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ABSTRACT

Tasks ranging from sleep staging to clinical diagnosis traditionally rely on stan-
dard polysomnography (PSG) devices, bedside monitors and wearable devices,
which capture diverse nocturnal biosignals (e.g., EEG, EOG, ECG, SpO2). How-
ever, heterogeneity across devices and frequent sensor dropout pose signifi-
cant challenges for unified modelling of these multimodal signals. We present
sleep2vec, a foundation model for diverse and incomplete nocturnal biosig-
nals that learns a shared representation via cross-modal alignment. sleep2vec
is contrastively pre-trained on 42,249 overnight recordings spanning nine modal-
ities using a Demography, Age, Site & History-aware InfoNCE objective that in-
corporates physiological and acquisition metadata (e.g., age, gender, recording
site) to dynamically weight negatives and mitigate cohort-specific shortcuts. On
downstream sleep staging and clinical outcome assessment, sleep2vec consis-
tently outperforms strong baselines and remains robust to any subset of available
modalities and sensor dropout. We further characterize, to our knowledge for the
first time, scaling laws for nocturnal biosignals with respect to modality diversity
and model capacity. Together, these results show that unified cross-modal align-
ment, coupled with principled scaling, enables label-efficient, general-purpose
modelling of real-world nocturnal biosignals.

1 INTRODUCTION

Sleep is a central determinant of human health, it shapes cognition, metabolism, cardiovascular func-
tion, and mental well-being, and its disruption both signals and drives disease (Irwin, 2015; Mukher-
jee et al., 2015; Leng et al., 2019; Lim et al., 2023). Sleep is clinically assessed with polysomnogra-
phy (PSG) (Bloch, 1997; Boulos et al., 2019), which is a gold standard multi-sensor recording that
jointly measures neural and ocular electrophysiology, muscle tone, cardiorespiratory dynamics, and
oxygen saturation. Outside the clinical facilities, a growing range of bedside monitors and wearable
devices captures subsets of these PSG modalities, creating a fragmented landscape across devices
and care settings (Paalasmaa et al., 2012; Sadek et al., 2020; Birrer et al., 2024; Yu et al., 2025; Pillai
et al., 2025). This reality motivates the question:

“ Can cross-modal alignment of nocturnal biosignals enable a unified physiological representation
that generalizes robustly across heterogeneous sensor sets in sleep medicine? ”

Physiological signal pre-training offers a promising paradigm by learning generalized representa-
tions from diverse biosignals with minimal supervision (Thapa et al., 2024; 2025; Pillai et al., 2025;
Fox et al., 2025). Yet real-world data bring hard constraints, sensor montages vary across centers and
devices, sampling rates differ, entire channels are often missing, and large-scale expert annotation
remains costly, making such a foundation both necessary and challenging.

We posit that concurrent nocturnal signals represent multiple perspectives of the same latent phys-
iological state (Rechtschaffen & Kales, 1968; Berry et al., 2012; 2017). A proper alignment of
these heterogeneous views into a unified representation space enables downstream tasks to flexibly
operate on arbitrary modalities without retraining specialized pipelines. Such a space must yield
modality-agnostic representations robust enough to ensure reliable inference even when modality
missing occurs. This leads to a scaling hypothesis, suggesting that increasing modality diversity and
model capacity can enrich semantic coverage and regularize modality-specific nuances. Although
scaling laws have been extensively studied in language and vision, their implications remain largely

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

EEG

EMG

EOG

IBI

ECG

Nasal 
Airflow

ABD/Thor 
Belt

Resp-
iratory

SpO2

High Sampling Rate Channels Low Sampling Rate Channels

Figure 1: Polysomnography (PSG) captures diverse physiological signals, illustrated here as 30-
second segments for each modality. High sampling rate electrophysiological channels include EEG,
EMG, EOG, and ECG, while lower sampling rate cardiopulmonary and oximetry channels encom-
pass Nasal Airflow, Abdominal/Thoracic Belt (ABD/Thor Belt), and SpO2. Inter-Beat Interval (IBI)
and Respiratory effort (RESP) signals, although not directly recorded by PSG, are derived from
ECG and ABD/Thor Belt signals, respectively, and can also be measured via wearable devices. To-
gether, these concurrent nocturnal signals provide complementary perspectives on a shared latent
physiological state, highlighting the multimodal complexity inherent to sleep monitoring.

unexplored in physiological signal contexts. We therefore propose and evaluate a framework demon-
strating predictable benefits of scaling PSG foundation models along both modality and parameter
axes, especially for cross-center generalization where variations in sensor montage, demographics,
and acquisition protocols are prevalent.

Prior work only partially addresses these needs. Existing models are typically trained for a specific
downstream task (Wang et al., 2024; Shen et al., 2024; Carter et al., 2024; Pan et al., 2024; Shen et al.,
2024; Lee et al., 2025; Ma et al.; Fox et al., 2025), lacking the generality required of a foundation
model capable of supporting multiple tasks. Contrastive pre-training has shown promise on limited
sets of physiological, typically one to three channels (e.g., EEG and ECG) (Wang et al., 2024;
Mathew et al., 2024; Thapa et al., 2024; Zhou et al., 2025; Thapa et al., 2025), but has not scaled
to the full palette of PSG sensors. When more modalities are involved, objectives often prioritize
reconstruction (Narayanswamy et al., 2024; Luo et al., 2024; Mathew et al., 2024; Nie et al., 2025)
rather than explicit cross-modal alignment. Reconstruction encourages fidelity to modality-specific
details but does not enforce that heterogeneous inputs map to a shared semantic manifold. As a
result, inference typically assumes access to the same modality set used in training, degrading under
realistic sensor missing scenarios. Moreover, systematic analyses of how performance scales with
modalities and parameters are scarce.

We address these gaps with sleep2vec, a PSG foundation model that aligns heterogeneous noc-
turnal signals into a unified embedding space. Our framework jointly leverages nine modalities,
waveform channels including EEG, EOG, EMG, ECG, Nasal airflow, Abdominal/Thoracic Belt
(ABD/Thor Belt) and SpO2; and interval-derived features including Inter-beat Interval (IBI) and
Respiratory effect, from 42,249 nights of physiological recordings. A context-aware InfoNCE ob-
jective, explicitly modelling physiological similarity (age, gender, recording center) to dynamically
weight samples, effectively distinguishes hard from easy negatives, mitigating overfitting to dataset-
specific nuances.

Our work makes the following contributions:
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(i) Unified multimodal PSG pre-training: We propose, to our knowledge, the largest scale multi-
modal contrastive pre-training framework for PSG foundation models, jointly aligning waveform
and interval-based modalities, uncovering comprehensive inter-modal physiological correlations.

(ii) Scaling law investigation: We systematically explore scaling PSG foundation models along
modality diversity and parameter dimensions, demonstrating predictable improvements in cross-
cohort generalization with minimal task-specific labels.

(iii) Cross-modal training objective: We propose Demography, Age, Site & History-aware InfoNCE
(DASH-InfoNCE), a context-aware contrastive objective that conditions negative-sample weight-
ing on demographic, age, acquisition-site, and recording-history metadata. This metadata-guided
weighting suppresses cohort-specific shortcuts and improves robustness and cross-site generaliza-
tion across heterogeneous PSG sensor montages.

(iv) Comprehensive downstream evaluation: We extensively evaluate sleep2vec on both SHHS and
WSC datasets, spanning tasks such as sleep staging, demographic prediction, and diagnostic out-
comes, representing the broadest evaluation of a PSG foundation model to date.

2 RELATED WORK

Multimodal alignment for flexible inference. Contrastive alignment maps heterogeneous inputs
into a shared embedding space, enabling zero-shot transfer, retrieval, and robustness to input per-
mutations. In vision–language, CLIP popularized large-scale image–text alignment (Radford et al.,
2021), and many-to-one binding across six modalities in ImageBind (Girdhar et al., 2023). In par-
ticular, PSG contains tens of synchronized channels (EEG, EOG, EMG, ECG, Nasal airflow, Respi-
ratory effort, SpO2, etc.), yet prior multimodal alignment works seldom extend beyond EEG-only or
a few paired channels, and rarely handle montage shifts at this scale.

Self-supervised learning for sleep and PSG data. Self-supervised learning (SSL) for sleep data
has evolved from early approaches targeting task-specific objectives such as sleep staging using
fixed PSG montages (Supratak et al., 2017; Perslev et al., 2021), toward broader pre-training frame-
works. Recent works emphasize constructing foundational models but typically remain limited by:
(i) pre-training strategies narrowly tailored to single downstream tasks or restricted label sets (Fox
et al., 2025), (ii) alignment restricted to selected subsets of PSG channels, thus failing to address
comprehensive multimodal integration (Fang et al., 2024; Narayanswamy et al., 2024; Luo et al.,
2024; Thapa et al., 2024; 2025), or (iii) employing cross-modal generative methods that priori-
tize modality-specific signal fidelity rather than explicitly aligning heterogeneous modalities (Chen
et al., 2024; Nie et al., 2025). Consequently, cross-modal alignment covering the full PSG spectrum
remains largely unexplored, with most pre-training focusing on fixed, small montages.

Scaling and generalization. In language and vision, performance follows predictable trends as
model and data scale. Despite rapid progress, systematic studies of scaling laws for physiological
time series and PSG remain sparse. Existing PSG SSL studies seldom probe modality-diversity
scaling or parameter scaling. To our knowledge, systematic modality-diversity scaling has not been
charted in sleep; existing studies also under-report parameter/data scaling for PSG SSL, leaving
open how capability grows with both model size and channel count.

3 METHOD

3.1 DATASET AND PREPROCESSING

We leveraged publicly available PSG datasets for pre-training, including the Human Sleep Project
(HSP) (Sun et al., 2023) and four cohorts obtained from the National Sleep Research Resource
(NSRR) (Zhang et al., 2018): the Sleep Heart Health Study (SHHS) (Quan et al., 1997), Osteo-
porotic Fractures in Men Study (MrOS) (Blackwell et al., 2011), Multi-Ethnic Study of Atheroscle-
rosis (MESA) (Chen et al., 2015), and Wisconsin Sleep Cohort (WSC) (Young et al., 2009), collec-
tively encompassing multi-center, multi-device acquisitions from diverse demographic populations
(age range: 1-109; recording span: 1995-present). Table 4 presents an overview of the five datasets
involved. The five datasets were harmonized into a unified corpus comprising 42,249 overnight
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recordings from 30,852 subjects, processed through a standardized pipeline to minimize cohort-
specific biases and ensure symmetrical handling during batching and evaluation.

A pool of nine PSG channels across cohorts was established as shown in Figure 1: comprising
two groups of signals differentiated by sampling rates: higher sampling rate electrophysiological
signals, including EEG, EOG, EMG, ECG uniformly resampled to 128 Hz, and lower sampling
rate physiological signals, including Nasal airflow, ABD/Thor belt, SpO2, Inter-Beat Interval (IBI)
and respiratory signals uniformly resampled to 4 Hz. Only minimal preprocessing is applied to the
higher sampling rate signals to preserve raw signal characteristics crucial for downstream physiolog-
ical interpretation, involving temporal resampling to the target frequency and z-score normalization
with cohort-invariant statistics. The IBI channel is derived from ECG R-peak detection, with raw
inter-beat intervals cleaned for outliers and artifacts and then linearly interpolated to a continuous 4
Hz sequence. The Respiratory effect reflects breathing cycles extracted from either Nasal Airflow
or Abdominal Belt, standardized by band-limiting, and resampling to 4 Hz. Both IBI and Respira-
tory effect can be captured not only by PSG but also using simpler, low-burden hardware such as
ballistocardiography mats or other contactless sensors (Chen et al., 2025).

Participant information is retained when available, including age, gender, and recording site, to fa-
cilitate cohort-aware analysis and difficulty estimation during pre-training. Participant-level data
partitions are established to prevent data leakage across splits. A dedicated pre-training split
(Npre-train=23,934 participants) is exclusively reserved for foundation model learning, while down-
stream splits follow an 8:1:1 ratio (Ntrain/Nval/Ntest=8,792/1,102/1,116), ensuring no participant over-
lap and identical modality coverage. For downstream evaluation, sleep staging labels on SHHS and
WSC as well as clinical diagnosis labels on SHHS were aligned with the same participant-level
splits as in pre-training, ensuring consistency and preventing any data leakage.

3.2 MODEL ARCHITECTURE

RoFormer Backbone
Modal Agnostic

EEG

EMG

EOG

ECG

IBI

Nasal Airflow

ABD/Thor Belt

Respiratory

SpO2

Modal Specific

Tokenizers

………

…

……

Inter-subject Segments

…

Intra-subject Segments …

…

[CLS]

[CLS]

…

…

Pairwise Contrastive Alignment

Figure 2: An illustration of the multimodal pre-training framework. Each overnight PSG record-
ing is partitioned into intra-subject segments (different temporal slices from the same individual)
and inter-subject segments (slices from different individuals), which are independently tokenized
via modality-specific MLP tokenizers. A learnable [CLS] token is prepended to each masked se-
quence before processing through a modality-agnostic RoFormer backbone. Hidden states from the
backbone at each timestep are projected into a shared alignment space, enabling timestep-wise pair-
wise contrastive alignment across modalities.

A minimalistic tokenizer based on a multi-layer perceptron (MLP) was implemented, comprising
two feed-forward layers and a residual connection. The tokenizer maps input 30-second fragments
into embeddings of dimension D through an initial linear transformation that projects inputs into an
intermediate hidden representation of dimension 2D, activated by the SiLU nonlinearity (Elfwing
et al., 2018) and regularized using dropout with a 0.1 probability. The choice of 30-second segments
aligns with the standard epoch duration recommended by the American Academy of Sleep Medicine
(AASM) guidelines (Berry et al., 2012; 2017) for polysomnographic analysis. Subsequently, this
hidden representation is linearly transformed into the final embedding space (D). In parallel, a resid-
ual linear transformation directly maps the inputs into the output embedding dimension, enhancing
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gradient flow and training stability. A LayerNorm is further applied to the final embedding for nor-
malization. Cross-modal sampling rate differences are resolved by encoding 30-second tokens into
tokens of equal embedding dimension using modality-specific tokenizers, each operating directly on
the original sampling rates, resulting in temporally aligned embeddings across modalities to be fed
into the modality-agnostic backbone.

As shown in Figure 2, a simple yet effective sampling strategy is employed to maintain stable op-
timization as the number of modalities grows during pre-training: exactly two modalities (ma,mb)
are randomly selected for each mini-batch, with one instance drawn from each modality, as shown
in Figure 2. Independent time-step masking is then applied to these paired instances to enhance
robustness and mitigate shortcut learning. Each 30-second token is of a 15% probability of being re-
placed by a learnable, modality-specific mask token, after which alignment is conducted exclusively
between these masked segments. A dedicated learnable [CLS] token is prepended to the sequence,
the resulting input is then processed through a modality-agnostic RoFormer backbone (Su et al.,
2024). It is important to emphasize that the RoFormer backbone in sleep2vec should be viewed as
one concrete instantiation of a generic modality-agnostic sequence encoder rather than a core con-
tribution in isolation. The aim is not to advocate RoFormer as the uniquely optimal architecture for
PSG, but to show that pairing a flexible backbone capable of ingesting arbitrary channel subsets with
a metadata-aware contrastive alignment objective provides a simple and effective recipe for han-
dling heterogeneous PSG montages. In principle, other Transformer style or state-space sequence
encoders could be substituted without changing the overall framework, and we expect the benefits of
unified cross-cohort pre-training and metadata-aware alignment to transfer across such choices. The
backbone outputs hidden states for each timestep, as well as a global nocturnal representation at the
[CLS] position. These hidden states are projected into a shared 128-dimensional alignment space
via a shared three-layer MLP projection head, enabling the application of a cross-modal contrastive
loss at each timestep.

During fine-tuning, both masking and the contrastive learning projection head are removed, and
modal configurations remain fixed per downstream task. Task-specific heads directly operate on
backbone features. Sequence-level tasks (e.g., sleep staging) use per-time-step hidden states, while
aggregate tasks (e.g., gender, age, or clinical diagnosis) rely on the global nocturnal representation
from the [CLS] position. When multiple modalities are available at inference, their representations
are aggregated using simple fusion strategies such as averaging, concatenation, or a small gating
module. Specific fusion methods employed per task are detailed in the experimental results section.

3.3 CROSS-MODAL ALIGNMENT OBJECTIVE: DASH-INFONCE

During pre-training, each mini-batch contains B paired segments, each of length L timesteps. For
segment index i ∈ {1, . . . , B}, time index t ∈ {1, . . . , L}, and modality m ∈ {ma,mb}, denote
v
(m)
i,t ∈ Rd as the corresponding d-dimensional embedding. Given v̂

(m)
i,t as its ℓ2 normalized product

given by v̂
(m)
i,t = v

(m)
i,t /∥v

(m)
i,t ∥2, the cosine similarity is

si,j,t =
〈
v̂
(ma)
i,t , v̂

(mb)
j,t

〉
∈ [−1, 1], i, j ∈ {1, . . . , B}, t ∈ {1, . . . , L}, (1)

where ⟨·, ·⟩ denotes the dot product. The index mapping π : 1, . . . , B → 1, . . . , B specifies the
number of paired segments in modalitymb for an anchor in modalityma, where batches are typically
aligned such that π(i) = i. Demographic and acquisition metadata for segment i are denoted by
(ai, gi, ci, ui), where ai ∈ R+, gi ∈ G, ci ∈ C, and ui represent age, gender, acquisition site, and the
subject-night identifier, respectively. These variables are used solely for weighting and modulation
below and never as labels in the learning objective.

3.3.1 BASE FORMULATION: TEMPORAL INFONCE

With temperature τ > 0, the baseline timestep InfoNCE loss aligning ma to mb is

L(t)
base =

1

B

B∑
i=1

[
− log

exp
(
si,π(i),t/τ

)∑B
j=1 exp

(
si,j,t/τ

)] . (2)

This objective encourages the similarity between the paired cross-modal embeddings (i, π(i), t) to
exceed the similarities to all in-batch, same-time candidates (i, j, t) with j ̸= π(i). The temperature
coefficient τ controls the concentration of the induced softmax distribution.
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3.3.2 PROPOSED DASH-INFONCE LOSS

A novel DASH-InfoNCE loss that reshapes the negative set by (i) metadata-driven sample weighting
and (ii) margin-based modulation of pseudo-negatives (i.e., negatives from the same subject-night)
is introduced in this section. For anchor (i, t), define

ℓDASH(i, t) = − log
exp

(
si,π(i),t/τ

)∑B
j=1 ωi,j exp

([
si,j,t − γ ψ(di,j , pi,j,t)

]
/τ

) , (3)

where ωi,j ≥ 0 are segment-specific weights satisfying
∑B

j=1 ωi,j = 1, γ ≥ 0 is a modulation
strength, and ψ(·, ·) ≥ 0 reduces the effective logit of designated pseudo-negatives before the soft-
max. The binary indicator di,j ∈ 0, 1 selects which pairs are margin-modulated, with the convention
di,π(i) = 0 ensuring that positives are not penalized. The optional factor pi,j,t ∈ [0, 1] encodes time-
specific signals, and in our instantiation below, we set ψ to a fixed margin with pi,j,t absorbed into
that choice. Relative to Eq. (2), the numerator is unchanged while the denominator concentrates
probability mass on demographically similar, presumably harder negatives via ωi,j and diminishes
the competitive strength of same-subject-night negatives through the subtractive margin γ ψ.

3.3.3 SAMPLE WEIGHTING MECHANISM

Let κ : R+ ×R+ → R+ be a non-negative, symmetric kernel that decreases with the age difference
|ai−aj |. We further define similarity factors for gender and acquisition site as s(g)i,j ∈ {γsame, γdiff}
and s(c)i,j ∈ {δsame, δdiff}, with γsame > γdiff ≥ 0 and δsame > δdiff ≥ 0, where the value is chosen
according to whether gi = gj and ci = cj , respectively.

Given the pseudo-negative indicator hi,j = I[ui = uj ∧ j ̸= π(i)] ∈ {0, 1}, the unnormalized
weights are defined as αi,j = κ(ai, aj) s

(g)
i,j s

(c)
i,j + ε hi,j , where ε = 10−6. The normalized

weights are computed by

ωi,j =
αi,j∑B
k=1 αi,k

,

B∑
j=1

ωi,j = 1. (4)

This weighting scheme assigns higher values to negatives closely matched by age, gender, and
acquisition site. Constant ε ensures negatives from the same subject-night retain non-zero weights,
stabilizing the denominator in Eq. (3) when closely matched demographic negatives are rare.

3.3.4 PSEUDO-NEGATIVE MODULATION

We modulate only negatives drawn from the same subject-night. Let di,j = hi,j and take a margin-
only instantiation of ψ:

ψ(di,j , pi,j,t) =

{
m, di,j = 1,

0, di,j = 0,
m > 0. (5)

By combining Eq. (5) and Eq. (3), the fixed margin γm is subtracted from the logits of same-subject-
night negatives prior to the softmax. This reduces the tendency to over-penalize semantically close
negatives originating from the same subject-night while preserving their presence in the denominator
through Eq. (4).

3.3.5 FINAL OBJECTIVE

The DASH-InfoNCE objective averages the per-anchor loss Eq. (3) over instances and time:

L(t)
DASH =

1

B

B∑
i=1

ℓDASH(i, t), LDASH =
1

L

L∑
t=1

L(t)
DASH. (6)

Averaging across t enforces alignment at each timestep. Note that every component of Eq. (3)–Eq.
(6) depends only on demographic and acquisition metadata (ai, gi, ci) and identifiers ui via Eq. (4),
no downstream task labels are used during pre-training.
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3.4 FEATURE FUSION

In multimodal physiological tasks, the way modality-specific features are fused/aggregated has a
direct impact on performance. A naı̈ve Concat strategy (i.e. concatenating embeddings before clas-
sification) produces high-dimensional, sparse representations that inflate computation and sample
complexity, exacerbating overfitting. Conversely, Mean aggregation (i.e. element-wise averaging)
assumes equal informativeness and reliability across channels; in practice, physiological streams
differ in SNR and complementary content, so uniform averaging washes out modality-specific cues
and is brittle under missing sensors.

To address these limitations, we adopt the Gating Mechanism, which introduces learnable scalar
weights assigned to each modality. This approach adaptively emphasizes modalities based on their
informativeness, dynamically adjusting the contribution of each PSG channel. Consequently, it
yields a more expressive, compact, and task-oriented aggregated representation, enabling efficient
downstream learning.

4 EXPERIMENTS

4.1 PRE-TRAINING DIAGNOSTICS: ALIGNMENT & RETRIEVAL

Subject–Modality Alignment Time–Modality Alignment

Random Init Ours Random Init Ours

EEG EMG EOG ECG IBI ABD/Thor Respiratory SpO2Nasal AirflowColor:

(Digits = Subject IDs)(Digits = Subject IDs)

Figure 3: t-SNE visualization of encoder embeddings comparing random initialization and post-
pre-training results. Left Panel (Subject–Modality Alignment): Visualization of [CLS] token
embeddings shows that pre-training effectively clusters embeddings from different modalities into
distinct, subject-specific groups, indicating aligned subject-level physiological states. Right Panel
(Time–Modality Alignment): Visualization of timestep-level embeddings, dot sizes indicate tem-
poral ordering (larger → later). Pre-trained embeddings form structured trajectories, contrasting
with the scattered distribution observed prior to training.

To assess the effectiveness of multimodal alignment, Figure 3 (left panel) visualizes the [CLS] to-
ken embeddings using t-SNE both prior to and following pre-training. Initially, embeddings cluster
by modality, reflecting intrinsic modality-specific biases and heterogeneous signal characteristics.
After pre-training, embeddings from distinct modalities corresponding to the same subject are co-
herently grouped, indicating improved alignment and preservation of subject-specific structures.

Further analysis of timestep-level embeddings from a random subject (Figure 3, right panel) re-
veals structured trajectories emerging post-training, indicating an effective modality alignment at a
finer temporal resolution. The coordinated variation in dot sizes across concentric rings emphasizes
temporal consistency within the representations. Such consistency is beneficial for downstream se-
quential tasks like sleep staging, underscoring the practical advantages of the temporally aligned
sleep2vec embeddings.
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Table 1: Performance of five-class sleep staging (W/N1/N2/N3/REM) across PSG channel sets and
models on SHHS. Reported metrics regarding overall performance including Accuracy (Acc., %),
Cohen Kappa (κ), Macro-F1 (MF1, %), Sensitivity (Sens., %) and Specificity (Spec., %). Class-wise
F1 (%) is also listed. Baselines reproduced by us for fair comparison are marked with †. Note that
these foundation model (FM) baselines were individually pre-trained for each PSG channel subset,
whereas sleep2vec was pre-trained only once across all modalities. “FULL CHANNELS” refers
to the fixed channel configuration that each model is designed for and individually pre-trained on.
Underlined numbers indicate the best overall performance within each channel set; bold numbers
denote the best performance among FMs; bold-underlined numbers indicate cases where the FM
surpasses specialized models.

PSG Channel Set Overall Performance (↑) Class-wise F1 (↑)

Inference Subset Model Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM

EEG

Specialized (non-FM) Model
DeepSleepNet (Supratak et al., 2017) 81.0 0.73 – – 73.9 85.4 40.5 82.5 79.3 81.9
SleepEEGNet (Mousavi et al., 2019) 73.9 0.65 – – 68.4 81.3 34.4 73.4 75.9 77.0
AttnSleep (Eldele et al., 2021) 84.2 0.78 – – 75.3 86.7 33.2 87.1 87.1 82.1
XSleepNet1 (Phan et al., 2021) 87.6 0.83 80.7 79.7 96.5 91.6 51.4 88.5 85.0 88.4
XSleepNet2 (Phan et al., 2021) 87.5 0.83 81.0 80.4 96.5 92.0 49.9 88.3 85.0 88.2
L-SeqSleepNet (Phan et al., 2023) 87.6 0.83 80.3 79.4 96.5 92.4 48.6 88.2 83.9 88.5
SleepTransformer (Phan et al., 2022) 87.7 0.83 80.1 78.7 96.5 92.2 46.1 88.3 85.2 88.6

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 86.3 0.81 76.3 75.3 96.1 93.2 36.6 86.3 77.3 88.1
sleep2vec 87.4 0.82 77.3 76.2 96.1 92.4 40.1 86.5 77.7 88.7

IBI & RESP

Specialized (non-FM) Model
Sun et al. (2019) † 71.3 0.59 57.3 56.9 91.7 85.2 4.8 70.1 49.9 76.4
Goldammer et al. (2022) † 77.2 0.68 63.6 62.7 93.4 88.2 15.5 76.4 55.5 82.4

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 79.7 0.71 65.7 65.4 94.2 90.4 12.9 78.4 61.7 84.8
SleepFounder (Nie et al., 2025) † 80.9 0.73 68.3 67.0 94.5 91.3 22.3 80.0 61.1 85.9
sleep2vec 83.0 0.75 65.9 65.8 95.1 86.6 5.3 80.3 60.9 84.9

ECG & ABD
Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 77.9 0.68 62.7 62.7 93.6 88.4 6.6 76.9 60.9 80.4
sleep2vec 82.7 0.75 65.6 65.2 95.0 92.6 6.2 80.6 62.4 86.1

EEG & EOG & EMG

Specialized (non-FM) Model
SeqSleepNet (Phan et al., 2019) 87.2 0.82 80.2 78.7 96.3 91.8 49.1 88.2 83.5 88.2
XSleepNet1 (Phan et al., 2021) 89.1 0.85 82.3 81.2 96.9 – – – – –
XSleepNet2 (Phan et al., 2021) 89.1 0.85 82.2 81.4 96.9 – – – – –
Olesen et al. (2021) 85.8 0.79 – – – – – – – –

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 87.0 0.82 78.0 77.8 96.4 93.6 40.7 86.8 77.8 90.9
sleep2vec 88.3 0.83 78.7 77.9 96.8 94.5 40.6 87.8 79.8 89.0

FULL CHANNELS

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 86.7 0.81 77.3 76.9 96.3 93.4 39.2 86.7 77.1 90.3
PFTSleep (Fox et al., 2025) 87.7 0.83 80.8 82.3 96.7 93.3 48.6 87.8 82.7 91.5
sleep2vec (InfoNCE) 88.4 0.84 78.6 77.9 96.8 94.7 39.8 87.9 80.0 90.8
sleep2vec 88.6 0.84 79.5 78.4 96.8 94.8 44.1 88.2 79.2 91.2

4.2 DOWNSTREAM FINE-TUNING RESULTS

4.2.1 SLEEP STAGING

We first assess the quality of the learned representations on sleep staging. Experiments are per-
formed on the SHHS and WSC datasets, and the results are presented in Tables 1 and 15, respec-
tively. Several trends can be observed from Table 1:

(i) There remains a very limited number of comprehensive works on PSG data, as the majority of
existing methods focus narrowly on single-channel EEG or small subsets of physiological signals.
Specialized methods typically achieve top performance across available channel sets, setting a chal-
lenging baseline for foundation models.

(ii) Foundation models generally exhibit lower performance compared to specialized sleep staging
approaches optimized specifically for sleep data. This is evident in EEG-only scenarios, where spe-
cialized models consistently hold slight edges in overall metrics compared to baseline FM SleepFM
(Acc. 86.6%) and sleep2vec (Acc. 87.4%). However, the gap is marginal, with sleep2vec nearly
matching specialized models in certain metrics (κ of 0.82 vs. 0.83).
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(iii) sleep2vec consistently outperforms baseline foundation models across all PSG channel subsets.
Notable improvements appear in configurations such as “IBI & RESP”, where sleep2vec exceeds
baseline FMs (Acc.: 83.0% vs. SleepFM 79.4% and SleepFounder 80.9%). sleep2vec can also
achieve performance comparable to, and in certain cases surpassing, specialized models.

(iv) Increasing modality diversity appears beneficial, with sleep2vec consistently demonstrating per-
formance gains when additional physiological signals are included. This trend highlights the scal-
ability and utility of incorporating diverse modalities into foundational model frameworks, further
underscoring the capability of sleep2vec to effectively leverage multimodal physiological signals.

To further assess cross-cohort generalization, we evaluate models fine-tuned on SHHS directly on
the APPLES cohort, which is unseen during both pre-training and fine-tuning. As shown in Table 2,
sleep2vec preserves strong robustness under distribution shift and consistently outperforms baseline
methods.

Table 2: Cross-cohort evaluation of five-class sleep staging (W/N1/N2/N3/REM) across PSG chan-
nel sets and models on unseen APPLES. Models are fine-tuned on SHHS without seeing any
data from APPLES during both pre-training and fine-tuning. “FULL CHANNELS” refers to
the fixed channel configuration that each model is designed for and individually pre-trained on.
Underlined numbers indicate the best overall performance within each channel set; bold numbers
denote the best performance among FMs; bold-underlined numbers indicate cases where the FM
surpasses specialized models.

PSG Channel Set Overall Performance (↑) Class-wise F1 (↑)

Inference Subset Model Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM

IBI & RESP

Specialized (non-FM) Model
(Sun et al., 2019) † 63.6 0.46 48.8 56.4 89.0 78.6 1.7 68.5 20.2 75.2
(Goldammer et al., 2022) † 67.7 0.53 53.1 61.2 90.4 79.9 7.5 72.6 25.8 79.5

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 69.1 0.55 54.3 65.2 91.0 82.2 4.6 73.5 28.1 82.8
SleepFounder (Nie et al., 2025) † 68.8 0.55 55.6 67.3 91.0 85.5 8.8 71.9 27.2 84.6
sleep2vec (InfoNCE) 71.5 0.59 56.5 66.7 91.7 86.8 7.9 74.1 29.5 84.1
sleep2vec 73.2 0.61 57.8 66.2 92.1 86.5 10.2 76.5 31.5 84.2

FULL CHANNELS

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 71.4 0.59 60.0 58.9 91.6 85.5 24.5 75.8 32.0 81.5
sleep2vec (InfoNCE) 76.8 0.67 63.5 73.3 93.4 90.5 24.0 79.5 35.5 88.1
sleep2vec 78.4 0.69 65.2 72.0 93.8 89.6 27.3 81.8 39.0 88.2

4.2.2 LEAVE-ONE-OUT ANALYSIS
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Figure 4: Leave-one-out analysis on the SHHS sleep staging task. Each bar represents model ac-
curacy when one of the nine modalities is excluded during both pre-training and fine-tuning. The
observed drop in accuracy relative to the full channels baseline (labeled “None”) reflects the contri-
bution and relative importance of each individual modality to the overall model performance.

To further examine the role of individual modalities, we performed a leave-one-out (LOO) study,
where one modality was excluded during both pre-training and fine-tuning. Using the same setup
as in Section 4.2.1, we evaluated the model on the SHHS dataset. As shown in Figure 4, excluding
modalities such as EEG or IBI leads to a substantial accuracy drop, while others (e.g., SpO2, EOG)
have relatively minor effects.
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4.2.3 CLINICAL DISEASE PREDICTION AND MODALITY SCALING

hypertensionallergies/sinus problems asthma coronary heart disease
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Figure 5: ROC-AUC scores for disease prediction tasks using varying numbers of modalities (N )
on the SHHS dataset. Results are averaged across all possible modality combinations of size N

For clinical evaluation, four prevalent and clinically significant conditions are selected from the
SHHS dataset, including allergies/sinus problems, asthma, hypertension and coronary heart disease,
as shown in Figure 5. These conditions span two major physiological systems directly monitored by
PSG, the respiratory system and the cardiovascular system. By including these diverse clinical out-
comes, we explicitly test whether cross-modal embeddings generalize robustly across organ systems
and sensor subsets.

Specifically, for a given number of modalities N , we enumerate all possible modality combinations,
build corresponding ensemble models, and report the average ROC-AUC. Results presented in Fig-
ure 5 demonstrate: (i) clear modality-scaling effects, as performance consistently improves as more
modalities are incorporated, suggesting a robust scaling law across clinical prediction tasks; (ii) the
proposed DASH-InfoNCE loss consistently outperforms the standard InfoNCE baseline, indicat-
ing its effectiveness in harnessing richer inter-modal physiological correlations. This performance
advantage of DASH-InfoNCE becomes increasingly pronounced with additional modalities, under-
scoring its efficacy in large-scale multimodal pre-training scenarios.

5 CONCLUSION

In this work, we introduced sleep2vec, a foundation model aligning multimodal polysomnogra-
phy (PSG) signals into a unified embedding space for robust physiological representation learning.
Leveraging over 42,000 overnight recordings and our novel DASH-InfoNCE loss, which accounts
for demographic, age, site, and history variations, we demonstrated significant performance im-
provements on sleep staging and clinical prediction tasks. Experiments confirmed sleep2vec’s
robustness to incomplete sensor data and revealed clear scaling laws with increased modality di-
versity and larger model sizes. Our results establish sleep2vec as a scalable and versatile tool,
enabling generalized physiological monitoring and clinical decision support in sleep medicine.

6 ETHICS STATEMENT

The datasets employed consist of anonymized PSG recordings from publicly available sources. Eth-
ical approval and informed consent for the original data collection were secured by the institutions
responsible for the individual studies. All subject identifiers were removed prior to dataset acquisi-
tion, ensuring complete anonymization and protecting participants’ privacy.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide the following details. A comprehensive
description of our data processing pipeline is provided in Section 3.1. Details of the datasets involved
and the training configurations for the proposed model are presented in Appendices A.2 and A.3,
respectively. Furthermore, the specific configuration used for fine-tuning is provided in Appendix
A.7.
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Högl, Yohannes Adama Melaku, Charles M Morin, Allan I Pack, et al. The need to promote sleep
health in public health agendas across the globe. The Lancet Public Health, 8(10):e820–e826,
2023.

Yunfei Luo, Yuliang Chen, Asif Salekin, and Tauhidur Rahman. Toward Foundation Model for
Multivariate Wearable Sensing of Physiological Signals. arXiv preprint arXiv:2412.09758, 2024.

Shuo Ma, Yingwei Zhang, Yiqiang Chen, Hualei Wang, Yuan Jin, Wei Zhang, and Ziyu Jia.
SleepSMC: Ubiquitous Sleep Staging via Supervised Multimodal Coordination. In Proc. ICLR.

George Mathew, Daniel Barbosa, John Prince, and Subramaniam Venkatraman. Foundation models
for cardiovascular disease detection via biosignals from digital stethoscopes. npj Cardiovascular
Health, 1(1):25, 2024.

Sajad Mousavi, Fatemeh Afghah, and U Rajendra Acharya. SleepEEGNet: Automated Sleep Stage
Scoring with Sequence to Sequence Deep Learning Approach. PloS one, 14(5):e0216456, 2019.

Sutapa Mukherjee, Sanjay R Patel, Stefanos N Kales, Najib T Ayas, Kingman P Strohl, David Gozal,
and Atul Malhotra. An official american thoracic society statement: the importance of healthy
sleep. recommendations and future priorities. American Journal of Respiratory and Critical Care
Medicine, 191(12):1450–1458, 2015.

Girish Narayanswamy, Xin Liu, Kumar Ayush, Yuzhe Yang, Xuhai Xu, Shun Liao, Jake Garrison,
Shyam Tailor, Jake Sunshine, Yun Liu, et al. Scaling wearable foundation models. arXiv preprint
arXiv:2410.13638, 2024.

Guangkun Nie, Xuesong Chen, Yichen Wang, Jingxu Chen, Yunhan Shi, Jianwen Zhong, Weijun
Huang, Zengrui Jin, Fei Lei, Leilei Wang, et al. A Low-Burden Sleep Foundation Model Built
on Respiratory and Heartbeat Signals from 780,000+ Hours of Multi-Ethnic Sleep Recordings.
medRxiv, pp. 2025–09, 2025.

Maurice M Ohayon, Mary A Carskadon, Christian Guilleminault, and Michael V Vitiello. Meta-
analysis of quantitative sleep parameters from childhood to old age in healthy individuals: devel-
oping normative sleep values across the human lifespan. Sleep, 27(7):1255–1273, 2004.

Alexander Neergaard Olesen, Poul Jørgen Jennum, Emmanuel Mignot, and Helge Bjarup Dissing
Sorensen. Automatic sleep stage classification with deep residual networks in a mixed-cohort
setting. Sleep, 44(1):zsaa161, 2021.

Joonas Paalasmaa, Mikko Waris, Hannu Toivonen, Lasse Leppäkorpi, and Markku Partinen. Un-
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A APPENDIX

A.1 PHYSIOLOGICAL SIGNALS IN POLYSOMNOGRAPHY (PSG)

Polysomnography (PSG) is a comprehensive overnight test performed using a polysomnograph that
records multiple physiological signals during sleep, including brain activity, eye movements, muscle
tone, heart rhythm, breathing patterns, and oxygen levels. An illustration of a subject wearing PSG
device for nocturnal sleep recording is presented in Figure 1. It is used in clinical and research
settings to diagnose and study sleep disorders, including but not limited to sleep apnea, narcolepsy,
and insomnia, by providing an objective assessment of sleep stages and abnormalities.
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Table 3: Polysomnography (PSG) channels and derived interval-based features used in this study.
High sampling rate electrophysiological channels include EEG, EMG, EOG, and ECG; lower sam-
pling rate cardiopulmonary and oximetry channels encompass Nasal airflow, Abdominal/Thoracic
belt (ABD/Thor belt), and SpO2. Respiratory effort (RESP) and Inter-Beat Interval (IBI) are
interval-derived features, obtained from ABD/Thor belt and ECG channels, respectively, and can
also be measured via wearable devices. Sampling rate ranges summarize AASM Berry et al. (2012;
2017) minimum recommended digital sampling rates, actual device settings may vary.

Physiological Signals Typical Placement Sampling (Hz) Common Usage

PSG Channel
EEG Scalp 200–500 Detecting sleep stages, brain activity patterns,

and brief arousals
EOG Around the eyes 200–500 Identifying eye movements, especially for

REM sleep detection and stage transitions
Chin EMG Under the chin 200–500 Measuring muscle tone, useful for

distinguishing REM and detecting disorders
such as bruxism

ECG Chest leads 200–500 Heart activity and variability (HR/HRV),
used to study arousals and cardiorespiratory
patterns

Nasal airflow Under the nose 25–100 Detecting apnoeas/hypopnoeas and breathing
irregularities

ABD/Thor belt Around abdomen & chest 25–100 Tracking breathing effort, helping to classify
types of sleep-disordered breathing

SpO2 Finger probe 10–25 Monitoring blood oxygen drops during
breathing events, used to measure severity

Interval-derived Feature
Respiratory effort (RESP) – 4–10 Breath-to-breath timing, used for variability

analysis and detecting abnormal breathing
cycles

Inter-Beat Interval (IBI) – 4–10 Beat-to-beat timing, used to compute HRV
and study autonomic regulation during sleep

Table 4: Overview of the PSG datasets used in this study.

Dataset Age Span1 Duration Recording Span # Recordings # Subjects Total Hours
Sleep Heart Health Study (SHHS) (Quan et al., 1997) 39-90 8.9 ± 1.1 1995-2003 8,440 5,795 75,431
Wisconsin Sleep Cohort (WSC) (Young et al., 2009) 37-85 8.0 ± 0.8 2000-2015 2,570 1,123 20,520
Osteoporotic Fractures in Men Study (MrOS) (Blackwell et al., 2011) 67-90 11.5 ± 2.3 2000-2005 3,930 2,905 45,110
Multi-Ethnic Study of Atherosclerosis (MESA) (Chen et al., 2015) 54-94 10.6 ± 1.6 2010-2012 2,056 2,056 21,745
Human Sleep Project (HSP) (Sun et al., 2023) 1-109 7.6 ± 1.1 2007-present 25,253 18,973 190,732
Apnea Positive Pressure Long-term Efficacy Study (APPLES) (Quan et al., 2011) 18-83 8.2 ± 1.2 2003-2004 1,096 1,096 8,955

A.2 OVERVIEW OF DATASETS

Table 4 compiles six large publicly available PSG cohorts spanning children to older-adult popula-
tions (ages 1–109) and nearly three decades of acquisition (1995–present). As indicated by the Du-
ration column in Table 4, all recordings correspond to full-night PSG studies. The corpus of training
data comprises 42,249 overnight recordings from 30,852 subjects across these five cohorts (SHHS,
WSC, MrOS, MESA, and HSP). In addition, the APPLES cohort, consisting of 1,096 recordings, is
used as an external validation cohort. HSP contributes the broadest age range and largest share of
data, while SHHS, WSC, MrOS, MESA and APPLES provide well-characterized adult cohorts. The
diversity in demographics and collection periods enables robust pre-training and evaluation under
heterogeneous sensors and montages.

A.3 PRE-TRAINING CONFIGURATIONS

During pre-training, we ensured consistency by using a fixed batch size of 320 across all models.
Including the prepended [CLS] token, the maximum sequence length was capped at L = 121. For
contrastive learning, the temperature parameter was set to τ = 0.2. Optimization was performed

1In SHHS and MrOS, ages greater than 90 are top-coded and recorded as 90.
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using AdamW (learning rate 5 × 10−5, β = (0.9, 0.95), ϵ = 10−8, and weight decay of 0.01 for
non-normalization weights), with a linear warmup over 3% of steps followed by cosine decay.

Table 5: Configurations of the sleep2vec model across different sizes.

Configuration Small Medium Large
Number of parameters 63.5M 133.7M 238.2M
Hidden dimension 512 768 1024
Number of layers 8 12 16
Attention heads 16 16 16
Segment duration (pre-training) 1 hour 1 hour 1 hour
Segment duration (fine-tuning) Whole night Whole night Whole night

The architectural hyper-parameters are adjusted to yield sleep2vec variants with varying numbers
of parameters, as detailed in Table 5. Unless otherwise stated, all experiments were conducted using
the sleep2vecmedium variant.

For the sample-weighting mechanism introduced in Section 3.3.3, we employed a Laplace kernel

κ(ai, aj) = exp
(
− |ai−aj |

σage

)
,

with bandwidth σage = 20.0. This choice reflects clinical observations that sleep physiology and
sleep-disordered breathing vary gradually with age rather than abruptly. A 20-year scale captures
meaningful across-lifespan differences without over-penalizing small age gaps (Ohayon et al., 2004;
Li et al., 2022).

Gender coefficients are set to γsame = 1.0 and γdiff = 0.8, acknowledging sex differences in
sleep architecture and in the prevalence/severity of sleep-disordered breathing that are present but
not dominant at the individual-record level (Peppard et al., 2013). The site coefficients were set
to δsame = 1.3 and δdiff = 0.8 to account for systematic inter-site variation (device, montage,
scoring protocol) that is frequently larger than gender effects in multi-center cohorts (Rosenberg &
Van Hout, 2013; Kuna et al., 2013). We used ε = 10−6 for numerical stability.

Finally, a fixed margin term γm = 0.1 (Eq. 4 and Eq. 5 in Section 3) was applied when modulating
pseudo-negatives from the same subject-night, reflecting the high correlation of repeated segments
within a recording and discouraging them from being treated as fully independent negatives.

Each pre-training run used two high-memory GPUs, the largest configuration trained for up to 48
hours.

We intentionally avoid any cross-modal reconstruction objective during pre-training. sleep2vec
is trained solely with the InfoNCE and DASH-InfoNCE losses described above, which encour-
age alignment between heterogeneous PSG montages and associated metadata without requiring an
explicit generative decoder. In preliminary experiments, a variant that replaced the contrastive ob-
jective with a generic cross-modal reconstruction module was implemented. Under matched data
and compute budgets, this reconstruction-based variant was substantially harder to optimize and
frequently failed to converge to competitive solutions. These observations, combined with the ad-
ditional computational overhead of large reconstruction decoders, motivated our design choice to
focus on contrastive alignment as a more stable and scalable route to robust missing-modality gen-
eralization.

A.4 ABLATION STUDY

A.4.1 ABLATION OF FEATURE FUSION STRATEGIES

To further assess the influence of different feature-fusion strategies, we perform an ablation study
comparing the three representative designs incorporated in our framework: Concatenation, Mean
and the adopted Gating mechanism.

In practice, Concatenation rapidly becomes computationally prohibitive as the number of modali-
ties increases, since it expands the hidden representation dimensionality and consequently inflates
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Table 6: Ablation study of different feature-fusion strategies and their impact on five-class sleep-
staging performance (W/N1/N2/N3/REM). The evaluated model is the medium-sized sleep2vec
variant, fine-tuned on SHHS and evaluated on unseen APPLES. Bold numbers denote the best
performance among FMs.

Overall Performance (↑) Class-wise F1 (↑)

Feature Fusion Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

Concatenation 76.9 0.66 63.1 71.8 93.3 89.9 21.0 79.9 37.3 87.4
Mean 78.1 0.68 64.7 71.9 93.7 89.3 26.2 81.5 38.4 88.1
Gating 78.4 0.69 65.2 72.0 93.8 89.6 27.3 81.8 39.0 88.2

both the parameter count and VRAM usage of subsequent layers. Additionally, it does not provide
measurable performance benefits over the lightweight alternatives and is therefore not used as our
default fusion approach.

Our analysis thus focuses on Mean and Gating, two scalable and computationally efficient
paradigms. Across representative downstream sleep staging tasks, both strategies achieve com-
petitive performance. Nonetheless, the Gating mechanism consistently yields small but robust im-
provements over Mean, and further offers enhanced interpretability through modality-specific gating
coefficients that quantify the contribution of each input signal.

The results of this ablation study are reported in Table 6. Collectively, these findings justify our
choice of Gating as the default fusion strategy, as it provides a balanced combination of scalability,
empirical performance and interpretability.

A.4.2 ABLATION OF METADATA COMPONENTS IN DASH-INFONCE

Table 7: Ablation study of metadata-aware contrastive objectives. Four contrastive formulations
are compared during pre-training: (i) vanilla InfoNCE, (ii) single-metadata–aware variants that in-
corporate one metadata factor at a time (Age-aware, Gender-aware, Site-aware InfoNCE), and (iii)
the proposed DASH-InfoNCE. All medium-sized sleep2vec models are pre-trained on the full mul-
timodal corpus and subsequently fine-tuned and evaluated on SHHS for five-class sleep staging.
“Retrieval Acc.” corresponds to recall@1 in a cross-modal retrieval task, given a query embedding
from one modality, the model must retrieve the correctly paired PSG segment from a pool of candi-
dates drawn from other modalities, and Retrieval Acc. is the fraction of queries for which the true
pair is ranked first. Bold numbers denote the best performance among FMs.

Overall Performance (↑) Class-wise F1 (↑) Retrieval Acc. (↑)

Method Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

Vanilla InfoNCE 88.4 0.84 78.6 77.9 96.8 94.7 39.8 87.9 80.0 90.8 0.351
Age-aware 88.3 0.83 78.7 77.2 96.7 94.6 41.6 88.0 78.1 91.0 0.355
Gender-aware 88.5 0.84 79.2 78.1 96.8 94.7 43.0 88.1 79.3 91.1 0.356
Site-aware 88.1 0.83 78.0 75.9 96.6 94.6 39.9 87.8 76.8 90.9 0.363
DASH-InfoNCE 88.6 0.84 79.5 78.4 96.8 94.8 44.1 88.2 79.2 91.2 0.368

To isolate the contribution of each metadata component within DASH-InfoNCE, an additional ab-
lation study was conducted to examine the model’s generalization behavior under distribution shift.
Specifically, the impact of incorporating individual metadata, age, gender, and site, on performance
in the unseen APPLES cohort.

For this analysis, models are pre-trained with only one metadata enabled at a time, followed by fine-
tuning on SHHS and direct evaluation on APPLES without any further adaptation. Downstream
sleep staging performance as well as cross-modal retrieval accuracy (Recall@1) are both reported,
quantifying the quality of modality alignment in the shared embedding space.

Results presented in Table 7 and Table 8 suggest that activating any single metadata consistently
improves performance over the vanilla InfoNCE baseline on the unseen cohort, either through higher
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Table 8: Ablation study of metadata-aware contrastive objectives. Four contrastive formulations are
compared during pre-training: (i) vanilla InfoNCE, (ii) single-metadata–aware variants that incor-
porate one metadata factor at a time (Age-aware, Gender-aware, Site-aware InfoNCE), and (iii) the
proposed DASH-InfoNCE. All medium-sized sleep2vec models are pre-trained on the full multi-
modal corpus and subsequently fine-tuned on SHHS and evaluated on unseen APPLES for five-
class sleep staging. “Retrieval Acc.” corresponds to recall@1 in a cross-modal retrieval task, given
a query embedding from one modality, the model must retrieve the correctly paired PSG segment
from a pool of candidates drawn from other modalities, and Retrieval Acc. is the fraction of queries
for which the true pair is ranked first. Bold numbers denote the best performance among FMs.

Overall Performance (↑) Class-wise F1 (↑) Retrieval Acc. (↑)

Method Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

Vanilla InfoNCE 76.8 0.67 63.5 73.3 93.4 90.5 24.0 79.5 35.5 88.1 0.351
Age-aware 78.3 0.68 64.9 72.0 93.7 89.5 26.6 81.7 39.0 88.0 0.355
Gender-aware 78.3 0.69 65.5 72.4 93.7 89.7 29.1 81.7 39.2 87.8 0.356
Site-aware 78.1 0.68 64.8 72.1 93.6 90.3 26.2 81.2 38.4 87.8 0.363
DASH-InfoNCE 78.4 0.69 65.2 72.0 93.8 89.6 27.3 81.8 39.0 88.2 0.368

Macro-F1 (MF1) or improved retrieval alignment. Combining all three metadata factors in the full
DASH-InfoNCE formulation provides the strongest overall performance.

These findings demonstrate that age, gender and site information contribute complementary signals
that enhance robustness under distribution shift. Together, they strengthen cross-modal alignment
and cross-cohort generalization, highlighting DASH-InfoNCE as an effective strategy for improving
model stability and transferability in unseen clinical cohorts.

A.4.3 ABLATION OF MASKING STRATEGIES

Table 9: Ablation study on the effect of masking ratios during pre-training. All medium-sized
sleep2vec models are fine-tuned and evaluated on SHHS for five-class sleep staging. Bold numbers
denote the best performance among FMs.

Overall Performance (↑) Class-wise F1 (↑) Retrieval Acc. (↑)

Mask Ratio Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

0% 88.5 0.84 78.8 77.2 96.7 94.7 41.9 88.2 78.2 91.1 0.403
15% 88.6 0.84 79.5 78.4 96.8 94.8 44.1 88.2 79.2 91.2 0.368
30% 88.4 0.83 78.8 77.2 96.7 94.7 41.6 88.1 78.6 91.1 0.281

Table 10: Ablation study on the effect of masking ratios during pre-training. All medium-sized
sleep2vec models are fine-tuned on SHHS and evaluated on unseen APPLES for five-class sleep
staging. Bold numbers denote the best performance among FMs.

Overall Performance (↑) Class-wise F1 (↑) Retrieval Acc. (↑)

Mask Ratio Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

0% 77.9 0.68 64.0 71.4 93.6 89.4 23.2 81.5 38.6 87.4 0.403
15% 78.4 0.69 65.2 72.0 93.8 89.6 27.3 81.8 39.0 88.2 0.368
30% 77.5 0.67 63.4 72.2 93.5 89.8 20.0 80.8 38.7 87.9 0.281

The role of masking strength during contrastive pre-training is also investigated to assess how differ-
ent corruption levels affect the robustness of the learned representations. Specifically, downstream
sleep staging performance of three masking ratios (0%, 15% and 30%) is reported in Table 9 (in-
domain SHHS) and Table 10 (cross-cohort APPLES).

A moderate masking ratio of 15% yields the most favorable balance between representational ro-
bustness and downstream accuracy. Compared to the no-masking condition, moderate masking leads
to consistent improvements in Macro-F1 (MF1) and class-wise metrics across both evaluation set-
tings. In contrast, increasing the masking ratio to 30% provides no additional generalization benefits,
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suggesting that overly aggressive masking may overly corrupt physiologically meaningful temporal
structure. These results indicate that moderate masking functions as an effective regularizer during
contrastive physiological pre-training.

We additionally note that retrieval accuracy is highest under the 0% masking configuration. This
trend is likely driven by the closer match between the training objective and the retrieval evaluation
when no corruption is applied, rather than reflecting superior generalization. Retrieval accuracy
should therefore be interpreted jointly with downstream task performance when comparing masking
strategies.

A.5 FURTHER INVESTIGATION OF ABLATION STUDY

A.5.1 SCALING LAW OF FOUNDATION MODEL PARAMETERS

63.5M

# Param.

133.7M

238.2M

(a) (b)

Figure 6: Performance comparison across varying model sizes (63.5M, 133.7M and 238.2M param-
eters) for sleep staging on (a) SHHS and (b) WSC datasets. Results demonstrate a clear scaling law,
where increasing the number of parameters consistently improves Accuracy (Acc.), Cohen’s Kappa
(κ), Macro-F1 (MF1), Sensitivity (Sens.) and Specificity (Spec.), underscoring the effectiveness of
scaling physiological foundation models in capturing complex sleep dynamics.

The scaling behavior of sleep2vec concerning model parameters is presented in Figure 6. The
performance across two benchmark datasets, SHHS (a) and WSC (b), consistently improves as
the number of parameters increases from 63.5M to 238.2M. This improvement is evident in key
metrics such as Accuracy (Acc.), Cohen’s Kappa (κ), Macro-F1 (MF1), Sensitivity (Sens.) and
Specificity (Spec.). Notably, the scaling effect exhibits diminishing returns, suggesting that while
larger model sizes capture increasingly complex physiological patterns inherent in sleep data, the
incremental gains become smaller with each parameter increase. Overall, these results affirm the
robustness and scalability of the sleep2vec architecture, indicating its suitability for capturing
detailed, multimodal physiological dynamics in sleep studies.

The training dynamics in Figure 7 and 8 indicate that increasing model capacity yields faster con-
vergence and higher asymptotic retrieval accuracy, albeit with diminishing marginal improvements
as model size grows.

A.5.2 SCALING LAW OF PRE-TRAINING DATA SIZE

Table 11: Effect of pre-training data size on cross-cohort sleep staging performance
(W/N1/N2/N3/REM). All medium-sized sleep2vec models are fine-tuned and evaluated on SHHS.
Bold numbers denote the best performance among FMs.

Overall Performance (↑) Class-wise F1 (↑) Retrieval Acc. (↑)

Data Fraction Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

25% 87.1 0.82 77.2 76.3 96.4 93.7 37.6 86.8 77.7 89.9 0.281
50% 88.0 0.83 77.9 76.8 96.6 94.3 38.5 87.5 78.8 90.6 0.295
75% 88.4 0.83 78.7 77.1 96.7 94.6 41.2 88.0 78.3 91.1 0.340
100% 88.6 0.84 79.5 78.4 96.8 94.8 44.1 88.2 79.2 91.2 0.368
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Figure 7: Validation loss curves across model scales under the vanilla InfoNCE objective and the
proposed DASH-InfoNCE. Larger models (small, medium, large) consistently achieve lower val-
idation loss and exhibit more stable convergence compared to the InfoNCE baseline, indicating
increased representational capacity and more effective optimization dynamics.
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Figure 8: Validation retrieval accuracy curves across model scales under the vanilla InfoNCE objec-
tive and the proposed DASH-InfoNCE. Larger models (small, medium, large) consistently achieve
higher retrieval accuracy and more stable convergence relative to the InfoNCE baseline, reflecting
improved cross-modal alignment capability and stronger representation learning.

The impact of pre-training data scale on cross-cohort generalization is examined by varying the
fraction of the pre-training corpus while keeping the downstream fine-tuning protocol fixed. Models
are pre-trained using 25%, 50%, 75% and 100% of the available data and subsequently evaluated on
an unseen cohort.

As shown in Table 11 and Table 12, increasing the amount of pre-training data leads to consistent
improvements in downstream performance, particularly in Macro-F1 (MF1) and Cohen’s κ. The
performance improvements are most substantial when moving from low to intermediate-scale data
regimes, with diminishing returns as the full dataset is utilized. This trend suggests that larger-
scale physiological pre-training promotes more robust and transferable representations, which is
especially valuable under distribution shift.

Collectively, these findings indicate that the proposed framework benefits notably from increased
data scale and exhibits stable generalization properties across cohorts.

A.5.3 SCALING LAW OF PRE-TRAINING MODALITY NUMBER

The effect of pre-training modality count on downstream performance is examined by comparing
four variants of the DASH-InfoNCE sleep2vec framework. The three curriculum stages differ only
in the modality sets introduced during pre-training: Stage 1 includes the most frequent and informa-
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Table 12: Effect of pre-training data size on cross-cohort sleep staging performance
(W/N1/N2/N3/REM). All medium-sized sleep2vec models are fine-tuned on SHHS and evaluated
unseen APPLES. Bold numbers denote the best performance among FMs.

Overall Performance (↑) Class-wise F1 (↑) Retrieval Acc. (↑)

Data Fraction Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

25% 76.1 0.65 62.7 70.9 93.1 88.5 23.1 79.5 36.2 86.4 0.281
50% 76.8 0.66 63.0 71.7 93.3 89.5 21.6 80.0 36.2 87.7 0.295
75% 78.0 0.68 64.6 71.7 93.6 89.1 25.4 81.5 38.8 88.0 0.340
100% 78.4 0.69 65.2 72.0 93.8 89.6 27.3 81.8 39.0 88.2 0.368

Table 13: Effect of modality-scaling strategies on SHHS. “Single-stage” corresponds to the proposed
medium sized sleep2vec model pre-trained from scratch using all available modalities. “Stage 1/2/3”
implement a curriculum in which training begins with the most frequent and informative channels
(EEG, RESP, and IBI in Stage 1), followed by the addition of EOG, ECG, and nasal airflow in Stage
2, and finally EMG, abdominal/thoracic belts, and SpO2 in Stage 3, with each stage continuing from
the previous checkpoint. All models are fine-tuned and evaluated on SHHS under identical EEG
only and RESP+IBI downstream settings. Bold numbers indicate the best performance among
FMs.

PSG Channel Set Overall Performance (↑) Class-wise F1 (↑)

Inference Subset Curriculum Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

EEG

Stage 1 86.9 0.81 77.4 76.3 96.3 93.5 41.0 86.7 77.2 88.6
Stage 2 87.0 0.82 77.7 76.5 96.3 93.6 42.5 86.7 76.8 88.8
Stage 3 87.3 0.82 77.2 75.7 96.4 93.7 38.9 87.0 77.6 88.9
Single-stage 87.4 0.82 77.3 76.6 96.5 94.2 40.1 86.5 77.7 88.3

RESP+IBI

Stage 1 82.1 0.74 67.5 66.6 94.8 91.9 15.2 80.5 63.7 86.3
Stage 2 82.2 0.75 66.3 66.9 94.9 91.8 6.6 80.2 66.2 86.6
Stage 3 82.5 0.75 68.2 67.3 95.0 92.3 17.1 80.9 63.7 86.8
Single-stage 83.0 0.75 65.9 65.8 95.1 86.6 5.3 80.9 64.3 86.6

Table 14: Effect of modality-scaling strategies. “Single-stage” corresponds to the proposed medium
sized sleep2vec model pre-trained from scratch using all available modalities. “Stage 1/2/3” imple-
ment a curriculum in which training begins with the most frequent and informative channels (EEG,
RESP, and IBI in Stage 1), followed by the addition of EOG, ECG, and nasal airflow in Stage 2, and
finally EMG, abdominal/thoracic belts, and SpO2 in Stage 3, with each stage continuing from the
previous checkpoint. All models are fine-tuned on SHHS and evaluated on unseen APPLES under
identical EEG only and RESP+IBI downstream settings. Bold numbers indicate the best perfor-
mance among FMs.

PSG Channel Set Overall Performance (↑) Class-wise F1 (↑)

Inference Subset Curriculum Acc. κ MF1 Sens. Spec. Wake N1 N2 N3 REM

EEG

Stage 1 76.6 0.66 63.6 72.8 93.3 89.4 25.4 79.8 36.7 86.5
Stage 2 77.4 0.67 64.3 72.5 93.5 89.6 26.8 80.8 37.6 86.9
Stage 3 77.2 0.67 63.2 72.1 93.4 89.1 20.8 80.8 37.8 87.3
Single-stage 76.7 0.66 62.5 71.9 93.3 89.6 19.1 80.0 37.3 86.7

RESP+IBI

Stage 1 72.3 0.60 56.8 66.4 91.9 86.7 7.1 75.3 31.0 83.8
Stage 2 71.2 0.59 55.4 66.7 91.7 86.8 3.1 73.9 29.0 83.9
Stage 3 72.3 0.60 57.1 67.0 91.9 87.6 7.8 74.8 30.1 85.0
Single-stage 73.2 0.61 57.8 66.2 92.1 86.5 10.2 76.5 31.5 84.2

tive channels (EEG, RESP, and IBI); Stage 2 resumes from the Stage 1 checkpoint and adds EOG,
ECG, and nasal airflow; Stage 3 incorporates the remaining, less frequent channels (EMG, abdom-
inal/thoracic belts, and SpO2). By contrast, the Single-stage model is trained from scratch using all
modalities simultaneously.
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All variants are fine-tuned using identical protocols on SHHS with either EEG or RESP+IBI as
downstream inputs, and are evaluated both in-domain on SHHS and cross-cohort on APPLES. As
reported in Table 13 and Table 14, expanding the modality set during pre-training yields small
but consistent gains over the Stage 1 baseline, with the Single-stage model generally attaining the
strongest or near-strongest performance. Importantly, the addition of rarer modalities in Stage 3
does not degrade performance, and all variants fall within a narrow accuracy and Macro-F1 (MF1)
range. This stability indicates that sleep2vec scales predictably and robustly with respect to both
modality number and modality diversity.

Moreover, as the number of pre-training modalities increases, the model retains, and often enhances,
its performance when fine-tuned using only the originally available modalities, providing greater
flexibility in downstream modality selection without sacrificing accuracy.

A.6 RETRIEVAL ACCURACY MATRIX

The alignment quality is qualitatively validated using average recall@1 metrics computed across
modalities on a test set comprising 10,109 samples. sleep2vec achieves a recall@1 of 36.8%,
significantly surpassing the baseline with the original InfoNCE loss, which achieves 35.1%. This
highlights the representational quality and discriminative capacity of the obtained embeddings.

Figure 9: Recall@1 retrieval accuracy matrix of the learned representations. Rows correspond to
the query modality, while columns indicate the retrieved modality.

The Recall@1 cross-modal retrieval accuracy matrix visualized in Figure 9 demonstrates distinct
modality-specific alignment patterns. Notably, Respiratory and ABD/Thor exhibit exceptionally
high mutual retrieval accuracy (0.82), aligning well with their known physiological coupling. EEG
also demonstrates strong alignment with EOG (0.69). Conversely, modalities such as SpO2 and
EMG generally yield lower retrieval accuracies (≈ 0.2–0.4), reflecting comparatively weaker phys-
iological correlations.

A.7 COMPLEMENTARY DOWNSTREAM FINE-TUNING RESULTS

A.7.1 SLEEP STAGING CONFIGURATIONS

For fine-tuning the transformer backbone in the sleep staging task, we utilized Low-Rank Adaptation
(LoRA) to achieve parameter-efficient adaptation. Specifically, LoRA adapters were integrated into
the query, key and value projections of every transformer layer, while keeping the original
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backbone parameters frozen. Unless specified otherwise, we set the rank to r = 8, scaling factor
α = 16, dropout probability p = 0.05, without incorporating additional biases. For multimodal
fine-tuning scenarios, the same set of LoRA adapters was shared across all modalities. Instead of
relying on a special classification token, transformer output embeddings from the final layer at each
time step were individually projected through a two-layer MLP classifier, whose hidden dimension
matched that of the backbone output. Optimization was performed using the AdamW optimizer with
a learning rate of 1× 10−4 and a weight decay of 1× 10−5.

Baseline models are reproduced using their original hyperparameters as reported in the correspond-
ing publications.

A.7.2 PERFORMANCE ON WSC DATASET

Table 15: Performance of five-class sleep staging (W/N1/N2/N3/REM) across PSG channel sets and
models on WSC. Reported metrics regarding overall performance including Accuracy (Acc., %),
Cohen Kappa (κ), Macro-F1 (MF1, %), Sensitivity (Sens., %) and Specificity (Spec., %). Class-
wise F1 (%) is also listed. Baselines reproduced by us for fair comparison are marked with †. Note
that these foundation model baselines were individually pre-trained for each PSG channel subset,
whereas sleep2vec was pre-trained only once across all modalities. “FULL CHANNELS” refers
to the fixed channel configuration that each model is designed for and individually pre-trained on.
Other naming conventions follow the one adopted in Table 1. Underlined numbers indicate the best
overall performance within each channel set; bold numbers denote the best performance among
FMs; bold-underlined numbers indicate cases where the FM surpasses specialized models.

PSG Channel Set Overall Performance (↑) Class-wise F1 (↑)

Inference Subset Model Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM

EEG
Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 84.3 0.76 73.6 72.4 95.2 90.1 40.4 89.4 62.5 85.4
sleep2vec 86.3 0.80 74.8 73.5 96.1 93.8 45.2 89.1 60.1 85.7

IBI & RESP

Specialized (non-FM) Model
Sun et al. (2019) † 74.7 0.59 56.6 55.9 91.5 79.6 15.4 81.1 26.6 80.4
Goldammer et al. (2022) 73.0 0.57 52.0 52.7 91.0 74.3 13.9 80.5 14.8 75.7

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 77.7 0.65 56.7 57.0 92.5 83.8 10.6 83.9 24.5 81.0
SleepFounder (Nie et al., 2025) † 79.8 0.69 65.5 64.8 93.7 86.8 28.0 85.2 43.5 84.2
sleep2vec 81.6 0.72 66.4 65.1 94.6 91.6 29.1 84.0 44.4 82.9

EEG & EOG & EMG

Specialized (non-FM) Model
Olesen et al. (2021) 77.6 0.66 — — — — — — — —

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 84.5 0.77 75.1 74.9 95.4 90.0 44.3 89.3 63.8 87.9
sleep2vec 86.8 0.80 77.4 75.5 96.1 92.8 51.2 90.1 63.9 88.8

FULL CHANNELS

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 84.6 0.77 75.4 75.0 95.4 90.0 45.2 89.4 64.1 88.1
PFTSleep (Fox et al., 2025) 85.5 0.78 73.8 74.4 95.5 90.0 33.8 90.1 65.2 89.7
sleep2vec (InfoNCE) 87.1 0.81 78.2 76.7 96.2 93.1 50.7 90.5 67.3 89.5
sleep2vec 87.3 0.81 79.0 77.5 96.3 93.3 53.8 90.7 67.5 89.7

Several trends emerge from Table 15:

(i) Comprehensive research on PSG data remains limited, as existing methods commonly focus on
single-channel EEG or small subsets of physiological signals. Specialized models typically pro-
vide established benchmarks, particularly in cardiorespiratory modality configurations, presenting
significant evaluation standards for generalized foundation models.

(ii) Foundation models consistently exhibit strong performance, often surpassing specialized sleep
staging methods. This is evident in the EEG configuration, where sleep2vec notably achieves the
best overall performance among foundation models (Accuracy: 86.3%, κ: 0.80), outperforming
baseline FM SleepFM (Accuracy: 84.3%, κ: 0.76).

(iii) sleep2vec consistently demonstrates superior performance across various PSG channel subsets.
Specifically, in the “IBI & RESP” channel configuration, sleep2vec substantially surpasses both spe-
cialized and baseline foundation models (Accuracy: 81.6% compared to SleepFounder’s 79.8% and
SleepFM’s 77.2%). Similarly, in the “EEG & EOG & EMG” subset, sleep2vec outperforms baseline
foundation models (Accuracy: 86.8% vs. 84.5%) and considerably surpasses specialized methods
(Accuracy: 86.8% vs. 77.6%). In the Full Channels configuration, sleep2vec achieves the highest
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performance across multiple metrics (Accuracy: 87.4%, κ :0.81), underscoring the effectiveness of
leveraging comprehensive modality combinations.

Table 16: Cross-cohort evaluation of five-class sleep staging (W/N1/N2/N3/REM) across PSG
channel sets and models on unseen APPLES. Models are fine-tuned on WSC without seeing
any data from APPLES during both pre-training and fine-tuning. “FULL CHANNELS” refers to
the fixed channel configuration that each model is designed for and individually pre-trained on.
Underlined numbers indicate the best overall performance within each channel set; bold numbers
denote the best performance among FMs; bold-underlined numbers indicate cases where the FM
surpasses specialized models.

PSG Channel Set Overall Performance (↑) Class-wise F1 (↑)

Inference Subset Model Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM

IBI & RESP

Specialized (non-FM) Model
(Sun et al., 2019) † 69.9 0.54 51.6 53.3 90.4 78.6 8.9 76.2 17.1 77.2
(Goldammer et al., 2022) † 68.6 0.52 48.6 50.3 90.2 74.3 8.1 76.7 14.6 69.5

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 74.4 0.61 56.3 56.5 91.9 81.8 17.0 81.1 20.2 81.3
SleepFounder (Nie et al., 2025) † 74.0 0.61 59.4 64.0 92.1 84.7 17.9 79.2 31.7 83.5
sleep2vec (InfoNCE) 76.1 0.64 55.9 55.5 92.4 85.4 16.8 81.5 14.4 81.5
sleep2vec 76.4 0.64 57.7 57.7 92.7 85.7 19.2 81.8 19.5 82.5

FULL CHANNELS

Foundation Model
SleepFM (Thapa et al., 2024; 2025) † 78.7 0.68 63.5 62.1 93.4 86.0 30.7 85.4 32.3 83.1
sleep2vec (InfoNCE) 77.5 0.68 64.8 70.5 93.7 87.5 30.8 82.4 37.5 86.0
sleep2vec 80.1 0.71 66.3 66.5 94.1 89.1 33.0 85.3 38.9 85.2

To further assess cross-cohort generalization, we evaluate models fine-tuned on WSC directly on
the APPLES cohort, which is unseen during both pre-training and fine-tuning. A similar trend is
observed in Table 16, mirroring the cross-cohort generalization results reported in Table 2.

A.7.3 INTERPRETABILITY OF CHANNEL-WISE CONTRIBUTION

EEG EMG EOG ECG IBI ABD/Thor Respiratory SpO2Nasal Airflow

IBI & Respiratory ABD/Thor & ECG EEG & EOG & EMG Full Channels

Figure 10: Visualization of modality-specific weights learned by the Gating Mechanism based fea-
ture fusion for the four SHHS sleep staging configurations in Table 1.

Beyond performance of sleep staging, the Gated scalar fusion used during fine-tuning provides a
transparent, modality-level attribution of the downstream decision. Concretely, the learned scalars
quantify each modality’s contribution to the task-specific representation.

To illustrate, we analyze SHHS sleep staging under the four modality configurations in Table 1.
Figure 10 presents the normalized fusion weights (visualized with a sharpening factor T = 0.4 that
clarifies display while preserving relative ratios). Across tasks, EEG receives the largest weight,
consistent with sleep staging being primarily annotated from EEG. EOG and EMG provide sub-
stantial complementary signal, while cardiorespiratory channels (e.g., airflow, ABD/Thor belt, IBI)
carry smaller weights and SpO2 contributes the least.

These weights are global, task-level attributions rather than per 30-second explanations, and they
do not capture higher-order interactions between modalities. Nevertheless, these weights offer an
interpretable summary of channel contribution that aligns with domain expectations and can inform
sensor selection in channel-limited deployments.
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A.7.4 CLINICAL DIAGNOSIS CONFIGURATIONS

For clinical diagnosis tasks, the backbone parameters were kept frozen without applying LoRA
adapters. Predictions were derived from the [CLS] token output of the final transformer layer, sub-
sequently passed through a two-layer MLP classifier whose hidden dimension matched the back-
bone’s output dimension. Training utilized the AdamW optimizer with a learning rate of 1 × 10−4

and a weight decay of 1× 10−5, maintaining consistency with the sleep staging experimental setup.
Note that site information is not used as a covariate during the fine-tuning process.

A.8 LLM USAGE

We use LLMs to correct grammatical errors.

Some elements in Figure 1 (an illustration of a participant wearing a PSG device for sleep recording,
along with icons representing each physiological signal modality) and Figure 2 (participant icons in
bed) were generated using LLMs.
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