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Abstract

The influence function (IF) of a statistical functional is the Riesz representer of
its derivative, also known as its first variation and Fisher-Rao gradient. It is a
key object for numerical optimization over probability measures, semiparametric
efficiency theory, standard constructions of efficient estimators, and an arsenal of
inference methods for these estimators. Yet, deriving the IF analytically is often an
obstruction for practitioners. To automate this task, we develop a novel spectral
representation of the IF that lends itself to a low-rank functional estimator in a
reproducing kernel Hilbert space (rkHs). Our estimator (i) does not require analytic
derivations by the user, (ii) relies on kernel Principal Component Analysis and
numerical pathwise derivatives along these components. We present the derivation
of the representation and prove consistency of the low-rank rkHs estimator.

1 Introduction

The target 6 of a statistical learning procedure often takes the form of a mapping P +— 6(P) of the
probability measure P on a sample space X C R governing the training data X .,,. The difficulty of
learning 6 from data depends on the combination of structural properties of all possible P and the
local variability of 6 at the unknown true P. For example, estimating the mean 6 (P) := [ xdP
is easy even if P is unrestricted beyond having finite moments. By contrast, estimating the density
f(xo) of P ata point zy is easy in a model for P that is smoothly parametrized by a subset of R?,

but much harder in nonparametric settings. The rate of convergence of an estimator én(X 1:n) to the
target §(P) as the sample size n increases is a measure of the statistical difficulty of estimating 6.
The rate of estimating #; with the sample mean is y/n by the Central Limit Theorem (CLT), whereas
the rate of estimating f () can range from +/n to arbitrarily slow, depending on the regularity of P.
If f(z) is smooth in a neighborhood of x( for all P, then observations close to x can be aggregated,
as for estimating 61, resulting in a fast rate; if f(x) varies roughly near xo and as P is perturbed, then
aggregation leads to bias and must be limited at the expense of precision.

We consider scalar functionals 6( P) that can be estimated at the parametric /7 rate in nonparametric
models for P, like the mean #;. This includes scalar and vector estimands that depend on averages
of nuisance functions, e.g., o(P) := [ f dP and estimands of causal inference, but not f(z). For
these parameters the rate is fixed and the difficulty of estimation is characterized in terms of a lower
bound on the asymptotic variance. The object that determines this bound is the influence function
(IF) of 6 at P, denoted 1)p : X — R; the bound is the norm [ )% dP of this function. Setting aside
the interpretation of ¢ p(x) until Theorem 2.1, recall when one can expect 6(P) to be estimable at
the /n rate and to have an IF. This requires that 6(P) varies smoothly with P. Specifically, the map
P +— 6(P) must have a derivative Dfp that maps perturbations to P into infinitesimal changes in
(P) [Mis47; Ste56; KL76; IH81; Vaa91]. When D@ p exists and is a bounded linear map on L?(P), Riesz’s
theorem guarantees the existence of a function 1p € L?(P) such that for any perturbation ¢ to P,
the effect on §(P) is given by DOp[p] = [ ¢p1op dP; we review this further in Theorem 2.1. If 6(P)
is not smooth in P, so the derivative Dfp doesn’t exist or is unbounded and has no IF, then the
estimation rate for §(P) is typically slower than /n.
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Example 1.1. The IF for 6, (P) is ¢1(xz) = x — 6y; the IF for 04(P) is ¥o(z) = 2[f(x) — 69|
With ¢ € (0, 1), the g-quantile is 6,(P) := F~!(g), so that F'(0,) == P(X < 6,) = ¢, and its IF is
Ye(z) = [¢—L(x < 0,)]/f(8,), where 1 4 is the indicator of event A. To simplify notation, we may
write ¢ without the subscript P, but the IF always depends on P, as do the functionals 6 and D6.

Consider now an estimator sequence 0, =0, (X1.p) for (P) constructed with i.i.d. samples X7.,,

from P. It is regular if \/n(6,, — 0(P)) converges in distribution, and, furthermore, the limit law is
invariant to vanishing perturbations in P; a counterexample is hard thresholding. An estimator is
asymptotically linear if it has the representation analogous to the CLT:

Vi, = 0(P)) = 7= > (X)) +op(1). where 1 € L3(P) (L1

meaning [ 4% dP < +ocand [¢p dP = 0, and the op(1) term vanishes in P as n — oo. Note that

wp in (1.1) is the IF of 6, also called the IF of the estimator 6. [vaag1] shows that §( P) is differentiable
in P and has an IF if and only if there exists a regular asymptotically linear estimator. Moreover,
[kia87] shows that a regular asymptotically linear estimator exists if and only if the IF exists and can
itself be consistently estimated. For further details of semiparametric efficiency theory we refer to
[Vaa00, ch25] and [Bic+93], and now turn to a very brief and selective review of its recent methodological
uses in machine learning (ML), statistics and econometrics.

According to (1.1), the contribution of a datum X; to the fluctuations in the estimator is approximately
1(X;)/n. Consequently, the observations with the most influence on the realized estimate are X
with a large |¢(X;)| value. Returning to Example 1.1, for estimates of 6, the influential data are
those far away from the mean, i.e., the ‘outliers’; by contrast, for estimates of 6, all observations have
similar influence; for estimates of 6, the observations with extreme density values are influential.
This interpretation of the IF to study robustness to outliers goes back to [Hube4] and appears recently in
e.g., [Pru+20; BGM20]. In Theorem 2.1, we discuss a related interpretation of the IF, but for the functional
rather than its estimators, that is an important baseline for our work.

Closely related with robustness are the uses of the IF toward data attribution and interpretability of
nontransparent estimators. The idea is to approximate the 2; — 0 (1., ) mapping with z; — v (x;)
to gain insight into the effect of a data point or statistic on the estimate; e.g., in large language [Gro+23],
black box ML [KL17], structural econometric [AGS20a; AGS20b] models. A different question asks for
the effect of perturbing the location of x; spatially in the sample space X" as x; + A; rather than
its probability weight; this can also be answered with the IF. The Wasserstein gradient vector field
Vaoop = (0u, %P, - .., 0p,0p) : X — R of O(P) describes the direction of transporting the mass
of Patxin X C R? with the greatest influence on the value of #( P). Furthermore, for any transport
perturbation v € L2(P)? of P, the effect on 6(P) is DOp[v] = [(v, V4 p)ga dP. See [vilo3, chg]
for the details of optimal transport theory, and e.g., [Mad+18; SND18] for applications.

A classical use of the IF is to approximate the distribution of an estimator [Cha92; New94; FS19], useful for

constructing confidence intervals and statistical tests. From (1.1), the variance of 8,, is approximately
Ik 1? dP/n and the distribution is approximately Normal by the CLT. Beyond insights into the
distribution of a given estimator, the IF is a key ingredient for the construction of estimators that
achieve the efficiency bound, notably in semiparametric problems like causal inference. Several

techniques are well known, all start with preliminary estimators 6 of 6 and 1& p of ¥ p, which are
combined to construct a better estimator of . The one-step adaptive estimator of Bickel [Bic75] given

by 6 =0+ Sy ¥p(X;)/n estimates and removes the bias in  with the sample average of 1p.
The IF is required to construct the targeted likelihood of van der Laan [VR06; Cho+24], and Neyman
orthogonal estimating equations of Chernozhukov [Che+18; Che+22], see also the reviews [Hin+22; Ken24].

Recently, the IF is used extensively to study robustness of ML models [Bre+19; Guo+20; Bae+22; Sch+23]
and the sensitivity of econometric estimands 6 to misspecification of structural properties of PP and
other modeling choices reflected in 8( P) [AGS17; Muk18; Muk19; cC23]. For example, with censored data,
the mean 6, is not identified, but there is a set of values for §; compatible with the true P and the
observed data that can be estimated [HM95; Sem20; Sem25]; an MDP model may assume Gumbel payoff
shocks [Rus87] or an ecological model of population dynamics may posit logistic propensity scores
[Cat+00], and the IF can be used to construct bounds for the estimated MDP parameters and population
size that are robust to the parametric assumptions [Muk21].



How does one estimate the IF? In Example 1.1, estimating 17 amounts to estimating the mean 6
by contrast, estimating 1)y requires estimating the density f; estimating 1), requires estimating 0,
and f(6,). For a general functional 6(P), one first derives the analytic form of the IF. In parametric
models, the IF is the normalized derivative of the log-density, i.e., the score. In nonparametric models,
with significant mathematical subtlety, the problem can be reduced to the parametric case. For a
path t — P4, i.e., a parametric submodel with parameter t € R and score function g € L(Q)(P), the
pathwise derivative df(P;)/dt is computed. Then one hopes to express it as | ¢ - ¢ P to match the
representation of Riesz’ theorem; the function ¢ is a candidate for 1/p. Given the analytic form of ¢'p,
as in Example 1.1, the unknown components can be estimated. Deriving the IF is highly idiosyncratic
to the functional at hand and can be challenging, akin to solving a differential equation, and often
constitutes a significant contribution. Several techniques are described in the literature e.g., [Cha87;
New90; Jor93], see also the reviews [Hin+22; Ken24]. This task can be time-consuming, requires familiarity
with functional analysis, and often highly specialized technical knowledge.

Prior works It is widely documented in recent literature that the analytic derivation of the IF poses
an obstruction to the adoption of IF-based methods [Fra+15; LCL15; CLV19; Hin+22; Ken24; JWZz22] and that
replacing this derivation with automated estimation would be a useful contribution. Automated
estimation has been explored in [Fra+15; CLV19; JWZz22] based on the von Mises representation of the IF,
explained in Theorem 2.1. Specifically, these works show how to estimate the value of the IF at a
fixed point z € X as 1p(z) = lims_,o dG(Pt‘S’Z) /dt, by constructing a special perturbation 15{5’Z of
P, that depends on the chosen point z and bandwidth 4, so that the pathwise derivative of 6 along this
perturbation approximates 1 p(z). In practice, ¢ is fixed and the derivative is computed as a finite
difference; computation can be ill-conditioned due to the nature of the required perturbations.

Regularization \=1e-6 Regularization \=1e-4

Figure 1: IF v, of quantile ,, regularized oracle surrogate 1} (dashed) and estimate 1[)1"\,1 (solid).

Contribution We propose estimating the entire IF ¢ p as
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where A > 0 is the regularization loading for controlling the nonparametric bias-variance trade-off,
and r is the rank of the approximation for controlling the number of eigenvectors of the Gram matrix
and pathwise derivatives of 6 one has to compute (e.g., 7 = 16) to estimate the entire IF. See Figure
1. Furthermore, (e;);>1 is an orthonormal basis for L(P) and (0;);>1 is a decreasing to 0 sequence
of scalars such that (/o j e;);>1 is an orthonormal basis for a Hilbert space of smooth approximating

functions; perturbations f; of the density f of P are in the direction of e;, e.g., ff = [1 +té] f ,
leading to stable pathwise derivative computation.

Our estimator is based on a novel regularized representation of ¢ p by the best approximation in a
ball of a Hilbert space H, Theorem 3.3. We view this representation as our main result, because it is
not trivial to apply rkHs methods to the IF, and our variational characterization lends itself to this
task. We relate estimation of the IF to kernel Principal Component Analysis (PCA) by taking H to be
the rkHs of a positive definite kernel. This allows leveraging extensive learning theory and methods
of numerical linear algebra to analyze and compute our estimator. In the proposed implementation,
both e¢; and o; depend on P and are estimated with a low-rank matrix eigenvalue and eigenvector
decomposition. We prove consistency and lay the foundation for studying convergence rates, statistical
and computational efficiency, and their trade-offs in follow-up work. To our knowledge, this is the
first data-driven functional estimator of the IF, the first estimator with convergence guarantees in L>
and rkHs norms, and the first work to show how to apply rkHs methods to the estimation of the IF.



Paper organization Section 2 reviews the classical von Mises formula, which is the baseline for our
spectral representation and proposed estimator z/;; Section 3 presents our variation representation,
regularization, and the solution of the resulting approximation problem. Section 4 implements the
approximation with an rkHs, applies the Nystrom method for integral operators to estimate the
regularized surrogate and proves consistency of the estimator. The Appendix contains simulation
experiments and deferred technical details.

Notation We write IF for influence function; P is a set of probability measures on a sample space
r€X CRY Xy, = (Xy,...,X,) is asample; § : P — R denotes a functional; L?(P) is the
space of functions ¢ : X — R with [ ¢?dP < oo and L3(P) is the subspace with [ ¢dP = 0.
The derivative of 6 with respect to P at P is denoted by Dp : L3(P) — R and maps directions
of perturbing P into infinitesimal changes in §(P). 1 4 denotes the indicator of set A; .#¢ denotes
Lebesgue measure on R

2 von Mises Formula

The following calculation extends those of [Mis47; IN22] and allows evaluation of the IF ¢p at a point
x € X via evaluations of the functional §(P) on certain perturbations of P. A useful analogy is to
think of computing partial derivatives of a multivariate function of R? or R? to evaluate the gradient
vector.

THEOREM 2.1 [von Mises formula]. Let 8 : P — R be a pathwise differentiable functional on a
nonparametric model P with IFs 1p € L2(P) for P € P. Suppose P = f - %% is a.c. with a
continuous density f. Let K be a bounded probability density with support in {|z| < 1} C R% Define
the dilated kernels by K°(z) == 6K (6~ 'x) for § > 0. Translate to the location of approximation
z € R% and control the likelihood ratio with f via a cutoff as K**(x) := cK°(z — z) - L 4~5) ()
with ¢! = f{f>6} K°(z— ) dz. For small § and z € {f > 0}, consider the family, indexed by the

bandwidth 6, of paths { P)"*} _ <1<y with parameter t and density f{* (x) = (1—t) f(x)+tK%= ().
Note these paths perturb the measure P toward the point-mass distribution at z € X, regularized via
the approximation to the identity K°. Then the following IF formula holds:

d
Yp(z) = lim [dtG(Pf’z)] for P-almost every z € R%, 2.1
t=0

Proof.  We outline the proof as a way of reviewing pathwise differentiability and provide the details
in the Appendix. The score function, i.e., the derivative of log-density, of the path ¢ +—> Pf’z at Pis

b5,:() : log{ f(2) + [K*(z —2) = f(@)] } = K°(z = 0)/f(2) = 1.

" dtji=o

The score ¢5 - () is an LZ(P) function that characterizes the infinitesimal change in the density at x
as P is perturbed along the path Pf’z. Pathwise differentiability of 6 at P means that the derivative
of the functional # along the path ¢ — Pf’z exists and is a bounded linear functional of the score ¢; ..

By Riesz’ theorem [SS09, 4.5], [Dud18, 5.5.1] for bounded functionals on the Hilbert space L3(P), the
derivative DOp|[¢s..] is given by the L3(P) inner product of the score ¢; . with the IF ¢ p:

% O(P)*) = DOp[ps..] = Yp(r) K°(z — 2)do = (¢Yp + K°)(2).
[t=0 sptP

The assumed properties of the mollification kernels K ensure that it is an approximation to the
identity [SS09, 3.2] in the sense that it converges as § — 0 to the singular point-mass distribution in
the integral pairing with a Llloc(Rd) function. By the Lebesgue differentiation theorem [SS09, 3.3],
[Dud18, 7.2] it follows that the convolution (¢p * K%)(z) — ¢p(2) converges as § — 0 pointwise at

the Lebesgue points of ¢)p and therefore for P-almost every z € R |

Let’s interpret Theorem 2.1. It says that to compute a single value of the IF, it is sufficient to compute
the values of the functional 8 along a certain perturbation to P. Specifically, 1p(z) is the effect



on @(P) of perturbing the P-weight of the outcome z € X'. Recall the IF-methods described in

Section 1 and note that these rely on this interpretation and the approximation of 6(P) by 6. Thus,
provided with a device for computing the derivative df /dt in (2.1) numerically, one can numerically
query ¥ p; indeed, [CLV19; JWz22] use finite differences with a similar von Mises representation. Our
regularity assumptions for this result are different from those in the literature, by employing Lebesgue
differentiation we make no additional regularity assumption about ¢p € L2(P).

In statistical applications one typically requires the entire map z — v(z) rather than a particular value

1(z). For example, to find influential data points for an estimate 6, one seeks the global maximum
or level sets of v; for constructing a debiased estimator of # one needs to integrate against 1); to
find influential data points in the Wasserstein sense, one needs to apply a differential operator to the
gradient V1 (z) and maximize the resulting score function. Therefore, in practice, formula (2.1)
is used to evaluate many values of 1 simultaneously. With this in mind, note that (2.1) requires a
separate computation for each evaluation and that the required perturbations toward a point mass
have been found numerically challenging [CLv19; JwZ22]. Also note that the regularization in (2.1) does
not account for properties of the measure P such as concentration or properties of the function v
such as smoothness. Furthermore, downstream tasks e.g., causal inference, require convergence rates
in function norms for the estimator of the IF, while it is not known how to obtain these with (2.1).
These observations suggest that (2.1) may not be numerically and statistically optimal for estimating
the entire function v or even isolated values of 1. To address these, we propose a new representation.

3 Spectral von Mises representation

3.1 Exact representation

We begin by finding a variational representation of the IF in terms of pathwise derivatives of the
functional. The following lemma is an immediate consequence of Riesz’ theorem [Dud18, 5.5.1] and
Cauchy-Schwarz inequality [Dud18, 5.1.4] and records in a suitable form the basic observation: the
IF ¢ p is the direction of perturbing P with the most rapid variation in the functional 6(P) for the
Fisher-Rao geometry (with the L?(P) metric tensor) of the model P.

LEMMA 3.1. Let 0 be a pathwise differentiable functional on ‘P with derivative D8p and IF ¢ p for
P € P. The IF is the unique solution to the following dual optimization problems:

p = —argmin{DeP[Cb] s 1ollzepy < 1}
pELF(P)

x — argmin{Dﬁp[¢] + )‘p||¢H2L2(P)}a Ap > 0. 3.1
peL(P)

The proportionality constant in (3.1) is 1 if and only if the penalty loading is Ay, = 1/2.

In (3.1) we used the duality between constrained and penalized optimization. For the exact represen-
tation of ), both the constraint and the penalty are in terms of the L2(P) norm i.e., the metric tensor
of the Fisher-Rao distance on the tangent spaces of P. In other words, the Fisher-Rao metric gives
rise to the geometry where the IF is the gradient perturbation.

3.2 Regularized representation

The variational representation and the geometric interpretation of the IF suggest a strategy for
constructing a regularized approximation of 1) as follows. Suppose there is a function space H C
L3(P) with a norm ||¢|| ;7 that quantifies a suitable notion of smoothness of functions ¢ € H.
Suppose we wish to find the best approximation of ¢) in H with a given degree of smoothness as
measures by ||-|| 7. For example, H can be a Sobolev space. Then the projection s of 1 on the ball

By ={¢; |l¢llu < M} C H C L§(P)

of radius M > 0 is the desired approximation, and M controls the degree of regularization. If H is
dense in L3(P), then we indeed obtain an approximation of 1 by the projection v, that improves
and converges to 1) as M — co.



LEMMA 3.2. Let 0 be a pathwise differentiable functional on P with derivative DOp and IF v p for
P € P. Let (H, ||| ) be a Hilbert space, densely contained in L3(P). Then the projection of the IF
1 p on the set By is the unique solution to the following dual optimization problems:

Ypar = — arglgin{pap[¢] N6l n2p) < 1 and gl < M}
S

— —argmin{ DOp[o] + 120832y + M6IE ) = wea G2)
peH

for some regularization loading \, = \,(M) > 0. Furthermore, 15y — 1 in LE(P) as M — oo
and, equivalently, 1y — 1 in L(P) as A, — 0.

In (3.2) we again used the duality between constrained and penalized optimization. The regular-
ized surrogate of v is obtained by strengthening the metric on P and taking its gradient as the
approximation of the IF.

3.3 Spectral representation

We obtained a regularized functional representation (3.2) of the IF in terms of the evaluation of the
pathwise derivative of the parameter 6:

d ¢

Dopld] = 7 _ O(F),  where log f{ =, P =f 27

dt|t=0

and the path {Pt¢}0§t<€ can be taken to be any regular parametric model with parameter ¢ and score
function ¢ € H at P. This representation of 1/ p is rather implicit. But it is the correct representation
because it emphasizes the geometry of the problem and lends to thinking about v)p as a vector in an
inner product space rather than a bag of numbers, one for each x € X. Returning to our analogy of
computing the gradient of a multivariate function on R?, we make the main observation of this paper:

Main idea: The computationally fruitful way of thinking about partial derivatives
of 0 in P is not along perturbations toward a point mass at each x € X, but rather
along the directions of an orthonormal basis on the tangent space L%(P).

Equipped with this intuition, we solve the optimization problem (3.2) analytically to obtain an infinite
Fourier series representation of the regularized IF 1 p ». Our main result is the following

THEOREM 3.3 [Spectral von Mises formula]. Suppose there exists an orthonormal basis of functions
{ej : X = R};j>1 for L3(P) and a decreasing to zero sequence of scalars {o; > 0};>1 such that
{\/7;€;}j>1 is an orthonormal basis for the Hilbert space H C L3(P).

Let S : L2(P) — H be the linear regularization operator given in diagonalized form by
Shul(e) = Y oj(u, e)r2pei(@),  ue Li(P) (33)
j=1

and assume that its adjoint operator S* : H — L3(P) is the inclusion S*[v] = v, so that the inner
products of H and L3(P) are related by

(Su, v)g = (u, S*v)2(py = (u, V) r2(p), forall we L3(P), veH. (3.4)
Let 0 be a pathwise differentiable functional on P with derivative DOp and IF 1p € L3(P) for
P € P. Then the following representation holds in the norm of H:
Vpa(z) = lim Z L Ty e), (3.5)
’ r—00 o 14 2\/o; | dt [t=0 !

where, for each basis function ej, the path t — Ptj can be any regular perturbation of P with the
score function Oy log P} = e;.



Let’s interpret Theorem 3.3 and compare with Theorem 2.1. Formula (3.5) is similar to formula (2.1)
in that it expresses the (regularized) IF ¢ p in terms of pathwise derivatives of the functional 6(P)
along certain regular perturbations P; of the measure P. So, in order to compute with formula (3.5),
one requires the same numerical tools as for implementing formula (2.1). The main difference is in
the choice of the perturbation directions 9; log P; that are employed by the two representations: (i)
In (2.1), the perturbation depends on the evaluation point z € &X'. By contrast, in (3.5) the scores
e; are fixed, once the approximating space H and the data distribution P are fixed; and, once the
derivatives { Dfl[e;]}}_, are computed, an approximation to all values of 1p are obtained. (i) The
directions of perturbation e; depend on the approximating function class H, which allows to adapt to
the smoothness of 4. (iii) In our proposed implementation, H is taken to be a reproducing kernel
Hilbert space (rkHs) of a positive semidefinite kernel K, and the scores e; can be interpreted as
nonlinear principal components of the measure P, which allows to adapt to its effective dimension.
(iv) Perturbation directions e; of P are ordered by the magnitude of the corresponding multiplier
sequence o, which leads to a natural low-rank approximation for v, by the first r terms of the
formula (3.5). (v) The directions {e; =1 for perturbing P are well-behaved.

Proof.  'We outline the main ideas of the proof and provide the details in the Appendix. Let J(¢)
denote the objective function in (3.2) and note that it is strictly convex, so that the first order conditions
are necessary and sufficient for characterizing the function ¢/, € H at which the unique minimum of
J is attained. For a direction v € H, the Gateau derivative of the objective function evaluated at the
candidate function ¢ € H is

av'](¢) = <Ua 1p>LQ(P) + <U7 ¢>L2(P) + 2)\<U, ¢>H

Applying the adjoint relationship (3.4) to express L?(P) inner products in terms of H inner products,
obtain 9, J(¢) = (v, SY)g + (v, SP) g + 2X (v, ¢) g, for all p,v € H. It follows that the H
gradient of J (the Riesz representer in the H inner product) is given by 657 J(¢) = St + S + 2\
and that the solution ¢, of (3.2) is characterized by the first order condition 5 J(¢)) = 0 € H.
Using the spectral resolution (3.3) of the smoothing operator .S, note that the first order condition is
equivalent to the system of equations

oV, e)r2py + 0 (x, ) 2Py +2X(Wx, €j)r2py =0, j > 1.

Solving for the Fourier coefficients (1 , e;)2(py of the spectral resolution of 1/, in L?(P), and
applying Riesz’ representation Df[e;] = (1, ;) 12(p), obtain formula (3.5). O

4 Regularization in the rkHs of a Mercer kernel

rkHs notation A linear space H of functions ¢ : X — R with an inner product ¢, ¢ — (¢, @) g
is an rkHs if (i) it is complete in the norm ||¢||%, = (¢, ¢)x of the inner product, and (ii) for every
x € X, the evaluation functional ¢ — ¢(z) is continuous in the norm of H. Convergence of a
sequence ¢,, — ¢ in the norm of H implies pointwise, and often uniform or stronger, convergence.

According to Riesz’ theorem [Dud18, t5.5.1], [SS09, 15.3], for every = € X, there exists a function k,, € H
such that the evaluation functional has the representation ¢(z) = (¢, k; )y for all ¢ € H. The
function K : X* — R given by K (x,y) := ky(x) = (ky, ky)n is known as the reproducing kernel
of H and is guaranteed to be a symmetric and positive semidefinite map: the matrix [K (z;, z;)]7;_,
is strictly positive definite for all n > 1 and distinct {x;} C X’; we call any such function a PSD
kernel. We call k. (-) = K(-, z) the slice of K at x. By linearity, any finite superposition of slices
x = Y00 ajky, (x), with {z;} C X and {a;} C Rand n € N, is in /. Conversely, according
to Moore’s theorem [PR16, t2.14], [CS08, ch4], any function ¢ € H is a (possibly infinite) superposition
of kernel slices; and, any PSD kernel K generates an rkHs of superpositions for which it is the
reproducing kernel. In practice, one picks a PSD kernel function and works with the associated rkHs
somewhat implicitly because it’s norm and inner product are not immediately obvious.

Widely used examples are the Gaussian kernel K (x,5) = exp(—||z — y||3/0?), it produces a space
of infinitely smooth functions; and the Laplacian kernel K (z,y) = exp(—||x — y||2/0), it produces
the space of Sobolev functions with (d + 1)/2 square integrable derivatives. rkHs spaces are used
extensively in numerical analysis [Wen04; FM15] and nonparametric estimation [Wai19; Bac24] due to their
analytic and algebraic properties. We use a PSD kernel to form an estimator of the IF via the spectral
representation (3.5). We assume the following properties, and call any such function a Mercer kernel:



ASSUMPTION 4.1 [Mercer kernel]. (0) probability measure P is absolutely continuous with compact
support X C R4, ()K:X? > Risa PSD function, (ii) K is continuous, bounded, so that its rkHs
H C L?(P) and with the bound ;. := maxex K (2, x) < +oc; (iii) foreveryy € X, [, kydP =0
so that H C L3(P); (iv) H is universal in the sense that it is dense in L3(P).

In particular, the Gaussian and Laplacian kernels are universal; see [SFL11] [CS08, ch4.6]. The normal-
ization property (ii) can be imposed on any PSD kernel K via one step of the Cholesky algorithm

K(z,y) = K(x,y) — [y ke dP [, kydP/ [,, K dPdP is also PSD [PR16, ch4].

4.1 Spectral basis

For a Mercer kernel K, consider the integral operator Sk : L3(P) — H C L3(P) with signature K:
Seldl@) = [ Kwy)owdPw). o L(P). @
x

Under Assumption 4.1, K € L?(P® P) and S bounded on LZ(P) by the Cauchy-Schwarz inequality.
Operator S can be thought of as a continuous superposition of slices k, of the kernel, and the range
of S is properly contained in H. Note that the range of S is the rkHs of the PSD function [ k,k,dP,
in particular, it depends on the measure P [PR16, ch11].

THEOREM 4.2 [Mercer]. Let K be a Mercer kernel on a compact sample space X and P be a
probability measure supported on X. Then there is an orthonormal sequence {e; : X — R};>q
of continuous LE(P) eigenfunctions of the integral operator S with signature K defined in (4.1),
and a corresponding decreasing to zero sequence of eigenvalues, repeated according to multiplicity,
{oj > 0};>1 such that: (i) {e;};>1 is an orthonormal basis for L§(P); (ii) {,/0je;};>1 is an
orthonormal basis for H; (iii) S has the diagonalization (3.3), and the adjoint S* : H — L3(P) is
the inclusion operator S*¢ = ¢, in particular, relationship (3.4) holds between the LE(P) and H
inner products.

See [SS09, 4.6], [FMog] for background on integral operators and [SS12; Sunos] for extensions of Mercer’s
theorem to noncompact domains. In particular, Theorem 4.2 holds for the Gaussian kernel on R? and
ameasure P = p - .£¢ with p € L?(R?), as shown in [Suno5, s4].

Example 4.3. For the Gaussian kernel K (z,y) = exp(—¢?|z—y|?) on R and the centered Gaussian
weight distribution p(x) = avexp(—a?z?)//, the Mercer basis is given by:

5222 o2 a2 j—1
62z .
ej(x):’yje ijl(ozﬁx), o; = Errra |:042+52+62:| , j>1, x€eR,

where H; is the Hermite polynomial of degree j, and constants 3 = (1 + [2¢/a]?)'/4, v; =
(B/2771T(5))1/2, 62 = a?(B? — 1)/2 are defined in terms of the shape parameters ¢ and c. In
particular, the eigenvalues o; decay exponentially, so that only the first few terms in (3.5) capture
most of the variation when vp is smooth. Both K and p can be extended to R? as tensor products.

4.2 Nystrom method for integral operators

In order to estimate the IF with a given Mercer kernel K via the spectral representation (3.5), the
leading eigenvalues {0 }7_,; and the corresponding eigenfunctions {e; }_; of the integral operator
Sk are required. If P is known, these can be computed numerically [FM15, 12.2.2]. If P is unknown
and only a random sample from P is available, these must be estimated statistically. The Nystrom
method for approximating the eigendecomposition of the integral operator (4.1) is to discretize the
integral with the empirical sum, reducing to an eigendecomposition of the empirical Gram matrix
K, = [K(X;, X;)/n]};_,. This is essentially the well-studied kernel PCA problem to estimate the
main nonlinear features of P [Mik+98; ZB05; Sha+05; RBD10; S522b; SS22a]. A closely related problem is the
functional PCA [Bos00], and the low-rank Gaussian process approximation [VV+08; BRV19; BRV20; $520].
We find the exposition in [RBD10] particularly lucid and follow it closely.



LEMMA 4.4 [Hilbert space LLN]. Let K be a Mercer kernel on (X, P) generating the rkHs H and let
Xi,..., X, beani.id. sample from P. Let the integral operators Ty, T, : H — H be defined by

TH[(b](x) = A<¢> ky>HK(w7y) dP<y)7 Tn[(ﬂ(m) = %ZWN kXi>HK(m7Xi)a ¢ € H.

j=1
Then'T,, — Ty as n — oo in the Hilbert-Schmidt norm in probability, and, for each n > 1,
RVT
NG

n

1Ty — Tnllus < 4.2)

with probability at least 1 — 2e™".

Note that 7T, is the empirical analogue of T obtained by replacing the continuous integral with
respect to P by the discrete integral with respect to the empirical distribution of a random sample
from P. By appealing to a suitable law of large numbers or concentration inequality, it follows that
T, is consistent for T . Furthermore, T}y is related to Sk, whereas T, is related to K, providing a
link between the continuous operator Sy and the matrix K, that is otherwise not immediately clear.

Recall that S* is the inclusion of H into LZ(P), and note that the operators Ty = SS* and
Ty = S*S are essentially the same operator with the same action on all functions ¢ € H, differing
only in the domain of definition and the embedding space of the range. In particular, the eigenvalues
of T, S and Ty are exactly the same and the eigenfunctions of T and Ty are related by the
inclusion (resp. regularization) operators S* (resp. S), in other words are the same functions but
viewed as elements of L3(P) and H respectively.

For the empirical analogues, the finite-rank operator 7;, and the Gram matrix K,, are similarly
related via the Nystrom restriction operator R,, : H — R™ given by R,[¢] = (#(X;))j—;. Its
adjoint R} : R™ — H is the Nystrom extension operator given by R [y] = Z?Zl y'kx, /n for
y = (¥',...,y") € R" endowed with the inner product (x, y), = >_7_, 27y’ /n . With this
notation, we have 7;, = R R,, and K,, = R, R, from which it follows that T}, and K, have the

n’
same nonzero eigenvalues and the corresponding eigenvectors are related via the restriction (resp.

extension) operators Iz, (resp. R).

The next result is an application of the perturbation bound of [Kat87], see also [RBD10], to infer
consistency of the spectrum of K, for the spectrum of Tk = S*S.

LEMMA 4.5 [Consistency of eigenvalues]. Let K be a Mercer kernel on (X, P) generating the rkHs H
and let X1, ..., X, be an i.i.d. sample from P. Let the integral operator Ty : L3(P) — L3(P) and
the empirical Gram matrix multiplication operator K,, : R™ — R"™ be given by

1 n n
Teldle) = [ Ko aP). Kiyl= [LKXX)| v oc i) yeRn
x i.j=1
Let {0;};>1 be the decreasing enumeration of the eigenvalues of Tk, repeated according to the

multiplicity, and let {G;} ;>1 denote the analogous enumeration of the eigenvalues of K,,, extended
by zero. Then 6; — 0 as n — oo uniformly in probability, and, for each n > 1,

KA/T
vn'

A K2T A RA/T
and Zj21(‘7j - C’j)2 <||Tk - KnHas N o and |Zj21(0j - Uj)’ = |tr(TH) *tr(Tn)‘ S
with probability at least 1 — 2e™ 7.

sup|oj — ;| < [Tk — Knllns S (4.3)
i1

3

9

Consistency of the empirical eigenfunctions is framed in terms of projections to accommodate the
nonuniqueness of an orthonormal basis corresponding to eigenvalues with multiplicity. For NV € N,
let (V) denote the total number of eigenvalues, accounting for the multiplicity, corresponding to
the leading NV distinct eigenvalues o,.(1) > ... > o, () and let o, ()41 be the next largest distinct
eigenvalue of Tx. Let Hy = span{ey,...,e,n)} C H C L3(P) be the eigenspace of the N
leading distinct eigenvalues, and let

r(N) r(N)
Py :H — Hy, PN[¢] = Z(¢,\/Ejej>H 0,6 = Z((b,ej)Lz(p)ej, ¢€H
j=1 j=1



be its spectral projection. The following perturbation bound was used by [zBo5; KGoo]: if Ty is a
finite-rank estimate of the operator T’x with precision on the order of the Nth spectral gap with

1T — Tk |lop < [0(n) — Or(n)+1]/4. then the eigenspaces H v of Tk and Hy of the leading (V')
eigenvalues of T must also be close with || Py — Py Nop < 2/[or(nvy — orv)+1]I Tk — Tk lop-
LEMMA 4.6 [Consistency of spectral projections]. In the setting of Lemma 4.5, let y, . ..,y,, denote the

orthonormal (for the scalar product (-, -),, = (-, )rn /1 s0 that ||y, ||rn = /1) eigenvectors of the
empirical Gram matrix K,,:

Kolyl =Y 6y, yi)ny: yER™ (4.4)

=1

Then, withy, = (y},...,y") € R,

1 .
éi(z) = —Rlyil(@) = =~ > yiK(r,X;), i=1....n 4.5)

denote the eigenfunctions of the empirical integral operator T,, (with normalization ||\/5;&;||p = 1
and ||éi||L2(P) ~ 1).‘

n
Tal¢l(x) = 6i(d, V6iéi) ,\/0iéi(x), &€ H.
i=1
Let N € Nand Py (resp. Py ) denote the spectral projection operator on the eigenspace of the
leading r(N) eigenvalues of Tk (resp. T,) and Iy denote the identity on H. Then, for any ¢ € H,

r(N) r(N)
Pf{ [w} = Z &j<’t/}, éj>Héj — PN[w] = Z O'j<w, ej)Hej, asn — oo
Jj=1 j=1

in H in probability, and, if n > 128k%7/[on — on11]% then

r(N) n

— . — 32k%T
ST = Po)Veiglia+ Y. I1Pvy6ill5 < (
j=1

jor (V41 Tr(N) T OrV)41)*n

with probability at least 1 — 2e™7.

4.3 Kernel von Mises estimator

Consistency of the estimated basis, via a continuous mapping theorem, implies consistency of the
pathwise derivatives of 6 evaluated along the estimated perturbation directions. The combination of
the estimated basis and the estimated projection coefficients results in a consistent plug-in estimate of
the regularized surrogate IF. We conclude with the following summary of our results:

THEOREM 4.7 [consistency of the kernel von Mises estimator]. Let K be a Mercer kernel on (X, P) gener-
ating the rkHs H and let X1, ..., X,, be an i.i.d. sample from P. Let 6 be a pathwise differentiable
functional on P with derivative Dp and influence function 1p € LE(P) for P € P. Assume that
D0p, equivalently 1) p, are continuous in P € ‘P in an appropriate sense and that f is a consistent
estimator of the density of P in a compatible notion of convergence. Let {é;} and {6} be the
Nystrorm estimators of the eigenfunctions and eigenvalues of Tx. For a fixed rank 1 < r < n and
regularization loading A > 0, let

T T

Dep [6 ] ~ 1 d e
) =) — T ei(x z) =Y ————|—=0(f] é;(z 4.6
denote the rank-r approximation of W p and its plug-in estimator obtained by replacing the unknown
0j,ej, DOp|e;] with their estimates. The pathwise derivative can be computed along, e.g., the linear
perturbation f] = [1 + t&f since the scores e; and é; are bonded. Then |[{)y — V%, |m — 0 as
n — oo in probability and there exist sequences r(n) — oo increasing and A\(n) — 0 decreasing

such that || — Yp|lL2py — 0 as n — oo in probability.
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Limitations and future work Our spectral formula (3.5) and kernel implementation (4.6) aim
to enable automation of methods based on asymptotic analysis and first-order techniques. These
methods, whether carried out analytically or numerically, require theoretical justification and provide
approximations that might be more or less accurate in a particular problem. For statistical inference,
this is similar to the validity of bootstrap [Efr92]. It is hoped that the ideas provided here will allow
leveraging efficient computation with PSD kernels [RCR15; Ste+20; Che+25], not considered here, for the
applications described in the Introduction. However, further theoretical work is required: Downstream
tasks, such as debaised machine learning [Che+18], make assumptions on the rate of convergence,
e.g., o(n~1/%), of the IF estimator. While we discuss some of the ingredients to study rates for
our estimator, we only show consistency here and will investigate the rates in follow-up work.
Furthermore, to unlock automation in earnest, further work is required to develop efficient estimates
of the pathwise derivatives with automatic differentiation. Two strategies are possible: (i) introducing
explicit weights w; = 1/n for each observation and perturbing this distribution; (ii) perturbing the
spatial location of the observation X; and working with the duality of Wasserstein and Fisher-Rao
tangent vectors.

Acknowledgements I am grateful to Jan-Christian Hiitter, Francesca Molinari, Kengo Kato, Kenji
Fukumizu, Kyra Gan and Promit Ghosal for stimulating discussions, their support and interest. |
thank the anonymous reviewers for their service, valuable feedback and suggestions to improve the
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A Pathwise derivatives and von Mises formula

Tangent space [KL76], [Bic+93, s3.2], [Vaa00, s25.3] and also [vil03, s8.1.2] At each P € P we consider
perturbations to P in P along one-dimensional parametric submodels ¢ — P, € P with parameter
t € [0,€) and P = P,—y. These perturbations must be smooth and admit infinitesimal directions
of perturbations; if we think of {P;}, as a curve through P in the space of probability measures,
what is required is that it has a tangent vector at P. Let’s assume that measures in our model are
absolutely continuous P = p - ¢ with density function p with respect to the Lebesgue measure
2% on R%. The direction of perturbation P; can then be identified with the time-derivative of the
density along the curve d;p; () for each point z € X C R?. The kinds of perturbations that are
relevant for defining the influence function do not change the support of the distribution P, so 9;p;/p
is well-defined, and it turns out to be more convenient mathematically to work with the score function

@(w) = Oyj¢—o log ps(x), reX CRY (A1)

The score function ¢ : X — R? is the tangent vector to the curve P, the infinitesimal change in P
along the curve. The derivative in (A.1), need not hold pointwise, but rather in the Hellinger norm:

2

lim {t‘l(\fpt — VD) - 2_1¢(a:)\/ﬁ] 4.2%z). (A.2)
x

The existence of this limit implies that [ ¢dP = 0 and [ $*dP < +oo. We denote the space of all

such function by L2(P), indicating with the subscript that it is the subspace of L?(P) of all functions

that have P-mean zero.

Pathwise derivative A functional § : P — R is pathwise differentiable at P (with respect to a
collection of paths) if, (i) for a given regular path P; the composition ¢ — 0(P;) is a differentiable
function from [0, €) to R at time ¢ = 0; and (ii) there is a bounded linear map Dfp : LE(P) — R
such that

lim t~H0(P;) — 0(P)] = DOplg] (A3)

5

for every score function ¢ € L3(P) and every admissible path P; with score ¢. The definitions of the
score and pathwise derivative are those of Riemannian geometry that extends techniques of calculus
to nonlinear spaces. Notions of smoothness are more nuanced in this infinite dimensional setting, see
the penultimate paragraph in [Vil03, s3.2.3]

Influence function By Reisz’ representation theorem for Hilbert spaces [SS09, 4.5], [Dud18, 5.5.1], for
the bounded linear functional Dfp : LZ(P) — R there exists a fixed score 1)p € L3(P) such that
the action of the derivative Dfp on any score v has the following representation in terms of the inner
product:

DOp[o] = (¢, ¥p)r2(p), for all ¢ € LZ(P). (A.4)

The Riesz representer ¢ p of the derivative functional of parameter #( P) is known as the influence
function. It has the useful geometric interpretation of the gradient score for parameter 0, i.e., the
direction of perturbation to P such that the functional changes post rapidly:

DOp[¢] = (&, ¥p)r2py < |l L2 |¥llL2py, @ € LG(P) (A.5)

where equality holds if and only if v = ¢t by the Cauchy-Schwarz inequality. If we restrict the
norm of the perturbation ||¢||z2(py < 1 as in Lemma 3.1 and use linearity of Dfp, it follows that
the unique maximum in (A.5) is achieved at the score 1p /(|4 p|| 12(p) and the norm of the influence
function ¢ p||12(p) is the largest sensitivity of 6 to a perturbation at P.

A.1 Proof of Theorem 2.1
We begin with a score calculation for the original von Mises [Mis47] calculation with a point-mass

perturbation. The example shows that this singular perturbation does not have a score function, hence
the need to smooth out the point mass in general applications of this technique as in [IN22; CLV19].
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Example A.1 Score for the von Mises calculation. Let P and §, be a continuous distribution and
a point mass on X. Take the path [0,1] > ¢ — P; = (1 — ¢)P; + td, for the calculations of von
Mises and Huber [Hub72; Hub92]:

Ou-af(Py) = it [6(P) ~ 6(P)] = [ s = P = vo(@) (A6

which cam be made rigorous if ¥ p is, for instance, continuous at z. However, this perturbation
to P is not smooth in the sense of differentiability in quadratic mean (A.2). We compute the
tangent vector to P, at ¢ = 1/3 and t = 0. Take u = P + §, to be the dominating measure for
the path, so that f;(2) = (1 — t)1x\4(2) + t14}(2) is the Radon-Nikodym derivative at time
t. The corresponding embedding of P; into the space of square roots of measures Hy [BR07, c4] is
Vfi(2) = V1 —tlx/,(2) + Vtl,(2). Note that the path in no longer linear in the embedding
space. Also note that drv(Ps, Piypn) = 2supy|Peyn[A] — P:[A]| = 2h is continuous in Hs. For
t = 1/3, the density v/f,(z) can be differentiated pointwise for each z € X to find the score function
%qb%(z)\/?% (2) = —3[2]7Y2 L2\, (2) + L[3]7Y/?1,(2) and verify differentiability in quadratic
mean

=o(1) ast — 0.

Repeating the calculation with ¢ = 0, we note that the right derivative of /¢ is infinite, so there is
no score function with finite p-a.e. values that can satisfy (A.2). Consequently, the path P, is not
smooth in the Hellinger norm and does not have a tangent vector at ¢ = 0.

To remedy the lack of smoothness and extend the von Mises formula (A.6) to all pathwise differen-
tiable functionals, the point-mass perturbations must be mollified.

LEMMA A.2 [Approximation to von Mises perturbation with a score]. Suppose K is a bounded probability
density function on R? with support in the unit ball |x| < 1. Then

K°(z) =6 9K 'z), 6>0 (A7)
is an approximation to the identity in the sense of [SS09, p109], that is

(i) Jpa K°(z) doz =1.
(ii) |K°(z)| < A6~ forall § > 0.
(iii) |K%(x)| < AS/|x|?F" forall § > 0 and x € R%.

Here A is a constant independent of 0.

Suppose Py is a probability measure that is absolutely continuous with respect to the Lebesgue
measure £ with a continuous density function fy. Let

K%*(z) = [ K%(z —z) dz _1]1{f0>5}(x)K5(z — ), (A.8)

f{f0>5}
then for z € {fy > 0} we have K%*(z) = K°(z — x) for all sufficiently small § > 0 (which depend
on z that is fixed throughout). Furthermore,

(@) = (L= D fole) + K () (A9)

is a curve of probability densities with parameter t in an interval around 0, that is differentiable in
quadratic mean (A.2) at t = 0 with the score function

d
5.2() : log f"* (x)

_d - K‘S’Z(:E)
 dt|i=0 B

fo(z)

1. (A.10)
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Proof. The three properties of an approximation to the identity follow respectively from dilation
invariance of Lebesgue integral, boundedness and compact support of the kernel K.

Fix a z € {fo > 0}. By the continuity of fj there is a neighborhood A/ of z such that f; is bounded
away from zero on V. For all § > 0 small enough, 2 — K°(z — x) is supported in A/ by bounded
support and dilation construction, so that K°(z — z) = K%#(z). Therefore for ¢ negative and close
enough to 0, function f; s . is a well-defined probability density and its score functions

d K% (z) —
Pt5,2(2) = — log fA () = W (A.11)
t
are bounded in x € X. To check (A.2)
2
/ lvftdz ‘/JTO—%%,Z\/E dz =0 ast —0, (A.12)
x

note that the map ¢ — +/f:s..(2) is continuously differentiable for each x in a neighborhood
t € (—¢,¢€) of 0 with the derivative 3vys..(x)/ f.6,-(2), therefore the problem is to justify the

change of order of the limit ¢ — 0 and the integral | + dz in (A.12). By the fundamental theorem of
calculus, we can write the difference quotient as

1 1
Vfornt(x) — v/ folz) ; diil\/ foxnt(z) dh = /0 %¢0+ht(£lf)\/ fotnt -t dh.

Therefore, by (a — b)? < 2a? + 2b? and Cauchy-Schwarz inequality, we have the pointwise bound

[Vf““ — Vh(@) L @) fdx)}

2

) 2
<2 [/ 50ty T dh| -+ 256300 o(0)
0

"1 2 2
S/ §¢>ht,5,z($) Jotnt dh + @52 ()" fo(x).
0

By the generalized Lebesgue dominated convergence theorem [Roy10, p89, t19], in order to conclude

(A.12), it is sufficient to show that [, fol 5 0nt.s,2 ()% fog-nt dhdx converges as t — 0. By Fubini’s
theorem

1 1 1
1 1 1
/ / —bnt.5.2 () fotnt dhdfﬂ:/ / ~nts,2(2)? fornt dzdh = */ Ints,» dh.
xJo 2 0o Jx2 2 Jo

Since the scores (A.11) are bounded, the information matrix I; s . is continuous in ¢ at 0, and the
above integral converges to Iy s, .. O

Proof of Theorem 2.1. By the pathwise differentiability of functional 0, differentiability in quadratic
mean of the path ¢ — Pf"z, and Riesz’ representation we have
d

—  (P)*)=D
dt o)) = DOplds]

- / o (2) 6.0 () AP
X

Assume that ¥ p(x) = ¢p(x)l{s>03(z). Below P is fixed and we drop the subscript P for
convenience. Using the score ¢5 . computed in Lemma A.2 and the fact that 1) has zero P-mean,
have the expression for the pathwise derivative as the convolution of the influence function with the
approximation to identity kernels:

%MZOQ(P{S’Z) = /¢P($) [K5(z —2)/fo(z) — 1| dP

= Yp(x) K%(z — x)de — 0
sptP

= (¥p = K°)(2).
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It suffices to show that for each o > 0 and M > 0 the set
E, = {z € sptP ; limsup|(¢p * K°)(2) — d)P(Z)‘ > 204}
d—0

has zero Lebesgue measure, because then E' = (J;Z,[E1/; N {|2| < j}] has zero measure by
monotonicity, and the assertion (2.1) of the Theorem holds at all points z € E°. Thus, we may
assume that 1/p has compact support and therefore belongs to L (R9).

Because K° is a bounded probability density function, with support in |2| < § by the dilation
construction (A.7), we can write

(Wp * K5)(2) = ¥p(2)| =

[ [orte = 0) = vl2)]| Ks(a) ds

g/Rd\wpxz—w)—wpxz)\m(w) dz

<o |enG-o)—vn)| .
|z|<5

Fix a > 0 and recall that continuous functions of compact support are dense in Lt (Rd) [SS09, p71], SO
that for each € > 0 we can choose a function g with [[¢)p — g||1(re) < €. By the triangle inequality
we can upper bound the expression above with

c c
| fore-o-ge-o)dor 5 [ ot -2) - g(a)] do+ lgle) - v
x| <8 |z|<6
By the continuity of g it follows that
lim — ‘g(z —z) — g(z)‘ dx =0, for all z.

5—0 5d |z <5
We find that

tim sup| (v * K3)(2) ~ bp(2)| < ¢ip - o' (2) + ¢]g(2) —vr (),

where the superscript * indicates the Hardy-Littlewood maximal function:

* — # d d
£@) = s g [1fG)ldn forfe LR, weRL A1y

If we set
Fo={z€sptP; |vp — g|*(z) >a} and Go={z€sptP; |[¢p(2) —g(z)| > a}

then £, C F, UG, by De Morgan’s law since ES D FS N G¢,. Furthermore, by Chebyshev’s
inequality

1
gd[Ga] < anPU - gHLl(Rd)7
and by the Hardy-Littlewood maximal inequality [SS09, p101]
d 3¢
LF] < EWPO = 9l L1 (ray-
Recall that the function g was chosen such that [|1)p, — g|| 1 (re) < €, so that
34 1
LYUE,) < =—e+ e
! «

Since € > 0 is arbitrary, we conclude that #¢[E,] = 0 and consequently P[U;‘;l Ey;l=0. O
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B Spectral representation

B.1 Calculation for Lemma 3.1

The characterization of the influence function as a constrained optimizer was discussed in Appendix
A around equation (A.5).

We verify the equivalence of the constrained problem and the penalized problem via an explicit
calculation that is simple and instructive for the calculation of the spectral representation. Define the
penalized objective function with penalty loading Apen > 0:

J\(u) == DOp[u] + Apenllull72(p), u € LE(P). (B.1)
Observer that J" is strictly convex on LZ(P) by the Cauchy-Schwarz inequality. By the strict

convexity, the unique minimum of J is attained at the tangent vector ug € L3(P) where the
derivative functional of J* vanishes [Lue97]:

DJ, [v]=0 forallve L§(P). (B.2)

To compute the derivative of J* at some v, fix a direction v € L3(P) of perturbation and compute
the difference quotient

JH(u+ev) = J\(u) = {DQP[U + €v] + Apenlu + 6”“%,P} - {DGP[U] + /\penHu||§,P}
= {<u + €v, w>2,P + )\pen<u + €V, u + 6v>2,P}
- {(u, w>2,P + )\pen<u; U>2,P}

=e{(v, V)2, p + 2Xpen (v, W2, p } + O(€?). (B.3)
We find that the gradient (Riesz representer) of the derivative functional of J* at vector u is
VJ'(u) = 9 + 2 pent. (B.4)

Using Riesz’ representation, the first order condition (B.2) becomes
0=DJ, [v] = (v, VJ'(u))

uo 2,P

= (v, ¥p + 2Apentto)2,p forallv e L%(P).
and conclude that uy = —1/2Apen is the minimizer of J*.
From this explicit solution to the penalized problem (3.1) we see that the direction of solution is

always along the influence function, larger penalty loading Apen leads to solution with a smaller
L?(P) norm, and Ao, = 1/2 uniquely identifies the influence function.

B.2 Calculation for Lemma 3.2

We define the projection of the infuence function 1)p on the ball B, as the solution of the constrained
optimization program. Define the penalized objective function J“ on LZ(P) with the regularization
loading A > 0:

IV (u) = DOp[u] + Apen|ull3,p + Aregllull72(p),  u € LG(P). (B.5)
We observe that the constrained problem has the linear objective D6 p[v], that the constraints are

given by quadratic functionals and that the problem satisfies Slater’s condition and that the strong
convex duality holds.

The penalized objective J" is strictly convex and the first order optimality condition
DJ) [v]=0,  forallve L? (B.6)
is necessary and sufficient. Compute the difference quotient:
JNu+ev) — TN (u)
= {DOplu + ev] + Apenllu + €vl3 p + Aregllu + ev]|Z }
- {DQP[“] + /\pen||“| S,P + Areg”“”%{}
= {(u +ev, Yo p+ Apen(U+ €V, U+ €V)o p + Areg(u+€v, u+ ev)H}
—{{u, ¥)2,p + Apen(u, Wo p + Areg(u, uyp }
=e{(v, V)2,p + 2Xpen (v, U2, p + 2Areg (v, ) } + O(€). (B.7)
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Take the limit as ¢ — 0 to obtain:
Dp (1) = (v, 0)a p + 2Xpen (v, Wap + 2\reg(V, W) a. (B.8)

From the first order condition, as Areg — O, the optimal solution ug converges to that of the penalized
but unregularized objective function J*.

B.3 Proof of Theorem 3.3

First we check that the relationship (3.4) between the inner products of L2(P) and H actually follows
from the assumptions about the bases. Suppose {e; } and {\/0;e;} are orthonormal bases (ONB) for

L3(P) and H respectively and the operator S : L3(P) — H is defined by (3.3). From the definition
of the adjoint S* : H — L2(P)

(Sej, ei)u = (e, S"ei)a,p all 7, j. (B.9)
By the ONB assumption,
1= (e, e)opr=(o,&,Voe)n all 4. (B.10)

On the other hand, applying the eigenfunction property to (B.10) and using bilinearity of the inner
product

<61', ei>2)p = <O'7;€1', ei>H = <S€Z', ei>H all Z (Bll)
Similarly, we check for i # j,
1 Vo, ) .
0= (FSei, \/Ejej>H = ﬁ(ei, S*ej)a p all i # j. (B.12)

Since 0;/0; # 0 and {e; } is complete, it follows that e; is an eigenfunction of S*, and in the view
of (B.11), the eigenvalue is 1 so that S*[e;] must be equal to e;. In other words, S* is the inclusion
operator H — L3(P).

Next, we use the adjoint relationship (B.9) and (3.4) in the expression (B.8) for the directional
derivative of the objective function J:

avJ(u) = <U7 '(/}P>2,P + 2)\pen<Ua u>2,P + 2)\reg<va U>H (B.13)
= (v, SYpYa + 2Xpen(V, SU) g + 2Xreg(V, W) . (B.14)

It follows that the H gradient (the representer in Riesz’ representation for Hilbert spaces) of DJ, is
given by:

0 J(u) = S[Yp] + 2XpenS[u] + 2Aregu (B.15)
= Z{Uj (¥, ej)2,p+ 20 pen(u, €j)2,p + 2Areg(u, ej>2,P}ej~ (B.16)
J
With this expansion of the gradient dz;J (), the first order condition
dad(hr) =0, e H (B.17)
of the penalized and regularized optimization program (3.2) becomes the follow system of equations:
0=0;(, €)r2(p) + 20 Apen (¥ s €)12(P) + 2Xreg(¥n, €j)r2(py, J > 1. (B.18)
Solving for the LZ(P) Fourier coefficients of the optimal solution 1y
o :
(x, &)r2p) = (¥, &)2(p), J>1 (B.19)

20 Apen + 2 reg

Conclude that the optimal solution of (3.2) has the following Fourier series representation
(o)
1
= —_— 2 i(z). B.20
Ypa(z) Z Do + 2heg) ) [<'¢P7 &)L (P)] ej(r) (B.20)

Jj=1

Observe that the sequence of L?(P) coefficients is shrunk toward zero by the eigenvalue sequence
{0} and is in fact a valid sequence of coefficients for an element in H.

Finally, recall that (1p , €;) 12(py = Dfp|e;] and that the penalty loading should be Apen = 1/2 for
the correct scaling of the influence function from Lemma 3.1.
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C Nystrom method

Our proofs of Lemmas 4.4, 4.5, 4.6 are modifications of [RBD10, Thm7, Prop10, Thm12].

C.1 Proof of Lemma 4.4

Define the sequence of random operators &; : H — H given by
£Z[¢]:<¢asz>HkX17TH[¢}7 peH, i=1,...,n (C.D
We compute the norm of the continuous operator: for any orthonormal basis {¢; };>1 of the tkHS H

ITs s = DI Tue;ll

Jj=1

23

Jj=1

_Z</X o;(x)ky dP(:E),/X¢j(9C)kde(5U)>

j>1 H

2
H

/ 63 (2)ks dP(2)
X

=5 [ [ 1@k sk aP)aPG)

Jj=1

-3 [ [ 6okt ap@ar)

Jj=1

-/ / (@ K p ar@ar)

:/X/X{K(x,y)}K(JE,y)dP(ﬂf)dP(?J) = Kl 2por)

where we exchanged the Bochner integral with the inner product by Bochner integrability, used
the reproducing property of the kernel, and the standard Mercer expansion of the kernel in the
orthonormal basis that converges uniformly, exchanged the sum with the double integral by Fubini’s .

Compute the Hilbert-Schmidt norm of the empirical operator, noting that kx, is the eigenfunction of
the rank-1 operator:

€illns < llo(Xo)kx, llns + | Trlns < K (X, Xo)| + [| K12 (pop) < 2k.

This norm is an integrable real-valued random variable and therefore &; is Bochner integrable with
the expectation

Ele)] = /X<., kp)ky dP(z) — Tpy = 0.

By the strong law of large numbers for a random sequences in a separable Hilbert space (the space of
Hilbert-Schmidt operators on H in our case) [Bos00, Thm2.4]

—0 a.s.

1 n
T, — Tyllus = H* y
| H|IHs - ;:15 s

Furthermore, applying the Hoeffding inequality for bounded (in norm, as verified above) random
elements of a separable Hilbert space (the space of Hilbert-Schmidt operators on H) [Pin12], obtain

n
H l Z fi S 2K vV 2T
n = "llus vn

(C2)

with probability at least 1 — 2e™7.
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C.2 Proof of Lemma 4.5

Applying [Kat87] to the empirical operator B = T, and the population counterpart operator A = Ty
defined on the separable rkHs H, for any nonnegative convex function ¢ with ®(0) = 0:

S 06 —0) <D 0(y)
j>1 §>1
where {;};>1 is an extended by zero enumeration of the eigenvalues of the random operator
1 n
B-A=1T,—Tg=— i
"= ; ¢
defined in equation (C.1).
We apply [Kat87] with the choice ®(s) = |s|P for p > 1. In particular, with p = 2, this becomes
(2r)°27 ) 27
Y165 —oil> <Y Il = ITw = Tulids <
j>1 7j>1
with probability at least 1 — 2e~7 from the bound (C.2).

Recalling that the sup norm is the limit of the p-norms:
sup&-—o-zlim[ =0y } <sup{ 'y} = sup|y,
jgjy|wm;< : o] = b
2m/ 27
n

=T = Thllop < |5 = Trllns <

with probability at least 1 — 2e~" from the bound (C.2).

Givene > 0, sete = 2”@ and solve for 7 to obtain 7 = ne?/2(2x)?. Inverting the above finite
sample concentration bound find

P[sup|oJ —oj| > 5} <2e7 27 0 asn - o
j>1

For the bound on the difference of the traces, compute the trace of the empirical operator:

n

> 6 =tr(T,) = tr(K,) = %ZK(Xi,Xi).

i>1 i=1

Compute the trace of the population analogue: for any orthonormal basis {¢,};>1 of the rkHS H

tr(Tw) = Z(TH%, bj)H

—g/@ (ke &) AP ()
—;/ 6()5(z) AP(x)
/g@ aP()

- /X K (z,2)dP(z)
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where we interchanged the integral | d P with the inner product by Bochner integrability, applied the
reproducing property of the kernel k,, interchanged the sum with the integral by Fubini’s, and used
the standard Mercer expansion of the kernel that has uniform convergence.

Define the centered random variables (; = K (X;, X;) — E K (X, X) supported on the interval [k, ],
and apply the standard Hoeffding inequality [wai19, eq2.11]:

. 1
35— o] = (@) — e = | Y| <2
j>1 i=1
with probability at least 1 — 2e=2n="/(2r)°
C.3 Proof of Lemma 4.6
From [RBD10, prope], for compact positive operators A, B
. 2
if |A = Bllop < [an — an1]/4,  then | P5 — Pyllop < m“fl —Bllop  (C3)

where oy and a1 are the Nth and (N + 1)st distinct eigenvalues and P4 is the projection on the
eigenspace of the top N distinct eigenvalues of A, whereas PJ is the projection on the eigenspace of
top eigenvalues of B of the same dimension. If, in addition, A, B are Hilbert-Schmidt,

2
———|[|[A = Bllus. (C4)
an +1

if |A — Bllns < [an — ant1]/4, then [P — Pg|lus < -
— N

As [RBD10, thm12] point out, a bound on the projection onto the eigenspace of a simple (multiplicity 1)
eigenvalue implies a bound on the eigenfunctions: let ¢, ¢ be unit-norm and (¢, ¢) > 0, then

16— 6l1% = 2(1— (3, )m) <2(1— (b, &)%) = | P} — Polliis:

If 26v/27/v/n < [oN + on41]/4, then by (C.2) || T;, — Thl|us < [on + on1]/4 with probability
at least 1 — 2e™ 7", and therefore by (C.4)

22 2k)227 22
Tn_TH|||2-|S S ( )

Py, —Pylis < ———— .
|| Hyn N”HS = [O—N o UN+1]2 || [UN . UN+1}2

This event occurs if n > (2k)227(4)%/[on — on41]%

Next, we work with the population orthonormal basis {¢; = ,/0;e;}32, for H and extend the

population counterpart {QASJ = /0,&;}_; to an orthonormal basis for H. This is possible because
there are n independent eigenvectors ﬁ’-a.s. by our assumptions that P is continuous and K, is
strictly positive definite.
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Using Parseval’s identity, and then Parseval’s again with the projection operators (I — Py ) and Py :

N 2
ZH(PFIN *PN)@HZ = Z [Z‘((PQN — Pn)éi, ¢j>H’
r(N)
=Y 0+ [Zm,@ Hw
ij=1  i>r(N)+1 L=

1Pg,, = Prllis

r(N)+1 R 9
+ Z [ ‘<_¢17¢J>H‘ Z 0
=1 Lj>r(N)+1 i,j>r(N)+1
r(N) T R 9 T‘(N)—‘,—l
Jj=1 Li>r(N)+1 ]>’I"(N)+l

r(N) T 2] 2
> Z\«I_PN)[@],QBQH\ + 2 [ZRPN[@]"MHH
r(N) T 2] 2
S CHUSHIONE EIPY [Z!@“PN[@”H\]

Jj=1 j>r(N)+1 %
r(N) 9 9
=Y |a=prowi| + X |entéi),
j=1 j>r(N)+1

r(N) 2 n 2
zz\<I—PN>[<z3j1HH+ > ||ewtén|

j=r(N)+1

Note that the bound we obtain a bound in terms of the rkHs norm, which implies a counterpart bound
for the L?(P) norm.

C.4 Proof of Theorem 4.7

Fixr>1land A >0,forj=1,...,r, the 0j Ei 0; by Lemma 4.5. Assuming for simplicity that

the eigenvalues are distinct, ||é; — & || i =5 0 by Lemma 4.6. Recall that also é; — e; uniformly on

the compact set X. Assumlng 7 f are continuous and f — f P-as. and f / f is bounded on spt(f),
assuming that 1)y — 1y in L(f); then by dominated convergence

Wi &)y = [ wpesfazt= [ wiai/rap

P
— A¢f€j dP = <’¢f7 ej>L2(f).

Conclude that ||¢A)f\ — ¢ ||lg — 0in P. For r,, — oo slow enough, also have ||¢3;<n) - 1/);(") |z — 0

in P. Finally, by the universality of H, there exists a sequence )\, — 0 slowly enough such that
er\(zg Y||z2py — 0in P.

C.5 Toy Monte Carlo experiment

We check our theoretical results with a simple numerical experiment. Let (P) = Ep[X] be the
mean functional. Then ¢)p(z) = = — 6(P). We use the Gaussian PSD kernel from our Example
4.3 and set the shape parameter ¢ = 1. We simulate Monte Carlo data from the standard Normal
distribution, corresponding to the shape parameter o = 1/+/2 of our Example 4.3. This allows us to
compute the oracle 1)} using Hermit polynomials that we numerically evaluate using the MATLAB
code provided with the textbook [FM15]. We estimate the eigenvalues o; and eigenfunctions e; (X;)
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the using Nystrom method via MATLAB’s eig function. We estimate the pathwise derivatives as
% S, X;é;(X;), note this does not take into account estimation of the density and evaluation of
the mean functional on the estimated distribution.

Simulation experiments As a toy experiment, we compute the oracle low-rank regularization 1)
and it.s estimator 1} as well as t.he distribution of the estimation error ||/} — ¢} ||12(p) for the mean
functional # = E[X] in the setting of Example 4.3.

4 Regularization \=1e-4 Regularization \=1e-2

2

0

-2

4 2 0 2 4 4 2 0 2 4

Figure 2: Influence function 1), regularized oracle surrogate 1)y (dashed) and estimate 1[&“ (solid).
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Figure 3: Surrogate bias ||1) — w§\||%2( p)» mean integrated squared error £ Iy — 1/3§||2L2( p)» and

distribution of the error ||} — 1/3& || L2(p) based on 10° Monte Carlo experiments.

In these experiments we focus on estimating the spectral basis, leaving the development of numerical
pathwise derivatives and their estimates to future work. The setting of Example 4.3 allows working
with the exact surrogate. We use Riesz’ theorem to compute pathwise derivatives as Df[g] =
J % - gdP either with Monte Carlo or numerical integration, which is considerably more precise.
Figure C.5 shows the bias-variance trade-off of regularization via the loading A, and the asymptotic
concentration of the distribution of the estimator around the oracle surrogate.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The spectral von Mises formula is presented in Theorem 3.3. The rkHs estimator of the
influence function based on this representation is developed in Section 4.2, and Theorem 4.7 proves its
consistency.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

» The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are discussed in the last parahraph of Section 4.2. Automation considered
here requires theoretical justification, which limits its utility in practice. Our analysis does not consider
rates of convergence or efficient/scalable computation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: The main focus of the paper is on theoretical foundations and a significant effort has
been made to provide explicit assumptions, correct and complete arguments and explanations, careful
citations.
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Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

» All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the details of the toy Monte Carlo experiment in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
Justification: We provide our code for the toy Monte Carlo experiment.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (hips:/nips.ce/public/guides/CodeSubmissionPolicy)
for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to repro-
duce the results. See the NeurIPS code and data submission guidelines (hips:/nips.cc/public/guides/
CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We provide the details of the toy Monte Carlo experiment in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the full distributions of our Monte Carlo experiments in Figure 3.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

¢ The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

« Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: Apple M2 mac.
Guidelines:

¢ The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https //ncm'm\.cu/puhllc/leu\('vmdu]im‘\?

Answer: [Yes]
Justification: We have reviewed the guidelines and confirm that our practices conform to them.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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12.

13.

14.

15.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets.
Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: Not applicable.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]
Justification: Not applicable.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

¢ We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.
Answer: [NA|
Justification: Not applicable.
Guidelines:
* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (htips://neurips.cc/Conferences/20251..M) for what should or should not be
described.
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