Kernel von Mises Formula of the Influence Function

Yaroslav Mukhin Cornell University kif@ymx.io

Abstract

The influence function (IF) of a statistical functional is the Riesz representer of its derivative, also known as its first variation and Fisher-Rao gradient. It is a key object for numerical optimization over probability measures, semiparametric efficiency theory, standard constructions of efficient estimators, and an arsenal of inference methods for these estimators. Yet, deriving the IF analytically is often an obstruction for practitioners. To automate this task, we develop a novel spectral representation of the IF that lends itself to a low-rank functional estimator in a reproducing kernel Hilbert space (rkHs). Our estimator (i) does not require analytic derivations by the user, (ii) relies on kernel Principal Component Analysis and numerical pathwise derivatives along these components. We present the derivation of the representation and prove consistency of the low-rank rkHs estimator.

1 Introduction

The target θ of a statistical learning procedure often takes the form of a mapping $P \mapsto \theta(P)$ of the probability measure P on a sample space $\mathcal{X} \subset \mathbb{R}^d$ governing the training data $X_{1:n}$. The difficulty of learning θ from data depends on the combination of structural properties of all possible P and the local variability of θ at the unknown true P. For example, estimating the mean $\theta_1(P) \coloneqq \int x \, \mathrm{d}P$ is easy even if P is unrestricted beyond having finite moments. By contrast, estimating the density $f(x_0)$ of P at a point x_0 is easy in a model for P that is smoothly parametrized by a subset of \mathbb{R}^p , but much harder in nonparametric settings. The rate of convergence of an estimator $\hat{\theta}_n(X_{1:n})$ to the target $\theta(P)$ as the sample size n increases is a measure of the statistical difficulty of estimating θ . The rate of estimating θ_1 with the sample mean is \sqrt{n} by the Central Limit Theorem (CLT), whereas the rate of estimating $f(x_0)$ can range from \sqrt{n} to arbitrarily slow, depending on the regularity of P. If f(x) is smooth in a neighborhood of x_0 for all P, then observations close to x_0 can be aggregated, as for estimating θ_1 , resulting in a fast rate; if f(x) varies roughly near x_0 and as P is perturbed, then aggregation leads to bias and must be limited at the expense of precision.

We consider scalar functionals $\theta(P)$ that can be estimated at the parametric \sqrt{n} rate in nonparametric models for P, like the mean θ_1 . This includes scalar and vector estimands that depend on averages of nuisance functions, e.g., $\theta_0(P)\coloneqq\int f\,\mathrm{d}P$ and estimands of causal inference, but not $f(x_0)$. For these parameters the rate is fixed and the difficulty of estimation is characterized in terms of a lower bound on the asymptotic variance. The object that determines this bound is the *influence function* (IF) of θ at P, denoted $\psi_P:\mathcal{X}\to\mathbb{R}$; the bound is the norm $\int \psi_P^2\,\mathrm{d}P$ of this function. Setting aside the interpretation of $\psi_P(x)$ until Theorem 2.1, recall when one can expect $\theta(P)$ to be estimable at the \sqrt{n} rate and to have an IF. This requires that $\theta(P)$ varies smoothly with P. Specifically, the map $P\mapsto\theta(P)$ must have a derivative $D\theta_P$ that maps perturbations to P into infinitesimal changes in $\theta(P)$ [Mis47; Ste56; KL76; IH81; Vaa91]. When $D\theta_P$ exists and is a bounded linear map on $L^2(P)$, Riesz's theorem guarantees the existence of a function $\psi_P\in L^2(P)$ such that for any perturbation ϕ to ϕ , the effect on $\phi(P)$ is given by ϕ doesn't exist or is unbounded and has no IF, then the estimation rate for $\phi(P)$ is typically slower than \sqrt{n} .

Example 1.1. The IF for $\theta_1(P)$ is $\psi_1(x) = x - \theta_1$; the IF for $\theta_0(P)$ is $\psi_0(x) = 2[f(x) - \theta_0]$. With $q \in (0,1)$, the q-quantile is $\theta_q(P) \coloneqq F^{-1}(q)$, so that $F(\theta_q) \coloneqq P(X \le \theta_q) = q$, and its IF is $\psi_q(x) = [q - \mathbb{1}(x \le \theta_q)]/f(\theta_q)$, where $\mathbb{1}_A$ is the indicator of event A. To simplify notation, we may write ψ without the subscript P, but the IF always depends on P, as do the functionals θ and $D\theta$.

Consider now an estimator sequence $\hat{\theta}_n = \hat{\theta}_n(X_{1:n})$ for $\theta(P)$ constructed with i.i.d. samples $X_{1:n}$ from P. It is *regular* if $\sqrt{n}(\hat{\theta}_n - \theta(P))$ converges in distribution, and, furthermore, the limit law is invariant to vanishing perturbations in P; a counterexample is hard thresholding. An estimator is asymptotically linear if it has the representation analogous to the CLT:

$$\sqrt{n}(\hat{\theta}_n - \theta(P)) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_P(X_i) + o_P(1), \text{ where } \psi_P \in L_0^2(P)$$
 (1.1)

meaning $\int \psi_P^2 \, \mathrm{d}P < +\infty$ and $\int \psi_P \, \mathrm{d}P = 0$, and the $o_P(1)$ term vanishes in P as $n \to \infty$. Note that ψ_P in (1.1) is the IF of θ , also called the IF of the estimator $\hat{\theta}$. [Vaa91] shows that $\theta(P)$ is differentiable in P and has an IF if and only if there exists a regular asymptotically linear estimator. Moreover, [Kla87] shows that a regular asymptotically linear estimator exists if and only if the IF exists and can itself be consistently estimated. For further details of semiparametric efficiency theory we refer to [Vaa00, ch25] and [Bic+93], and now turn to a very brief and selective review of its recent methodological uses in machine learning (ML), statistics and econometrics.

According to (1.1), the contribution of a datum X_i to the fluctuations in the estimator is approximately $\psi(X_i)/n$. Consequently, the observations with the most influence on the realized estimate are X_i with a large $|\psi(X_i)|$ value. Returning to Example 1.1, for estimates of θ_1 , the influential data are those far away from the mean, i.e., the 'outliers'; by contrast, for estimates of θ_q all observations have similar influence; for estimates of θ_0 the observations with extreme density values are influential. This interpretation of the IF to study robustness to outliers goes back to [Hub64] and appears recently in e.g., [Pru+20; BGM20]. In Theorem 2.1, we discuss a related interpretation of the IF, but for the functional rather than its estimators, that is an important baseline for our work.

Closely related with robustness are the uses of the IF toward data attribution and interpretability of nontransparent estimators. The idea is to approximate the $x_i\mapsto \hat{\theta}(x_{1:n})$ mapping with $x_i\mapsto \psi(x_i)$ to gain insight into the effect of a data point or statistic on the estimate; e.g., in large language [Gro+23], black box ML [KL17], structural econometric [AGS20a; AGS20b] models. A different question asks for the effect of perturbing the *location* of x_i spatially in the sample space \mathcal{X} as $x_i+\Delta_i$ rather than its *probability weight*; this can also be answered with the IF. The Wasserstein gradient vector field $\nabla_x \psi_P = (\partial_{x_1} \psi_P, \dots, \partial_{x_d} \psi_P) : \mathcal{X} \to \mathbb{R}^d$ of $\theta(P)$ describes the direction of transporting the mass of P at x in $\mathcal{X} \subset \mathbb{R}^d$ with the greatest influence on the value of $\theta(P)$. Furthermore, for any transport perturbation $\mathbf{v} \in L^2(P)^d$ of P, the effect on $\theta(P)$ is $D\theta_P[\mathbf{v}] = \int \langle \mathbf{v}, \nabla_x \psi_P \rangle_{\mathbb{R}^d} \, \mathrm{d}P$. See [Vii03, ch8] for the details of optimal transport theory, and e.g., [Mad+18; SND18] for applications.

A classical use of the IF is to approximate the distribution of an estimator [Cha92; New94; FS19], useful for constructing confidence intervals and statistical tests. From (1.1), the variance of $\hat{\theta}_n$ is approximately $\int \psi^2 \, \mathrm{d}P/n$ and the distribution is approximately Normal by the CLT. Beyond insights into the distribution of a given estimator, the IF is a key ingredient for the construction of estimators that achieve the efficiency bound, notably in semiparametric problems like causal inference. Several techniques are well known, all start with preliminary estimators $\check{\theta}$ of θ and $\hat{\psi}_P$ of ψ_P , which are combined to construct a better estimator of θ . The one-step adaptive estimator of Bickel [Bic75] given by $\hat{\theta} := \check{\theta} + \sum_{i=1}^n \hat{\psi}_P(X_i)/n$ estimates and removes the bias in $\check{\theta}$ with the sample average of $\hat{\psi}_P$. The IF is required to construct the targeted likelihood of van der Laan [VR06; Cho+24], and Neyman orthogonal estimating equations of Chernozhukov [Che+18; Che+22], see also the reviews [Hin+22; Ken24].

Recently, the IF is used extensively to study robustness of ML models [Bre+19; Guo+20; Bae+22; Sch+23] and the sensitivity of econometric estimands θ to misspecification of structural properties of P and other modeling choices reflected in $\theta(P)$ [AGS17; Muk18; Muk19; CC23]. For example, with censored data, the mean θ_1 is not identified, but there is a set of values for θ_1 compatible with the true P and the observed data that can be estimated [HM95; Sem20; Sem25]; an MDP model may assume Gumbel payoff shocks [Rus87] or an ecological model of population dynamics may posit logistic propensity scores [Cat+00], and the IF can be used to construct bounds for the estimated MDP parameters and population size that are robust to the parametric assumptions [Muk21].

How does one estimate the IF? In Example 1.1, estimating ψ_1 amounts to estimating the mean θ_1 ; by contrast, estimating ψ_0 requires estimating the density f; estimating ψ_q requires estimating θ_q and $f(\theta_q)$. For a general functional $\theta(P)$, one first derives the analytic form of the IF. In parametric models, the IF is the normalized derivative of the log-density, i.e., the score. In nonparametric models, with significant mathematical subtlety, the problem can be reduced to the parametric case. For a path $t\mapsto P_t$, i.e., a parametric submodel with parameter $t\in\mathbb{R}$ and score function $g\in L^2_0(P)$, the pathwise derivative $d\theta(P_t)/dt$ is computed. Then one hopes to express it as $\int g\cdot\phi\,\mathrm{d}P$ to match the representation of Riesz' theorem; the function ϕ is a candidate for ψ_P . Given the analytic form of ψ_P , as in Example 1.1, the unknown components can be estimated. Deriving the IF is highly idiosyncratic to the functional at hand and can be challenging, akin to solving a differential equation, and often constitutes a significant contribution. Several techniques are described in the literature e.g., [Cha87; New90; Jor93], see also the reviews [Hin+22; Ken24]. This task can be time-consuming, requires familiarity with functional analysis, and often highly specialized technical knowledge.

Prior works It is widely documented in recent literature that the analytic derivation of the IF poses an obstruction to the adoption of IF-based methods [Fra+15; LCL15; CLV19; Hin+22; Ken24; JWZ22] and that replacing this derivation with *automated* estimation would be a useful contribution. Automated estimation has been explored in [Fra+15; CLV19; JWZ22] based on the von Mises representation of the IF, explained in Theorem 2.1. Specifically, these works show how to estimate the value of the IF at a fixed point $z \in \mathcal{X}$ as $\hat{\psi}_P(z) = \lim_{\delta \to 0} d\theta(\hat{P}_t^{\delta,z})/dt$, by constructing a special perturbation $\hat{P}_t^{\delta,z}$ of \hat{P} , that depends on the chosen point z and bandwidth δ , so that the pathwise derivative of θ along this perturbation approximates $\psi_P(z)$. In practice, δ is fixed and the derivative is computed as a finite difference; computation can be ill-conditioned due to the nature of the required perturbations.

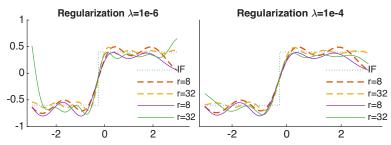


Figure 1: IF ψ_q of quantile θ_q , regularized oracle surrogate ψ_{λ}^r (dashed) and estimate $\hat{\psi}_{\lambda,n}^r$ (solid).

Contribution We propose estimating the entire IF ψ_P as

$$\hat{\psi}_{\lambda}^{r}(x) := \sum_{j=1}^{r} \frac{1}{1 + 2\lambda/\hat{\sigma}_{j}} \left[\frac{d}{dt} \theta(\hat{f}_{t}^{j}) \right]_{|t=0} \hat{\mathbf{e}}_{j}(x),$$

where $\lambda \geq 0$ is the regularization loading for controlling the nonparametric bias-variance trade-off, and r is the rank of the approximation for controlling the number of eigenvectors of the Gram matrix and pathwise derivatives of θ one has to compute (e.g., r=16) to estimate the entire IF. See Figure 1. Furthermore, $(e_j)_{j\geq 1}$ is an orthonormal basis for $L^2_0(P)$ and $(\sigma_j)_{j\geq 1}$ is a decreasing to 0 sequence of scalars such that $(\sqrt{\sigma_j}e_j)_{j\geq 1}$ is an orthonormal basis for a Hilbert space of smooth approximating functions; perturbations f_t^j of the density f of P are in the direction of e_j , e.g., $\hat{f}_t^j = [1+t\hat{e}_j]\hat{f}$, leading to stable pathwise derivative computation.

Our estimator is based on a novel regularized representation of ψ_P by the best approximation in a ball of a Hilbert space H, Theorem 3.3. We view this representation as our main result, because it is not trivial to apply rkHs methods to the IF, and our variational characterization lends itself to this task. We relate estimation of the IF to kernel Principal Component Analysis (PCA) by taking H to be the rkHs of a positive definite kernel. This allows leveraging extensive learning theory and methods of numerical linear algebra to analyze and compute our estimator. In the proposed implementation, both e_j and σ_j depend on P and are estimated with a low-rank matrix eigenvalue and eigenvector decomposition. We prove consistency and lay the foundation for studying convergence rates, statistical and computational efficiency, and their trade-offs in follow-up work. To our knowledge, this is the first data-driven functional estimator of the IF, the first estimator with convergence guarantees in L^2 and rkHs norms, and the first work to show how to apply rkHs methods to the estimation of the IF.

Paper organization Section 2 reviews the classical von Mises formula, which is the baseline for our spectral representation and proposed estimator $\hat{\psi}^r_{\lambda}$. Section 3 presents our variation representation, regularization, and the solution of the resulting approximation problem. Section 4 implements the approximation with an rkHs, applies the Nyström method for integral operators to estimate the regularized surrogate and proves consistency of the estimator. The Appendix contains simulation experiments and deferred technical details.

Notation We write IF for influence function; \mathcal{P} is a set of probability measures on a sample space $x \in \mathcal{X} \subset \mathbb{R}^d$; $X_{1:n} \coloneqq (X_1, \dots, X_n)$ is a sample; $\theta : \mathcal{P} \to \mathbb{R}$ denotes a functional; $L^2(P)$ is the space of functions $\phi : \mathcal{X} \to \mathbb{R}$ with $\int \phi^2 \, \mathrm{d}P < \infty$ and $L_0^2(P)$ is the subspace with $\int \phi \, \mathrm{d}P = 0$. The derivative of θ with respect to P at P is denoted by $D\theta_P : L_0^2(P) \to \mathbb{R}$ and maps directions of perturbing P into infinitesimal changes in $\theta(P)$. $\mathbb{1}_A$ denotes the indicator of set A; \mathscr{L}^d denotes Lebesgue measure on \mathbb{R}^d .

2 von Mises Formula

The following calculation extends those of [Mis47; IN22] and allows evaluation of the IF ψ_P at a point $x \in \mathcal{X}$ via evaluations of the functional $\theta(P)$ on certain perturbations of P. A useful analogy is to think of computing partial derivatives of a multivariate function of \mathbb{R}^2 or \mathbb{R}^3 to evaluate the gradient vector.

Theorem 2.1 [von Mises formula]. Let $\theta: \mathcal{P} \to \mathbb{R}$ be a pathwise differentiable functional on a nonparametric model \mathcal{P} with IFs $\psi_P \in L^2_0(P)$ for $P \in \mathcal{P}$. Suppose $P = f \cdot \mathcal{L}^d$ is a.c. with a continuous density f. Let K be a bounded probability density with support in $\{|x| \leq 1\} \subset \mathbb{R}^d$. Define the dilated kernels by $K^\delta(x) \coloneqq \delta^{-d}K(\delta^{-1}x)$ for $\delta > 0$. Translate to the location of approximation $z \in \mathbb{R}^d$ and control the likelihood ratio with f via a cutoff as $K^{\delta,z}(x) \coloneqq cK^\delta(z-x) \cdot \mathbb{1}_{\{f>\delta\}}(x)$ with $c^{-1} \coloneqq \int_{\{f>\delta\}} K^\delta(z-x) \, \mathrm{d}x$. For small δ and $z \in \{f>0\}$, consider the family, indexed by the bandwidth δ , of paths $\{P_t^{\delta,z}\}_{-\epsilon < t \leq 1}$ with parameter t and density $f_t^{\delta,z}(x) \coloneqq (1-t)f(x) + tK^{\delta,z}(x)$. Note these paths perturb the measure P toward the point-mass distribution at $z \in \mathcal{X}$, regularized via the approximation to the identity K^δ . Then the following IF formula holds:

$$\psi_P(z) = \lim_{\delta \to 0} \left[\frac{d}{dt} \theta(P_t^{\delta, z}) \right]_{t=0} \quad \text{for } P\text{-almost every } z \in \mathbb{R}^d.$$
 (2.1)

Proof. We outline the proof as a way of reviewing pathwise differentiability and provide the details in the Appendix. The score function, i.e., the derivative of log-density, of the path $t \mapsto P_t^{\delta,z}$ at P is

$$\phi_{\delta,z}(x) \coloneqq \frac{d}{dt}_{\mid t=0} \log \Big\{ f(x) + t \big[K^{\delta}(z-x) - f(x) \big] \Big\} = K^{\delta}(z-x) / f(x) - 1.$$

The score $\phi_{\delta,z}(x)$ is an $L_0^2(P)$ function that characterizes the infinitesimal change in the density at x as P is perturbed along the path $P_t^{\delta,z}$. Pathwise differentiability of θ at P means that the derivative of the functional θ along the path $t\mapsto P_t^{\delta,z}$ exists and is a bounded linear functional of the score $\phi_{\delta,z}$. By Riesz' theorem [SS09, 4.5], [Dud18, 5.5.1] for bounded functionals on the Hilbert space $L_0^2(P)$, the derivative $D\theta_P[\phi_{\delta,z}]$ is given by the $L_0^2(P)$ inner product of the score $\phi_{\delta,z}$ with the IF ψ_P :

$$\frac{d}{dt}_{|t=0}\theta(P_t^{\delta,z}) = D\theta_P[\phi_{\delta,z}] = \int_{\mathsf{spt}P} \psi_P(x)\,K^\delta(z-x)\,\mathrm{d}x = \big(\psi_P*K^\delta\big)(z).$$

The assumed properties of the mollification kernels K^{δ} ensure that it is an approximation to the identity [SS09, 3.2] in the sense that it converges as $\delta \to 0$ to the singular point-mass distribution in the integral pairing with a $L^1_{\text{loc}}(\mathbb{R}^d)$ function. By the Lebesgue differentiation theorem [SS09, 3.3], [Dud18, 7.2] it follows that the convolution $(\psi_P * K^{\delta})(z) \to \psi_P(z)$ converges as $\delta \to 0$ pointwise at the Lebesgue points of ψ_P and therefore for P-almost every $z \in \mathbb{R}^d$.

Let's interpret Theorem 2.1. It says that to compute a single value of the IF, it is sufficient to compute the values of the functional θ along a certain perturbation to P. Specifically, $\psi_P(z)$ is the effect

on $\theta(P)$ of perturbing the P-weight of the outcome $z \in \mathcal{X}$. Recall the IF-methods described in Section 1 and note that these rely on this interpretation and the approximation of $\theta(P)$ by $\hat{\theta}$. Thus, provided with a device for computing the derivative $d\theta/dt$ in (2.1) numerically, one can numerically query ψ_P ; indeed, [CLV19; JWZ22] use finite differences with a similar von Mises representation. Our regularity assumptions for this result are different from those in the literature, by employing Lebesgue differentiation we make no additional regularity assumption about $\psi_P \in L^2_0(P)$.

In statistical applications one typically requires the entire map $z\mapsto \psi(z)$ rather than a particular value $\psi(z)$. For example, to find influential data points for an estimate $\hat{\theta}$, one seeks the global maximum or level sets of ψ ; for constructing a debiased estimator of θ one needs to integrate against ψ ; to find influential data points in the Wasserstein sense, one needs to apply a differential operator to the gradient $\nabla_x \psi(x)$ and maximize the resulting score function. Therefore, in practice, formula (2.1) is used to evaluate *many* values of ψ *simultaneously*. With this in mind, note that (2.1) requires a separate computation for each evaluation and that the required perturbations toward a point mass have been found numerically challenging [CLV19; JWZ22]. Also note that the regularization in (2.1) does not account for properties of the measure P such as concentration or properties of the function ψ such as smoothness. Furthermore, downstream tasks e.g., causal inference, require convergence rates in function norms for the estimator of the IF, while it is not known how to obtain these with (2.1). These observations suggest that (2.1) may not be numerically and statistically optimal for estimating the entire function ψ or even isolated values of ψ . To address these, we propose a new representation.

3 Spectral von Mises representation

3.1 Exact representation

We begin by finding a variational representation of the IF in terms of pathwise derivatives of the functional. The following lemma is an immediate consequence of Riesz' theorem [Dud18, 5.5.1] and Cauchy-Schwarz inequality [Dud18, 5.1.4] and records in a suitable form the basic observation: the IF ψ_P is the direction of perturbing P with the most rapid variation in the functional $\theta(P)$ for the Fisher-Rao geometry (with the $L^2(P)$ metric tensor) of the model \mathcal{P} .

LEMMA 3.1. Let θ be a pathwise differentiable functional on \mathcal{P} with derivative $D\theta_P$ and IF ψ_P for $P \in \mathcal{P}$. The IF is the unique solution to the following dual optimization problems:

$$\psi_{P} = -\arg\min_{\phi \in L_{0}^{2}(P)} \left\{ D\theta_{P}[\phi] \; ; \; \|\phi\|_{L^{2}(P)} \leq 1 \right\}$$

$$\propto -\arg\min_{\phi \in L_{0}^{2}(P)} \left\{ D\theta_{P}[\phi] + \lambda_{p} \|\phi\|_{L^{2}(P)}^{2} \right\}, \qquad \lambda_{p} > 0.$$
(3.1)

The proportionality constant in (3.1) is 1 if and only if the penalty loading is $\lambda_p = 1/2$.

In (3.1) we used the duality between constrained and penalized optimization. For the exact representation of ψ , both the constraint and the penalty are in terms of the $L^2(P)$ norm i.e., the metric tensor of the Fisher-Rao distance on the tangent spaces of $\mathcal P$. In other words, the Fisher-Rao metric gives rise to the geometry where the IF is the gradient perturbation.

3.2 Regularized representation

The variational representation and the geometric interpretation of the IF suggest a strategy for constructing a regularized approximation of ψ as follows. Suppose there is a function space $H \subset L^2_0(P)$ with a norm $\|\phi\|_H$ that quantifies a suitable notion of smoothness of functions $\phi \in H$. Suppose we wish to find the best approximation of ψ in H with a given degree of smoothness as measures by $\|\cdot\|_H$. For example, H can be a Sobolev space. Then the projection ψ_M of ψ on the ball

$$B_M := \{\phi : \|\phi\|_H \le M\} \subset H \subset L_0^2(P)$$

of radius M>0 is the desired approximation, and M controls the degree of regularization. If H is dense in $L^2_0(P)$, then we indeed obtain an approximation of ψ by the projection ψ_M that improves and converges to ψ as $M\to\infty$.

LEMMA 3.2. Let θ be a pathwise differentiable functional on \mathcal{P} with derivative $D\theta_P$ and IF ψ_P for $P \in \mathcal{P}$. Let $(H, \|\cdot\|_H)$ be a Hilbert space, densely contained in $L^2_0(P)$. Then the projection of the IF ψ_P on the set B_M is the unique solution to the following dual optimization problems:

$$\psi_{P,M} := -\arg\min_{\phi \in H} \left\{ D\theta_{P}[\phi] \; ; \; \|\phi\|_{L^{2}(P)} \leq 1 \; \text{and} \; \|\phi\|_{H} \leq M \right\}$$

$$= -\arg\min_{\phi \in H} \left\{ D\theta_{P}[\phi] + 1/2\|\phi\|_{L^{2}(P)}^{2} + \lambda_{\mathsf{r}} \|\phi\|_{H}^{2} \right\} \qquad =: \; \psi_{P,\lambda} \tag{3.2}$$

for some regularization loading $\lambda_{\rm r}=\lambda_{\rm r}(M)\geq 0$. Furthermore, $\psi_M\to \psi$ in $L^2_0(P)$ as $M\to \infty$ and, equivalently, $\psi_\lambda\to \psi$ in $L^2_0(P)$ as $\lambda_{\rm r}\to 0$.

In (3.2) we again used the duality between constrained and penalized optimization. The regularized surrogate of ψ is obtained by strengthening the metric on \mathcal{P} and taking its gradient as the approximation of the IF.

3.3 Spectral representation

We obtained a regularized functional representation (3.2) of the IF in terms of the evaluation of the pathwise derivative of the parameter θ :

$$D\theta_P[\phi] = \frac{d}{dt}_{|t=0}\theta(P_t^\phi), \quad \text{where} \quad \frac{d}{dt}_{|t=0}\log f_t^\phi = \phi, \quad P_t^\phi = f_t^\phi \cdot \mathscr{L}^d,$$

and the path $\{P_t^{\phi}\}_{0 \leq t < \epsilon}$ can be taken to be any regular parametric model with parameter t and score function $\phi \in H$ at P. This representation of ψ_P is rather implicit. But it is the correct representation because it emphasizes the geometry of the problem and lends to thinking about ψ_P as a vector in an inner product space rather than a bag of numbers, one for each $x \in \mathcal{X}$. Returning to our analogy of computing the gradient of a multivariate function on \mathbb{R}^3 , we make the main observation of this paper:

Main idea: The computationally fruitful way of thinking about partial derivatives of θ in \mathcal{P} is not along perturbations toward a point mass at each $x \in \mathcal{X}$, but rather along the directions of an orthonormal basis on the tangent space $L_0^2(P)$.

Equipped with this intuition, we solve the optimization problem (3.2) analytically to obtain an infinite Fourier series representation of the regularized IF $\psi_{P,\lambda}$. Our main result is the following

THEOREM 3.3 [Spectral von Mises formula]. Suppose there exists an orthonormal basis of functions $\{e_j: \mathcal{X} \to \mathbb{R}\}_{j\geq 1}$ for $L_0^2(P)$ and a decreasing to zero sequence of scalars $\{\sigma_j > 0\}_{j\geq 1}$ such that $\{\sqrt{\sigma_j}e_j\}_{j\geq 1}$ is an orthonormal basis for the Hilbert space $H \subset L_0^2(P)$.

Let $S: L_0^2(P) \to H$ be the linear regularization operator given in diagonalized form by

$$S[u](x) = \sum_{j=1}^{\infty} \sigma_j \langle u, e_j \rangle_{L^2(P)} e_j(x), \qquad u \in L_0^2(P)$$
(3.3)

and assume that its adjoint operator $S^*: H \to L^2_0(P)$ is the inclusion $S^*[v] = v$, so that the inner products of H and $L^2_0(P)$ are related by

$$\langle Su, v \rangle_H = \langle u, S^*v \rangle_{L^2(P)} = \langle u, v \rangle_{L^2(P)}, \quad \text{for all} \quad u \in L^2_0(P), \ v \in H.$$
 (3.4)

Let θ be a pathwise differentiable functional on \mathcal{P} with derivative $D\theta_P$ and IF $\psi_P \in L_0^2(P)$ for $P \in \mathcal{P}$. Then the following representation holds in the norm of H:

$$\psi_{P,\lambda}(x) = \lim_{r \to \infty} \sum_{j=1}^{r} \frac{1}{1 + 2\lambda/\sigma_j} \left[\frac{d}{dt} \theta(P_t^j) \right]_{|t=0} \mathbf{e}_j(x), \tag{3.5}$$

where, for each basis function e_j , the path $t \mapsto P_t^j$ can be any regular perturbation of P with the score function $\partial_t \log P_t^j = e_i$.

Let's interpret Theorem 3.3 and compare with Theorem 2.1. Formula (3.5) is similar to formula (2.1) in that it expresses the (regularized) IF ψ_P in terms of pathwise derivatives of the functional $\theta(P)$ along certain regular perturbations P_t of the measure P. So, in order to compute with formula (3.5), one requires the same numerical tools as for implementing formula (2.1). The main difference is in the choice of the perturbation directions $\partial_t \log P_t$ that are employed by the two representations: (i) In (2.1), the perturbation depends on the evaluation point $z \in \mathcal{X}$. By contrast, in (3.5) the scores e_j are fixed, once the approximating space H and the data distribution P are fixed; and, once the derivatives $\{D\theta[e_j]\}_{j=1}^r$ are computed, an approximation to all values of ψ_P are obtained. (ii) The directions of perturbation e_j depend on the approximating function class H, which allows to adapt to the smoothness of ψ . (iii) In our proposed implementation, H is taken to be a reproducing kernel Hilbert space (rkHs) of a positive semidefinite kernel K, and the scores e_j can be interpreted as nonlinear principal components of the measure P, which allows to adapt to its effective dimension. (iv) Perturbation directions e_j of P are ordered by the magnitude of the corresponding multiplier sequence σ_j , which leads to a natural low-rank approximation for ψ_λ by the first r terms of the formula (3.5). (v) The directions $\{e_j\}_{j=1}^r$ for perturbing P are well-behaved.

Proof. We outline the main ideas of the proof and provide the details in the Appendix. Let $J(\phi)$ denote the objective function in (3.2) and note that it is strictly convex, so that the first order conditions are necessary and sufficient for characterizing the function $\psi_{\lambda} \in H$ at which the unique minimum of J is attained. For a direction $v \in H$, the Gateau derivative of the objective function evaluated at the candidate function $\phi \in H$ is

$$\partial_v J(\phi) = \langle v, \psi \rangle_{L^2(P)} + \langle v, \phi \rangle_{L^2(P)} + 2\lambda \langle v, \phi \rangle_H.$$

Applying the adjoint relationship (3.4) to express $L^2(P)$ inner products in terms of H inner products, obtain $\partial_v J(\phi) = \langle v\,,\, S\psi\rangle_H + \langle v\,,\, S\phi\rangle_H + 2\lambda\langle v\,,\, \phi\rangle_H$, for all $\phi,v\in H$. It follows that the H gradient of J (the Riesz representer in the H inner product) is given by $\delta_H J(\phi) = S\psi + S\phi + 2\lambda\phi$ and that the solution ψ_λ of (3.2) is characterized by the first order condition $\delta_H J(\psi_\lambda) = 0 \in H$. Using the spectral resolution (3.3) of the smoothing operator S, note that the first order condition is equivalent to the system of equations

$$\sigma_j \langle \psi, e_j \rangle_{L^2(P)} + \sigma_j \langle \psi_\lambda, e_j \rangle_{L^2(P)} + 2\lambda \langle \psi_\lambda, e_j \rangle_{L^2(P)} = 0, \quad j \ge 1.$$

Solving for the Fourier coefficients $\langle \psi_{\lambda}, e_{j} \rangle_{L^{2}(P)}$ of the spectral resolution of ψ_{λ} in $L^{2}(P)$, and applying Riesz' representation $D\theta[e_{j}] = \langle \psi, e_{j} \rangle_{L^{2}(P)}$, obtain formula (3.5).

4 Regularization in the rkHs of a Mercer kernel

rkHs notation A linear space H of functions $\phi: \mathcal{X} \to \mathbb{R}$ with an inner product $\phi, \varphi \mapsto \langle \phi, \varphi \rangle_H$ is an rkHs if (i) it is complete in the norm $\|\phi\|_H^2 = \langle \phi, \phi \rangle_H$ of the inner product, and (ii) for every $x \in \mathcal{X}$, the evaluation functional $\phi \mapsto \phi(x)$ is continuous in the norm of H. Convergence of a sequence $\phi_n \to \phi$ in the norm of H implies pointwise, and often uniform or stronger, convergence.

According to Riesz' theorem [Dud18, t5.5.1], [SS09, t5.3], for every $x \in \mathcal{X}$, there exists a function $k_x \in H$ such that the evaluation functional has the representation $\phi(x) = \langle \phi \,,\, k_x \rangle_H$ for all $\phi \in H$. The function $K: \mathcal{X}^2 \to \mathbb{R}$ given by $K(x,y) := k_y(x) = \langle k_y \,,\, k_x \rangle_H$ is known as the reproducing kernel of H and is guaranteed to be a symmetric and positive semidefinite map: the matrix $[K(x_i,x_j)]_{i,j=1}^n$ is strictly positive definite for all $n \geq 1$ and distinct $\{x_j\} \subset \mathcal{X}$; we call any such function a PSD kernel. We call $k_x(\cdot) = K(\cdot,x)$ the slice of K at x. By linearity, any finite superposition of slices $x \mapsto \sum_{j=1}^n \alpha_j k_{x_j}(x)$, with $\{x_j\} \subset \mathcal{X}$ and $\{\alpha_j\} \subset \mathbb{R}$ and $n \in \mathbb{N}$, is in H. Conversely, according to Moore's theorem [PR16, t2.14], [CS08, ch4], any function $\phi \in H$ is a (possibly infinite) superposition of kernel slices; and, any PSD kernel K generates an rkHs of superpositions for which it is the reproducing kernel. In practice, one picks a PSD kernel function and works with the associated rkHs somewhat implicitly because it's norm and inner product are not immediately obvious.

Widely used examples are the Gaussian kernel $K(x,y)=\exp(-\|x-y\|_2^2/\sigma^2)$, it produces a space of infinitely smooth functions; and the Laplacian kernel $K(x,y)=\exp(-\|x-y\|_2/\sigma)$, it produces the space of Sobolev functions with (d+1)/2 square integrable derivatives. rkHs spaces are used extensively in numerical analysis [Wen04; FM15] and nonparametric estimation [Wai19; Bac24] due to their analytic and algebraic properties. We use a PSD kernel to form an estimator of the IF via the spectral representation (3.5). We assume the following properties, and call any such function a Mercer kernel:

Assumption 4.1 [Mercer kernel]. (0) probability measure P is absolutely continuous with compact support $\mathcal{X} \subset \mathbb{R}^d$; (i) $K: \mathcal{X}^2 \to \mathbb{R}$ is a PSD function; (ii) K is continuous, bounded, so that its rkHs $H \subset L^2(P)$ and with the bound $\kappa \coloneqq \max_{x \in \mathcal{X}} K(x,x) < +\infty$; (iii) for every $y \in \mathcal{X}$, $\int_{\mathcal{X}} k_y \, \mathrm{d}P = 0$ so that $H \subset L^2_0(P)$; (iv) H is universal in the sense that it is dense in $L^2_0(P)$.

In particular, the Gaussian and Laplacian kernels are universal; see [SFL11] [CS08, ch4.6]. The normalization property (ii) can be imposed on any PSD kernel K via one step of the Cholesky algorithm $\tilde{K}(x,y) \coloneqq K(x,y) - \int_{\mathcal{X}} k_x \,\mathrm{d}P \int_{\mathcal{X}} k_y \,\mathrm{d}P / \int_{\mathcal{X}^2} K \,\mathrm{d}P \,\mathrm{d}P$ is also PSD [PR16, ch4].

4.1 Spectral basis

For a Mercer kernel K, consider the integral operator $S_K: L_0^2(P) \to H \subset L_0^2(P)$ with signature K:

$$S_K[\phi](x) = \int_{\mathcal{X}} K(x, y)\phi(y) \,\mathrm{d}P(y), \qquad \phi \in L_0^2(P). \tag{4.1}$$

Under Assumption 4.1, $K \in L^2(P \otimes P)$ and S bounded on $L^2_0(P)$ by the Cauchy-Schwarz inequality. Operator S can be thought of as a continuous superposition of slices k_y of the kernel, and the range of S is properly contained in H. Note that the range of S is the rkHs of the PSD function $\int k_x k_y dP$, in particular, it depends on the measure P [PR16, ch11].

Theorem 4.2 [Mercer]. Let K be a Mercer kernel on a compact sample space \mathcal{X} and P be a probability measure supported on \mathcal{X} . Then there is an orthonormal sequence $\{e_j: \mathcal{X} \to \mathbb{R}\}_{j\geq 1}$ of continuous $L_0^2(P)$ eigenfunctions of the integral operator S with signature K defined in (4.1), and a corresponding decreasing to zero sequence of eigenvalues, repeated according to multiplicity, $\{\sigma_j > 0\}_{j\geq 1}$ such that: (i) $\{e_j\}_{j\geq 1}$ is an orthonormal basis for $L_0^2(P)$; (ii) $\{\sqrt{\sigma_j}e_j\}_{j\geq 1}$ is an orthonormal basis for H; (iii) S has the diagonalization (3.3), and the adjoint $S^*: H \to L_0^2(P)$ is the inclusion operator $S^*\phi = \phi$, in particular, relationship (3.4) holds between the $L_0^2(P)$ and H inner products.

See [SS09, 4.6], [FM09] for background on integral operators and [SS12; Sun05] for extensions of Mercer's theorem to noncompact domains. In particular, Theorem 4.2 holds for the Gaussian kernel on \mathbb{R}^d and a measure $P=\rho\cdot \mathscr{L}^d$ with $\rho\in L^2(\mathbb{R}^d)$, as shown in [Sun05, s4].

Example 4.3. For the Gaussian kernel $K(x,y) = \exp(-\epsilon^2|x-y|^2)$ on \mathbb{R} and the centered Gaussian weight distribution $\rho(x) = \alpha \exp(-\alpha^2 x^2)/\sqrt{\pi}$, the Mercer basis is given by:

$$e_j(x) = \gamma_j e^{-\delta^2 x^2} H_{j-1}(\alpha \beta x), \quad \sigma_j = \sqrt{\frac{\alpha^2}{\alpha^2 + \delta^2 + \epsilon^2}} \left[\frac{\alpha^2}{\alpha^2 + \delta^2 + \epsilon^2} \right]^{j-1}, \quad j \ge 1, \ x \in \mathbb{R},$$

where H_j is the Hermite polynomial of degree j, and constants $\beta=(1+[2\epsilon/\alpha]^2)^{1/4},\ \gamma_j=(\beta/2^{j-1}\Gamma(j))^{1/2},\ \delta^2=\alpha^2(\beta^2-1)/2$ are defined in terms of the shape parameters ϵ and α . In particular, the eigenvalues σ_j decay exponentially, so that only the first few terms in (3.5) capture most of the variation when ψ_P is smooth. Both K and ρ can be extended to \mathbb{R}^d as tensor products.

4.2 Nyström method for integral operators

In order to estimate the IF with a given Mercer kernel K via the spectral representation (3.5), the leading eigenvalues $\{\sigma_j\}_{j=1}^r$ and the corresponding eigenfunctions $\{e_j\}_{j=1}^r$ of the integral operator S_K are required. If P is known, these can be computed numerically [FM15, 12.2.2]. If P is unknown and only a random sample from P is available, these must be estimated statistically. The Nyström method for approximating the eigendecomposition of the integral operator (4.1) is to discretize the integral with the empirical sum, reducing to an eigendecomposition of the empirical Gram matrix $K_n := [K(X_i, X_j)/n]_{i,j=1}^n$. This is essentially the well-studied kernel PCA problem to estimate the main nonlinear features of P [Mik+98; ZB05; Sha+05; RBD10; SS22b; SS22a]. A closely related problem is the functional PCA [Bos00], and the low-rank Gaussian process approximation [VV+08; BRV19; BRV20; SS20]. We find the exposition in [RBD10] particularly lucid and follow it closely.

LEMMA 4.4 [Hilbert space LLN]. Let K be a Mercer kernel on (\mathcal{X}, P) generating the rkHs H and let X_1, \ldots, X_n be an i.i.d. sample from P. Let the integral operators $T_H, T_n : H \to H$ be defined by

$$T_H[\phi](x) := \int_{\mathcal{X}} \langle \phi, k_y \rangle_H K(x, y) \, \mathrm{d}P(y), \quad T_n[\phi](x) := \frac{1}{n} \sum_{j=1}^n \langle \phi, k_{X_i} \rangle_H K(x, X_i), \quad \phi \in H.$$

Then $T_n \to T_H$ as $n \to \infty$ in the Hilbert-Schmidt norm in probability, and, for each $n \ge 1$,

$$||T_H - T_n||_{\mathsf{HS}} \lesssim \frac{\kappa \sqrt{\tau}}{\sqrt{n}}$$
 (4.2)

with probability at least $1 - 2e^{-\tau}$.

Note that T_n is the empirical analogue of T_H obtained by replacing the continuous integral with respect to P by the discrete integral with respect to the empirical distribution of a random sample from P. By appealing to a suitable law of large numbers or concentration inequality, it follows that T_n is consistent for T_H . Furthermore, T_H is related to S_K , whereas T_n is related to K_n , providing a link between the continuous operator S_K and the matrix K_n that is otherwise not immediately clear.

Recall that S^* is the inclusion of H into $L_0^2(P)$, and note that the operators $T_H = SS^*$ and $T_K \coloneqq S^*S$ are essentially the same operator with the same action on all functions $\phi \in H$, differing only in the domain of definition and the embedding space of the range. In particular, the eigenvalues of T_K , S and T_H are exactly the same and the eigenfunctions of T_K and T_H are related by the inclusion (resp. regularization) operators S^* (resp. S), in other words are the same functions but viewed as elements of $L_0^2(P)$ and H respectively.

For the empirical analogues, the finite-rank operator T_n and the Gram matrix \mathbf{K}_n are similarly related via the Nyström restriction operator $R_n:H\to\mathbb{R}^n$ given by $R_n[\phi]=(\phi(X_j))_{j=1}^n$. Its adjoint $R_n^*:\mathbb{R}^n\to H$ is the Nyström extension operator given by $R_n^*[\mathbf{y}]=\sum_{j=1}^n y^j k_{X_j}/n$ for $\mathbf{y}=(y^1,\ldots,y^n)\in\mathbb{R}^n$ endowed with the inner product $\langle\mathbf{x}\,,\,\mathbf{y}\rangle_n\coloneqq\sum_{j=1}^n x^j y^j/n$. With this notation, we have $T_n=R_n^*R_n$ and $\mathbf{K}_n=R_nR_n^*$, from which it follows that T_n and \mathbf{K}_n have the same nonzero eigenvalues and the corresponding eigenvectors are related via the restriction (resp. extension) operators R_n (resp. R_n^*).

The next result is an application of the perturbation bound of [Kat87], see also [RBD10], to infer consistency of the spectrum of K_n for the spectrum of $T_K := S^*S$.

LEMMA 4.5 [Consistency of eigenvalues]. Let K be a Mercer kernel on (\mathcal{X}, P) generating the rkHs H and let X_1, \ldots, X_n be an i.i.d. sample from P. Let the integral operator $T_K : L_0^2(P) \to L_0^2(P)$ and the empirical Gram matrix multiplication operator $K_n : \mathbb{R}^n \to \mathbb{R}^n$ be given by

$$T_K[\phi](x) = \int_{\mathcal{X}} K(x,y)\phi(y) \, \mathrm{d}P(y), \quad \mathbf{K}_n[\mathbf{y}] = \left[\frac{1}{n}K(X_i,X_j)\right]_{i,j=1}^n \mathbf{y}, \quad \phi \in L^2_0(P), \ \mathbf{y} \in \mathbb{R}^n.$$

Let $\{\sigma_j\}_{j\geq 1}$ be the decreasing enumeration of the eigenvalues of T_K , repeated according to the multiplicity, and let $\{\hat{\sigma}_j\}_{j\geq 1}$ denote the analogous enumeration of the eigenvalues of \mathbf{K}_n , extended by zero. Then $\hat{\sigma}_j \to \sigma_j$ as $n \to \infty$ uniformly in probability, and, for each $n \geq 1$,

$$\sup_{j\geq 1} |\sigma_j - \hat{\sigma}_j| \leq ||T_K - \mathbf{K}_n||_{\mathsf{HS}} \lesssim \frac{\kappa\sqrt{\tau}}{\sqrt{n}},\tag{4.3}$$

and $\sum_{j\geq 1}(\sigma_j-\hat{\sigma}_j)^2\leq \|T_K-\mathbf{K}_n\|_{\mathsf{HS}}^2\lesssim \frac{\kappa^2\tau}{n}$ and $\left|\sum_{j\geq 1}(\sigma_j-\hat{\sigma}_j)\right|=\left|\mathsf{tr}(T_H)-\mathsf{tr}(T_n)\right|\lesssim \frac{\kappa\sqrt{\tau}}{\sqrt{n}}$ with probability at least $1-2e^{-\tau}$.

Consistency of the empirical eigenfunctions is framed in terms of projections to accommodate the nonuniqueness of an orthonormal basis corresponding to eigenvalues with multiplicity. For $N \in \mathbb{N}$, let r(N) denote the total number of eigenvalues, accounting for the multiplicity, corresponding to the leading N distinct eigenvalues $\sigma_{r(1)} > \ldots > \sigma_{r(N)}$ and let $\sigma_{r(N)+1}$ be the next largest distinct eigenvalue of T_K . Let $H_N \coloneqq \operatorname{span}\{e_1,\ldots,e_{r(N)}\} \subset H \subset L^2_0(P)$ be the eigenspace of the N leading distinct eigenvalues, and let

$$P_N: H \to H_N, \quad P_N[\phi] \coloneqq \sum_{j=1}^{r(N)} \langle \phi \,,\, \sqrt{\sigma}_j \mathbf{e}_j \rangle_H \sqrt{\sigma}_j \mathbf{e}_j = \sum_{j=1}^{r(N)} \langle \phi \,,\, \mathbf{e}_j \rangle_{L^2(P)} \mathbf{e}_j, \quad \phi \in H$$

be its spectral projection. The following perturbation bound was used by [ZB05; KG00]: if \hat{T}_K is a finite-rank estimate of the operator T_K with precision on the order of the Nth spectral gap with $\|T_K - \hat{T}_K\|_{\text{op}} \leq [\sigma_{r(N)} - \sigma_{r(N)+1}]/4$, then the eigenspaces H_N of T_K and \hat{H}_N of the leading r(N) eigenvalues of \hat{T}_K must also be close with $\|P_N - P_{\hat{H}_N}\|_{\text{op}} \leq 2/[\sigma_{r(N)} - \sigma_{r(N)+1}]\|T_K - \hat{T}_K\|_{\text{op}}$.

LEMMA 4.6 [Consistency of spectral projections]. In the setting of Lemma 4.5, let $\mathbf{y}_1, \dots, \mathbf{y}_n$ denote the orthonormal (for the scalar product $\langle \cdot, \cdot \rangle_n = \langle \cdot, \cdot \rangle_{\mathbb{R}^n}/n$ so that $\|\mathbf{y}_i\|_{\mathbb{R}^n} = \sqrt{n}$) eigenvectors of the empirical Gram matrix \mathbf{K}_n :

$$\mathbf{K}_{n}[\mathbf{y}] = \sum_{i=1}^{n} \hat{\sigma}_{i} \langle \mathbf{y} , \mathbf{y}_{i} \rangle_{n} \mathbf{y}_{i}, \quad \mathbf{y} \in \mathbb{R}^{n}.$$

$$(4.4)$$

Then, with $\mathbf{y}_i = (y_i^1, \dots, y_i^n) \in \mathbb{R}^n$,

$$\hat{e}_i(x) = \frac{1}{\hat{\sigma}_i} R_n^* [\mathbf{y}_i](x) = \frac{1}{\hat{\sigma}_i} \frac{1}{n} \sum_{i=1}^n y_i^j K(x, X_j), \quad i = 1, \dots, n$$
(4.5)

denote the eigenfunctions of the empirical integral operator T_n (with normalization $\|\sqrt{\hat{\sigma}_i}\hat{\mathbf{e}}_i\|_H \equiv 1$ and $\|\hat{\mathbf{e}}_i\|_{L^2(P)} \approx 1$):

$$T_n[\phi](x) = \sum_{i=1}^n \hat{\sigma}_i \langle \phi, \sqrt{\hat{\sigma}_i} \hat{\mathbf{e}}_i \rangle_H \sqrt{\hat{\sigma}_i} \hat{\mathbf{e}}_i(x), \quad \phi \in H.$$

Let $N \in \mathbb{N}$ and P_N (resp. $P_{\hat{H}_N}$) denote the spectral projection operator on the eigenspace of the leading r(N) eigenvalues of T_K (resp. T_n) and I_H denote the identity on H. Then, for any $\psi \in H$,

$$P_{\hat{H}_N}[\psi] = \sum_{i=1}^{r(N)} \hat{\sigma}_j \langle \psi \,,\, \hat{e}_j \rangle_H \hat{e}_j \to P_N[\psi] = \sum_{i=1}^{r(N)} \sigma_j \langle \psi \,,\, e_j \rangle_H e_j, \quad \textit{as } n \to \infty$$

in H in probability, and, if $n \ge 128\kappa^2\tau/[\sigma_N - \sigma_{N+1}]^2$, then

$$\sum_{j=1}^{r(N)} \lVert (I_H - P_N) \sqrt{\hat{\sigma}_j} \hat{\mathbf{e}}_j \rVert_H^2 + \sum_{j=r(N)+1}^n \lVert P_N \sqrt{\hat{\sigma}_j} \hat{\mathbf{e}}_j \rVert_H^2 \leq \frac{32\kappa^2 \tau}{(\sigma_{r(N)} - \sigma_{r(N)+1})^2 n}$$

with probability at least $1 - 2e^{-\tau}$.

4.3 Kernel von Mises estimator

Consistency of the estimated basis, via a continuous mapping theorem, implies consistency of the pathwise derivatives of θ evaluated along the estimated perturbation directions. The combination of the estimated basis and the estimated projection coefficients results in a consistent plug-in estimate of the regularized surrogate IF. We conclude with the following summary of our results:

Theorem 4.7 [consistency of the kernel von Mises estimator]. Let K be a Mercer kernel on (\mathcal{X}, P) generating the rkHs H and let X_1, \ldots, X_n be an i.i.d. sample from P. Let θ be a pathwise differentiable functional on P with derivative $D\theta_P$ and influence function $\psi_P \in L^2_0(P)$ for $P \in \mathcal{P}$. Assume that $D\theta_P$, equivalently ψ_P , are continuous in $P \in \mathcal{P}$ in an appropriate sense and that \hat{f} is a consistent estimator of the density of P in a compatible notion of convergence. Let $\{\hat{e}_j\}$ and $\{\hat{\sigma}_j\}$ be the Nyströrm estimators of the eigenfunctions and eigenvalues of T_K . For a fixed rank $1 \le r \le n$ and regularization loading $\lambda \ge 0$, let

$$\psi_{\lambda}^{r}(x) := \sum_{j=1}^{r} \frac{D\theta_{P}[e_{j}]}{1 + 2\lambda/\sigma_{j}} e_{j}(x), \quad \hat{\psi}_{\lambda}^{r}(x) := \sum_{j=1}^{r} \frac{1}{1 + 2\lambda/\hat{\sigma}_{j}} \left[\frac{d}{dt} \theta(\hat{f}_{t}^{j}) \right]_{|t=0} \hat{e}_{j}(x)$$
(4.6)

denote the rank-r approximation of ψ_P and its plug-in estimator obtained by replacing the unknown σ_j , \mathbf{e}_j , $D\theta_P[\mathbf{e}_j]$ with their estimates. The pathwise derivative can be computed along, e.g., the linear perturbation $\hat{f}_t^j = [1+t\hat{\mathbf{e}}_j]\hat{f}$ since the scores \mathbf{e}_j and $\hat{\mathbf{e}}_j$ are bonded. Then $\|\hat{\psi}_\lambda^r - \psi_{P,\lambda}^r\|_H \to 0$ as $n \to \infty$ in probability and there exist sequences $r(n) \to \infty$ increasing and $\lambda(n) \to 0$ decreasing such that $\|\hat{\psi}_\lambda^r - \psi_P\|_{L^2(P)} \to 0$ as $n \to \infty$ in probability.

Limitations and future work Our spectral formula (3.5) and kernel implementation (4.6) aim to enable automation of methods based on asymptotic analysis and first-order techniques. These methods, whether carried out analytically or numerically, require theoretical justification and provide approximations that might be more or less accurate in a particular problem. For statistical inference, this is similar to the validity of bootstrap [Efr92]. It is hoped that the ideas provided here will allow leveraging efficient computation with PSD kernels [RCR15; Ste+20; Che+25], not considered here, for the applications described in the Introduction. However, further theoretical work is required: Downstream tasks, such as debaised machine learning [Che+18], make assumptions on the rate of convergence, e.g., $o(n^{-1/4})$, of the IF estimator. While we discuss some of the ingredients to study rates for our estimator, we only show consistency here and will investigate the rates in follow-up work. Furthermore, to unlock automation in earnest, further work is required to develop efficient estimates of the pathwise derivatives with automatic differentiation. Two strategies are possible: (i) introducing explicit weights $w_i = 1/n$ for each observation and perturbing this distribution; (ii) perturbing the spatial location of the observation X_i and working with the duality of Wasserstein and Fisher-Rao tangent vectors.

Acknowledgements I am grateful to Jan-Christian Hütter, Francesca Molinari, Kengo Kato, Kenji Fukumizu, Kyra Gan and Promit Ghosal for stimulating discussions, their support and interest. I thank the anonymous reviewers for their service, valuable feedback and suggestions to improve the exposition.

References

- [AGS17] I. Andrews, M. Gentzkow, and J. M. Shapiro. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments". *The Quarterly Journal of Economics* (2017).
- [AGS20a] I. Andrews, M. Gentzkow, and J. M. Shapiro. "On the informativeness of descriptive statistics for structural estimates". *Econometrica* 88.6 (2020), pp. 2231–2258.
- [AGS20b] I. Andrews, M. Gentzkow, and J. M. Shapiro. "Transparency in structural research". *Journal of Business & Economic Statistics* 38.4 (2020), pp. 711–722.
- [Bac24] F. Bach. Learning theory from first principles. MIT press, 2024.
- [Bae+22] J. Bae et al. "If influence functions are the answer, then what is the question?" *Advances in Neural Information Processing Systems* 35 (2022), pp. 17953–17967.
- [BGM20] T. Broderick, R. Giordano, and R. Meager. "An automatic finite-sample robustness metric: when can dropping a little data make a big difference?" *arXiv preprint arXiv:2011.14999* (2020).
- [Bic+93] P. J. Bickel et al. *Efficient and adaptive estimation for semiparametric models*. Johns Hopkins University Press Baltimore, 1993.
- [Bic75] P. J. Bickel. "One-step Huber estimates in the linear model". *Journal of the American Statistical Association* 70.350 (1975), pp. 428–434.
- [Bos00] D. Bosq. *Linear processes in function spaces: theory and applications*. Vol. 149. Springer Science & Business Media, 2000.
- [BR07] V. I. Bogachev and M. A. S. Ruas. *Measure theory*. Vol. 1. 1. Springer, 2007.
- [Bre+19] W. Brendel et al. "Accurate, reliable and fast robustness evaluation". *Advances in neural information processing systems* 32 (2019).
- [BRV19] D. Burt, C. E. Rasmussen, and M. Van Der Wilk. "Rates of convergence for sparse variational Gaussian process regression". *International Conference on Machine Learning*. PMLR. 2019, pp. 862–871.
- [BRV20] D. R. Burt, C. E. Rasmussen, and M. Van Der Wilk. "Convergence of sparse variational inference in Gaussian processes regression". *Journal of Machine Learning Research* 21.131 (2020), pp. 1–63.
- [Cat+00] E. A. Catchpole et al. "Factors influencing Soay sheep survival". *Journal of the Royal Statistical Society Series C: Applied Statistics* 49.4 (2000), pp. 453–472.
- [CC23] T. Christensen and B. Connault. "Counterfactual sensitivity and robustness". *Econometrica* 91.1 (2023), pp. 263–298.
- [Cha87] G. Chamberlain. "Asymptotic efficiency in estimation with conditional moment restrictions". *Journal of Econometrics* 34.3 (1987), pp. 305–334.
- [Cha92] G. Chamberlain. "Efficiency bounds for semiparametric regression". *Econometrica: Journal of the Econometric Society* (1992), pp. 567–596.
- [Che+18] V. Chernozhukov et al. *Double/debiased machine learning for treatment and structural parameters*. 2018.

- [Che+22] V. Chernozhukov et al. "Locally robust semiparametric estimation". *Econometrica* 90.4 (2022), pp. 1501–1535.
- [Che+25] Y. Chen et al. "Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations". *Communications on Pure and Applied Mathematics* 78.5 (2025), pp. 995–1041.
- [Cho+24] B. Cho et al. "Kernel debiased plug-in estimation: Simultaneous, automated debiasing without influence functions for many target parameters". *Proceedings of machine learning research* 235 (2024), p. 8534.
- [CLV19] M. Carone, A. R. Luedtke, and M. J. Van Der Laan. "Toward computerized efficient estimation in infinite-dimensional models". *Journal of the American Statistical Association* (2019).
- [CS08] A. Christmann and I. Steinwart. "Support vector machines" (2008).
- [Dud18] R. M. Dudley. *Real analysis and probability*. Chapman and Hall/CRC, 2018.
- [Efr92] B. Efron. "Bootstrap methods: another look at the jackknife". Breakthroughs in statistics: Methodology and distribution. Springer, 1992, pp. 569–593.
- [FM09] J. Ferreira and V. Menegatto. "Eigenvalues of integral operators defined by smooth positive definite kernels". *Integral Equations and Operator Theory* 64.1 (2009), pp. 61–81.
- [FM15] G. E. Fasshauer and M. J. McCourt. Kernel-based approximation methods using Matlab. Vol. 19. World Scientific Publishing Company, 2015.
- [Fra+15] C. E. Frangakis et al. "Deductive derivation and turing-computerization of semiparametric efficient estimation". *Biometrics* 71.4 (2015), pp. 867–874.
- [FS19] Z. Fang and A. Santos. "Inference on directionally differentiable functions". *The Review of Economic Studies* 86.1 (2019), pp. 377–412.
- [Gro+23] R. Grosse et al. "Studying large language model generalization with influence functions". *arXiv* preprint arXiv:2308.03296 (2023).
- [Guo+20] H. Guo et al. "Fastif: Scalable influence functions for efficient model interpretation and debugging". arXiv preprint arXiv:2012.15781 (2020).
- [Hin+22] O. Hines et al. "Demystifying statistical learning based on efficient influence functions". *The American Statistician* 76.3 (2022), pp. 292–304.
- [HM95] J. L. Horowitz and C. F. Manski. "Identification and robustness with contaminated and corrupted data". *Econometrica: Journal of the Econometric Society* (1995), pp. 281–302.
- [Hub64] P. J. Huber. "Robust Estimation of a Location Parameter". *The Annals of Mathematical Statistics* 35.1 (1964), pp. 73–101.
- [Hub72] P. J. Huber. "The 1972 wald lecture robust statistics: A review". *The Annals of Mathematical Statistics* 43.4 (1972), pp. 1041–1067.
- [Hub92] P. J. Huber. "Robust estimation of a location parameter". *Breakthroughs in statistics: Methodology and distribution*. Springer, 1992, pp. 492–518.
- [IH81] I. A. Ibragimov and R. Z. Has' Minskii. Statistical estimation: asymptotic theory. Vol. 16. 1981.
- [IN22] H. Ichimura and W. K. Newey. "The influence function of semiparametric estimators". *Quantitative Economics* 13.1 (2022), pp. 29–61.
- [Jor93] M. A. Jorgensen. "Influence functions for iteratively defined statistics". *Biometrika* 80 (1993), pp. 253–253.
- [JWZ22] M. Jordan, Y. Wang, and A. Zhou. "Empirical gateaux derivatives for causal inference". *Advances in Neural Information Processing Systems* 35 (2022), pp. 8512–8525.
- [Kat87] T. Kato. "Variation of discrete spectra". Communications in Mathematical Physics 111 (1987), pp. 501–504.
- [Ken24] E. H. Kennedy. "Semiparametric doubly robust targeted double machine learning: a review". Handbook of Statistical Methods for Precision Medicine (2024), pp. 207–236.
- [KG00] V. Koltchinskii and E. Giné. "Random matrix approximation of spectra of integral operators" (2000).
- [KL17] P. W. Koh and P. Liang. "Understanding black-box predictions via influence functions". *International conference on machine learning*. PMLR. 2017, pp. 1885–1894.
- [KL76] Y. A. Koshevnik and B. Y. Levit. "On a Non-Parametric Analogue of the Information Matrix". Theory of Probability & Its Applications 21.4 (1976), pp. 738–753.
- [Kla87] C. A. Klaassen. "Consistent estimation of the influence function of locally asymptotically linear estimators". *The Annals of Statistics* 15.4 (1987), pp. 1548–1562.
- [LCL15] A. R. Luedtke, M. Carone, and M. J. van der Laan. "Discussion of "Deductive derivation and turing-computerization of semiparametric efficient estimation" by Frangakis et al." *Biometrics* 71.4 (2015), pp. 875–879.
- [Lue97] D. G. Luenberger. Optimization by vector space methods. John Wiley & Sons, 1997.

- [Mad+18] A. Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks". *International Conference on Learning Representations*. 2018.
- [Mik+98] S. Mika et al. "Kernel PCA and de-noising in feature spaces". *Advances in neural information processing systems* 11 (1998).
- [Mis47] R. von Mises. "On the asymptotic distribution of differentiable statistical functions". *The annals of mathematical statistics* 18.3 (1947), pp. 309–348.
- [Muk18] Y. Mukhin. "Sensitivity of regular estimators". arXiv preprint arXiv:1805.08883 (2018).
- [Muk19] Y. Mukhin. "Geometric methods in econometrics and statistics". PhD thesis. Massachusetts Institute of Technology, 2019.
- [Muk21] Y. Mukhin. On Robustness of Counterfactuals in Structural Models. Presented at the NeurIPS Workshop on Robustness and misspecification in probabilistic modeling. 2021.
- [New90] W. K. Newey. "Semiparametric efficiency bounds". Journal of applied econometrics 5.2 (1990), pp. 99–135.
- [New94] W. K. Newey. "The asymptotic variance of semiparametric estimators". Econometrica: Journal of the Econometric Society (1994), pp. 1349–1382.
- [Pin12] I. Pinelis. "Optimum bounds for the distributions of martingales in Banach spaces". *arXiv preprint* arXiv:1208.2200 (2012).
- [PR16] V. I. Paulsen and M. Raghupathi. *An introduction to the theory of reproducing kernel Hilbert spaces*. Vol. 152. Cambridge university press, 2016.
- [Pru+20] G. Pruthi et al. "Estimating training data influence by tracing gradient descent". *Advances in Neural Information Processing Systems* 33 (2020), pp. 19920–19930.
- [RBD10] L. Rosasco, M. Belkin, and E. De Vito. "On Learning with Integral Operators." *Journal of Machine Learning Research* 11.2 (2010).
- [RCR15] A. Rudi, R. Camoriano, and L. Rosasco. "Less is more: Nyström computational regularization". Advances in neural information processing systems 28 (2015).
- [Roy10] H. Royden. Real Analysis. 2010.
- [Rus87] J. Rust. "Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher". Econometrica: Journal of the Econometric Society (1987), pp. 999–1033.
- [Sch+23] A. Schioppa et al. "Theoretical and practical perspectives on what influence functions do". Advances in Neural Information Processing Systems 36 (2023), pp. 27560–27581.
- [Sem20] V. Semenova. "Generalized lee bounds". arXiv preprint arXiv:2008.12720 (2020).
- [Sem25] V. Semenova. "Debiased Machine Learning of Aggregated Intersection Bounds and Other Causal Parameters". *Available at SSRN 5134514* (2025).
- [SFL11] B. K. Sriperumbudur, K. Fukumizu, and G. R. Lanckriet. "Universality, Characteristic Kernels and RKHS Embedding of Measures." *Journal of Machine Learning Research* 12.7 (2011).
- [Sha+05] J. Shawe-Taylor et al. "On the eigenspectrum of the Gram matrix and the generalization error of kernel-PCA". *IEEE Transactions on Information Theory* 51.7 (2005), pp. 2510–2522.
- [SND18] A. Sinha, H. Namkoong, and J. Duchi. "Certifying Some Distributional Robustness with Principled Adversarial Training". *International Conference on Learning Representations*. 2018.
- [SS09] E. M. Stein and R. Shakarchi. *Real analysis: measure theory, integration, and Hilbert spaces*. Princeton University Press, 2009.
- [SS12] I. Steinwart and C. Scovel. "Mercer's theorem on general domains: On the interaction between measures, kernels, and RKHSs". *Constructive Approximation* 35 (2012), pp. 363–417.
- [SS20] A. Solin and S. Särkkä. "Hilbert space methods for reduced-rank Gaussian process regression". Statistics and Computing 30.2 (2020), pp. 419–446.
- [SS22a] B. K. Sriperumbudur and N. Sterge. "Approximate kernel PCA: Computational versus statistical trade-off". *The Annals of Statistics* 50.5 (2022), pp. 2713–2736.
- [SS22b] N. Sterge and B. K. Sriperumbudur. "Statistical optimality and computational efficiency of nystrom kernel pca". *Journal of Machine Learning Research* 23.337 (2022), pp. 1–32.
- [Ste+20] N. Sterge et al. "Gain with no pain: Efficiency of kernel-pca by nyström sampling". *International Conference on Artificial Intelligence and Statistics*. PMLR. 2020, pp. 3642–3652.
- [Ste56] C. Stein. "Efficient Nonparametric Testing and Estimation". Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. Berkeley, Calif.: University of California Press, 1956, pp. 187–195.
- [Sun05] H. Sun. "Mercer theorem for RKHS on noncompact sets". Journal of Complexity 21.3 (2005), pp. 337–349.
- [Vaa00] A. W. van der Vaart. Asymptotic statistics. Vol. 3. Cambridge university press, 2000.
- [Vaa91] A. W. van der Vaart. "On differentiable functionals". The Annals of Statistics (1991), pp. 178–204.
- [Vil03] C. Villani. Topics in optimal transportation. Vol. 58. American Mathematical Soc., 2003.

- [VR06] M. J. Van Der Laan and D. Rubin. "Targeted maximum likelihood learning". *The international journal of biostatistics* 2.1 (2006).
- [VV+08] A. W. Van Der Vaart, J. H. Van Zanten, et al. "Reproducing kernel Hilbert spaces of Gaussian priors". *IMS Collections* 3 (2008), pp. 200–222.
- [Wai19] M. J. Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*. Vol. 48. Cambridge university press, 2019.
- [Wen04] H. Wendland. Scattered data approximation. Vol. 17. Cambridge university press, 2004.
- [ZB05] L. Zwald and G. Blanchard. "On the convergence of eigenspaces in kernel principal component analysis". Advances in neural information processing systems 18 (2005).

A Pathwise derivatives and von Mises formula

Tangent space [KL76], [Bic+93, s3.2], [Vaa00, s25.3] and also [Vii03, s8.1.2] At each $P \in \mathcal{P}$ we consider perturbations to P in \mathcal{P} along one-dimensional parametric submodels $t \mapsto P_t \in \mathcal{P}$ with parameter $t \in [0,\epsilon)$ and $P = P_{t=0}$. These perturbations must be smooth and admit infinitesimal directions of perturbations; if we think of $\{P_t\}_t$ as a curve through P in the space of probability measures, what is required is that it has a tangent vector at P. Let's assume that measures in our model are absolutely continuous $P = \rho \cdot \mathcal{L}^d$ with density function ρ with respect to the Lebesgue measure \mathcal{L}^d on \mathbb{R}^d . The direction of perturbation P_t can then be identified with the time-derivative of the density along the curve $\partial_t \rho_t(x)$ for each point $x \in \mathcal{X} \subset \mathbb{R}^d$. The kinds of perturbations that are relevant for defining the influence function do not change the support of the distribution P, so $\partial_t \rho_t/\rho$ is well-defined, and it turns out to be more convenient mathematically to work with the score function

$$\phi(x) \coloneqq \partial_{t|t=0} \log \rho_t(x), \qquad x \in \mathcal{X} \subset \mathbb{R}^d.$$
 (A.1)

The score function $\phi: \mathcal{X} \to \mathbb{R}^2$ is the tangent vector to the curve P_t , the infinitesimal change in P along the curve. The derivative in (A.1), need not hold pointwise, but rather in the Hellinger norm:

$$\lim_{t \to 0} \int_{\mathcal{X}} \left[t^{-1} (\sqrt{\rho_t} - \sqrt{\rho}) - 2^{-1} \phi(x) \sqrt{\rho} \right]^2 d\mathcal{L}^d(x). \tag{A.2}$$

The existence of this limit implies that $\int \phi dP = 0$ and $\int \phi^2 dP < +\infty$. We denote the space of all such function by $L_0^2(P)$, indicating with the subscript that it is the subspace of $L^2(P)$ of all functions that have P-mean zero.

Pathwise derivative A functional $\theta: \mathcal{P} \to \mathbb{R}$ is pathwise differentiable at P (with respect to a collection of paths) if, (i) for a given regular path P_t the composition $t \mapsto \theta(P_t)$ is a differentiable function from $[0, \epsilon)$ to \mathbb{R} at time t = 0; and (ii) there is a bounded linear map $D\theta_P: L_0^2(P) \to \mathbb{R}$ such that

$$\lim_{t \to 0} t^{-1} [\theta(P_t) - \theta(P)] = D\theta_P[\phi]$$
(A.3)

for every score function $\phi \in L^2_0(P)$ and every admissible path P_t with score ϕ . The definitions of the score and pathwise derivative are those of Riemannian geometry that extends techniques of calculus to nonlinear spaces. Notions of smoothness are more nuanced in this infinite dimensional setting, see the penultimate paragraph in [Vil03, s3.2.3]

Influence function By Reisz' representation theorem for Hilbert spaces [SS09, 4.5], [Dud18, 5.5.1], for the bounded linear functional $D\theta_P: L^2_0(P) \to \mathbb{R}$ there exists a fixed score $\psi_P \in L^2_0(P)$ such that the action of the derivative $D\theta_P$ on any score v has the following representation in terms of the inner product:

$$D\theta_P[\phi] = \langle \phi, \psi_P \rangle_{L^2(P)}, \quad \text{for all } \phi \in L_0^2(P).$$
 (A.4)

The Riesz representer ψ_P of the derivative functional of parameter $\theta(P)$ is known as the influence function. It has the useful geometric interpretation of the gradient score for parameter θ , i.e., the direction of perturbation to P such that the functional changes post rapidly:

$$D\theta_P[\phi] = \langle \phi, \psi_P \rangle_{L^2(P)} \le \|\phi\|_{L^2(P)} \|\psi\|_{L^2(P)}, \quad \phi \in L^2_0(P)$$
(A.5)

where equality holds if and only if $v=c\psi$ by the Cauchy-Schwarz inequality. If we restrict the norm of the perturbation $\|\phi\|_{L^2(P)} \le 1$ as in Lemma 3.1 and use linearity of $D\theta_P$, it follows that the unique maximum in (A.5) is achieved at the score $\psi_P/\|\psi_P\|_{L^2(P)}$ and the norm of the influence function $\|\psi_P\|_{L^2(P)}$ is the largest sensitivity of θ to a perturbation at P.

A.1 Proof of Theorem 2.1

We begin with a score calculation for the original von Mises [Mis47] calculation with a point-mass perturbation. The example shows that this singular perturbation does not have a score function, hence the need to smooth out the point mass in general applications of this technique as in [IN22; CLV19].

Example A.1 Score for the von Mises calculation. Let P and δ_x be a continuous distribution and a point mass on \mathcal{X} . Take the path $[0,1] \ni t \mapsto P_t = (1-t)P_t + t\delta_x$ for the calculations of von Mises and Huber [Hub92; Hub92]:

$$\partial_{t|t=0}\theta(P_t) = \lim_{t \to 0} t^{-1} [\theta(P_t) - \theta(P)] = \int_{\mathcal{X}} \psi_P \, \mathrm{d}[\delta_x - P] = \psi_P(x) \tag{A.6}$$

which cam be made rigorous if ψ_P is, for instance, continuous at x. However, this perturbation to P is not smooth in the sense of differentiability in quadratic mean (A.2). We compute the tangent vector to P_t at t=1/3 and t=0. Take $\mu=P+\delta_x$ to be the dominating measure for the path, so that $f_t(z)=(1-t)\mathbbm{1}_{\mathcal{X}\setminus x}(z)+t\mathbbm{1}_{\{x\}}(z)$ is the Radon-Nikodym derivative at time t. The corresponding embedding of P_t into the space of square roots of measures H_2 [BR07, c4] is $\sqrt{f_t}(z)=\sqrt{1-t}\mathbbm{1}_{\mathcal{X}\setminus x}(z)+\sqrt{t}\mathbbm{1}_x(z)$. Note that the path in no longer linear in the embedding space. Also note that $d_{\mathsf{TV}}(P_t,P_{t+h})=2\sup_A|P_{t+h}[A]-P_t[A]|=2h$ is continuous in H_2 . For t=1/3, the density $\sqrt{f_t}(z)$ can be differentiated pointwise for each $z\in\mathcal{X}$ to find the score function $\frac{1}{2}\phi_{\frac{1}{3}}(z)\sqrt{f_{\frac{1}{3}}}(z)=-\frac{1}{2}[\frac{2}{3}]^{-1/2}\mathbbm{1}_{\mathcal{X}\setminus x}(z)+\frac{1}{2}[\frac{1}{3}]^{-1/2}\mathbbm{1}_x(z)$ and verify differentiability in quadratic mean

$$\begin{split} & \left\| t^{-1} [\sqrt{f}_{\frac{1}{3}+t} - \sqrt{f}_{\frac{1}{3}}] - \frac{1}{2} \phi_{\frac{1}{3}}(z) \sqrt{f}_{\frac{1}{3}}(z) \right\|_{H_{2}}^{2} \\ & = \left\{ t^{-1} \left[\sqrt{\frac{2}{3}-t} - \sqrt{\frac{2}{3}} \right] - (-1) \frac{1}{2} (\frac{2}{3})^{-1/2} \right\}^{2} P[\mathcal{X} \setminus x] \\ & + \left\{ t^{-1} \left[\sqrt{\frac{1}{3}+t} - \sqrt{\frac{1}{3}} \right] - \frac{1}{2} (\frac{1}{3})^{-1/2} \right\}^{2} \delta_{\{x\}}[x] \\ & = o(1) \quad \text{as } t \to 0. \end{split}$$

Repeating the calculation with t=0, we note that the right derivative of \sqrt{t} is infinite, so there is no score function with finite μ -a.e. values that can satisfy (A.2). Consequently, the path P_t is not smooth in the Hellinger norm and does not have a tangent vector at t=0.

To remedy the lack of smoothness and extend the von Mises formula (A.6) to all pathwise differentiable functionals, the point-mass perturbations must be mollified.

LEMMA A.2 [Approximation to von Mises perturbation with a score]. Suppose K is a bounded probability density function on \mathbb{R}^d with support in the unit ball $|x| \leq 1$. Then

$$K^{\delta}(x) := \delta^{-d} K(\delta^{-1} x), \quad \delta > 0 \tag{A.7}$$

is an approximation to the identity in the sense of [SS09, p109], that is

- (i) $\int_{\mathbb{R}^d} K^{\delta}(x) \ dx = 1.$
- (ii) $|K^{\delta}(x)| \leq A\delta^{-d}$ for all $\delta > 0$.
- (iii) $|K^{\delta}(x)| \leq A\delta/|x|^{d+1}$ for all $\delta > 0$ and $x \in \mathbb{R}^d$.

Here A is a constant independent of δ .

Suppose P_0 is a probability measure that is absolutely continuous with respect to the Lebesgue measure \mathcal{L}^d with a continuous density function f_0 . Let

$$K^{\delta,z}(x) := \left[\int_{\{f_0 > \delta\}} K^{\delta}(z - x) \, \mathrm{d}x \right]^{-1} \mathbb{1}_{\{f_0 > \delta\}}(x) K^{\delta}(z - x),$$
 (A.8)

then for $z \in \{f_0 > 0\}$ we have $K^{\delta,z}(x) = K^{\delta}(z-x)$ for all sufficiently small $\delta > 0$ (which depend on z that is fixed throughout). Furthermore,

$$f_t^{\delta,z}(x) := (1-t)f_0(x) + tK^{\delta,z}(x) \tag{A.9}$$

is a curve of probability densities with parameter t in an interval around 0, that is differentiable in quadratic mean (A.2) at t=0 with the score function

$$\phi_{\delta,z}(x) \coloneqq \frac{d}{dt}_{|t=0} \log f_t^{\delta,z}(x) = \frac{K^{\delta,z}(x)}{f_0(x)} - 1. \tag{A.10}$$

Proof. The three properties of an approximation to the identity follow respectively from dilation invariance of Lebesgue integral, boundedness and compact support of the kernel K.

Fix a $z \in \{f_0 > 0\}$. By the continuity of f_0 there is a neighborhood \mathcal{N} of z such that f_0 is bounded away from zero on \mathcal{N} . For all $\delta > 0$ small enough, $x \mapsto K^{\delta}(z-x)$ is supported in \mathcal{N} by bounded support and dilation construction, so that $K^{\delta}(z-x) \equiv K^{\delta,z}(x)$. Therefore for t negative and close enough to 0, function $f_{t,\delta,z}$ is a well-defined probability density and its score functions

$$\phi_{t,\delta,z}(x) := \frac{d}{dt} \log f_t^{\delta,z}(x) = \frac{K^{\delta,z}(x) - f_0(x)}{f_t^{\delta,z}(x)}$$
(A.11)

are bounded in $x \in \mathcal{X}$. To check (A.2)

$$\int_{\mathcal{X}} \left[\frac{\sqrt{f_{t,d,z}} - \sqrt{f_0}}{t} - \frac{1}{2} \phi_{\delta,z} \sqrt{f_0} \right]^2 dx \to 0 \quad \text{as } t \to 0,$$
(A.12)

note that the map $t\mapsto \sqrt{f_{t,\delta,z}}(x)$ is continuously differentiable for each x in a neighborhood $t\in (-\epsilon,\epsilon)$ of 0 with the derivative $\frac{1}{2}v_{t,\delta,z}(x)\sqrt{f_{t,\delta,z}(x)}$, therefore the problem is to justify the change of order of the limit $t\to 0$ and the integral $\int_{\mathcal{X}} dx$ in (A.12). By the fundamental theorem of calculus, we can write the difference quotient as

$$\sqrt{f_{0+ht}(x)} - \sqrt{f_0(x)} = \int_0^1 \frac{d}{dh} \sqrt{f_{0+ht}(x)} \, \mathrm{d}h = \int_0^1 \frac{1}{2} \phi_{0+ht}(x) \sqrt{f_{0+ht}} \cdot t \, \mathrm{d}h.$$

Therefore, by $(a-b)^2 \le 2a^2 + 2b^2$ and Cauchy-Schwarz inequality, we have the pointwise bound

$$\left[\frac{\sqrt{f_{t,d,z}(x)} - \sqrt{f_0}(x)}{t} - \frac{1}{2}\phi_{0,\delta,z}(x)\sqrt{f_0(x)} \right]^2 \\
\leq 2 \left[\int_0^1 \frac{1}{2}\phi_{ht,\delta,z}(x)\sqrt{f_{ht,\delta,z}} \, dh \right]^2 + 2\frac{1}{2}\phi_{\delta,z}(x)^2 f_0(x) \\
\leq \int_0^1 \frac{1}{2}\phi_{ht,\delta,z}(x)^2 f_{0+ht} \, dh + \phi_{\delta,z}(x)^2 f_0(x).$$

By the generalized Lebesgue dominated convergence theorem [Roy10, p89, t19], in order to conclude (A.12), it is sufficient to show that $\int_{\mathcal{X}} \int_0^1 \frac{1}{2} \phi_{ht,\delta,z}(x)^2 f_{0+ht} \, \mathrm{d}h \mathrm{d}x$ converges as $t \to 0$. By Fubini's theorem

$$\int_{\mathcal{X}} \int_{0}^{1} \frac{1}{2} \phi_{ht,\delta,z}(x)^{2} f_{0+ht} \, \mathrm{d}h \mathrm{d}x = \int_{0}^{1} \int_{\mathcal{X}} \frac{1}{2} \phi_{ht,\delta,z}(x)^{2} f_{0+ht} \, \mathrm{d}x \mathrm{d}h = \frac{1}{2} \int_{0}^{1} I_{ht,\delta,z} \, dh.$$

Since the scores (A.11) are bounded, the information matrix $I_{t,\delta,z}$ is continuous in t at 0, and the above integral converges to $I_{0,\delta,z}$.

Proof of Theorem 2.1. By the pathwise differentiability of functional θ , differentiability in quadratic mean of the path $t \to P_t^{\delta,z}$, and Riesz' representation we have

$$\frac{d}{dt}\Big|_{t=0} \theta(P_t^{\delta,z}) = D\theta_P[\phi_{\delta,z}]$$
$$= \int_{\mathcal{X}} \psi_P(x) \,\phi_{\delta,z}(x) \,\mathrm{d}P.$$

Assume that $\psi_P(x) = \psi_P(x) \mathbb{1}_{\{f_0>0\}}(x)$. Below P is fixed and we drop the subscript P for convenience. Using the score $\phi_{\delta,z}$ computed in Lemma A.2 and the fact that ψ has zero P-mean, have the expression for the pathwise derivative as the convolution of the influence function with the approximation to identity kernels:

$$\frac{d}{dt}\Big|_{t=0}\theta(P_t^{\delta,z}) = \int \psi_P(x) \left[K^{\delta}(z-x)/f_0(x) - 1 \right] dP$$

$$= \int_{\mathsf{spt}P} \psi_P(x) K^{\delta}(z-x) dx - 0$$

$$= (\psi_P * K^{\delta})(z).$$

It suffices to show that for each $\alpha > 0$ and M > 0 the set

$$E_{lpha} = \left\{z \in \mathsf{spt}P \; ; \; \limsup_{\delta o 0} \left| (\psi_P * K^\delta)(z) - \psi_P(z) \right| > 2lpha
ight\}$$

has zero Lebesgue measure, because then $E = \bigcup_{j=1}^{\infty} [E_{1/j} \cap \{|z| \leq j\}]$ has zero measure by monotonicity, and the assertion (2.1) of the Theorem holds at all points $z \in E^c$. Thus, we may assume that ψ_P has compact support and therefore belongs to $L^1(\mathbb{R}^d)$.

Because K^{δ} is a bounded probability density function, with support in $|x| \leq \delta$ by the dilation construction (A.7), we can write

$$\left| (\psi_P * K_\delta)(z) - \psi_P(z) \right| = \left| \int_{\mathbb{R}^d} \left[\psi_P(z - x) - \psi_P(z) \right] K_\delta(x) \, dx \right|$$

$$\leq \int_{\mathbb{R}^d} \left| \psi_{P_0}(z - x) - \psi_{P_0}(z) \right| K_\delta(x) \, dx$$

$$\leq \frac{c}{\delta^d} \int_{|x| \leq \delta} \left| \psi_{P_0}(z - x) - \psi_{P_0}(z) \right| \, dx.$$

Fix $\alpha>0$ and recall that continuous functions of compact support are dense in $L^1(\mathbb{R}^d)$ [SS09, p71], so that for each $\epsilon>0$ we can choose a function g with $\|\psi_P-g\|_{L^1(\mathbb{R}^d)}<\epsilon$. By the triangle inequality we can upper bound the expression above with

$$\frac{c}{\delta^d} \int_{|x| \le \delta} \left| \psi_P(z - x) - g(z - x) \right| dx + \frac{c}{\delta^d} \int_{|x| \le \delta} \left| g(z - x) - g(z) \right| dx + c' |g(z) - \psi_P(z)|.$$

By the continuity of g it follows that

$$\lim_{\delta \to 0} \frac{c}{\delta^d} \int_{|x| < \delta} \left| g(z - x) - g(z) \right| dx = 0, \quad \text{for all } z.$$

We find that

$$\limsup_{\delta \to 0} \left| (\psi_P * K_\delta)(z) - \psi_P(z) \right| \le c' \left| \psi_P - g \right|^*(z) + c' \left| g(z) - \psi_P(z) \right|,$$

where the superscript * indicates the Hardy-Littlewood maximal function:

$$f^*(x) := \sup_{B \ni x} \frac{1}{\mathscr{L}^d[B]} \int_B |f(y)| \, dy, \qquad \text{for } f \in L^1(\mathbb{R}^d), \quad x \in \mathbb{R}^d. \tag{A.13}$$

If we set

$$F_{\alpha} = \{z \in \operatorname{spt}P \; ; \; \left|\psi_{P} - g\right|^{*}(z) > \alpha\} \quad \text{and} \quad G_{\alpha} = \{z \in \operatorname{spt}P \; ; \; \left|\psi_{P}(z) - g(z)\right| > \alpha\}$$

then $E_{\alpha} \subset F_{\alpha} \cup G_{\alpha}$ by De Morgan's law since $E_{\alpha}^c \supset F_{\alpha}^c \cap G_{\alpha}^c$. Furthermore, by Chebyshev's inequality

$$\mathscr{L}^d[G_\alpha] \le \frac{1}{\alpha} \|\psi_{P_0} - g\|_{L^1(\mathbb{R}^d)},$$

and by the Hardy-Littlewood maximal inequality [SS09, p101]

$$\mathscr{L}^d[F_\alpha] \le \frac{3^d}{\alpha} \|\psi_{P_0} - g\|_{L^1(\mathbb{R}^d)}.$$

Recall that the function g was chosen such that $\|\psi_{P_0} - g\|_{L^1(\mathbb{R}^d)} < \epsilon$, so that

$$\mathscr{L}^d[E_{\alpha}] \leq c' \frac{3^d}{\alpha} \epsilon + c' \frac{1}{\alpha} \epsilon.$$

Since $\epsilon > 0$ is arbitrary, we conclude that $\mathscr{L}^d[E_\alpha] = 0$ and consequently $P[\bigcup_{j=1}^\infty E_{1/j}] = 0$.

B Spectral representation

B.1 Calculation for Lemma 3.1

The characterization of the influence function as a constrained optimizer was discussed in Appendix A around equation (A.5).

We verify the equivalence of the constrained problem and the penalized problem via an explicit calculation that is simple and instructive for the calculation of the spectral representation. Define the penalized objective function with penalty loading $\lambda_{pen} > 0$:

$$J'(u) := D\theta_P[u] + \lambda_{\mathsf{pen}} \|u\|_{L^2(P)}^2, \quad u \in L_0^2(P).$$
 (B.1)

Observer that J' is strictly convex on $L_0^2(P)$ by the Cauchy-Schwarz inequality. By the strict convexity, the unique minimum of J is attained at the tangent vector $u_0 \in L_0^2(P)$ where the derivative functional of J' vanishes [Lue97]:

$$DJ_{u_0}^{\prime}[v] = 0 \quad \text{for all } v \in L_0^2(P).$$
 (B.2)

To compute the derivative of J at some u, fix a direction $v \in L_0^2(P)$ of perturbation and compute the difference quotient

$$\begin{split} J^{\backprime}(u+\epsilon v) - J^{\backprime}(u) &= \left\{ D\theta_{P}[u+\epsilon v] + \lambda_{\mathsf{pen}} \|u+\epsilon v\|_{2,P}^{2} \right\} - \left\{ D\theta_{P}[u] + \lambda_{\mathsf{pen}} \|u\|_{2,P}^{2} \right\} \\ &= \left\{ \langle u+\epsilon v\,,\,\psi \rangle_{2,P} + \lambda_{\mathsf{pen}} \langle u+\epsilon v\,,\,u+\epsilon v \rangle_{2,P} \right\} \\ &- \left\{ \langle u\,,\,\psi \rangle_{2,P} + \lambda_{\mathsf{pen}} \langle u\,,\,u \rangle_{2,P} \right\} \\ &= \epsilon \left\{ \langle v\,,\,\psi \rangle_{2,P} + 2\lambda_{\mathsf{pen}} \langle v\,,\,u \rangle_{2,P} \right\} + O(\epsilon^{2}). \end{split} \tag{B.3}$$

We find that the gradient (Riesz representer) of the derivative functional of J' at vector u is

$$\nabla J'(u) = \psi + 2\lambda_{\mathsf{pen}}u. \tag{B.4}$$

Using Riesz' representation, the first order condition (B.2) becomes

$$\begin{split} 0 &= DJ_{u_0}^{\backprime}[v] = \left\langle v \,,\, \nabla J^{\backprime}(u) \right\rangle_{2,P} \\ &= \left\langle v \,,\, \psi_P + 2\lambda_{\mathsf{pen}} u_0 \right\rangle_{2,P} \quad \text{for all } v \in L^2_0(P). \end{split}$$

and conclude that $u_0 = -\psi/2\lambda_{pen}$ is the minimizer of J'.

From this explicit solution to the penalized problem (3.1) we see that the direction of solution is always along the influence function, larger penalty loading λ_{pen} leads to solution with a smaller $L^2(P)$ norm, and $\lambda_{\text{pen}}^* = 1/2$ uniquely identifies the influence function.

B.2 Calculation for Lemma 3.2

We define the projection of the influence function ψ_P on the ball B_M as the solution of the constrained optimization program. Define the penalized objective function J^{N} on $L^2_0(P)$ with the regularization loading $\lambda \geq 0$:

$$J''(u) \coloneqq D\theta_P[u] + \lambda_{\mathsf{pen}} \|u\|_{2,P}^2 + \lambda_{\mathsf{reg}} \|u\|_{L^2(P)}^2, \quad u \in L^2_0(P). \tag{B.5}$$

We observe that the constrained problem has the linear objective $D\theta_P[v]$, that the constraints are given by quadratic functionals and that the problem satisfies Slater's condition and that the strong convex duality holds.

The penalized objective $J^{\prime\prime}$ is strictly convex and the first order optimality condition

$$DJ_{u_0}^{"}[v] = 0, \quad \text{for all } v \in L^2$$
 (B.6)

is necessary and sufficient. Compute the difference quotient:

$$\begin{split} J''(u+\epsilon v) - J''(u) \\ &= \left\{D\theta_P[u+\epsilon v] + \lambda_{\mathsf{pen}} \|u+\epsilon v\|_{2,P}^2 + \lambda_{\mathsf{reg}} \|u+\epsilon v\|_H^2\right\} \\ &- \left\{D\theta_P[u] + \lambda_{\mathsf{pen}} \|u\|_{2,P}^2 + \lambda_{\mathsf{reg}} \|u\|_H^2\right\} \\ &= \left\{\langle u+\epsilon v\,,\,\psi\rangle_{2,P} + \lambda_{\mathsf{pen}} \langle u+\epsilon v\,,\,u+\epsilon v\rangle_{2,P} + \lambda_{\mathsf{reg}} \langle u+\epsilon v\,,\,u+\epsilon v\rangle_H\right\} \\ &- \left\{\langle u\,,\,\psi\rangle_{2,P} + \lambda_{\mathsf{pen}} \langle u\,,\,u\rangle_{2,P} + \lambda_{\mathsf{reg}} \langle u\,,\,u\rangle_H\right\} \\ &= \epsilon \left\{\langle v\,,\,\psi\rangle_{2,P} + 2\lambda_{\mathsf{pen}} \langle v\,,\,u\rangle_{2,P} + 2\lambda_{\mathsf{reg}} \langle v\,,\,u\rangle_H\right\} + O(\epsilon^2). \end{split} \tag{B.7}$$

Take the limit as $\epsilon \to 0$ to obtain:

$$\partial_{v} J^{\prime\prime}(u) = \langle v, \tilde{\theta} \rangle_{2,P} + 2\lambda_{\mathsf{pen}} \langle v, u \rangle_{2,P} + 2\lambda_{\mathsf{reg}} \langle v, u \rangle_{H}. \tag{B.8}$$

From the first order condition, as $\lambda_{\text{reg}} \to 0$, the optimal solution u_0 converges to that of the penalized but unregularized objective function J'.

B.3 Proof of Theorem 3.3

First we check that the relationship (3.4) between the inner products of $L_0^2(P)$ and H actually follows from the assumptions about the bases. Suppose $\{e_j\}$ and $\{\sqrt{\sigma_j}e_j\}$ are orthonormal bases (ONB) for $L_0^2(P)$ and H respectively and the operator $S:L_0^2(P)\to H$ is defined by (3.3). From the definition of the adjoint $S^*:H\to L_0^2(P)$

$$\langle Se_i, e_i \rangle_H = \langle e_i, S^*e_i \rangle_{2P}$$
 all i, j . (B.9)

By the ONB assumption,

$$1 = \langle \mathbf{e}_i , \mathbf{e}_i \rangle_{2,P} = \langle \sqrt{\sigma_i} \mathbf{e}_i , \sqrt{\sigma_i} \mathbf{e}_i \rangle_H \quad \text{all } i.$$
 (B.10)

On the other hand, applying the eigenfunction property to (B.10) and using bilinearity of the inner product

$$\langle e_i, e_i \rangle_{2,P} = \langle \sigma_i e_i, e_i \rangle_H = \langle S e_i, e_i \rangle_H \quad \text{all } i.$$
 (B.11)

Similarly, we check for $i \neq j$,

$$0 = \langle \frac{1}{\sqrt{\sigma_i}} S \mathbf{e}_i , \sqrt{\sigma_j} \mathbf{e}_j \rangle_H = \frac{\sqrt{\sigma_j}}{\sqrt{\sigma_i}} \langle \mathbf{e}_i , S^* \mathbf{e}_j \rangle_{2,P} \quad \text{all } i \neq j.$$
 (B.12)

Since $\sigma_j/\sigma_i \neq 0$ and $\{e_i\}$ is complete, it follows that e_j is an eigenfunction of S^* , and in the view of (B.11), the eigenvalue is 1 so that $S^*[e_j]$ must be equal to e_j . In other words, S^* is the inclusion operator $H \to L_0^2(P)$.

Next, we use the adjoint relationship (B.9) and (3.4) in the expression (B.8) for the directional derivative of the objective function J:

$$\partial_v J(u) = \langle v, \psi_P \rangle_{2,P} + 2\lambda_{\text{pen}} \langle v, u \rangle_{2,P} + 2\lambda_{\text{reg}} \langle v, u \rangle_H$$
 (B.13)

$$= \langle v, S\psi_P \rangle_H + 2\lambda_{pen} \langle v, Su \rangle_H + 2\lambda_{reg} \langle v, u \rangle_H.$$
 (B.14)

It follows that the H gradient (the representer in Riesz' representation for Hilbert spaces) of DJ_u is given by:

$$\delta_H J(u) = S[\psi_P] + 2\lambda_{\text{pen}} S[u] + 2\lambda_{\text{reg}} u \tag{B.15}$$

$$= \sum_{j} \left\{ \sigma_{j} \langle \psi , e_{j} \rangle_{2,P} + 2 \sigma_{j} \lambda_{\text{pen}} \langle u , e_{j} \rangle_{2,P} + 2 \lambda_{\text{reg}} \langle u , e_{j} \rangle_{2,P} \right\} e_{j}. \tag{B.16}$$

With this expansion of the gradient $\delta_H J(u)$, the first order condition

$$\delta_H J(\psi_\lambda) = 0, \qquad \psi_\lambda \in H$$
 (B.17)

of the penalized and regularized optimization program (3.2) becomes the follow system of equations:

$$0 = \sigma_j \langle \psi, \mathbf{e}_j \rangle_{L^2(P)} + 2\sigma_j \lambda_{\mathsf{pen}} \langle \psi_\lambda, \mathbf{e}_j \rangle_{L^2(P)} + 2\lambda_{\mathsf{reg}} \langle \psi_\lambda, \mathbf{e}_j \rangle_{L^2(P)}, \quad j \ge 1. \tag{B.18}$$

Solving for the $L_0^2(P)$ Fourier coefficients of the optimal solution ψ_{λ} :

$$\langle \psi_{\lambda} , e_{j} \rangle_{L^{2}(P)} = \frac{\sigma_{j}}{2\sigma_{j}\lambda_{\text{pen}} + 2\lambda_{\text{res}}} \langle \psi , e_{j} \rangle_{L^{2}(P)}, \quad j \geq 1.$$
 (B.19)

Conclude that the optimal solution of (3.2) has the following Fourier series representation

$$\psi_{P,\lambda}(x) = \sum_{i=1}^{\infty} \frac{1}{2\lambda_{\mathsf{pen}} + 2\lambda_{\mathsf{reg}}/\sigma_j} \Big[\langle \psi_P , e_j \rangle_{L^2(P)} \Big] e_j(x). \tag{B.20}$$

Observe that the sequence of $L^2(P)$ coefficients is shrunk toward zero by the eigenvalue sequence $\{\sigma_j\}$ and is in fact a valid sequence of coefficients for an element in H.

Finally, recall that $\langle \psi_P, e_j \rangle_{L^2(P)} = D\theta_P[e_j]$ and that the penalty loading should be $\lambda_{pen} = 1/2$ for the correct scaling of the influence function from Lemma 3.1.

C Nyström method

Our proofs of Lemmas 4.4, 4.5, 4.6 are modifications of [RBD10, Thm7, Prop10, Thm12].

C.1 Proof of Lemma 4.4

Define the sequence of random operators $\xi_i: H \to H$ given by

$$\xi_i[\phi] = \langle \phi, k_{X_i} \rangle_H k_{X_i} - T_H[\phi], \quad \phi \in H, \quad i = 1, \dots, n.$$
 (C.1)

We compute the norm of the continuous operator: for any orthonormal basis $\{\phi_j\}_{j\geq 1}$ of the rkHS H

$$||T_H||_{\mathsf{HS}}^2 = \sum_{j\geq 1} ||T_H \phi_j||_H^2$$

$$= \sum_{j\geq 1} ||\int_{\mathcal{X}} \phi_j(x) k_x \, \mathrm{d}P(x)||_H^2$$

$$= \sum_{j\geq 1} \left\langle \int_{\mathcal{X}} \phi_j(x) k_x \, \mathrm{d}P(x) , \int_{\mathcal{X}} \phi_j(x) k_x \, \mathrm{d}P(x) \right\rangle_H$$

$$= \sum_{j\geq 1} \int_{\mathcal{X}} \int_{\mathcal{X}} \left\langle \phi_j(x) k_x , \phi_j(y) k_y \right\rangle_H \, \mathrm{d}P(x) \mathrm{d}P(y)$$

$$= \sum_{j\geq 1} \int_{\mathcal{X}} \int_{\mathcal{X}} \phi_j(x) \phi_j(y) K(x,y) \, \mathrm{d}P(x) \mathrm{d}P(y)$$

$$= \int_{\mathcal{X}} \int_{\mathcal{X}} \left\{ \sum_{j\geq 1} \phi_j(x) \phi_j(y) \right\} K(x,y) \, \mathrm{d}P(x) \mathrm{d}P(y)$$

$$= \int_{\mathcal{X}} \int_{\mathcal{X}} \left\{ K(x,y) \right\} K(x,y) \, \mathrm{d}P(x) \mathrm{d}P(y) = ||K||_{L^2(P\otimes P)}^2$$

where we exchanged the Bochner integral with the inner product by Bochner integrability, used the reproducing property of the kernel, and the standard Mercer expansion of the kernel in the orthonormal basis that converges uniformly, exchanged the sum with the double integral by Fubini's.

Compute the Hilbert-Schmidt norm of the empirical operator, noting that k_{X_i} is the eigenfunction of the rank-1 operator:

$$\|\xi_i\|_{\mathsf{HS}} \le \|\phi(X_i)k_{X_i}\|_{\mathsf{HS}} + \|T_H\|_{\mathsf{HS}} \le |K(X_i, X_i)| + \|K\|_{L^2(P \otimes P)} \le 2\kappa.$$

This norm is an integrable real-valued random variable and therefore ξ_i is Bochner integrable with the expectation

$$E[\xi_i] = \int_{\mathcal{X}} \langle \cdot, k_x \rangle k_x \, \mathrm{d}P(x) - T_H = 0.$$

By the strong law of large numbers for a random sequences in a separable Hilbert space (the space of Hilbert-Schmidt operators on H in our case) [Bos00, Thm2.4]

$$||T_n - T_H||_{\mathsf{HS}} = \left\| \frac{1}{n} \sum_{i=1}^n \xi_i \right\|_{\mathsf{HS}} \to 0 \quad a.s.$$

Furthermore, applying the Hoeffding inequality for bounded (in norm, as verified above) random elements of a separable Hilbert space (the space of Hilbert-Schmidt operators on H) [Pin12], obtain

$$\left\| \frac{1}{n} \sum_{i=1}^{n} \xi_i \right\|_{\mathsf{HS}} \le \frac{2\kappa\sqrt{2\tau}}{\sqrt{n}} \tag{C.2}$$

with probability at least $1 - 2e^{-\tau}$.

C.2 Proof of Lemma 4.5

Applying [Kat87] to the empirical operator $B=T_n$ and the population counterpart operator $A=T_H$ defined on the separable rkHs H, for any nonnegative convex function Φ with $\Phi(0)=0$:

$$\sum_{j\geq 1} \Phi(\hat{\sigma}_j - \sigma_j) \leq \sum_{j\geq 1} \Phi(\gamma_j)$$

where $\{\gamma_j\}_{j\geq 1}$ is an extended by zero enumeration of the eigenvalues of the random operator

$$B - A = T_n - T_H = \frac{1}{n} \sum_{i=1}^{n} \xi_i$$

defined in equation (C.1).

We apply [Kat87] with the choice $\Phi(s)=|s|^p$ for $p\geq 1$. In particular, with p=2, this becomes

$$\sum_{j>1} |\hat{\sigma}_j - \sigma_j|^2 \le \sum_{j>1} |\gamma|_j^2 = ||T_n - T_H||_{\mathsf{HS}}^2 \le \frac{(2\kappa)^2 2\tau}{n}$$

with probability at least $1 - 2e^{-\tau}$ from the bound (C.2).

Recalling that the sup norm is the limit of the p-norms:

$$\begin{aligned} \sup_{j\geq 1} |\hat{\sigma}_j - \sigma_j| &= \lim_{p \to \infty} \left[\sum_{j\geq 1} (\hat{\sigma}_j - \sigma_j)^p \right]^{\frac{1}{p}} \leq \sup_{p \to \infty} \left[\sum_{j\geq 1} |\gamma|_j^p \right]^{\frac{1}{p}} = \sup_{j\geq 1} |\gamma_j| \\ &= \|T_n - T_H\|_{\mathsf{op}} \leq \|T_n - T_H\|_{\mathsf{HS}} \leq \frac{2\kappa\sqrt{2\tau}}{\sqrt{n}} \end{aligned}$$

with probability at least $1 - 2e^{-\tau}$ from the bound (C.2).

Given $\varepsilon>0$, set $\varepsilon=\frac{2\kappa\sqrt{2\tau}}{\sqrt{n}}$ and solve for τ to obtain $\tau=n\varepsilon^2/2(2\kappa)^2$. Inverting the above finite sample concentration bound, find

$$P\Big[\sup_{j\geq 1}|\hat{\sigma}_j - \sigma_j| \geq \varepsilon\Big] \leq 2e^{-n\varepsilon^2/2(2\kappa)^2} \to 0 \quad \text{as } n \to \infty.$$

For the bound on the difference of the traces, compute the trace of the empirical operator:

$$\sum_{j>1} \hat{\sigma}_j = \operatorname{tr}(T_n) = \operatorname{tr}(\boldsymbol{K}_n) = \frac{1}{n} \sum_{i=1}^n K(X_i, X_i).$$

Compute the trace of the population analogue: for any orthonormal basis $\{\phi_j\}_{j\geq 1}$ of the rkHS H

$$\operatorname{tr}(T_H) = \sum_{j \ge 1} \langle T_H \phi_j, \phi_j \rangle_H$$

$$= \sum_{j \ge 1} \left\langle \int_{\mathcal{X}} \phi_j(x) k_x \, \mathrm{d}P(x), \phi_j \right\rangle_H$$

$$= \sum_{j \ge 1} \int_{\mathcal{X}} \phi_j(x) \langle k_x, \phi_j \rangle_H \, \mathrm{d}P(x)$$

$$= \sum_{j \ge 1} \int_{\mathcal{X}} \phi_j(x) \phi_j(x) \, \mathrm{d}P(x)$$

$$= \int_{\mathcal{X}} \sum_{j \ge 1} \phi_j(x) \phi_j(x) \, \mathrm{d}P(x)$$

$$= \int_{\mathcal{X}} K(x, x) \, \mathrm{d}P(x)$$

where we interchanged the integral $\int dP$ with the inner product by Bochner integrability, applied the reproducing property of the kernel k_x , interchanged the sum with the integral by Fubini's, and used the standard Mercer expansion of the kernel that has uniform convergence.

Define the centered random variables $\zeta_i = K(X_i, X_i) - EK(X, X)$ supported on the interval $[\kappa, \kappa]$, and apply the standard Hoeffding inequality [Wai19, eq2.11]:

$$\left| \sum_{j \ge 1} \hat{\sigma}_j - \sigma_j \right| = \left| \operatorname{tr}(T_n) - \operatorname{tr}(T_H) \right| = \left| \frac{1}{n} \sum_{i=1}^n \zeta_i \right| \le \varepsilon$$

with probability at least $1 - 2e^{-2n\varepsilon^2/(2\kappa)^2}$.

C.3 Proof of Lemma 4.6

From [RBD10, prop6], for compact positive operators A, B

if
$$||A - B||_{op} \le [\alpha_N - \alpha_{N+1}]/4$$
, then $||P_D^B - P_N^A||_{op} \le \frac{2}{\alpha_N - \alpha_{N+1}} ||A - B||_{op}$ (C.3)

where α_N and α_{N+1} are the Nth and (N+1)st distinct eigenvalues and P_N^A is the projection on the eigenspace of the top N distinct eigenvalues of A, whereas P_D^B is the projection on the eigenspace of top eigenvalues of B of the same dimension. If, in addition, A, B are Hilbert-Schmidt,

$$\text{if } \|A - B\|_{\mathsf{HS}} \leq [\alpha_N - \alpha_{N+1}]/4, \quad \text{then } \|P_D^B - P_N^A\|_{\mathsf{HS}} \leq \frac{2}{\alpha_N - \alpha_{N+1}} \|A - B\|_{\mathsf{HS}}. \tag{C.4}$$

As [RBD10, thm12] point out, a bound on the projection onto the eigenspace of a simple (multiplicity 1) eigenvalue implies a bound on the eigenfunctions: let $\hat{\phi}$, ϕ be unit-norm and $\langle \hat{\phi}, \phi \rangle > 0$, then

$$\|\hat{\phi} - \phi\|_H^2 = 2(1 - \langle \hat{\phi} \,,\, \phi \rangle_H) \leq 2(1 - \langle \hat{\phi} \,,\, \phi \rangle_H^2) = \|P_{\hat{\phi}} - P_{\phi}\|_{\mathsf{HS}}^2.$$

If $2\kappa\sqrt{2\tau}/\sqrt{n} \leq [\sigma_N + \sigma_{N+1}]/4$, then by (C.2) $\|T_n - T_H\|_{\text{HS}} \leq [\sigma_N + \sigma_{N+1}]/4$ with probability at least $1 - 2e^{-\tau}$, and therefore by (C.4)

$$\|P_{\hat{H}_N} - P_N\|_{\mathsf{HS}}^2 \le \frac{2^2}{[\sigma_N - \sigma_{N+1}]^2} \|T_n - T_H\|_{\mathsf{HS}}^2 \le \frac{(2\kappa)^2 2\tau}{n} \frac{2^2}{[\sigma_N - \sigma_{N+1}]^2}.$$

This event occurs if $n \ge (2\kappa)^2 2\tau(4)^2/[\sigma_N - \sigma_{N+1}]^2$.

Next, we work with the population orthonormal basis $\{\phi_j \coloneqq \sqrt{\sigma_j} e_j\}_{j=1}^\infty$ for H and extend the population counterpart $\{\hat{\phi}_j \coloneqq \sqrt{\hat{\sigma}_j} \hat{e}_j\}_{j=1}^n$ to an orthonormal basis for H. This is possible because there are n independent eigenvectors P-a.s. by our assumptions that P is continuous and \mathbf{K}_n is strictly positive definite.

Using Parseval's identity, and then Parseval's again with the projection operators $(I_H - P_N)$ and P_N :

$$\begin{split} \|P_{\hat{H}_N} - P_N\|_{\mathsf{HS}}^2 &= \sum_i \left\| (P_{\hat{H}_N} - P_N)\phi_i \right\|_H^2 = \sum_i \left[\sum_j \left| \left\langle (P_{\hat{H}_N} - P_N)\phi_i \,, \, \hat{\phi}_j \right\rangle_H \right|^2 \right] \\ &= \sum_{i,j=1}^{r(N)} 0 + \sum_{i \geq r(N)+1} \left[\sum_{j=1}^{r(N)} \left| \left\langle \phi_i \,, \, \hat{\phi}_j \right\rangle_H \right|^2 \right] \\ &+ \sum_{i=1}^{r(N)+1} \left[\sum_{j \geq r(N)+1} \left| \left\langle -\phi_i \,, \, \hat{\phi}_j \right\rangle_H \right|^2 \right] + \sum_{i,j \geq r(N)+1} 0 \\ &= \sum_{j=1}^{r(N)} \left[\sum_{i \geq r(N)+1} \left| \left\langle \phi_i \,, \, \hat{\phi}_j \right\rangle_H \right|^2 \right] + \sum_{j \geq r(N)+1} \left[\sum_{i=1}^{r(N)+1} \left| \left\langle \phi_i \,, \, \hat{\phi}_j \right\rangle_H \right|^2 \right] \\ &= \sum_{j=1}^{r(N)} \left[\sum_{i} \left| \left\langle (I - P_N) [\phi_i] \,, \, \hat{\phi}_j \right\rangle_H \right|^2 \right] + \sum_{j \geq r(N)+1} \left[\sum_{i} \left| \left\langle \phi_i \,, \, P_N [\hat{\phi}_j] \right\rangle_H \right|^2 \right] \\ &= \sum_{j=1}^{r(N)} \left[\sum_{i} \left| \left\langle \phi_i \,, \, (I - P_N) [\hat{\phi}_j] \right\rangle_H \right|^2 \right] + \sum_{j \geq r(N)+1} \left[\sum_{i} \left| \left\langle \phi_i \,, \, P_N [\hat{\phi}_j] \right\rangle_H \right|^2 \right] \\ &= \sum_{j=1}^{r(N)} \left\| (I - P_N) [\hat{\phi}_j] \right\|_H^2 + \sum_{j \geq r(N)+1} \left\| P_N [\hat{\phi}_j] \right\|_H^2 \\ &\geq \sum_{j=1}^{r(N)} \left\| (I - P_N) [\hat{\phi}_j] \right\|_H^2 + \sum_{j = r(N)+1} \left\| P_N [\hat{\phi}_j] \right\|_H^2 \end{split}$$

Note that the bound we obtain a bound in terms of the rkHs norm, which implies a counterpart bound for the $L^2(P)$ norm.

C.4 Proof of Theorem 4.7

Fix $r \geq 1$ and $\lambda \geq 0$, for $j = 1, \ldots, r$, the $\hat{\sigma}_j \xrightarrow{P} \sigma_j$ by Lemma 4.5. Assuming for simplicity that the eigenvalues are distinct, $\|\hat{e}_j - e_j\|_H \xrightarrow{P} 0$ by Lemma 4.6. Recall that also $\hat{e}_j \to e_j$ uniformly on the compact set \mathcal{X} . Assuming f, \hat{f} are continuous and $\hat{f} \to f$ P-a.s. and \hat{f}/f is bounded on $\operatorname{spt}(f)$, assuming that $\psi_{\hat{f}} \to \psi_f$ in $L^1(f)$; then by dominated convergence

$$\langle \psi_{\hat{f}} , \, \hat{\mathbf{e}}_{j} \rangle_{L^{2}(\hat{f})} = \int_{\mathcal{X}} \psi_{\hat{f}} \hat{\mathbf{e}}_{j} \hat{f} \, \mathrm{d}\mathcal{L}^{d} = \int_{\mathcal{X}} \psi_{\hat{f}} \hat{\mathbf{e}}_{j} \hat{f} / f \, \mathrm{d}P$$
$$\xrightarrow{P} \int_{\mathcal{X}} \psi_{f} \mathbf{e}_{j} \, \mathrm{d}P = \langle \psi_{f} , \, \mathbf{e}_{j} \rangle_{L^{2}(f)}.$$

Conclude that $\|\hat{\psi}_{\lambda}^r - \psi_{\lambda}^r\|_H \to 0$ in P. For $r_n \to \infty$ slow enough, also have $\|\hat{\psi}_{\lambda}^{r(n)} - \psi_{\lambda}^{r(n)}\|_H \to 0$ in P. Finally, by the universality of H, there exists a sequence $\lambda_n \to 0$ slowly enough such that $\|\hat{\psi}_{\lambda(n)}^{r(n)} - \psi\|_{L^2(P)} \to 0$ in P.

C.5 Toy Monte Carlo experiment

We check our theoretical results with a simple numerical experiment. Let $\theta(P) = E_P[X]$ be the mean functional. Then $\psi_P(x) = x - \theta(P)$. We use the Gaussian PSD kernel from our Example 4.3 and set the shape parameter $\epsilon = 1$. We simulate Monte Carlo data from the standard Normal distribution, corresponding to the shape parameter $\alpha = 1/\sqrt{2}$ of our Example 4.3. This allows us to compute the oracle ψ_{λ}^{r} using Hermit polynomials that we numerically evaluate using the MATLAB code provided with the textbook [FM15]. We estimate the eigenvalues σ_{j} and eigenfunctions $e_{j}(X_{i})$

the using Nyström method via MATLAB's eig function. We estimate the pathwise derivatives as $\frac{1}{n}\sum_{i=1}^{n}X_{i}\hat{e}_{j}(X_{i})$, note this does not take into account estimation of the density and evaluation of the mean functional on the estimated distribution.

Simulation experiments As a toy experiment, we compute the oracle low-rank regularization ψ_{λ}^{r} and its estimator $\hat{\psi}_{\lambda}^{r}$ as well as the distribution of the estimation error $\|\psi_{\lambda}^{r} - \hat{\psi}_{\lambda}^{r}\|_{L^{2}(P)}$ for the mean functional $\theta = E[X]$ in the setting of Example 4.3.

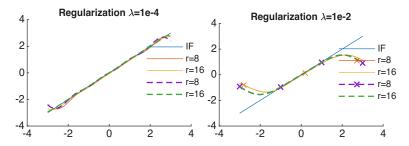


Figure 2: Influence function ψ , regularized oracle surrogate ψ_{λ}^{r} (dashed) and estimate $\hat{\psi}_{\lambda,n}^{r}$ (solid).

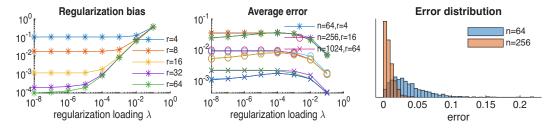


Figure 3: Surrogate bias $\|\psi - \psi_{\lambda}^r\|_{L^2(P)}^2$, mean integrated squared error $E\|\psi_{\lambda}^r - \hat{\psi}_{\lambda}^r\|_{L^2(P)}^2$, and distribution of the error $\|\psi_{\lambda}^r - \hat{\psi}_{\lambda}^r\|_{L^2(P)}$ based on 10^3 Monte Carlo experiments.

In these experiments we focus on estimating the spectral basis, leaving the development of numerical pathwise derivatives and their estimates to future work. The setting of Example 4.3 allows working with the exact surrogate. We use Riesz' theorem to compute pathwise derivatives as $D\theta[g] = \int \psi \cdot g \mathrm{d}P$ either with Monte Carlo or numerical integration, which is considerably more precise. Figure C.5 shows the bias-variance trade-off of regularization via the loading λ , and the asymptotic concentration of the distribution of the estimator around the oracle surrogate.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The spectral von Mises formula is presented in Theorem 3.3. The rkHs estimator of the influence function based on this representation is developed in Section 4.2, and Theorem 4.7 proves its consistency.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the last parahraph of Section 4.2. Automation considered here requires theoretical justification, which limits its utility in practice. Our analysis does not consider rates of convergence or efficient/scalable computation.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how
 they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems
 of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The main focus of the paper is on theoretical foundations and a significant effort has been made to provide explicit assumptions, correct and complete arguments and explanations, careful citations.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of the toy Monte Carlo experiment in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions
 to provide some reasonable avenue for reproducibility, which may depend on the nature of the
 contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide our code for the toy Monte Carlo experiment.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).

- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access
 the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed
 method and baselines. If only a subset of experiments are reproducible, they should state which
 ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide the details of the toy Monte Carlo experiment in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is
 necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the full distributions of our Monte Carlo experiments in Figure 3.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report
 a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
 not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Apple M2 mac.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the guidelines and confirm that our practices conform to them.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used
 as intended and functioning correctly, harms that could arise when the technology is being used
 as intended but gives incorrect results, and harms following from (intentional or unintentional)
 misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies
 (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the
 efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary
 safeguards to allow for controlled use of the model, for example by requiring that users adhere to
 usage guidelines or restrictions to access the model or implementing safety filters.

- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's
 creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an
 anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the
 paper involves human subjects, then as much detail as possible should be included in the main
 paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Not applicable.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.