
Under review as a conference paper at ICLR 2024

BELT-2: BOOTSTRAPPING EEG-TO-LANGUAGE REP-
RESENTATION ALIGNMENT FOR MULTI-TASK BRAIN DE-
CODING

Anonymous authors
Paper under double-blind review

ABSTRACT

The remarkable success of large language models (LLMs) across various multi-
modality applications is well established. However, integrating large language
models with humans, or brain dynamics, remains relatively unexplored. In this
paper, we introduce BELT-2, a pioneering multi-task model designed to enhance
both encoding and decoding performance from EEG signals. To bolster the quality
of the EEG encoder, BELT-2 is the first work to innovatively 1) adopt byte-pair
encoding (BPE)-level EEG-language alignment and 2) integrate multi-task training
and decoding in the EEG domain. Inspired by the idea of Bridging the Brain
with GPT, we further connect the multi-task EEG encoder with LLMs by utilizing
prefix-tuning on intermediary output from the EEG encoder. These innovative
efforts make BELT-2 a pioneering breakthrough, making it the first work in the
field capable of decoding coherent and readable sentences from non-invasive
brain signals. Our experiments highlight significant advancements over prior
techniques in both quantitative and qualitative measures, achieving a decoding
performance with a BLEU-1 score of 52.2% on the ZuCo dataset. Furthermore,
BELT-2 shows a remarkable improvement ranging from 31% to 162% on other
translation benchmarks. Codes can be accessed via the provided anonymous link 1.

Figure 1: Overview of BELT-2. The first work of multi-task brain decoding by bridging the Q-
Conformer EEG encoder and LLMs. Provided samples also suggest BELT-2 is the first to achieve
fluent sentence decoding results from noninvasive brain signals.

1 INTRODUCTION

Recently, the emergence of large language models (LLMs) has spurred efforts to integrate them with
various modalities, such as VisualLLMs (Liu et al., 2023b; Oquab et al., 2023), and Robotics (Driess
et al., 2023). These methods achieved remarkable improvement in various task settings. Yet, an
important topic, the direct combination of LLMs with human intention remains relatively unexplored.
Nonetheless, the inherent subject-wise non-stationary characteristics of Electroencephalography
(EEG) signals, coupled with rigorous experimental protocols, make the task of decoding words or
sentences exceptionally challenging.

1https://anonymous.4open.science/r/BELT-2-0048
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Explorations on brain-to-text and brain-to-speech decoding in the earlier stage (Herff et al., 2015;
Makin et al., 2020; Panachakel & Ramakrishnan, 2021; Nieto et al., 2021) mostly perform decoding
on a closed word-level set, which still has notable restrictions on vocabulary size and limitations
to more intricate application scenarios. For the brain-to-language decoding, EEG-to-Text (Wang
& Ji, 2022) introduced the open-vocabulary decoding of EEG signals with an initial performance
baseline. DeWave (Duan et al., 2023) improved decoding performance by introducing a discrete
encoder for EEG. BELT (Zhou et al., 2023a) which boosted decoding performance by leveraging
language supervision. However, these methods are limited to single-task settings and have not
achieved multi-task decoding from brain signals to natural languages. An extensive related works is
provided in Appendix A due to space limit.

In this paper, we propose BELT-2, the first EEG-language learning framework to bridge the modality
gap and effectively exploit LLM’s generative capacity for EEG decoding. BELT-2 enhances three
key aspects of brain decoding research. 1) It is the first to introduce BPE-level contrastive learning
for EEG-to-language alignment. 2) It first introduces a prompt-based multi-task encoder for EEG
research. 3) It proposes a cost-effective solution for connecting an EEG encoder with a large language
model (LLM).

More specifically, we introduce a novel discrete querying conformer (Q-Conformer) as the EEG
encoder to improve encoding capacity and enable multitasking (Figure 5). Unlike previous single-task
EEG encoders (Zhou et al., 2023a; Duan et al., 2023), Q-Conformer is able to extract task-specific
contexts according to a given query prompt. For the training of Q-Conformer, we propose the BPE-
level EEG-language contrastive learning (BPE-CL) to bootstrap the learning of language-aligned
EEG representation. After training, we bridge the Q-Conformer and an LLM decoder by prefix-tuning
with both models frozen. To improve the performance of the briding, we further propose a technique
called speculative augmentation (SA) to improve the training efficiency. The main contributions of
BELT-2 could be concluded in four aspects.

• This paper presents a novel framework capable of decoding fluent open-vocabulary sentences,
facilitating multi-task EEG decoding including EEG translation, sentiment classification,
and summarization.

• The Q-Conformer is proposed to improve the encoding ability and the scalability for multi-
tasking while the BPE-level contrastive learning establishes a firm alignment between EEG
and language representations.

• This paper provides a cost-effective bridging method for connecting LLMs with brain
encodings by turning virtual-prefix. A speculative augmentation method is introduced to
further improve the bridging performance.

• Experimental results suggest that the proposed BELT-2 exceeds SOTA performance on
different EEG decoding tasks. For EEG translation, BELT-2 achieves 52.59 BLEU-1, 17.85
BLEU-4, and 40.1 Rouge-1 Precision, which significantly outperforms the previous baseline
by 31%, 162% and 26% respectively. On sentiment classification, BELT-2 achieves 74.62%
accuracy without further assistance from additional classifiers or external datasets. BELT-2
is also the first work that achieves EEG summarization with a SOTA 31.17 BLEU-1 score.

2 BELT-2

BELT-2 introduces the Q-Conformer which enhances both the capacity to encode EEG information
and the extendibility to multi-task. To bridge the modality gap between EEG and language, we boost
EEG-to-Language representation learning through two learning stages: (1) the EEG-to-language
alignment learning stage for learning the Q-Conformer EEG encoder. (2) a prefix-tuning stage for
bridging Q-Conformer with LLM.

2.1 Q-CONFORMER AS EEG ENCODER

The overall structure of the Q-Conformer is illustrated in Figure 5 which consists of a discrete
conformer, a Context Transformer (C-Former), and a query prompt. The discrete conformer functions
as a discrete EEG tokenizer that captures primitive patterns from the input EEG embeddings. The
C-Former extracts mid-layer coding (MLC) that contains context information specific to a given task
given by the learnable query prompt.
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Figure 2: The overall structure of the Q-Conformer. It consists of a discrete conformer, a context
transformer (C-Former), and a query prompt. The input EEG embeddings (EEG embed) are first
processed by the conformer into continuous EEG tokens. A vector quantizer is then used to discretize
the EEG tokens. Then, a query prompt interacts with the discrete EEG token via the cross-attention
layer from in the C-Former to extract task-specific context information from the discrete EEG tokens.

Discrete Conformer: The discrete conformer consists of a conformer model and a vector quantizer.
After preprocessing, the raw EEG waveform is segmented into windows using eye-tracking infor-
mation. Then a frequency domain transform converts EEG segments into fix-size EEG embeddings
e ∈ RL×N×D. L is the maximum length of the embedding sequence, N denotes the number of EEG
channels, and D denotes the embedding size. The conformer model consists of 2 conformer blocks
which follow the structure manifested in (Gulati et al., 2020). The conformer model E(⋅) converts
the EEG embeddings e into continuous EEG tokens h ∈ RL×N×d, where d denotes the size of the
continuous EEG tokens.

We then convert h to a set of discrete tokens b by a vector quantizer (VQ) that looks up the nearest
discrete code vk, k = {0, 1,⋯,K} from the codebook V (Razavi et al., 2019). The quantization
process zq(h) can be written as Equation 1.

zq(h) = {zq(hi)}Li=0, zq(hi) = vk, k = argmin
j

∥hj − vj∥2
2 (1)

We use Lvq (Equation 2) to train the discrete codebook. The Lvq is a weighted summation of 4
loss terms. The first two terms are the codebook loss and the commitment loss. They are used to
update the codebook by minimizing the information loss between the input and the output discrete
tokens Van Den Oord et al. (2017). The third term encourages the balanced use of all entries in the
codebook and prevents codebook collapse during training (Dieleman et al., 2018). The last term is a
reconstructive loss that ensures the information passed to the VQ is sufficient to describe the EEG
signal.

Lvq = ∥sg [h] − zq(h)∥2
2 + ∥h − sg [zq(h)]∥2

2 +
1

∣V∣

∣V∣
∑
k=0

pk log pk + ∥e − ê∥2
2 (2)

, where sg [⋅] stands for the stop-gradient operator which is an identity at the forward pass while
having zero gradients during the backward pass. ∣V∣ denotes the size of the discrete codebook and
pk denotes the softmax probability of the codebook entry k being used in each batch. ê denotes the
reconstructed EEG embedding from zq(h) using 2 comformer blocks.

C-Former and Query Prompt We create a set number of learnable query embeddings (query
prompt) as input to the C-Former. The C-Former is composed of self-attention layers and cross-
attention layers arranged in consecutive order. After feeding the query prompts and the discrete EEG
tokens into the C-Former, the query prompts interact with each other through the self-attention layers
and further interact with the discrete EEG tokens through the following cross-attention layer. A new
query prompt will be initialized when training the Q-Conformer for a specific task. After training on
a specific task, the query prompts learn to act as the instruction of the current task that guides the
C-Former to extract MLC as the task-specific context from the EEG modality.

This querying mechanism enables a more flexible adaptation of the pretrained Q-Conformer to a
new downstream task by adding a new set of query prompts. It also allows the reusing of knowledge
learned from previous training tasks. In our experiment setup, we initialize the C-Former with the
pre-trained weights of BARTlarge (Lewis et al., 2019). We employ a query prompt of 20 learnable
tokens for a specific, with each query possessing a dimensionality of 1024.
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Figure 3: BELT-2’s two-stage training schema. For EEG-to-language alignment learning (left), we
jointly optimize three objectives that firmly establish the EEG-to-language alignment and enforce
the query prompt to extract the EEG context most relevant to a task. For bridging of Q-Conformer
and LLM (right), connect a frozen EEG model (Q-Conformer) and a frozen LLM by tuning the
continuous virtual prefix using the prefix-tuning method. Speculative augmentation is used to boost
the performance of the prefix-tuning process.

2.2 EEG-TO-LANGUAGE ALIGNMENT LEARNING

In the EEG-to-language alignment learning stage, we train the Q-Conformer and align the en-
coded EEG tokens to the language modality. To achieve EEG-to-Language alignment, we com-
bine two contrastive objectives and a pretraining objective to the VQ objective in Equation 2.
The two contrastive objectives include (1) BPE-level contrastive learning (BPE-CL), and (2)
Negative Contrastive learning (NCL). We further pretrain the Q-Conformer to achieve a task-
specific query prompt by the EEG-to-Language matching (ELM) objective, which guides the
C-Former to extract MLC that contains the most relevant EEG contexts in the specific task.

Figure 4: The illustration of BPE-level con-
trastive learning.

BPE-level contrastive learning (BPE-CL) learns to
align the discrete EEG tokens with BPE subword em-
beddings by maximizing their mutual information. Un-
like the BELT-1 model (Zhou et al., 2023a) where con-
trastive learning is only performed at the word level, we
perform EEG-language alignment in the BPE subword
level to improve EEG-language alignment. Given the
limited size of EEG-language pairs in the training set,
this method enforces stronger semantic guidance to the
EEG representation while enhancing the matching of
subword units that are out-of-training vocabulary.

The sampling strategy of the BPE-CL is illustrated in Figure 4. We commence by converting words
into BPE tokens w ∈ W , e.g., converting “V isually” into [“V is”, “ually”]. The embeddings of
these BPE tokens serve as positive targets for the EEG token corresponding to “V isually” while
BPE tokens other words are viewed as negative targets. We uniformly sample 1 positive target and K
negative targets for each discrete EEG token in a training batch. The learning objective Lbpe for the
discrete EEG tokens and the BPE embeddings is formulated as:

Lbpe= − log
exp (zq(h)⊤w+)

exp (zq(h)⊤w+) +∑K
i=1 exp (zq(h)⊤w−)

, (3)

, where w
+ is the sampled embedding of the positive BPE token and w

− is the negative ones.

Negative contrastive learning (NCL) aims to further improve the distinctions between the discrete
EEG tokens by randomly sampling K negative EEG tokens as distractors for each discrete EEG
token in a training batch, which is defined as:

Lneg = − log
1

∑K
i=1 exp (zq(h)⊤zq(h)−)

, (4)

, where zq(h)− are sampled negative tokens from the batch and zq(h) is defined in Equation 1. This
objective enlarges the distinction among EEG tokens that are indistinguishable upon reading different
words, easing the decoding effort.
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EEG-to-language matching (ELM) aims to function as the pretraining task for learning the initial
task-specific query prompt, which in terms is used to instruct the C-Former to extract task-specific
context from the EEG tokens. We use a sequence-to-sequence machine translation loss similar to
previous works Zhou et al. (2023a); Wang & Ji (2022); Duan et al. (2023) as the objective function.
Given the word-level EEG embedding sequence and text sentence pair ⟨E ,S⟩, we maximize the
probability of the decoded sentence p(S∣E) produced by the Q-Conformer. The learning objective is
a machine translation term Ltr, which could be written as follows:

Lelm = −
L

∑
l

log p(sl ∈ S∣q) (5)

, where L is the total length of the target text sequence, sl ∈ S denotes the decoded tokens from the
C-Former and q denotes the query prompt.

2.3 BRIDGING Q-CONFORMER WITH LLM

We propose to bridge the frozen Q-Conformer and a frozen LLM to leverage both models effectively
for EEG-to-Language tasks by tuning a set of virtual prefixes added to the output embeddings of the
Q-Conformer, in order to achieve stronger performance at a lower training cost.

Prefix-tuning To achieve a proper prefix prompt that can steer the LLM to decode the MLC without
changing the LLM’s parameters, we adopt the prefix-tuning (Li & Liang, 2021) method to only train
a set of virtual prefix tokens as prompts to the LLM. In particular, we concat the virtual prefix and the
MLC from the Q-Conformer as input to the subsequence frozen LLM. Please refer to Appendix C.3
for more details on prefix-tuning.

Speculative Augmentation (SA) Despite the use of the lightweight prefix-tuning method, the size
and diversity of training samples are still lacking. This is because while the Q-Conformer learns to
extract task-specific context, it also learns to ignore task-irrelevant information. This would be a
well-anticipated perk for an EEG encoder if we choose to directly decode language output from the
EEG encoder. However, it also significantly reduces the diversity of training samples, making the
learning of a good prefix difficult.

Our BELT-2 framework solves this issues by proposing the SA method to sample MLC from a total
of K+1 Q-Conformer checkpoints to provide more diverse prefix-tuning samples. In particular, we
randomly sample K model checkpoints other than the best-performing checkpoint to produce MLC
for the prefix-tuning. During the forward process, a speculative ratio r is defined to determine whether
to use best checkpoint or one of the K suboptimal checkpoints. To reduce the cost of memory, we
cache the output MLCs of these K model checkpoints during the training of Q-Conformer to avoid
actually loading the checkpoints in the prefix-tuning stage.

In our experiment, we set K = 15 for a balance of performance and training costs to achieve a 6×
larger and more diverse training sample set for the tuning of the LLM Decoder.

2.4 EXTENDING DECODING TO MULTI-TASK

Translation: Our definition of the EEG-to-Text translation task follows previous works on this
topic (Wang & Ji, 2022). Given the word-level EEG embedding sequence and text sentence pair
⟨E ,S⟩, we maximize the probability of the decoded sentence p(S∣E) produced by our model. The
training objective Ltr for the translation task could be written as follows:

p(S∣E) =
L

∏
l=1

p(sl∣E , s<l), Ltr = −
L

∑
l

log p(sl ∈ S) (6)

where L is the total length of the target text sequence and sl ∈ S denotes the word tokens produced
by our model.

Summary: We propose the first EEG-to-text summarization task by creating a summary dataset
from the Zuco datasets. Human attention lingers around keywords and pivotal concepts during
reading (Ding et al., 2022). Consequently, we hypothesize that the extraction of key concepts could
be a more direct way to facilitate the transmission of neural information and the understanding of a
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person’s intention. As such, our nuanced summarization task not only enhances our understanding of
EEG data but also opens up exciting possibilities for advancing research in cognitive science.

We kickstart by constructing the prompt ”Rewrite the sentence by summarizing its main idea using
{T} words from the sentence, and keep the summarized sentence similar to the original sentence:{s}”
with {s} being each ground truth sentence from the ZuCo dataset and attain the initial summarization
targets for each sentence. We set T = 8 in our experiment and use the LLAMA2 model (Touvron
et al., 2023) to generate the initial summarization targets. Afterwards, manual inspection and
rectification are carried out to improve the dataset’s reliability and informativeness. The word-level
EEG embedding sequence and summary pair are denoted by ⟨E , Ŝ⟩. To extend the Q-Conformer for
summarization task, a new query prompt for summarization will be added. The training objective for
generating summaries is similar to Equation 6, with the sole alteration being the substitution of S
with Ŝ. For multi-task training, we train all tasks simultaneously by randomly sampling tasks for
each update iteration.

Figure 5: For multi-task training, we train
three tasks simultaneously by randomly sam-
pling tasks for each training iteration. Each task-
specific query prompt learns to provide task-
specific instructions by training on the corre-
sponding task-specific objective function.

Sentiment Classification: We could further extend
the Q-conformer to perform the sentiment classifica-
tion task by adding another query prompt for the Q-
Conformer and using the last output token from the
Q-conformer as the CLS token. In particular, we use
the EEG-sentiment label pair ⟨E , c⟩. Unlike Wang &
Ji (2022), we don’t need to use external sentiment clas-
sification datasets or learn an additional classifier. The
training objective for sentiment classification is as fol-
lows:

Lst = −
∣C∣
∑
i=1

ci log p(ĉ∣Ei), (7)

, where ∣C∣ is the number of the sentiment categories and ĉ is the sentiment prediction.

3 EXPERIMENT AND RESULTS

3.1 EXPERIMENT SETUP AND IMPLEMENTATION DETAILS

We use the ZuCo datasets (Hollenstein et al., 2018; 2019) for the training and evaluation of the
proposed BELT-2 framework. The ZuCo datasets contain EEG data recorded during natural reading
tasks with eye-tracking data for word-level EEG segmentation. Reading material is collected from
movie reviews (Socher et al., 2013) and Wikipedia articles. We split the dataset into train, val, and
test subsets (80%,10%,10%). In this cross-sentence setting, sentences will not overlap among any
two subsets. In addition, cross-subject performance is also evaluated. We evaluate translation and
summary performance using the BLEU scores (Papineni et al., 2002) and ROUGE-1 scores Lin
(2004). We use P., R., F1, and Acc. to denote precision, recall, F1-score, and accuracy respectively.

3.2 IMPLEMENTATION DETAILS

The code could be assessed through an anonymous link 2. For the word-level EEG embeddings,
the total length of an embedding sequence is L = 56 and the embedding size is d = 840. The
discrete conformer has 8 attention heads with the feed-forward dimension size of 2048 and a discrete
codebook with 1024 entries with a latent size of 1024. The number of querying tokens used for The
Q-Conformer is 20. We train the Q-Conformer with a learning rate of 5e−06 for 60 epochs during
EEG-to-language alignment learning using AdamW (Loshchilov & Hutter, 2017). For the bridging
stage, we use 8 virtual prefix and set the speculative augmentation factor K to 15 with a speculative
ratio of 0.3. We use pre-trained BART and T5 models from the huggingface platform to initialize
the Q-conformer and the LLM decoder. We also conducted experiments of massive size LLAMA2
model 3 in Section 3.5. Due to the limitation of space, refer to Appendix C for more details.

2https://anonymous.4open.science/r/BELT-2-0048
3https://huggingface.co/meta- llama/Llama-2-7b
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3.3 TRANSLATION PERFORMANCE

Quantitative Results We show quantitative results in Table 1. Compared to previous methods,
e.g., EEG-to-Text (Wang & Ji, 2022), Dewave (Duan et al., 2023), and BELT-1 (Zhou et al., 2023a)
When only using EEG Encoder, We observe that the introduction of BPE-level contrastive learning
bootstrapped a significant improvement (row 4 compared to row 5), achieving the SOTA EEG
decoding BLEU-{1, 2, 3, 4} scores of 43.06, 25.57, 15.16, and 9.17, which outperform DeWave by
1.71, 1.42, 1.24, and 0.95. By further connecting with the LLM decoder, BELT-2 further achieves
the BLEU-{1, 2, 3, 4} scores of 52.59, 36.32, 25.21, and 17.85, which brings additional 9.66, 10.96,
10.16, and 8.76 BLEU score improvements. The increase of the metrics is more significant for longer
phrases (+162% for 4-gram and +99% for 3-gram) compared to the baseline EEG-to-Text method.
Additionally, we present ablation results that analyze the influence of VQ and the BPE-CL within
our model, revealing that the utilization of BPE-CL significantly contributes to the enhancement of
performance. However, multitask training did not bring a significant improvement to the translation
result, which is elaborated in the Appendix F.

Table 1: Quantitative Results on Brain-to-Language Translation on the ZuCo Datasets.

Model Vector BPE- Enable Prefix BLEU-N (%) ROUGE-1 (%)
Quantizer CL Multi-Task Tuning N=1 N=2 N=3 N=4 R. P. F1

EEG-to-Text × × × × 40.12 23.18 12.61 6.80 28.8 31.7 30.1
Dewave

√
× × × 43.35 24.15 13.92 8.22 28.82 33.71 30.69

BELT-1
√

× × × 42.31 25.26 14.81 8.73 29.86 36.06 32.57
BELT-2

√ √ √
× 43.06 25.57 15.05 9.09 30.28 34.12 31.99

BELT-2+LLM(T5)
√ √ √ √

52.38 36.28 25.28 17.95 36.08 39.47 37.59
BELT-2 Ablations

BELT-2
√

×
√

× 41.57 24.02 13.80 8.06 29.35 32.46 30.74
BELT-2 ×

√ √
× 41.90 24.57 14.2 8.28 29.60 34.03 31.54

Table 2: Qualitative results on unseen EEG signals. The bold denotes an exact match between the
ground truth and our prediction. underline denotes a fuzzy match with similar semantic meanings.

(1)
Target

He is a prominent member of the Bush family, the younger brother of President George W. Bush
and the second son of former President George H. W. Bush and Barbara Bush.

Others
was a former member of the American family, and first brother of President George W. Bush.
the father son of President President George H. W. Bush. his Bush.

Ours
He was great member member of the American family, and younger brother of President George H. Bush
and the younger cousin of President President George H. W. Bush. the Bush.

(2) Target Adolf Otto Reinhold Windaus (December 25, 1876 - June 9, 1959) was a significant German chemist.
Others rian Hitler,hardt,eren18 18, 1885 – January 3, 18) was a German figure- and
Ours Adolf Hitlero vonhard voner (J 15, 1875 - January 15, 1945) was a German German industrialpacist

(3) Target It just doesn’t have much else... especially in a moral sense.
Others was so’t work the to to and not the country sense.
Ours It just doesn’t work the of going except in the a way sense.

(4) Target He was reelected twice, but had a mixed voting record, often diverging from
President Harry S. Truman and the rest of the Democratic Party.

Others was a- in, in never to less record record. and losingting from his Reagan Truman.
Truman’s his Republican of the Republican Party.

Ours He was reelected twice, but had voting record. and losingging from
President Harry S. Truman and the other of the Democratic Party.

(5) Target Following the 1980 presidential election, Bush and his family moved to Miami-Dade County, Florida.
Others the deaths election, the was his wife moved to California, Dade County, Florida.
Ours After his election presidential election, Reagan and his family moved to Miami,Dade County, Florida.

Cross-Subject Results As cross-subject performance is of vital importance for practical usage, we
further report translation performance in cross-subject settings where we leave one subject out for
evaluation and train the model using other subjects. Figure 6 shows the cross-subject translation
performance for a total of 10 subjects compared to the cross-sentence result we achieved in the
cross-sentence setting (Table 1). The radar charts in Figure 6 denote the performance is stable across
different subjects with subjects achieving BLEU-1 scores ranging from 48.04 to 51.41.
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Figure 6: The cross-subjects perfromance for translation task.

Figure 7: Ablation on speculative ratio.

Model BLEU (%) Rouge-1
N=1 N=3 P. R. F1

EEG-to-Text 25.14 0 10.37 7.30 8.49
BELT-2 w/o Pretrained 26.87 2.08 9.84 11.06 10.34
BELT-2 w/ Pretrained 31.17 5.09 12.73 13.26 12.91

Table 3: Quantitative Results of Summary Task

Qualitative Evaluation We showcase the generated text alongside the established approach from
Wang & Ji (2022) in Table 2. We observe that BELT-2 generates more fluent sentences with greater
grammatical coherence. Notably, our model adeptly captures subject-predicate relationships while
other methods miss the subject and predicate. This is demonstrated by the accurate decoding of
phrases like “He was” vs. “He is”, “It just doesn’t work” vs. “It just doesn’t have”. Furthermore,
for sentence structures involving quoted dates, such as “(January 15, 1875 - January 15, 1945)” vs.
“(December 25, 1876 - June 9, 1959)”, were also consistently deciphered.

3.4 MULTI-TASK PERFORMANCE

Sentiment Classification As shown in Table 4, previous works need to train an LLM classifier
using an external Stanford Sentiment Treebank dataset (around 11,000 sentences) (Socher et al., 2013)
and a new EEG encoder due to poor performance when training directly on the ZoCo dataset (Row
1-3). In contrast, an EEG encoder incorporating external classifiers (row 4-7) demonstrated improved
performance (Wang & Ji, 2022). Our proposed Q-Conformer Encoder, achieve the state-of-the-art
sentiment classification accuracy of 74.62% on the ZuCo dataset. We also observe that our method
could effectively leverage pretrained knowledge from the translation task to improve performance
(row 8-9).

Summarization We compare the summarization performance of the BELT-2 model with the
EEG-to-Text model as the baseline. As shown in Table 3, the EEG-to-Text struggles to generate
summarization while the proposed BELT-2 model exhibited better generative capacity, especially
in longer phrases. Compared to using a newly initialized encoder (row 2), our BELT-2 exhibits a
remarkable capacity to utilize the pretrained knowledge to increase the performance for the sum-
marization task (row 3). Generally, it attains the BLEU-{1, 2, 3, 4} scores of 31.17, 15.7, 8.91, 5.09,
outperforming the baseline method.

3.5 ABLATION STUDY

Bridging Q-Confomer Encoder with different LLMs Table 1 shows the result of bridging our
Q-Conformer encoder with the T5 (Raffel et al., 2020). In Table 5, we conduct a comprehensive
investigation of bridging LLM decoders with the Q-Conformer model, including the LLAMA2,
T5, and the PEGASUS (Zhang et al., 2020) models. Results show that T5 LLMs consistently
outperform other variants and boost the decoding performance. We attribute this superiority to T5’s
denoising training objectives. However, the sheer scale of the LLM decoder does not necessarily
lead to enhanced decoding performance. For example, PEGASUS and LLAMA2 did not yield much
improvement in the translation performance.
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Table 4: Quantitative Results of Sentiment Classification

EEG
Encoder

Additional
CLS Model

Additional
Dataset Acc. P. R. F1

MLP None None 31.8 32.8 33.6 27.5
Bi-LSTM None None 30.9 27.5 33.6 17.4

Transformer BERT None 36.6 23.7 34.5 27.2
EEG2Text BART SST 55.30 62.40 56.50 55.60

BELT-1 BART SST 65.13 63.67 63.34 62.45
BELT-1 Albertv2 SST 60.09 61.63 60.03 59.56
BELT-1 XLNet SST 67.32 66.55 65.71 65.02

BELT-2 w/o Pretrained None None 59.74 57.67 57.63 57.11
BELT-2 w/ Pretrained None None 74.62 75.34 73.84 73.31

Table 5: Ablation study of bridging Q-Confomer Encoder with different LLMs

BLEU-N (%) ROUGE-1 (%)
LLM Type N=1 N=2 N=3 N=4 P. R. F1
LLAMA2 7B 21.40 6.96 3.38 2.21 12.23 13.20 12.61

PEGASUS google/pegasus-x-base 37.67 18.90 9.68 5.21 26.43 31.06 28.38
google/pegasus-xsum 40.82 23.70 13.39 7.61 30.25 33.94 31.86

T5 t5-small 51.02 33.44 22.41 15.42 34.91 37.80 36.15
t5-base 51.36 33.75 22.74 15.63 35.09 38.19 36.41
t5-large 52.59 36.32 25.21 17.85 36.32 40.10 38.00
google/flan-t5-base 50.01 33.09 21.77 14.49 32.97 36.64 34.54
google/flan-t5-large 49.85 33.08 22.07 14.84 33.11 36.61 34.59

Speculative Augmentation We further conduct ablation experiments on the effect of different
speculative ratios in Figure 7. We observe that the introduction of speculative augmentation at r=0.3
has a significantly better impact on the decoding performance across all evaluated metrics.

LIMITATIONS

While BELT-2 achieved remarkable translation improvements by combining Q-Conformer with LLMs,
it is worth noting that the accuracy still lags behind traditional language-to-language translation. Also,
it is noted that the experiments were conducted on publicly available neural reading datasets with the
help of eye-tracking markers. As a result, BELT-2 has not realized everyday communication such as
‘silent speech’ or ‘reading mind’. The vision of communication or controlling devices directly from
brain dynamics remains a challenging task for follow-up research.

4 CONCLUSION

This paper introduces BELT-2, a pioneering EEG-language learning framework for bridging brain
signals to LLMs. Our framework achieves EEG-to-language alignment by incorporating the novel
BPE-CL objective and proposed an effective method for bridging a frozen Q-Conformer EEG
Encoder and a frozen LLM to leverage their generative capacity. The multi-task extendibility of
the Q-Conformer also establishes BELT-2 as the first work to achieve a multi-task decoding model
in EEG research. Extensive experiments were conducted to evaluate the performance of BELT-
2 quantitatively and qualitatively. Especially, this work provides the first study investigating the
feasibility of using frozen pretrained LLM to process EEG contexts exampled by a wide range of
LLMs. Our experimental result shows that the BELT-2 framework represents a significant step
forward in integrating human brain signals with LLMs, opening up exciting new avenues for research
and development in cognitive neuroscience and brain-computer interfaces. We hope that this work
will inspire further exploration and innovation in this exciting and rapidly evolving field.
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