learning Research (12/2025)

updates Evci et al. (2020b); Guastella et al. (2025), where P is the parameter count and B is the number of
batches; (2) Control-flow bottlenecks: changing sparse patterns break vectorization and prevent efficient use
of specialized instructions Hubara et al. (2021); Lasby et al. (2023); (3) Memory access irregularity: dynamic
topology changes lead to unpredictable, scattered memory accesses that underutilize memory bandwidth Gale
et al. (2020); and (4) Metadata overhead: dynamic methods must repeatedly compress, decompress, and

communicate mask indices, often requiring metadata storage that exceeds the weight storage itself Pool
(2021).

Empirical evidence confirms these limitations. Hardware studies show that dynamic sparse patterns fail to
achieve practical speedups on GPUs and specialized accelerators Lasby et al. (2025); Curci et al. (2024).
Neuromorphic computing research demonstrates that static masks achieve up to 2.06x better energy-
delay product than dynamic masks specifically because they eliminate additional computation and data
movement Soni et al. (2025). Even when dynamic methods achieve theoretical FLOP reductions, these do
not translate to wall-clock speedups due to the overhead of mask management Graphcore (2023).

Compatibility with Accelerators. By discovering a global mask once and maintaining it throughout
training, SSFL’s design allows it to be compatible with the same hardware optimizations available for
sparse inference, during the local training epochs. The fixed mask can be compressed offline, stored in
hardware-optimized formats, and exploited by specialized kernels on GPUs (via cuSPARSE/cuSPARSELLt),
TPUs, and custom accelerators Nakahara et al. (2019); Thangarasa et al. (2023). This positions SSFL
not only as communication-efficient but also as a pathway to training-time acceleration on next-generation
sparse-optimized hardware, an advantage that dynamic methods cannot easily match.

A.6 Adaptation to Out-of-Distribution (OOD) Shifts

Resilience to non-stationary environments, such as the arrival of clients with novel data classes, is critical
for robust federated learning. While SSFL focuses on a stable global sparsity for efficiency, the framework
allows for adaptation through OOD Adaptation when new clients with different data distribution joins the
federated learning scheme. This approach triggers mask rediscovery when distribution shifts are detected,
avoiding the instability and overhead of continuous dynamic updates.

Algorithm 2 SSFL Extension: OOD Adaptation

Require: Clients Kiotal, current model w,., current mask m, sparsity level o
Ensure: Updated mask m,., and adapted model w.,
: // Note: w, contains trained values for active params and init values for pruned params

// Phase 1: Single-Shot Saliency Re-aggregation

for each client k& € KCiota1 in parallel do
Sample minibatch By C Dy
Compute local saliency s using Equation (1) on w,
Send s; and ny = |Dg| to server

end for

,_.
=

// Phase 2: Server-Side Mask Update
: Server computes data proportions: py = ng/ Z7K:1 n;

—_
=

: Server aggregates global saliency: Sgiobal < 25:1 DSk
Server generates new mask: Myew — TOPK(Sgiobal, [(1 — o) - d])

e

: // Phase 3: Update Model State

16: M < Myew

17: > New active weights automatically start at init values present in w,
18: Broadcast updated mask m to all clients

19: return m, w,
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A.6.1 Algorithm Extension for OOD adaptation

We formalize our OOD adaptation in Algorithm 2. When OOD clients enter at round 7.0, the server
triggers a single mask update. Clients compute saliency scores using the full local model state w,., effectively
“unmasking” the pruned parameters which retain their original initialization values in memory. This allows
the sensitivity analysis to evaluate both the currently active trained weights and the potential utility of
inactive connections for the new data.

The aggregated saliency vector sgiobal identifies the optimal subnetwork for the combined distribution. The
mask is updated to myey, activating the new high-saliency connections. Since w, preserves the initialization
values for these previously pruned parameters, training simply resumes with the new mask, ensuring a stable
optimization landscape without complex restoration steps.

Experiment setup. For a proof of concept, we designed a controlled distribution shift experiment using the
CIFAR-10 dataset, partitioned into two disjoint tasks: an In-Distribution (ID) task consisting of classes 07,
and an Out-of-Distribution (OOD) task consisting of the held-out classes 8-9 (Ship and Truck). The training
timeline was divided into two phases. In the Initial Phase (Rounds 0-225), only ID clients participated,
ensuring the model had zero exposure to the OOD classes. At Round 225, we introduced the OOD clients
and triggered a single execution of our mask discovery algorithm to adapt the global sparse topology to the
new data distribution before resuming training.

Alternative Adaptation Strategies and Future Work. While in this preliminary exploration of OOD
adaptation we focus on trigger-based adaptation for efficiency, other strategies within the SSFL framework
are possible. A periodic refinement approach could re-evaluate saliency at fixed intervals rather than waiting
for a specific trigger, offering continuous adaptation at the cost of higher cumulative communication overhead.
Alternatively, an incremental growth strategy could strictly retain the existing mask and only activate
additional parameters for OOD data (increasing total density over time). This is possible due to the simplicity
and flexibility of our approach. We leave such explorations for future work.

A.7 Analysis of Warm-up and Mask Discovery at Initialization

A natural question regarding pruning-at-initialization is whether the gradient-based saliency metric defined in
Equation (1) is overly sensitive to the random initialization of parameters wy. Intuitively, a "warmup' phase
of dense training could stabilize weights and potentially yield more informative gradients. To investigate this
in the Federated Learning setting, we conducted a rigorous empirical comparison between our standard SSFL
(mask discovery at initialization, t = 0) and Warmup-SSFL, which performs 10 rounds of dense federated
training before computing saliency and generating the mask.

Empirical Results. We evaluated both methods on CIFAR-10 with ResNet-18 across a spectrum of sparsity
levels (50%-95%). To ensure a fair comparison, both methods were evaluated at the same total after training
round (step 500). As shown in Table 6, the performance difference between initialization-based discovery and
post-warmup discovery is negligible, with deltas ranging from —0.01% to +0.99%. We leave rigorous analysis
of the effect of warm-up for future work.

Table 6: Comparison of SSFL (mask discovery at initialization) vs. Warmup-SSFL (mask discovery after 10
dense rounds) on CIFAR-10. All numbers are percentages.

Sparsity SSFL (At Init) Warmup-SSFL Difference

95 83.57 83.12 +0.45
90 85.10 84.67 +0.43
80 85.35 86.34 -0.99
70 87.02 87.32 -0.30
50 88.29 88.30 -0.01
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Explanation in light of Theoretical Context and Lottery Tickets. Our findings are consistent
with the Lottery Ticket Hypothesis literature (Frankle & Carbin, 2019; Frankle et al., 2019; 2020a; Morcos
et al., 2019; Chen et al., 2021), specifically the work on Stabilizing the Lottery Ticket Hypothesis (Frankle
et al., 2020b) which provides a potential explanation. Frankle et al. (2019) demonstrate that for networks
of moderate depth (e.g., ResNet-18) on datasets like CIFAR-10, winning lottery tickets can be successfully
identified at initialization (iteration 0). It is primarily for significantly deeper networks or larger datasets
(e.g., ResNet-50 on ImageNet) that "late rewinding" or resetting weights to an early training iteration rather
than initialization becomes necessary to find stable subnetworks. Our experimental setting falls within the
regime where initialization-based pruning is theoretically and empirically robust.

The Effect of Non-ITD Data. In the specific context of Federated Learning, we hypothesize that warmup
strategies face an additional challenge: client drift induced by data heterogeneity. During early dense training
rounds on non-IID data, local models may drift significantly toward their local distributions. Saliency
scores computed after this drift risk capturing parameters important for local overfitting rather than global
generalization. Aggregating these biased scores may cancel out the benefits of weight stabilization. In contrast,
the random initialization used in SSFL provides a neutral starting point, potentially allowing the aggregated
gradient saliency to capture structural importance unbiased by local data quirks.

Conclusion. Given that (1) performance differences are negligible, (2) literature supports initialization-based
pruning for this model scale, and (3) warmup incurs a high communication cost (transmitting dense models
for initial rounds), we opted for single-shot discovery at initialization for its optimal efficiency-accuracy
trade-off for SSFL. Future work scaling SSFL to very large foundation models may revisit this trade-off,
potentially leveraging techniques like warm-up as model capacity grows.

A.8 Experimental settings and further results

The performance of our proposed method is assessed on three image classification datasets: CIFAR-10,
CIFAR-100 Krizhevsky et al. (2009), and Tiny-Imagenet. We examine two distinct scenarios to simulate
non-identical data distributions among federating clients. Following the works of Hsu et al. (2019), we use
Dir Partition, where the training data is divided according to a Dirichlet distribution Dir(«a) for each client,
and the corresponding test data for each client is generated following the same distribution. We take an «
value of 0.3 for CIFAR-10, and 0.2 for both CIFAR-100 and Tiny-Imagenet. Additionally, we conduct an
evaluation using a pathological partition setup, as described by Zhang et al. (2020), where each client is
randomly allocated limited classes from the total number of classes. Specifically, each client holds 2 classes
for CIFAR-10, 10 classes for CIFAR-100, and 20 classes for Tiny-Imagenet in our setup, similar to Dai et al.
(2022).

Experiment Details and hyper-parameters As outlined in Algorithm 1, the client models are trained
on their local data and only during a communication round r, the randomly selected clients in C’ share
their weights for aggregation. During the local training, we use the SGD optimizer for SSFL and also for
all baseline techniques, employing a weighted decay parameter of 0.0005. With the exception of the Ditto
method, we maintain a constant of 5 local epochs for all methods. However, for Ditto, in order to ensure
equitable comparison, each client undertakes 3 epochs for training the local model and 2 epochs for training
the global model. Our initial learning rate stands at 0.1 and diminishes by a factor of 0.998 after each
round of communication, similar to Dai et al. (2022). Throughout all experiments, we use a batch size of
16 due to the usage of group normalization Wu & He (2018). We execute R = 500 global communication
rounds for CIFAR-10, CIFAR-100 and Tiny-ImageNet. For the experiments in Table 1 and Table 2, we use
a sparsity level s = 50% similar to Dai et al. (2022) for fair comparison. We however, include experiments
with increasing sparsity levels up to s = 95% and compare SSFL with other sparse FL methods, including a
baseline random-masking on non-IID data, in Figure 2.

For FedPM, we use their official implementation Isik et al. (2022) and extend it to support ResNet architectures
and the CIFAR-100 dataset to ensure fair comparisons. For SparsyFed, we likewise rely on the official
implementation Guastella et al. (2025) and re-run their codebase under our general experimental setup,
matching our communication rounds (R = 500) and Dirichlet o parameters. These « values follow the
settings commonly adopted in prior work, including Dai et al. (2022), to provide consistency across baselines.
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For all baselines, we used the authors’ official implementations and recommended hyperparameters, without
additional tuning. SSFL likewise required no hyperparameter tuning beyond setting the target sparsity level,
ensuring a fair comparison across methods.

Model Initialization All models in our experiments were randomly initialized using the standard Kaiming
(He) Normal initialization scheme (He et al., 2015) for convolutional layers, which helps maintain variance
stability in deep networks. The final fully connected layer used PyTorch’s default Kaiming Uniform initializa-
tion. Batch normalization layers were initialized with weights of 1 and biases of 0. This random initialization
defines the starting state wg from which local saliency scores are computed in the first round, ensuring no
prior task-specific information is encoded in the model weights before the saliency aggregation step. Across
5 independent runs with different random seeds, SSFL exhibited a standard deviation of < 0.4% in final
accuracy, demonstrating that the saliency signal extracted at initialization is consistent and robust to the
specific random draw of weights.

Implementation of Baselines: We describe most of the implementation detail for the baselines in Section 4.
We use the official implementaion of DisPFL by Dai et al. (2022) available on their github page and use
similar hyper-parameters for both DisPFL and SSFL. FedPM trains sparse random masks instead of training
model weights and finds an optimal sparsity by itself Isik et al. (2022). We use the official implementation of
FedPM available in their github page for the paper. For fair comparison, we use the CIFAR-10 non-IID split
that we use in this work with the « values as described in Appendix A.2. For random-k baselines, we follow
a training strategy that is similar to SSFL and in essense to FedAvg McMahan & Ramage (2017) or DisPFL
Dai et al. (2022) in terms of the weight aggregation mechanism. To establish random-k as a random sparse
training, similar to our proposed sparse FL. and DisPFL training method we generate a random-k mask at
each local site and train and aggregate the weights corresponding to that mask after every T' steps of training.

top-k Top-k is a popular choice for distributed training with gradient sparsification Barnes et al. (2020);
Lin et al. (2017) and also in variation of federated learning where gradient aggregation instead of weight
aggregation takes place. We, however, did not find works that employ top-k sparsification in the weight-
averaging scheme of Federated Averaging. As a result, to test this we implemented a top-k baseline, where
the top-k weights from each local model at the end of T' steps are shared among the selected clients in each
communication round and are aggregated. We note that unlike SSFL, DisPFL or random masking, at the
end of training top-k does not result in sparse local models with the benefits of sparse models such as faster
inference.

Convergence under longer training and more communication rounds We report the convergence
plots for SSFL and other methods in Figure 7 (a-b) when trained for a total of R = 500 communication
rounds. As Ditto does not properly converge within 500 rounds, we conduct further experiments for SSFL,
DisPFL and Ditto on a much longer R = 800 communication rounds to analyze the convergence of these
methods. We demonstrate the convergence plots in Figure-7 (c).

Figure 7: Comparison of convergence rates of SSFL with similar federated and sparse federated learning
methods. (a) CIFAR-10 with R = 500 rounds, (b) CIFAR-100 with R = 500 rounds, (c) longer training
R = 800 rounds.
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A.9 Quality of the discovered mask across heterogeneous clients

Figure 4 (c-d) provides an analysis of how the global mask discovered by SSFL transfers across clients with
highly imbalanced data availability. Figure 4 (c) shows the test accuracy of local sparse models trained with
the global mask, along with the weighted score assigned to each client. Figure 4 (d) shows the corresponding
distribution of training and test samples across clients.

Despite substantial differences in the amount of data available at each site, the global mask enables consistently
strong performance across the federation. Clients with very limited data still achieve reasonable accuracy,
while high-data clients maintain competitive performance. This demonstrates that the aggregated saliency
scores produce a global mask that generalizes across diverse clients, rather than overfitting to any single site.
Importantly, this analysis highlights that even clients contributing relatively little data can benefit from the
shared sparse subnetwork.

A.10 Local Client Accuracy and Class Distribution

We plot the class distribution with Dir(«) on the CIFAR10 dataset with @ = 0.3 for 10 random clients and
their final accuracy in Fig 8 (a). In Fig (b) we plot the top-10 clients in terms of their final test accuracy
and in Fig-(c) the bottom 10 clients in terms of final test accuracy. We notice that, SSFL finds masks that
result in consistent local model performance and even in the bottom 10 clients, the performance remains
respectable.

Class Distribution with Accuracy for Randomly Selected Clients CIFAR 10 - Top-10 Highest Accuracy Clients CIFAR 10 - Top-10 Lowest Accuracy Clients
e
s i’ e . Aecuracy, y
. . o . X .

Accuracy

050

Figure 8: (a) Class distribution with Dir(0.3) for the CIFAR-10 dataset for 10 random clients and their final
local test accuracy (b) the top-10 clients in terms of their final test accuracy (c) the bottom-10 clients in
terms of their final test accuracy

B Extended Literature Review

For completeness, we provide a broader overview of related work, complementing the focused discussion in
Section 2 of the main text. This section is not required to follow our method or experiments but may provide
useful background for readers seeking a more complete survey of related areas. We group this discussion into:

(i) neural network pruning, (ii) sparsity and efficiency in federated learning, (iii) pruning at initialization, and
(iv) pruning at initialization in federated learning.

Neural Network Pruning Like most areas in deep learning, model pruning has a rich history and
is mostly considered to have been explored first in the 90’s (Janowsky, 1989; LeCun et al., 1990; Reed,
1993). The central aim of model pruning is to find subnetworks within larger architectures by removing
connections. Model pruning is very attractive for a number of reasons, especially for real-time applications
on resource-constraint edge devices which is often the case in FL and collaborative learning. Pruning large
networks can significantly reduce the demands of inference Elsen et al. (2020) or hardware designed to
exploit sparsity Cerebras (2019); Pool et al. (2021). More recently the lottery ticket hypothesis was proposed
which predicts the existence of subnetworks of initializations within dense networks, which when trained
in isolation from scratch can match in accuracy of a fully trained dense network Frankle & Carbin (2019).
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This rejuvenated the field of sparse deep learning Renda et al. (2020); Chen et al. (2020) and more recently
the interest spilled over into sparse reinforcement learning (RL) as well Arnob et al. (2024; 2021); Sokar
et al. (2021). Pruning in deep learning can broadly be classified into three categories: techniques that induce
sparsity before training and at initialization Lee et al. (2018); Wang et al. (2020); Tanaka et al. (2020), during
training, including methods based on magnitude pruning Zhu & Gupta (2018), weight transformations Ma
et al. (2019), regularization-based approaches Yang et al. (2019), explicit sparse projections Ohib et al. (2022);
Ohib (2023); Ohib et al. of the matrices and post-training Han et al. (2015); Frankle et al. (2021).

The advent of large language models (LLMs) has further amplified interest in pruning and sparsity techniques,
as these models often contain billions of parameters that pose significant computational and memory challenges
for deployment. Recent work has explored various pruning strategies for LLMs, including magnitude-based
pruning Frantar & Alistarh (2023), structured pruning to remove entire attention heads or layers Ma et al.
(2023), and semi-structured sparsity patterns that balance compression with hardware efficiency Sun et al.
(2023). Additionally, techniques such as quantization-aware pruning and knowledge distillation have been
combined with sparsity to achieve extreme compression ratios while maintaining model performance Xiao
et al. (2023); Kurti¢ et al. (2023). Sparsity has also been leveraged in parameter-efficient fine-tuning through
sparse adapters Arnob et al. (2025), low-rank adaptations Hu et al. (2022); Zhang et al. (2023), and mixture-
of-experts architectures that activate only subsets of parameters per input Fedus et al. (2022); Jiang et al.
(2024). These advances demonstrate that pruning remains crucial for making state-of-the-art models practical
for resource-constrained environments, extending from traditional computer vision tasks to modern natural
language processing applications.

Sparsity, pruning and efficiency in FL Federated Learning (FL) has evolved significantly since its
inception, introducing a myriad of techniques to enhance efficiency, communication, and computation. Interest
in efficiency has increased further with the proposal of the Lottery Ticket Hypothesis (LTH) by Frankle &
Carbin (2019). However, identifying these tickets has traditionally been challenging. In the original work,
the strategy employed to extract these subnetworks was to iteratively train and prune the network until the
target sparsity was attained. However, this process is unsustainable in the FL setting and would in contrast
make the training even more expensive due to the significant increase in training duration. Variations of this
idea have been employed in the FL setting, as demonstrated by Li et al. (2020); Jiang et al. (2022); Seo et al.
(2021); Liu et al. (2021) and Babakniya et al. (2022). However, many of them either suffer from the same
issue of iterative pruning and retraining which is extremely costly or decline in performance when this train,
prune and retrain cycle is skipped.

Pruning and sparsity are highly advantageous in federated learning (FL), especially since many applications
involve clients with limited resources. As sparse models can be substantially efficient during inference (Li
et al., 2016), training sparse local models in resource constrained local sites could be an effective approach.
In FL setting, pruning has been explored with mixed success, often employing a range of heuristics. Works,
such as by Munir et al. (2021) focused on pruning resource-constrained clients, Yu et al. (2021) on using
gated dynamic sparsity, Liu et al. (2021) performs a pre-training on the clients to get mask information, and
Jiang et al. (2022) relies on an initial mask selected at a particular client, followed by a Fed Avg-like algorithm
that performs mask readjustment every AR rounds. However, they either do not leverage sparsity fully for
communication efficiency, suffer from performance degradation or is not designed for the challenging, realistic
non-IID setting.

Works by Dai et al. (2022) and Bibikar et al. (2022) utilize dynamic sparsity similar to Evci et al. (2020a)
and extends it to the FL regime, however, they both start with random masks as an initialization. A recent
focus has also been placed on random masking and optimizing the mask Setayesh et al. (2022) or training the
mask itself instead of training the weights at all Isik et al. (2022). Furthermore, in light of the recent surge
in the development of large language models (LLMs), the exploration of federated learning in this domain
is taking place, although relatively recently Fan et al. (2023); Yu et al. (2023). Investigating sparsity and
efficiency within this context presents a fascinating and promising avenue for research.

Pruning at Initialization The work on the lottery ticket hypothesis (LTH), which showed that from early
in training and often at initialization, there exist subnetworks that can be trained in isolation to full accuracy,
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opened up the prospect for pruning at initialization (Pal). Several methods have been proposed for pruning
at initialization such as SNIP (Lee et al., 2018), which aims to prune weights that are least important for
the loss, GraSP (Wang et al., 2020), which prunes weights aiming to preserve gradient flow and SynFlow
(Tanaka et al., 2020) aims to iteratively prune weights with the lowest “synaptic strengths”. These methods
have been later studied in depth by Frankle et al. (2021), where they provide interesting insights about the
efficacy of these methods, including the observation that SNIP Lee et al. (2018), which is a variation of the
gradient based connection saliency criterion (Mozer & Smolensky, 1988), consistently performs well. Hence,
we choose gradient based connection saliency as the basis for our method.

Frankle et al. (2021) found that Pal methods tend to prune networks at the layer level rather than the
connection level in single-node deep learning scenarios. In Section 4, we explore the applicability of this
observation to non-IID federated learning settings

Pruning at initialization in FL. We did not discover any study that directly employs connection
importance at initialization in the Federated Learning (FL) setting. Nevertheless, research such as Jiang et al.
(2022) incorporated gradient-based importance criterion, SNIP Lee et al. (2018); De Jorge et al. (2020), within
their comparative benchmarks, but calculating such scores only on the local data of one particular client
site in the FL setting, resulting in subpar performance. Similarly, Huang et al. (2022) presents connection
saliency in their benchmark but assumes that to calculate meaningful parameter importance scores, the server
has access to a public dataset on which such saliency scores can be calculated. However, that is in general
unlikely to happen and would lead to privacy concerns if such constraints were enforced.

In this work, we demonstrate that it is possible to find sparse masks or sub-networks through gradient based
connection saliency measures at initialization, considering the distribution of training data at local client
sites. Since, to the best of our knowledge we did not find any comparable pruning at initialization methods
in the non-IID FL setting, we compare our method to approaches such as Dai et al. (2022) that results in
sparse local models and similar sparse and dense baselines in Section 4. A variation of our work has also
been applied in the domain of federated distributed neuroimaging (Thapaliya et al., 2024), where gradient
averaging, first demonstrated in (Ohib et al., 2023) in this setup, was used for the FL process instead of
model averaging.
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