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Abstract

Instrumental variable (IV) regression can be ap-
proached through its formulation in terms of con-
ditional moment restrictions (CMR). Building on
variants of the generalized method of moments,
most CMR estimators are implicitly based on ap-
proximating the population data distribution via
reweightings of the empirical sample. While for
large sample sizes, in the independent identically
distributed (IID) setting, reweightings can provide
sufficient flexibility, they might fail to capture the
relevant information in presence of corrupted data
or data prone to adversarial attacks. To address
these shortcomings, we propose the Sinkhorn
Method of Moments, an optimal transport-based
IV estimator that takes into account the geome-
try of the data manifold through data-derivative
information. We provide a simple plug-and-play
implementation of our method that performs on
par with related estimators in standard settings
but improves robustness against data corruption
and adversarial attacks.

1. Introduction
Instrumental variable regression is one of the most
widespread approaches for learning in presence of con-
founding (Angrist & Pischke, 2008). It is applicable in
situation where one is interested in inferring the outcome Y
of some treatment T , where both, treatment and outcome,
are affected by a so-called unobserved confounder U . To
eliminate the confounding bias, one can take into account
an instrumental variable Z, which i) affects the treatment
T , ii) affects the outcome Y only through its effect on T ,
and, iii) is independent of the confounder U . While tradi-
tionally the problem has been addressed through the 2-stage
least squares approach (Angrist & Pischke, 2008), in recent
years the formulation in terms of conditional moment re-
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Figure 1. Paradigms to approximate P0 from data (red dots) in the
GEL framework. φ-divergence-based estimators (left) approxi-
mate P0 by reweighting (weight =̂ size) the sample (e.g., (Ai &
Chen, 2003; Bennett & Kallus, 2023). MMD-based estimators
(middle) allow to sample additional data points (blue dots) (Kre-
mer et al., 2023). In contrast, optimal transport-based estimators
(right) allow to move around the data points (present work).

strictions (CMR) has gained popularity for its potential to
benefit from advances in machine learning models (Ben-
nett et al., 2019; Dikkala et al., 2020; Muandet et al., 2020;
Kremer et al., 2022; 2023; Bennett & Kallus, 2023; Zhang
et al., 2023). The CMR formulation of IV regression is
based on restricting the expectation of the prediction resid-
ual Y − f(T ) conditioned on the instruments Z, where f
denotes a causal relation from T to Y that one wants to
infer. In general, this leads to a zero-sum game in which one
minimizes an objective with respect to the model parame-
ters and maximizes it with respect to an adversary function
that detects the moment violations (Bennett et al., 2019;
Dikkala et al., 2020). One of the most general frameworks
for learning with moment restrictions is the family of gener-
alized empirical likelihood (GEL) estimators (Owen, 1988;
Qin & Lawless, 1994; Kitamura & Stutzer, 1997; Imbens
et al., 1998; Owen, 2001), which includes the prominent
generalized method of moments (Hansen, 1982; Hansen
et al., 1996; Hall, 2004). The idea behind empirical likeli-
hood is to learn a model via maximum likelihood estimation
without specifying a parametric form of the data distribu-
tion (Owen, 2001). In practice, this is realized by learning a
non-parametric approximation of the population data distri-
bution P0 along with the model f by means of minimizing
a φ-divergence under the moment restrictions. However,
by relying on φ-divergences one effectively restricts the
estimator of the population distribution to reweightings of
the sample. The reweighting assumption has recently been
lifted by Kremer et al. (2023) by introducing an estimator
based on maximum mean discrepancy (Gretton et al., 2012).
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Their estimator allows for more fine-grained approximations
of P0 by sampling additional data points from a generative
model. While reweightings of the present data or sampling
of additional points might be suitable to find sufficiently
close approximations of the population distribution in some
cases, in presence of highly complex data manifolds, e.g.,
image spaces, they might become ineffective as they are
blind towards the geometry of the data space. This is par-
ticularly relevant in the presence of poisoned (Chen et al.,
2017) or adversarial (Goodfellow et al., 2014) data points,
i.e., data that has been corrupted with small perturbations
which lead to vastly inaccurate predictions. The key to ro-
bustness against such perturbations is to look at how the
learning signal changes around the empirical data points,
i.e., to take into account the geometry of the signal with
respect to the data manifold. We implement the idea of a
geometry-aware learning with conditional moment restric-
tions by proposing an empirical likelihood-type estimator
based on a regularized optimal transport distance, which
we call the Sinkhorn Method of Moments (SMM). Figure 1
schematically compares our method to previous approaches
to empirical likelihood estimation.

Our Contributions

• We propose the Sinkhorn Method of Moments (SMM),
the first geometry-aware approach to IV regression
resulting from an empirical likelihood-type estimator
based on the Sinkhorn distance.

• We derive the dual form of our estimator and a leading
order expansion that lets us compute our estimator with
stochastic gradient methods.

• We show that under standard assumptions, our method
is consistent for models identified via conditional mo-
ment restrictions.

• We derive a kernel-based implementation of our
method that can be interpreted as a geometry-aware
variant of a 2-stage generalized method of moments
estimator for conditional moment restrictions.

• Our experiments demonstrate that SMM is competitive
with state-of-the-art IV estimators in standard settings
and can provide an improvement in presence of cor-
rupted data and adversarial examples.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces empirical likelihood estimation for con-
ditional moment restrictions, followed by the derivation of
our method and its theoretical properties in Section 3. Em-
pirical results are provided in Section 4 and related work is
discussed in Section 5.

2. Empirical Likelihood Estimation for CMR
In the following let T , Y and Z denote random variables
taking values in T ⊆ Rdt , Y ⊆ Rdy and Z ⊆ Rdz respec-
tively. We denote by EP [·] the expectation operator with
respect to a distribution P and drop the subscript whenever
we refer to the population distribution P0.

Conditional moment restrictions identify a function of inter-
est f0 ∈ F by restricting the conditional expectation of a
so-called moment function ψ : T × Y × F → Rm,

E[ψ(T, Y ; f0)|Z] = 0 PZ−a.s. (1)

The most prominent example of this problem is instrumental
variable (IV) regression, where the moment function is given
by the prediction residual ψ(t, y; f) = y−f(t) and the con-
ditioning variable Z denotes the instrument. IV regression
is one of the major practical approaches to deal with endoge-
nous variables (Pearl, 2000) and has been largely adopted
by the causal machine learning community (Hartford et al.,
2017; Singh et al., 2019; Xu et al., 2021; Saengkyongam
et al., 2022; Zhang et al., 2023).

Learning with conditional moment restrictions is challeng-
ing mostly due to two factors. The first one is that equa-
tion (1) contains a conditional expectation over the treat-
ments T and outcomes Y , while one generally has access
to a sample from the joint distribution over (T, Y, Z) ∼ P0.
For a sufficiently complex data generating process the ac-
curate estimation of a conditional distribution from the cor-
responding joint distribution can require large amounts of
data (Hall et al., 1999). This can be avoided by rewriting
the CMR (1) in terms of an equivalent variational formula-
tion (Bierens, 1982)

E[ψ(T, Y ; f0)
Th(Z)] = 0 ∀h ∈ H, (2)

whereH is a sufficiently rich function space, e.g., the space
of square-integrable functions (Bierens, 1982) or the re-
producing kernel Hilbert space of a certain kind of ker-
nel (Kremer et al., 2022). While (2) avoids the conditional
expectation operator, it involves an infinite-dimensional
over-determined system of equations. The second difficulty
is the fact that the moment restrictions identify the func-
tion of interest f0 via the population distribution P0 of the
data, about which one usually only has partial information
in terms of a sample D = {(ti, yi, zi)}ni=1 with empirical
distribution P̂n := 1

n

∑n
i=1 δ(ti,yi,zi), where δ(ti,yi,zi) de-

notes a point mass centered at (ti, yi, zi). While the true
function f0 is identified by the population moment restric-
tions (2), it might not satisfy the empirical counterpart of
(2) and thus one might not retrieve f0 by enforcing it. Em-
pirical likelihood estimation (Owen, 1988; 1990; Qin &
Lawless, 1994) has been proposed as a flexible tool to solve
over-determined moment restriction problems with access
to only a finite sample. The idea is based on approximating

2



Geometry-Aware Instrumental Variable Regression

the population distribution by seeking a distribution with
minimal distance to the empirical one for which the moment
restrictions can be fulfilled. We visualize this approach in
Figure 2. The standard generalized empirical likelihood
estimator (Qin & Lawless, 1994) with the extension to con-
ditional moment restrictions of Kremer et al. (2022) takes
the form fFGEL = argminf∈F R(f) with

R(f) = min
P∈Pn

Dφ(P ||P̂n)

s.t. EP [ψ(T, Y ; f)Th(Z)] = 0 ∀h ∈ H,

where the distance Dφ(P ||Q) =
∫
φ
(

dP
dQ

)
dQ denotes the

φ-divergence between distributions P and Q and the set
Pn := {P ≪ P̂n : EP [1] = 1} contains all distributions
which are absolutely continuous with respect to the empiri-
cal one, i.e., reweightings of the data points.

3. Sinkhorn Method of Moments
The goal of this work is to extend the idea of empirical likeli-
hood estimation to optimal transport distances. Before deriv-
ing the method, we provide a brief introduction to optimal
transport. Consider the random variable ξ := (T, Y, Z) tak-
ing values in Ξ := T ×Y×Z ⊆ Rdξ , with dξ = dt+dy+dz ,
and let P(Ξ) denote the space of probability distributions
over Ξ.

Optimal Transport Optimal transport provides an intu-
itive way of comparing two distributions by means of mea-
suring the minimum effort of transforming one to another
by moving probability mass at a certain cost. Let P ∈ P(Ξ)
and Q ∈ P(Ξ) denote two probability distributions over Ξ
with densities or probability mass functions (pmf) p and q
respectively. Let Π(P,Q) ⊂ P(Ξ× Ξ) denote the space of
joint probability distributions over the product space Ξ× Ξ
with marginals P and Q. Define the projection operators P1

and P2 with P1(x, y) = x and P2(x, y) = y and their push-
forward operation Pi♯ such that for any element of Π(P,Q),
with density (or pmf) π we have P1♯π =

∑∫
π(ξ, ξ′)dξ′ =

p(ξ) and P2♯π =
∑∫
π(ξ, ξ′)dξ = q(ξ′). Then, for a cost

function c : Ξ × Ξ → R we can define the Wasserstein
distance between P and Q in the Kantorovich formulation
as Wc(P,Q) := minπ∈Π(P,Q)

∫
c(ξ, ξ′)dπ(ξ, ξ′). Compu-

tation of the Wasserstein distance requires the solution of an
infinite-dimensional linear program. In order to enhance its
computational efficiency, Cuturi (2013) proposed to regular-
ize the distance by penalizing the relative entropy, i.e., the
Kullback-Leibler divergence, between the coupling distribu-
tion π and a reference measure µ⊗ ν ∈ P(Ξ× Ξ),

W ϵ
c (P,Q) = min

π∈Π(P,Q)

∫
c(ξ, ξ′)dπ(ξ, ξ′) + ϵH(π|µ⊗ ν),

Figure 2. Sinkhorn profile. For every f ∈ F , the Sinkhorn profile
R(f), (3), is the minimal distance between the empirical distribu-
tion P̂n and the set of distributions satisfying the CMR (1).

where the relative entropy is defined as

H(π|µ⊗ ν) =
∫
Ξ×Ξ

log

(
dπ(ξ, ξ′)

dµ(ξ)dν(ξ′)

)
dπ(ξ, ξ′).

The resulting distance can be efficiently computed with
the matrix scaling algorithm of Sinkhorn & Knopp (1967),
from where it derives its name, Sinkhorn distance. We refer
to Peyré et al. (2019) for a comprehensive introduction to
computational optimal transport for machine learning.

In order to define an estimator for the conditional moment
restriction problem (1), first, we resort to the functional
formulation of Kremer et al. (2022). Let H denote a suf-
ficiently rich space of functions such that equivalence be-
tween (1) and (2) holds. Then we define the moment func-
tional Ψ : T × Y × Z × F → Rm via its action on
h ∈ H as Ψ(t, y, z; f)(h) = ψ(t, y; f)Th(z). This lets
us express the CMR (1) in its equivalent functional form,
∥E[Ψ(T, Y, Z; f)]∥H∗ = 0, where ∥·∥H∗ denotes the norm
in the dual spaceH∗ ofH.

With this at hand, we can define the primal problem of
the Sinkhorn Method of Moments estimator for conditional
moment restrictions as the minimizer of the Sinkhorn profile
Rϵ defined as

Rϵ(f) := min
P∈P

W ϵ
c (P, P̂n) (3)

s.t. ∥EP [Ψ(T, Y, Z; f)]∥H∗ = 0.

Using Lagrangian duality we can go over to the dual for-
mulation of (3) as formalized by the following theorem
whose proof is inspired by the mathematically closely re-
lated Sinkhorn Distributionally Robust Optimization (DRO)
method of Wang et al. (2023).

Theorem 3.1 (Duality). Consider the Sinkhorn profile (3)
with reference measure µ ⊗ ν ∈ P(Ξ × Ξ). Then (3) has
the strongly dual form Rϵ(f) = suph∈HD(f, h), where

D(f, h) := Eξ′∼ν

[
−ϵ logEξ∼µ

[
e−Ψ(ξ;f)(h)−c(ξ,ξ′)/ϵ

]]
.

(4)
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In contrast to its original purpose, in our application, the
goal of the entropic regularization penalty is not to make
computation of the distance more efficient but rather to
arrive at a relaxed dual problem (4). The dual Sinkhorn
profile (4) contains expectation operators with respect to the
reference distributions µ and ν combined in a non-linear
way. This casts optimization of the objective difficult as
stochastic gradient estimates will be biased. One way to
proceed is to resort to de-biasing techniques as discussed by
Wang et al. (2023) for their related DRO objective. However,
on top of the problem of gradient estimation, computation
of (4) requires sampling from two reference distributions µ
and ν such that accurate gradient estimation becomes costly.

To avoid these issues, we propose an alternative solution
for a special choice of reference measures and cost func-
tion. Cuturi (2013) chooses the reference measure as the
product of the marginals of the coupling distribution π. For
W ϵ
c (P,Q) this corresponds to the choice µ⊗ ν = P ⊗Q.

The choice of µ and ν can be interpreted as a prior for distri-
butions P and Q respectively. Motivated by this, we choose
ν = P̂n and in order not to restrict the form of P we use an
uninformative prior and choose µ as the Lebesgue measure.

The second modeling choice is the transport cost function c.
Here, we use a weighted Euclidean norm,

c(ξ, ξ′) :=
1

2
(ξ − ξ′)TΓ(ξ − ξ′) (5)

=
1

2

∑
w∈{t,y,z}

γw∥w − w′∥22,

where the factors γw > 0 determine the transport cost in
the spaces T , Y and Z and we defined the block diagonal
matrix Γ := diag({γtIdt , γyIdy , γzIdz}) ∈ Rdξ×dξ , with
Idi denoting the identity matrix in Rdi . With these choices,
the objective (4) becomes

D(f, h) = Eξ′∼P̂n

[
−ϵ logEξ∼N (ξ′,ϵΓ−1)

[
e−Ψ(ξ;f)(h)

]]
,

(6)

where N (ξ′, ϵΓ−1) denotes a multivariate Gaussian
centered at ξ′ = (t′, y′, z′) with diagonal covariance
ϵΓ−1. Thus, for each value of ξ′ we need to carry out an
expectation over the moment violation exp(−Ψ(ξ; f)(h))
with respect to a narrow Gaussian distribution centered at ξ′.
Now, as ϵ is a small regularization parameter, the integrand
will only provide relevant contributions in a neighborhood
of ξ′ and thus, for a sufficiently smooth moment function
ψ and instrument function h, we can employ a Taylor
expansion and carry out the Gaussian expectation over ξ
in closed form. In the following, we define the weighted
Laplacian ∆ξ = ∇ξ ·

(
Γ−1∇ξ

)
=

∑
w∈{t,y,z}

1
γw

∆w and
the weighted l2-norm ∥·∥Γ as ∥v∥2Γ = vTΓ−1v for v ∈ Rdξ .

Theorem 3.2. Let the moment functional Ψ(·; f) : Ξ→ H∗

be continuously differentiable everywhere for any f ∈ F .
Consider the SMM estimator with transport cost function
(5) and reference measure P̂n ⊗ L, where L denotes the
Lebesgue measure over Ξ. Then, for ϵ/γi, i ∈ [t, y, z], suffi-
ciently small, up to constants and rescalings the objective
of the dual Sinkhorn profile (4) takes the form

D(f, h) =Eξ∼P̂n

[(
I +

ϵ

2
∆ξ

)
Ψ(ξ; f)(h)

]
(7)

− ϵ

2
Eξ∼P̂n

[
∥∇ξΨ(ξ; f)(h)∥2Γ

]
+O(ϵ3/2).

Motivated by the classical 2-stage generalized method of
moments (GMM) estimator (Hansen, 1982) we define the
Sinkhorn Method of Moments by substituting the instrument
function in the second term in (7) by a first stage estimate f̃ .
We will show below that this does not harm the consistency
and convergence properties of our method. Additionally, we
add regularization on the instrument function −λ2 ∥h∥

2
H to

ensure that the optimization over h is well behaved on finite
samples.

Definition 3.3 (SMM). Let f̃ ∈ F denote a first-stage
estimate of f0 ∈ F , then we define the Sinkhorn Method
of Moments (SMM) estimator as the solution of the saddle-
point problem

fSMM = argmin
f∈F

max
h∈H

M(f, h)− ϵR(f̃ , h) (8)

with

M(f, h) = EP̂n

[(
I +

ϵ

2
∆ξ

)
Ψ(ξ; f)(h)

]
R(f̃ , h) = 1

2
EP̂n

[
∥∇ξΨ(ξ; f̃)(h)∥2Γ

]
+
λ

2ϵ
∥h∥2H,

where as before Ψ(ξ; f)(h) = ψ(t, y; f)Th(z).

By using the 2-stage GMM-style estimator we shift most
of the computational complexity into the optimization of
the instrument function h ∈ H. The optimization over the
possibly high-dimensional model remains simple and even
is a convex program, whenever f has a convexity preserving
parameterization, e.g., for linear models. In practice, if (8)
is optimized with stochastic gradient methods, one can dy-
namically update the first stage estimate f̃ using the result
from the previous iteration. In the context of CMR estima-
tion this GMM-inspired two stage procedure is a popular
approach to stabilize the training (Lewis & Syrgkanis, 2018;
Bennett et al., 2019; Bennett & Kallus, 2023). Note that
without the 2-stage adaptation we would obtain an estimator
similar in spirit to the continuous updating GMM estimator
of Hansen et al. (1996) or the FGEL estimator of Kremer
et al. (2022), which can be harder to train in practice (Hall,
2004).
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The objective (8) involves a gradient and a Laplacian with
respect to the data, which allows the method to take into
account the geometry of the moment violation with respect
to the data manifold. As we maximize the objective over
h ∈ H, we promote instrument functions which correspond
to local minima of the moment violation ψ(t, y; f)Th(z)
with respect to the data. Generally for CMR estimators the
instrument function is responsible for translating the data
into a learning signal for the model f . Choosing h in a
local minimum w.r.t. the data means that we attribute less
importance to data points that lead to large increases in the
moment violation when perturbed slightly. This makes the
model less vulnerable to poisoned data and adversarial at-
tacks. SMM’s property to take into account how the learning
signal changes in proximity of the data is unique compared
to related estimators which are blind towards the geome-
try of the data manifold as they are based on reweighting
the existing data (Lewis & Syrgkanis, 2018; Bennett et al.,
2019; Dikkala et al., 2020; Kremer et al., 2022; Bennett &
Kallus, 2023) or sampling additional data points (Kremer
et al., 2023) respectively.

3.1. Consistency

The following assumptions allow us to guarantee consis-
tency and derive a convergence rate of our 2-stage estima-
tor (8) in the parametric, uniquely identified setting. Sup-
pose there exists a unique parameter θ0 ∈ Θ ⊆ Rp for
whichE[ψ(T, Y ; θ0)|Z] = 0 PZ−a.s.. In the following, let
x ∈ X ⊆ Rdx denote the concatenation of (t, y) ∈ T × Y
and let i ∈ [m] be a shorthand for i ∈ {1, . . . ,m}. Fur-
ther, we define the Jacobian of a vector-valued function
ψ : X ×Θ→ Rm as Jxψ(x; θ) ∈ Rm×dx .

Assumption 1 (Identifiability). θ0 ∈ Θ is the unique solu-
tion to E[ψ(X; θ)|Z] = 0 PZ−a.s.; Θ is compact; ψ(X; θ)
is continuous in θ everywhere w.p.1.

This is a standard assumption in IV regression that provides
identifiability of the true parameter θ0.

Assumption 2 (Data regularity). The space Ξ = T × Y ×
Z ⊂ Rdξ is compact.

Assumption 3 (Smoothness w.r.t. data). The moment func-
tion ψ(·; θ) : T ×Y → Rm isC∞-smooth in the data for ev-
ery θ ∈ Θ. Further the sets of functions {ψ(·; θ)l : θ ∈ Θ}
and {(Jxψ(·; θ))lr : θ ∈ Θ}, are P0-Donsker for every
l ∈ [m] and r ∈ [dx].

Assumption 2 and 3 ensure that the moment function and
its derivatives are well-behaved with respect to the data.
While the compactness of the data space might be violated
in practice, usually one can construct a sufficiently large
compact set that contains the data with high probability.

Assumption 4. The matrix V (Z; θ) ∈ Rm×m defined as

V (Z; θ) = E[Jxψ(X; θ)Γ−1Jxψ(X; θ)T |Z] (9)

is non-singular for θ ∈ {θ0, θ̄} w.p.1, where θ̄ is an initial
parameter estimate defined in Assumption 6.

This corresponds to the common assumption of a non-
singular covariance matrix required by related estima-
tors (Newey & Smith, 2004; Kremer et al., 2022; Bennett &
Kallus, 2023), but, here, imposed on the covariance of the
data-Jacobian.
Assumption 5 (Instrument function). H =

⊕m
l=1Hl is a a

sufficiently rich space of vector-valued functions such that
equivalence between (1) and (2) holds. Further for l ∈ [m],
h ∈ Hl is C∞-smooth and the unit ballHl,1 := {h ∈ Hl :
∥h∥Hl

≤ 1} as well as {Jzh : h ∈ Hl,1} are P0-Donsker.

This is fulfilled, for example, by choosing each Hl as the
RKHS of a universal, integrally stricly positive definite ker-
nel, e.g., the Gaussian kernel, which we will formalize later.
For neural network instrument function classes, equivalence
between the variational and conditional formulations can be
shown on basis of universal approximation theorems (Yarot-
sky, 2017; 2018). In this caseHl,1, C∞-smoothness can be
realized by using smooth activation functions.
Assumption 6 (Regularization). There is a first-
stage parameter estimate θ̄n

p→ θ̄ for which
E
[
∥ψ(X; θ̄n)− ψ(X; θ̄)∥∞

]
= Op(n

−ζ) and
E
[
∥Jxψ(X; θ̄n)− Jxψ(X; θ̄)∥∞

]
= Op(n

−ζ) with
0 < ζ ≤ 1/2. Choose λn = Op(n

−ρ) with 0 < ρ < ζ.

For linear IV regression this implies ∥θ̄n−θ̄∥∞ = Op(n
−ζ),

which means θ̄n has to be a n−ζ-consistent estimator for θ̄,
which can be any parameter for which (9) is non-singular,
e.g., the true parameter θ0.
Assumption 7 (Smoothness w.r.t. θ). θ0 ∈ int(Θ);
ψ(x; θ) is continuously differentiable in a neighborhood
Θ̄ of θ0; and E[supθ∈Θ̄ ∥Jθψ(X; θ)∥2|Z] < ∞ w.p.1;
rank (E[Jθψ(X; θ0)|Z]) = p, w.p.1.

This allows us to translate the convergence rate of the mo-
ment functional into a rate for the parameter estimate.

With these assumptions, consistency of SMM follows:
Theorem 3.4 (Consistency). Let Assumptions 1-6 be sat-
isfied. For any 0 < ϵ1 < ϵ2, choose ϵ ∼ Uniform([ϵ1, ϵ2]).
Then the SMM estimator θ̂ converges to the true parameter
θ0 in probability θ̂

p→ θ0.

If additionally Assumption 7 is satisfied, then ∥θ̂ − θ0∥ =
Op(n

−1/2).

The consistency result is independent of the choice of instru-
ment function space H as long as it fulfills Assumption 5.
Next, we discuss two different implementations ofH based
on kernel methods and neural networks.
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Algorithm 1 n-stage Kernel-SMM

Input: Initial function f̃ , hyperparameters ϵ, λ, γx
for i = 1, . . . , n do

Compute Q(f̃)
while not converged do
f ← GradientDescent(f,∇fRQ(f̃)(f))

end while
f̃ ← f

end for
Output: Function estimate f

3.2. Kernel-SMM

ChoosingH as the RKHS of a suitable kernel, we can guar-
antee equivalence between the conditional and variational
moment restrictions formulations (1) and (2). On top of that,
for RKHS instrument functions we can employ a representer
theorem and carry out the optimization over the instrument
function h ∈ H in closed form. The resulting estimator can
be obtained as the solution of a simple minimization prob-
lem bearing close resemblance to the optimally weighted
2-stage GMM estimator but taking into account the geome-
try of the moment violation with respect to the data. Before
deriving the result we provide the necessary background on
reproducing kernel Hilbert spaces (RKHS).

Reproducing Kernel Hilbert Space An RKHS H is a
Hilbert space of functions h : Z → R in which point evalu-
ation is a bounded functional. With every RKHS one can
associate a positive semi-definite kernel k(·, ·) : Z×Z → R
with the reproducing property, i.e., for any h ∈ H we have
h(z) = ⟨h, k(z, ·)⟩H. A kernel is called universal if its
RKHS is dense in the set of all continuous real-valued func-
tions (Micchelli et al., 2006). Further, a kernel is called inte-
grally strictly positive definite (ISPD) if for any h ∈ H with
0 < ∥h∥2H < ∞, we have

∫
Z h(z)k(z, z

′)h(z′)dzdz′ > 0.
Refer to, e.g., Schölkopf & Smola (2002) and Berlinet &
Thomas-Agnan (2011) for comprehensive introductions.

The following proposition specifies the properties of an
RKHS for which Assumption 5 is satisfied.

Proposition 3.5. Let Z ⊂ Rdz be compact. Then, the
instrument function space H =

⊕m
l=1Hl, where each Hl

corresponds to the RKHS of universal, integrally strictly
positive definite kernel kl, l ∈ [m] fulfills Assumption 5.

Now, for a representer theorem to hold, in the following,
we place infinite cost γz = ∞ on the transport of z ∈
Z , i.e., we fix the instruments at their empirical locations.
As long as γt, γy < ∞ this still allows for varying the
functional relation between Z and T as well as T and Y
in the training data. In the following, define the block-
diagonal matrix Γx := diag({γtIdt , γyIdy}) ∈ Rdx and
the weighted Laplace operator ∆x = ∇x ·

(
Γ−1
x ∇x

)
.

Theorem 3.6 (Kernel-SMM). Let H =
⊕m

l=1Hl be the
direct sum of m reproducing kernel Hilbert spaces with
kernels kl : Z × Z → R. Let f̃ ∈ F denote a first stage
estimate of f0 and let γz = ∞. Define ψ∆(f) ∈ Rnm,
L ∈ Rnm×nm and Q(f) ∈ Rnm×nm with entries

ψ∆(f)i·l =
(
I +

ϵ

2
∆x

)
ψl(xi; f)

L(i·l),(j·r) =δlrkl(zi, zj)

Q(f)(i·l),(j·r) =
1

n

n∑
k=1

dx∑
s=1

{
kl(zi, zk)∇xs

ψl(xk; f)

×
(
Γ−1
x

)
ss
∇xs

ψr(xk; f)kr(zk, zj)
}
.

Then the Sinkhorn profile is given by

RQ(f̃)(f) =
1

2n2
ψ∆(f)

TL

(
Q(f̃) +

λ

ϵ
L

)−1

Lψ∆(f).

(10)

Compared to the general saddle point formulation (8) the
kernelized version (10) has the significant advantage that
it only involves a minimization over the model parame-
ters and thus avoids the difficulties of mini-max optimiza-
tion (Daskalakis et al., 2017). Algorithm 1 details the im-
plementation of the multi-stage Kernel-SMM approach. In
order to minimize the number of hyperparameters, we im-
plement the gradient descent step with the limited memory
BFGS method (Liu & Nocedal, 1989). We empirically ob-
served that the n-step estimator effectively converges with
the second iteration.

3.3. Neural-SMM

A particularly interesting alternative choice of instrument
function space are neural network classes, as they can repre-
sent highly flexible functions while allowing for optimiza-
tion via mini-batch stochastic gradient methods. As demon-
strated by related works (Lewis & Syrgkanis, 2018; Bennett
et al., 2019; Kremer et al., 2022), such neural network-based
approaches can lead to powerful and scalable estimators that
may outperform the corresponding kernel method on large
samples. On the downside, they tend to be difficult to train
due to the instability and hyperparameter sensitivity of mini-
max optimization. This is particularly problematic for IV
regression, as in contrast to standard supervised learning, it
is non-trivial to define suitable validation metrics to set these
hyperparameters. As a result, compared to (10), those esti-
mators require more attention and careful evaluation which
makes them less suitable as plug-and-play IV estimators
for practitioners. As the primary focus of this work is to
introduce a new geometry-aware learning paradigm for IV
regression independent of the instrument function class, we
consider the simpler kernel version in the following and
defer results for the Neural-SMM estimator to Appendix B.
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4. Experimental Results
We benchmark the kernel version of our method against
a selection of plug-and-play IV estimators including max-
imum moment restrictions (MMR) (Zhang et al., 2023),
sieve minimum distance (SMD) (Ai & Chen, 2003) as well
as the kernel variational method of moments (VMM) (Ben-
nett & Kallus, 2023). Results for the neural network ver-
sion and related estimators can be found in Appendix B.
For all kernel methods we choose a radial basis function
kernel k(z, z′) = exp(−η∥z − z′∥22), where we set η ac-
cording to the median heuristic (Garreau et al., 2017). The
remaining hyperparameters of all methods are set by us-
ing the MMR objective on a validation data set (see Ap-
pendix A). In all experiments we consider perturbations
in the treatment variable t and fix the other variables at
their empirical values by setting γy, γz = ∞ for SMM.
Implementations of our estimators are available at https:
//github.com/HeinerKremer/sinkhorn-iv/.

IV Regression with Corrupted Data We consider the
SimpleIV experiment of Bennett & Kallus (2023) with the
following data generating process,

Z = sin(πZ0/10) (11)
T = −0.75Z0 + 3.5H + 0.14η − 0.6

Y = f(T ; θ0)− 10U + 0.1η2

where η1, η2, U ∼ N(0, I) and Z0 ∼ Uniform([−5, 5]).
The model is given by f(t; θ) = θ1t2 + θ2t + θ3 with
θ0 = [3.0,−0.5, 0.5]. This is a typical IV problem, where
the unobserved confounder U induces a non-causal depen-
dence between T and Y . To investigate the robustness
against corrupted data, we sample training sets of 1000
points and exchange a proportion of the covariates T by ran-
dom values generated according to Uniform([tmin, tmax]).
Figure 3 shows the mean-squared error of the models trained
with different methods over the proportion of random covari-
ates in the training data. We observe that for no data corrup-
tion, all estimators perform similarly, with SMM providing
a small advantage. With increasing proportion of corrupted
data, SMM scales favorably compared to the baselines. We
provide more details and a hyperparameter sensitivity anal-
ysis in Appendix A.

Adversarially Robust IV Regression We test the adver-
sarial robustness of different IV estimators in the following
setting. Define C = 0.2I ∈ R5×1, as well as B ∈ R5×1,
with fixed entries sampled from Uniform([0.1, 0.3]). Con-
sider the non-linear data generating process,

Z ∼ Uniform([−3, 3])
T = BZ + CU + η1

Y = f0(T ) + U + η2

0.00 0.05 0.10 0.15 0.20
% random covariates

0

20

40

60

M
S

E
(f̂
,f

0
)

MMR
SMD
VMM
SMM

Figure 3. Robustness against corrupted data. We generate 1000
data points from the process (11) and substitute in a proportion
of the data the treatment variable T for a random value sampled
uniformly over the domain. Lines and error bars correspond to the
mean and standard error computed over 20 training datasets.

with U ∼ N(0, 1), η1, η2 ∼ N(0, 0.1) and f0(t) =
1.5 cos(At) + 0.1At, where A ∈ R1×5 with fixed entries
sampled from Uniform([−1.5, 1.5]). We approximate f0
with a feed-forward neural network with [20, 20, 3] hidden
units and leaky ReLU activation functions. We train the
network using different plug-and-play IV estimators and
evaluate the adversarial robustness by running FGSM at-
tacks (Goodfellow et al., 2014) in directions t̃ with strength
ϵ ∈ [0, 1.0]. Figure 4 shows that all IV estimators yield
comparable mean-squared errors for ϵ = 0, clearly improv-
ing over the non-causal least squares (LSQ) solution (table).
Moreover, for increasing attack strengths ϵ, we see that
SMM demonstrates stronger adversarial robustness than the
SMD and VMM estimators. Interestingly, here, the MMR
estimator which performed worse in the first experiments
exhibits the least sensitivity towards adversarial perturba-
tions. This might be understood by the fact that the MMR
estimator corresponds to the limit case of SMM and VMM
for λ→∞. Generally, strong regularization promotes flat
functions which are less sensitive to the inputs, which could
explain MMR’s superior robustness here.

In Appendix B we provide results on a common modern
IV benchmark that provides further evidence that SMM
performs on par with state-of-the art estimators in standard
IV settings. In this context, we also provide results for
a Neural-SMM estimator, which proves to be competitive
with state-of-the art deep learning approaches (Bennett et al.,
2019; Kremer et al., 2022).

5. Related Work
Instrumental variable regression has traditionally been ad-
dressed via the 2-stage least squares (2SLS) method, which
limits both regression stages to linear models (Angrist & Pis-
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0.00 0.25 0.50 0.75 1.00
perturbation ε

0.00
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0.75

‖f̂
(t

+
εt̃

)
−
f 0

(t
)‖

2 2 MMR
SMD
VMM
SMM

LSQ MMR SMD VMM SMM

MSE (ϵ = 0) 0.45 0.014 0.018 0.012 0.012

Figure 4. Adversarial robustness of IV estimators. We use a train-
ing set of size n = 1000 and evaluate the learned models over
FGSM attacks with increasing strength ϵ. Lines and error bars
show the mean and standard error over 20 random training datasets.
The table contains the MSE in the perturbation-free case.

chke, 2008). Extensions to non-linear models have been pro-
vided by multiple works (Amemiya, 1974), recently based
on density estimators (Hartford et al., 2017; Singh et al.,
2019) and deep features (Xu et al., 2021). As an alterna-
tive to 2SLS, estimators based on the conditional moment
restriction formulation have been used based on either basis
function expansions of L2 (Carrasco & Florens, 2000; Ai &
Chen, 2003; Carrasco et al., 2007; Otsu, 2011) or machine
learning models (Bennett et al., 2019; Dikkala et al., 2020;
Muandet et al., 2020; Kremer et al., 2022; 2023; Bennett
& Kallus, 2023). Related to our Kernel-SMM estimator,
multiple works have used RKHS functions as instrument
models (Carrasco & Florens, 2000; Singh et al., 2019; Ben-
nett & Kallus, 2023; Zhang et al., 2023), leading to similar
formulations as our (10). However, in contrast to ours, none
of them take into account the geometry of the moment vio-
lation with respect to the data.

Optimization over measure spaces by means of minimizing
some notion of distributional distance between the opti-
mization variable and an empirical distribution has recently
attracted significant attention in the context of distribution-
ally robust optimization (Duchi & Namkoong, 2017; Sinha
et al., 2018; Mohajerin Esfahani & Kuhn, 2018; Lam, 2019;
Duchi & Namkoong, 2020; Duchi et al., 2021). On a higher
level, one can distinguish between three types of approaches
based on the respective distance notion (cf. Figure 1): φ-
divergences restrict the optimization variable to a finite di-
mensional vector of weights attributed to the data points
and thus find optimal reweightings of the sample. Methods
based on maximum-mean discrepancy (Gretton et al., 2007)
and the Fisher-Rao metric (Bauer et al., 2016), allow for

creation and annihilation of probability mass (Zhu et al.,
2021; Kremer et al., 2023; Yan et al., 2023). Finally, meth-
ods based on optimal transport distances effectively allow to
move around the data points in the data space (Mohajerin Es-
fahani & Kuhn, 2018; Sinha et al., 2018). While CMR esti-
mation has been based on the previous two paradigms, to the
best of our knowledge, our Sinkhorn Method of Moments
is the first estimator based on the latter category.

In a different context, empirical likelihood has previously
been combined with Wasserstein distances to calibrate the
radius of ambiguity sets in distributionally robust optimiza-
tion (DRO) (Blanchet et al., 2019). However, their method
does not extend to CMR estimation and neither does it
make use of a regularized duality structure. From a math-
ematical perspective the derivation of our first duality re-
sult (Theorem 3.1) closely resembles the derivation of the
dual Sinkhorn DRO estimator of Wang et al. (2023), which,
nevertheless, addresses an entirely different problem. In
addition, Wang et al. (2023) relies on de-biasing techniques
to optimize their objective, whereas we provided a form that
can be directly optimized via stochastic gradient methods.

6. Conclusion
Instrumental variable regression is an important concept in
the field of causal inference, which motivates the develop-
ment of estimators adapted to the intricacies of real-world
datasets. Notwithstanding recent mini-max estimators based
on neural network instrument function classes showing con-
vincing performance on benchmarks (Bennett et al., 2019;
Dikkala et al., 2020; Kremer et al., 2022; 2023), there re-
mains a need for simple plug-and-play estimators that can be
trained by practitioners without deep technical knowledge
and with a manageable set of hyperparameters. We have ex-
tended the repertoire of such estimators by a method whose
learning signal arises from an optimal transport geometry in
the data space. We showed that our estimator exhibits favor-
able properties in presence of corrupted data or adversarial
examples while maintaining performance competitive with
state-of-the art approaches on standard benchmarks. The
simplicity of our plug-and-play estimator partially results
from its kernel-based implementation which limits the scal-
ability to large sample sizes. To address this, we provide
a neural network-based implementation in the appendix,
whose detailed analysis is left for future work.

Acknowledgements
We thank Yassine Nemmour and Frederike Lübeck for help-
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A. Experimental Details
Hyperparameters For SMM we choose the hyperparameters from the grid defined by ϵ ∈ [10−6, 10−4, 10−2] and
λ/ϵ ∈ [10−6, 10−4, 10−2, 1.0]. Note that as ϵ and γt only appear as ϵ/γt, we absorb the factor γt into ϵ and consider γt = 1
everywhere. For VMM we choose the hyperparameters from λ ∈ [10−6, 10−4, 10−2, 1.0] as done by the authors of the
method (Bennett & Kallus, 2023). We pick the best hyperparameter configuration by evaluating the MMR objective (Zhang
et al., 2023) on a validation data set of the same size as the training set. We visualize the dependency on the hyperparameters
for the first experiment without random covariates in Figure 5. We observe that the method is rather insensitive to the choice
of ϵ but admits a stronger dependence on the choice of the regularization parameter λ.
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λ/ε
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Figure 5. Kernel-SMM dependency on hyperparameters. We evaluate the SMM estimator on the first experiment without random
covariates for different hyperparameter configurations. Values correspond to the mean of the prediction error E[∥f(T ; θ̂)− f(T ; θ0)∥22]
averaged over models trained on 20 random training sets.

B. Additional Results
NetworkIV Here, we consider a common modern benchmark for IV regression in the standard setting without any data
corruptions. Consider the following data generating process introduced by Bennett et al. (2019) and subsequently used by
many other works (Zhang et al., 2023; Kremer et al., 2022; 2023),

y = f0(t) + e+ δ, t = z + e+ γ,

z ∼ Uniform([−3, 3]),
e ∼ N(0, 1), γ, δ ∼ N(0, 0.1),

where the function f0 is chosen from the set of simple functions

sin: f0(t) = sin(t), abs: f0(t) = |t|,
linear: f0(t) = t, step: f0(t) = I{t≥0}.

We learn a neural network fθ with two layers of [20, 3] hidden units and leaky ReLU activation functions to approximate the
function f0 by imposing the conditional moment restriction E[Y − fθ(T )|Z] = 0 PZ−a.s.. Table 1 contains the results of
different plug-and-play IV estimators trained on a dataset of 1000 points and averaged over 20 random training datasets. We
observe that SMD, VMM and SMM perform roughly on par whereas MMR only improves in one of the settings over the
non-causal least squares solution (LSQ) which ignores the instruments entirely.

Neural Estimators We explore an alternative SMM implementation where we represent the instrument function h ∈ H as
a neural network parameterized by ω ∈ Ω. With this choice, the estimator (8) takes the form

f∗ = argmin
f∈F

max
ω∈Ω

EP̂n

[(
I +

ϵ

2
∆ξ

) (
ψ(·; f)Thω(·)

)
(ξ)− ϵ

2
∥∇ξ

(
ψ(·; f)Thω(·)

)
(ξ)∥2Γ −

λ

2
∥hω(Z)∥22

]
. (12)

The Neural-SMM estimator can be trained in the same fashion as the DeepGMM (Bennett et al., 2019) or Functional-
GEL (Kremer et al., 2022) estimators by alternating mini-batch stochastic gradient descent steps in the the model parameters
and the adversary parameters ω.
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Table 1. NetworkIV experiment. Results represent the mean and standard error of the prediction error E[∥f(T ; θ̂)− f(T ; θ0)∥22] resulting
from 20 random training datasets.

LSQ MMR SMD VMM SMM

sin 0.36± 0.03 0.40± 0.02 0.12± 0.01 0.17± 0.02 0.15± 0.01
abs 1.94± 1.48 0.61± 0.28 0.20± 0.08 0.09± 0.04 0.12± 0.04
step 0.35± 0.04 > 100 0.04± 0.01 0.05± 0.01 0.04± 0.00
linear 0.36± 0.05 0.36± 0.09 0.07± 0.04 0.03± 0.01 0.07± 0.03

Table 2. Neural CMR estimators. Results represent the mean and standard error of the prediction error E[∥f(T ; θ̂)−f(T ; θ0)∥22] resulting
from 20 random runs of the NetworkIV experiment.

DeepGMM NeuralFGEL NeuralSMM

sin 0.08± 0.01 0.10± 0.01 0.07± 0.01
abs 0.04± 0.01 0.04± 0.01 0.04± 0.01
step 0.07± 0.01 0.08± 0.01 0.07± 0.01
linear 0.05± 0.01 0.06± 0.01 0.05± 0.01

We benchmark the Neural-SMM estimator against DeepGMM (Bennett et al., 2019) and FunctionalGEL (Kremer et al.,
2022) which achieved state-of-the-art results on several benchmarks including the NetworkIV experiment. For all methods
we use the same instrument network architecture consisting of a feed-forward neural network with [50, 20] hidden units and
leaky ReLU activation functions. We optimize the objective by alternating steps with an optimistic Adam (Daskalakis et al.,
2017) optimizer with parameters β = (0.5, 0.9). We tuned the learning rates, for the model and adversary by evaluating
the DeepGMM estimator for different values and fix them both to 5e−4 for all methods. In the same way we fix the batch
size to 200 and the number of epochs to 3000. For the FunctionalGEL estimator we use the Kullback-Leibler divergence
version. For all methods we choose the regularization parameter λ from [10−6, 10−4, 10−2, 1.0] and for Neural-SMM we
additionally choose ϵ from [10−6, 10−4, 10−2, 1.0] by using the MMR objective on a validation set of the same size as the
training set.

We observe in Table 2 that Neural-SMM performs on par with these SOTA estimators on all variants of the NetworkIV
experiment, suggesting that the geometry-awareness and additional robustness of our estimator does not come at the price of
reduced performance in standard settings. It does, however, come at the price of increased computation due to the presence
of the gradient and Laplace operators with respect to the data in the objective.

Figure 6 visualizes the dependence of Neural-SMM on its hyperparameters. We observe that for this experiment SMM
requires either one or both parameters to be chosen large for optimal performance but the performance remains stable across
a range of parameters.

1e-6 1e-4 1e-2 1.0
λ/ε

1e
-6

1e
-4

1e
-2

1.
0

ε

0.29 0.28 0.06 0.05

0.18 0.16 0.05 0.04

0.07 0.08 0.05 0.05

0.04 0.04 0.04 0.04

0.1

0.2

Figure 6. Neural-SMM dependency on hyperparameters. We evaluate the Neural-SMM estimator for different hyperparameter con-
figurations exemplarily for the abs function in the network IV experiment. Values correspond to the mean of the prediction error
E[∥f(T ; θ̂)− f(T ; θ0)∥22] averaged over models trained on 20 random training sets.

13



Geometry-Aware Instrumental Variable Regression

C. Proofs
C.1. Duality Results

Proof of Theorem 3.1

Proof. Introducing the Lagrange parameter ρ ∈ R, the Lagrangian of (3) reads

L(P, ρ, f) = min
π∈Π(P,P̂n)

E(ξ,ξ′)∼π

[
c(ξ, ξ′) + ϵ log

(
dπ(ξ, ξ′)

dµ(ξ)dν(ξ′)

)]
(13)

+ ρ sup
h∈H,∥h∥H=1

EP [Ψ(ξ; f)(h)]. (14)

As eventually the Lagrangian will be maximized with respect to ρ, we can merge it with the optimization over the unit ball
inH to obtain a Lagrangian with an unrestricted parameter h ∈ H,

L(P, h, f) = min
π∈Π(P,P̂n)

E(ξ,ξ′)∼π

[
c(ξ, ξ′) + ϵ log

(
dπ(ξ, ξ′)

dµ(ξ)dν(ξ′)

)]
+ EP [Ψ(ξ; f)(h)]. (15)

Note that the Wasserstein distance is mass preserving, i.e., we do not need to explicitly impose the constraint EP [1] = 1 as
this is implied directly by normalization of the empirical distribution, i.e., let p and p̂ denote the density and probability
mass functions of P and P̂n respectively, then EP [1] =

∫
Ξ
p(ξ)dξ =

∫
Ξ

∑n
i=1 π(ξ, ξ

′
i)dξ =

∑n
i=1 p̂(ξ

′
i) =

∑n
i=1

1
n = 1.

To derive the dual problem we need to minimize the Lagrangian over the primal variable P . By definition of the coupling
distribution π we have p = P1♯π and thus we can collapse the minimizations over the π and P into a single minimization
over π ∈ Π(P̂n) := {P(Ξ× Ξ) : P2♯π = P̂n},

D(h, f) = min
π∈Π(P̂n)

E(ξ,ξ′)∼π

[
c(ξ, ξ′) + ϵ log

(
dπ(ξ, ξ′)

dµ(ξ)dν(ξ′)

)]
+ EP1♯π[Ψ(ξ; f)(h)]. (16)

Now to extract the relevant degree of freedom we can write all expectation operators as combinations of the empirical
expectation and conditional expectation over π(ξ, ξ′) given its second argument ξ′ ∈ Ξ. To see this, note that by the product
rule we have π(ξ, ξ′) =: π(ξ|ξ′)p̂(ξ′) and by the law of iterated expectation we have for any function g : Ξ × Ξ → R,
Eπ[g(ξ, ξ

′)] = Eξ′∼P̂n
[Eξ∼π|ξ′ [g(ξ, ξ

′)|ξ′]], where we defined π|ξ′ as the conditional distribution of ξ given ξ′, with density
π(ξ|ξ′). Similarly we have for any function g : Ξ→ R,

EP1♯π[g(ξ)] =

∫
Ξ

g(ξ)(P1♯π)(ξ)dξ =

∫
Ξ

g(ξ)

n∑
i=1

π(ξ, ξ′i)dξ (17)

=

∫
Ξ

g(ξ)

n∑
i=1

π(ξ|ξ′i)p̂(ξ′i)dξ =
∫
Ξ

g(ξ)
1

n

n∑
i=1

π(ξ|ξ′i)dξ (18)

= Eξ′∼P̂n
[Eξ∼π|ξ′ [g(ξ)|ξ′]]. (19)

Therefore the optimization over π ∈ Π(P̂n) is equivalent to a sequence of optimization problems over π|ξ′ ∈ P(Ξ), one for
each value of ξ′ ∈ Ξ. With this we can express the dual problem (16) as

D(h, f) = Eξ′∼P̂n

[
min

π|ξ′∈P(Ξ)
Eξ∼π|ξ′

[
c(ξ, ξ′) + ϵ log

(
d(π|ξ′)(ξ)
dµ(ξ)

)
+Ψ(ξ; f)(h)

∣∣∣∣∣ξ′
]]

(20)

Now for each ξ′ ∈ Ξ consider the inner optimization problem

G(ξ′;h, f) := min
π|ξ′∈P(Ξ)

Eξ∼π|ξ′

[
c(ξ, ξ′) + ϵ log

(
d(π|ξ′)(ξ)
dµ(ξ)

)
+Ψ(ξ; f)(h)

]
. (21)

Define the density of π|ξ′ ∈ P(Ξ) with respect to the reference measure µ ∈ P(Ξ) as r(ξ) = d(π|ξ′)(ξ)
dµ(ξ) , then we can rewrite

the optimization problem as an optimization over r ∈ R := {r : Ξ→ R+ : Eµ[r(ξ)] = 1},

G(ξ′;h, f) = min
r∈R

Eξ∼µ [r(ξ)c(ξ, ξ
′) + ϵr(ξ) log (r(ξ)) + r(ξ)Ψ(ξ; f)(h)] . (22)
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Now introducing Lagrange parameter η ∈ R and using Lagrangian duality we get

G(ξ′;h, f) = sup
η∈R

min
r:Ξ→R+

Eξ∼µ[r(ξ)c(ξ, ξ
′) + ϵr(ξ) log (r(ξ)) + r(ξ)Ψ(ξ; f)(h) + η(1− r(ξ))] (23)

= sup
η∈R

η − ϵEξ∼µ
[
sup
t≥0

t
η − c(ξ, ξ′)−Ψ(ξ; f)(h)

ϵ
− t log t

]
(24)

= sup
η∈R

η − ϵEξ∼µ
[
exp

(
η − c(ξ, ξ′)−Ψ(ξ; f)(h)

ϵ
− 1

)]
, (25)

where we used that the Fenchel conjugate of the Kullback Leibler divergence t log t is supt⟨p, t⟩ − t log t = ep−1. We
can eliminate the dual normalization variable η ∈ R from the problem by solving the corresponding first order optimality
condition

0 = 1− eη/ϵ−1EX∼µ

[
exp

(
−Ψ(ξ; f)(h)− c(ξ, ξ′)

ϵ

)]
, (26)

which yields

η = ϵ− ϵ logEX∼µ

[
exp

(
−Ψ(ξ; f)(h)− c(ξ, ξ′)

ϵ

)]
. (27)

Inserting back into (25), we obtain for each ξ′ ∈ Ξ

G(ξ′;h, f) = −ϵ logEξ∼µ
[
exp

(
−Ψ(ξ; f)(h)− c(ξ, ξ′)

ϵ

)]
. (28)

and the result follows by inserting into (20) and redefining h/ϵ→ h.

Proof of Theorem 3.2

Proof. Using the assumptions on the reference measure and cost function, we can write the objective in the form (6), where
the inner expectation is given as

Eξ∼N (ξ′,ϵΓ−1)

[
e−Ψ(ξ;f)(h)

]
=

∫
Ξ

e−Ψ(ξ;f)e−
1
2ϵ∥ξ−ξ

′∥2
Γ−1dξ. (29)

As for small ϵ the integrand only provides a finite contribution in a neighborhood of ξ′, we can use that Ψ is continuously
differentiable everywhere and employ a Taylor expansion,

Ψ(ξ; f)(h) =Ψ(ξ′; f)(h) + (ξ − ξ′)T∇ξΨ(ξ′; f)(h) (30)

+
1

2
(ξ − ξ′)T∇2

ξΨ(ξ′; f)(h)(ξ − ξ′) +O(∥ξ − ξ′∥3). (31)

Note that due to the Gaussian measure under the integral we have ∥ξ − ξ′∥ = O(ϵ1/2). Now defining δ := ξ − ξ′ ∈ Ξ as
well as the gradient G(ξ′) := ∇ξΨ(ξ′; f)(h) and Hessian H(ξ′) := ∇2

ξΨ(ξ′; f)(h) of the evaluated moment functional we
can insert back and get

Eξ∼N (ξ′,γ)

[
e−Ψ(ξ;f)(h)

]
= e−Ψ(ξ′;f)(h)

∫
Ξ

exp

(
− 1

2ϵ

(
2ϵδTG(ξ′) + ϵδTH(ξ′)δ + δTΓδ

))
dδ +O(ϵ3/2). (32)

Define the regularized Hessian Ωϵ := Ωϵ(ξ
′) := Γ+ ϵH(ξ′), which is invertible w.p.1, as for sufficiently small ϵ/γ we have

λmin(Γ) = minw∈{t,y,z} γw > ϵλmin(H(ξ′)) w.p.1 and thus Ωϵ is strictly positive definite w.p.1. Then we can employ a
change of variables by defining ω := Ω

1/2
ϵ δ and obtain

Eξ∼N (ξ′,γ)

[
e−Ψ(ξ;f)(h)

]
(33)

=e−Ψ(ξ′;f)(h)

∫
1∣∣∣detΩ1/2
ϵ

∣∣∣ × exp

(
− 1

2ϵ

(
ωTω + 2ϵωTΩ−1/2

ϵ G(ξ′)
))

dω +O(ϵ3/2). (34)
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Now, completing the square we obtain

Eξ∼N (ξ′,γ)

[
e−Ψ(ξ;f)(h)

]
(35)

=e−Ψ(ξ′;f)(h)e
ϵ
2G(ξ′)TΩ−1

ϵ G(ξ′)

∫
1∣∣∣detΩ1/2
ϵ

∣∣∣ exp
(
− 1

2ϵ

(
ω + ϵΩ−1/2

ϵ G(ξ′)2
))

dω +O(ϵ3/2) (36)

=

(
2π

ϵ

)dξ/2 ∣∣∣detΩ1/2
ϵ

∣∣∣−1

e−Ψ(ξ′;f)(h)e
ϵ
2G(ξ′)TΩ−1

ϵ G(ξ′) +O(ϵ3/2). (37)

Finally inserting back into (6) we get

D(f, h) =Eξ′∼P̂n

[
−ϵ logEξ∼N (ξ′,γ)

[
eΨ(ξ;f)(h)

]]
(38)

=Eξ′∼P̂n

[
ϵΨ(ξ′; f)(h)− ϵ2

2
G(ξ′)TΩ−1

ϵ G(ξ′) +
ϵ

2
log |detΩϵ|

]
− ϵdξ

2
log

2π

ϵ
+O(ϵ5/2). (39)

Dividing by ϵ and neglecting constant terms we get

D(f, h) = Eξ′∼P̂n

[
Ψ(ξ′; f)(h)− ϵ

2
G(ξ′)TΩ−1

ϵ G(ξ′) +
1

2
log |detΩϵ|

]
+O(ϵ3/2). (40)

Now, for small ϵ we can Taylor expand Ω−1
ϵ as

Ω−1
ϵ = (Γ + ϵH(ξ′))

−1 (41)

= Γ−1
(
I + ϵΓ−1H

)−1
(42)

= Γ−1
(
I − ϵΓ−1H

)
+O(ϵ2) (43)

= Γ−1 +O(ϵ). (44)

Similarly we have

log |detΩϵ| = log |det (Γ + ϵH)| (45)

= log |det Γ|+ log
∣∣det (I + ϵΓ−1H

)∣∣ (46)

=

 ∑
x∈{t,y,z}

dx log γx


︸ ︷︷ ︸

=:C

+ log det
(
I + ϵΓ−1H

)
(47)

= C +Tr log
(
I + ϵΓ−1H

)
(48)

= C +Tr
(
ϵΓ−1H +O(ϵ2)

)
(49)

= C + ϵ
∑

x∈{t,y,z}

1

γx
∆xΨ(ξ′; f)(h) +O(ϵ2). (50)

So we finally obtain

D(f, h) =EP̂n

Ψ(ξ; f)(h)− ϵ

2

∑
x∈{t,y,z}

1

γx

(
∥∇xΨ(ξ; f)(h)∥22 −∆xΨ(ξ; f)(h)

)+O(ϵ3/2). (51)

C.2. Proof of Theorem 3.4 (Consistency)

The objective of the SMM estimator (8) can be written as

D̂(h, θ) =
(
I +

ϵ

2
∆ξ

)
EP̂n

[Ψ(ξ; f)(h)]− ϵ

2
⟨h, Ω̂λn

(θ̄n)h⟩H, (52)

where we defined the linear operator Ω̂λn
(θ̄n) : H → H as Ω̂λn

(θ̄n) = EP̂n

[(
∇ξΨ(ξ; θ̄n)

)T
Γ−1∇ξΨ(ξ; θ̄n)

]
+ λnI ⊗ I .

Our proof of Theorem 3.4 uses properties of the spectrum of Ω̂λn(θ̄n) which we will derive in the following.
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C.2.1. PREVIOUS RESULTS

Lemma C.1 (Corollary 9.31, Kosorok (2008)). Let F and G be Donsker classes of functions. Then F + G is Donsker.
Further if additionally F and G are uniformly bounded, then F · G is Donsker.

Lemma C.2 (Lemma 18, Bennett & Kallus (2023)). Suppose that G is a class of functions of the form g : Ξ→ R, and that
G is P -Donsker in the sense of Kosorok (2008). Then we have

sup
g∈G

EP̂n
[g(ξ)]− E[g(ξ)] = Op(n

−1/2). (53)

Lemma C.3 (Lemma E.4, Kremer et al. (2023)). Let Assumptions 1-7 be satisfied. Then the matrix

Σ(θ0) = ⟨E[∇θΨ(ξ; θ0)], E[∇θTΨ(ξ; θ0)]⟩H∗ (54)

is strictly positive definite and non-singular with smallest eigenvalue bounded away from zero.

C.2.2. SPECTRUM OF Ω̂

Lemma C.4. Let Assumptions 2 and 3 be satisfied. Then we have

sup
θ∈Θ,x∈T ×Y

∥ψ(x; θ)∥∞ ≤ Cψ <∞ (55)

sup
θ∈Θ,x∈T ×Y

∥Jx(ψ)(x; θ)∥∞ ≤ Lψ <∞ (56)

sup
θ∈Θ,x∈T ×Y

∥∆xψ(x; θ)∥∞ ≤ Dψ <∞ (57)

sup
θ∈Θ,z∈Z

∥h(z)∥∞ ≤ Ch <∞ (58)

sup
θ∈Θ,z∈Z

∥Jzh(z)∥∞ ≤ Lh <∞ (59)

sup
θ∈Θ,z∈Z

∥∆zh(z)∥∞ ≤ Dh <∞, (60)

which directly implies ∥∆ξ∥op <∞ onH∗.

Proof. The proof follows directly from the fact that a continuous function on a compact domain is bounded and both ψ(·; θ)
and h are C∞-smooth by Assumptions 3 and 5.

Lemma C.5. Let V (Z; θ) = E[Jx(ψ)(X; θ)Γ−1Jx(ψ)(X; θ)T |Z] be non-singular with probability 1. Then the linear
operator Ω(θ) : H → H defined as

Ω(θ) = E
[
(∇ξΨ(ξ; θ))

T
Γ−1∇ξΨ(ξ; θ)

]
(61)

is non-singular.

Proof. We derive the result by showing that the smallest eigenvalue of Ω(θ) is positive. Consider any h ∈ H with
∥h∥L2(H,P0) > 0 then we have

⟨h,Ω(θ)h⟩H =E[h(Z)TJx(ψ)(X; θ)Γ−1Jx(ψ)(X; θ)h(Z)] (62)

=E[h(Z)TE[Jx(ψ)(X; θ)Γ−1Jx(ψ)(X; θ)|Z]h(Z)] (63)

=E[h(Z)TV0(Z; θ)h(Z)] (64)

=CE[∥h(Z)∥22] (65)

=C∥h∥2L2(H,P0)
> 0 (66)

where we used that by assumption V (Z; θ) is non-singular and thus its smallest eigenvalue C bounded away from zero
w.p.1.
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Lemma C.6 (Spectrum of Ω̂). Let the assumptions of Theorem 3.4 be satisfied. Then for θ̄ ∈ Θ with θ̄n → θ̄, the empirical
gradient covariance operator

Ω̂λn(θ̄n) = EP̂n

[(
∇ξΨ(ξ; θ̄n)

)T
Γ−1∇ξΨ(ξ; θ̄n)

]
+ λnI ⊗ I (67)

is a positive definite operator with smallest eigenvalue λmin(Ω̂) bounded away from zero and largest eigenvalue λmax(Ω̂) <
C <∞ bounded from above w.p.a.1.

Proof. Let in the following Ω̂(θ) = Ω̂λn=0(θ). With Assumption 4 it follows from Lemma C.5 that the operator Ω(θ̄) :=
E
[(
∇ξΨ(ξ; θ̄)

)T
Γ−1∇ξΨ(ξ; θ̄)

]
is non-singular and thus its smallest eigenvalue bounded away from zero. In the following

we show that Ω̂(θ̄n)
p→ Ω(θ̄), where the convergence rate in operator norm is Op(n−ζ). Therefore, by adding the identity

operator with regularization parameter λn that goes to zero slower than Op(n−ζ) we ensure that Ω̂λn(θ̄n) remains positive
definite w.p.a.1. The derivation of this result follows the proof of Lemma 20 of Bennett & Kallus (2023). By the triangle
inequality we have

∥Ω̂(θ̄n)− Ω(θ̄)∥op ≤ ∥Ω̂(θ̄n)− Ω(θ̄n)∥+ ∥Ω(θ̄n)− Ω(θ̄)∥. (68)

The first term we can estimate using standard results from empirical process theory. Define ∥h∥2H = 1
m

∑m
i=1 ∥hi∥2Hi

as
well as Jψ(X; θ) = Jxψ(X; θ) and Jh(Z) = Jzh(Z). LetH1 = {h ∈ H : ∥h∥H ≤ 1} denote the unit ball inH, then

∥Ω̂(θ̄n)− Ω(θ̄n)∥ = sup
h,h′∈H1

⟨h′, Ω̂(θ̄n)− Ω(θ̄n)h⟩H (69)

= sup
h,h′∈H1

{
EP̂n

[
h(Z)TJψ(X; θ̄n)Γ

−1
x Jψ(X; θ̄n)

Th′(Z)
]

(70)

− E
[
h(Z)TJψ(X; θ̄n)Γ

−1
x Jψ(X; θ̄n)

Th′(Z)
]

(71)

+
1

γz
EP̂n

[
ψ(X; θ̄n)

TJh(Z)Jh′(Z)Tψ(X; θ̄n)
]

(72)

− 1

γz
E
[
ψ(X; θ̄n)

TJh(Z)Jh′(Z)Tψ(X; θ̄n)
]}

(73)

≤ sup
g∈G2

{
EP̂n

[g(ξ)]− E[g(ξ)]
}
+

1

γz
sup
s∈S2

{
EP̂n

[s(ξ)]− E[s(ξ)]
}

(74)

where for i ∈ [dξ] we define

Gi = {gi : gi(ξ) =
m∑
j=1

hj(z) (Jψ(x; θ))ji Γ
−1/2
ii , h ∈ Hi,1, θ ∈ Θ} (75)

G2 = {g : g(ξ) =
∑
i∈[dx]

gi(ξ)g
′
i(ξ), gi, g

′
i ∈ Gi} (76)

Si = {si : si(ξ) =
m∑
j=1

ψj(x; θ) (Jh(z))ji , h ∈ Hi,1, θ ∈ Θ} (77)

S2 = {si : si(ξ) =
∑
i∈[dz ]

si(ξ)s
′
i(ξ), si, s

′
i ∈ Si} (78)

Now for the first term, we have that each hj ∈ Hi,1 is P0-Donsker by Assumption 5 and uniformly bounded by Lemma C.4.
Similarly each entry of the Jacobian Jψ(·; θ) is P0-Donsker by Assumption 3 and uniformly bounded by Lemma C.4. With
that we can employ Lemma C.1 to conclude that Gi is P0-Donsker and thus using Lemma C.1 again it follows that G2 is
P0-Donsker. Therefore we can use Lemma C.2 to obtain supg∈G2

{
EP̂n

[g(ξ)]− E[g(ξ)]
}
= Op(n

−1/2).

For the second term in (74) we have that each ψj(·; θ) is P0-Donsker by Assumption 3 and uniformly bounded by Lemma C.4.
Similarly each entry of the Jacobian Jzh is P0-Donsker by Assumption 5 and uniformly bounded by Lemma C.4. With that,

18



Geometry-Aware Instrumental Variable Regression

again, we can employ Lemma C.1 to conclude that Si is P0-Donsker and thus using Lemma C.1 again it follows that S2 is
P0-Donsker. Therefore we can use Lemma C.2 to obtain 1

γz
sups∈S2

{
EP̂n

[s(ξ)]− E[s(ξ)]
}
= Op(n

−1/2).

Putting these results together we finally obtain ∥Ω̂(θ̄n)− Ω(θ̄n)∥ ≤ Op(n−1/2).

For the second term in (68) we have

∥Ω(θ̄n)− Ω(θ̄)∥ = sup
h,h′∈H1

⟨h′,Ω(θ̄n)− Ω(θ̄)h⟩H ≤ Cx +
1

γz
Cz (79)

where

Cx = sup
h,h′∈H1

E
[
h′(Z)T

(
Jψ(X; θ̄n)Γ

−1
x Jψ(X; θ̄n)

T (80)

− Jψ(X; θ̄)Γ−1
x Jψ(X; θ̄)T

)
h(Z)

]
(81)

= sup
h,h′∈H1

E
[
h′(Z)T

(
Jψ(X; θ̄n)Γ

−1
x Jψ(X; θ̄n)− Jψ(X; θ̄)Γ−1

x Jψ(X; θ̄)
)
h(Z)

]
(82)

= sup
h,h′∈H1

E
[
h′(Z)TJψ(X; θ̄n)Γ

−1
x

(
Jψ(X; θ̄n)− Jψ(X; θ̄)

)T
h(Z) (83)

+ h′(Z)TJψ(X; θ̄)Γ−1
x

(
Jψ(X; θ̄n)− Jψ(X; θ̄)

)T
h(Z)

]
(84)

≤ 2

min({γt, γy})
m2C2

hLψE
[
∥Jψ(X; θ̄n)− Jψ(X; θ̄)∥∞

]
(85)

=Op(n
−ζ) (86)

where we used that by Lemma C.4, supθ∈Θ,x∈T ×Y ∥Jψ(x; θ)∥∞ ≤ Lψ and suph∈H1,z∈Z |h(z)| ≤ Ch as well as by
Assumption 6 E

[
∥Jψ(X; θ̄n)− Jψ(X; θ̄)∥∞

]
= Op(n

−ζ).

Now similarly for the second term in (79) we have

Cz = sup
h,h′∈H1

E
[
Tr

(
Jh′(Z)Tψ(X; θ̄n)ψ(X; θ̄n)

TJh(Z)
)

(87)

− Tr
(
Jh′(Z)Tψ(X; θ̄)ψ(X; θ̄)TJh(Z)

) ]
(88)

≤L2
hE[111T

(
ψ(X; θ̄n)ψ(X; θ̄n)

T − ψ(X; θ̄)ψ(X; θ̄)T
)
111] (89)

=L2
hE

[
111Tψ(X; θ̄n)

(
ψ(X; θ̄n)− ψ(X; θ̄)

)T
111
]

(90)

+ L2
hE

[
111Tψ(X; θ̄)

(
ψ(X; θ̄n)− ψ(X; θ̄)

)T
111
]

(91)

≤2m2L2
hCψE

[
∥ψ(X; θ̄n)− ψ(X; θ̄)∥∞

]
(92)

=Op(n
−ζ), (93)

where again we used Lemma C.4 and Assumption 6. Combining both results we obtain ∥Ω(θ̄n)−Ω(θ̄)∥ =≤ Cx+ 1
γz
Cz ≤

Op(n
−ζ).

Finally as 0 < ζ ≤ 1/2 it follows that

∥Ω̂(θ̄n)− Ω(θ̄)∥ ≤ ∥Ω̂(θ̄n)− Ω(θ̄n)∥+ ∥Ω(θ̄n)− Ω(θ̄)∥ (94)

≤ Op(n−1/2) +Op(n
−ζ) = Op(n

−ζ). (95)

In conclusion we have shown that Ω̂(θ̄n) converges to the non-singular operator Ω(θ̄) at rate Op(n−ζ) and by Assumption 6
we have λn = Op(n

−ρ) with 0 < ρ < ζ, therefore the operator Ω̂λn(θ̄n) = Ω̂(θ̄n) + λnI is non-singular with smallest
eigenvalue bounded away from zero w.p.a.1.
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It remains to be shown that the largest eigenvalue of Ω̂(θ̄n) is bounded. This is a direct consequence of Lemma C.4. Consider
any h ∈ H with ∥h∥H > 0 and

⟨h, Ω̂(θ̄n)h⟩ = EP̂n
[h(Z)TJψ(X; θ̄n)Jψ(X; θ̄n)

Th(Z)] (96)

≤ E[Jψ(X; θ̄n)∥2∞]E[∥h(Z)∥2∞] (97)

≤ L2
ψC

2
h <∞. (98)

C.2.3. PROOF OF THEOREM 3.4

Lemma C.7. Let the sets of functions {ψ(·; θ)l : θ ∈ Θ, l ∈ [m]} and H1 be P0-Donsker. Then we have for any θ ∈ Θ

∥EP̂n
[Ψ(ξ; θ)]− E[Ψ(ξ; θ)]∥H∗ = Op(n

−1/2). (99)

Proof.

∥EP̂n
[Ψ(ξ; θ)]− E[Ψ(ξ; θ)]∥H∗ = sup

h∈H1

EP̂n
[ψ(X; θ)Th(Z)]− E[ψ(X; θ)Th(Z)] (100)

=sup
g∈G

EP̂n
[g(ξ)]− E[g(ξ)] (101)

where

G = {g : g(ξ) =

m∑
i=1

ψi(x; θ)hi(z), hi ∈ Hi,1, θ ∈ Θ}. (102)

Now as each hi and ψi(·; θ) are P0-Donsker by Assumption 5 and 3 respectively and uniformly bounded by Lemma C.4, we
can employ Lemma C.1 to conclude that G is P0-Donsker. From this, the result follows by application of Lemma C.2.

Lemma C.8 (Convergence of D̂). Let the assumptions of Theorem 3.4 be satisfied. Additionally let θ̃ ∈ Θ be a consistent
estimator for θ0, i.e., θ̃

p→ θ0 with ∥EP̂n
[Ψ(ξ; θ̃)]∥H∗ = Op

(
n−1/2

)
. Then for h̃ = argmaxh∈HD(θ̃, h) we have

∥h̃∥H = Op
(
n−1/2

)
and D̂(θ̃, h̃) ≤ Op

(
n−1

)
.

Proof. Let Ψ̃ := 1
n

∑n
i=1 Ψ(ξi, θ̃). Then we have

0 = D̂(θ̃, 0) (103)

≤ argmax
h∈H

D(θ̃, h̃) (104)

=
(
I +

ϵ

2
∆ξ

)
Ψ̃(h̃)− ϵ

2
⟨h̃, Ω̂λn

(θ̄n)h̃⟩H (105)

≤ ∥I + ϵ

2
∆ξ∥op∥Ψ̃∥H∗∥h̃∥H −

ϵ

2
λmin

(
Ω̂λn

(θ̄n)
)∥∥∥h̃∥∥∥2

H
(106)

≤
(
1 +

ϵ

2
∥∆ξ∥

)
∥Ψ̃∥H∗∥h̃∥H −

ϵ

2
λmin

(
Ω̂λn(θ̄n)

)∥∥∥h̃∥∥∥2
H

(107)

Using that ∥∆ξ∥ <∞ by Lemma C.4 and moreover λmin

(
Ω̂λn(θ̄n)

)
> 0 by Lemma C.6, we get ∥h̃∥H ≤ C∥Ψ̃∥H∗ and

thus ∥h̃∥H = Op
(
n−1/2

)
. Now inserting back into D̂ we get D̂(θ̃, h̃) ≤ Op

(
n−1

)
.

Lemma C.9 (Convergence of ∥Ψ̂∥H∗). Let the assumptions of Theorem 3.4 be satisfied. Let θ̂ =

argminθ∈Θ suph∈H D̂(θ, h) denote the SMM estimator for θ0. Then
∥∥∥EP̂n

[Ψ(ξ; θ̂)]
∥∥∥
H∗

= Op(n
−1/2).
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Proof. Let Ψ̂ = 1
n

∑n
i=1 Ψ(ξ, θ̂). Let ϕ(Ψ̂) ∈ H denote the Riesz representer of Ψ̂ ∈ H∗. Consider any σn → 0 and define

hΨ̂ = σnϕ(Ψ̂). Using that the eigenvalues of the Laplacian ∆ξ are bounded by Lemma C.4 and the largest eigenvalue of
Ω̂(θ̄n) is bounded by a constant C by Lemma C.6, we have

D̂(θ̂, hΨ̂) =
(
I +

ϵ

2
∆ξ

)
Ψ̂(hΨ̂)−

ϵ

2
⟨hΨ̂, Ω̂(θ̄n)hΨ̂⟩H (108)

≥
(
1 +

ϵ

2
λmin(∆ξ)

)
Ψ̂(hΨ̂)−

ϵ

2
C∥hΨ̂∥

2
H (109)

≥ C ′σn∥Ψ̂∥2H∗ −
Cϵ

2
σ2
n∥Ψ̂∥2H∗ , (110)

where by assumption on ϵ we have C ′ = 1 + ϵ
2λmin(∆ξ) ̸= 0 w.p.1. Now, as θ̂ is the minimizer of the Sinkhorn profile

R(θ) = maxh∈H D̂(θ, h) we have

C ′σn∥Ψ̂∥2H∗ −
Cϵ

2
σ2
n∥Ψ̂∥2H∗ ≤ D̂(θ̂, hΨ̂) ≤ D̂(θ̂, ĥ) ≤ max

h∈H
D̂(θ0, h) ≤ O(n−1), (111)

where in the last step we used that ∥EP̂n
[Ψ(ξ; θ0)]∥H∗ = Op(n

−1/2) by Lemma C.7 and thus the assumptions of Lemma C.8
are fulfilled and we get maxh∈H D̂(θ0, h) ≤ O(n−1). Thus we have σn(C ′−Cϵ

2 σn)∥Ψ̂∥
2
H∗ = Op(n

−1) and as (C ′−Cϵ
2 σn)

is bounded away from zero for all n large enough, we have σn∥Ψ̂∥2H∗ ≤ Op(n−1). As this holds for any σn
p→ 0 we finally

have ∥Ψ̂∥H∗ = Op(n
−1/2).

Proof of Theorem 3.4 Using the result of Lemma C.9 for the convergence rate of the empirical moment functional, the
proof of the consistency of our SMM estimator is identical to the ones provided by Kremer et al. (2022) and Kremer et al.
(2023) for their estimtators. We provide it here for completeness.

Proof. From Lemma C.7 it follows that ∥EP̂n
[Ψ(ξ; θ)]−E[Ψ(ξ; θ)]∥H∗ = Op(n

−1/2) for any θ ∈ Θ. By Lemma C.9 we
have ∥EP̂n

[Ψ(ξ; θ̂)]∥H∗ = Op(n
−1/2) and thus using the triangle inequality we get∥∥∥E[Ψ(ξ; θ̂)]

∥∥∥
H∗

=
∥∥∥E[Ψ(ξ; θ̂)]− EP̂n

[Ψ(ξ; θ̂)] + EP̂n
[Ψ(ξ; θ̂)]

∥∥∥
H∗

≤
∥∥∥E[Ψ(ξ; θ̂)]− EP̂n

[Ψ(ξ; θ̂)]
∥∥∥
H∗

+
∥∥∥EP̂n

[Ψ(ξ; θ̂)]
∥∥∥
H∗

= Op(n
−1/2)

p→ 0.

As by Assumption 1, θ0 is the unique parameter for which E[ψ(T, Y ; θ)|Z] = 0 Pz−a.s. and by Assumption 5 this is
fulfilled if and only if ∥E[ψ(ξ; θ)]∥H∗ = 0, it follows that θ̂

p→ θ0.

Under the additional Assumption 7 we can use this result to translate the convergence rate of the moment functional to a
convergence rate of the estimator θ̂.

As Ψ(ξ; θ) is continuously differentiable in its second argument which follows immediately from Assumption 7 and the
definition of Ψ, we can use the mean value theorem to expand Ψ(ξ, θ̂) about θ0, i.e., there exists θ̄ ∈ conv({θ0, θ̂}) such that

Ψ(ξ; θ̂) = Ψ(ξ; θ0) + (θ̂ − θ0)T∇θΨ(ξ; θ̄). (112)

Using this we have

∥E[Ψ(ξ; θ̂)]∥2H∗ = ∥E[Ψ(ξ; θ0)]︸ ︷︷ ︸
=0

+(θ̂ − θ0)TE[∇θΨ(ξ; θ̄)]∥2H∗ (113)

=
〈
(θ̂ − θ0)TE[∇θΨ(ξ; θ̄)], (θ̂ − θ0)TE[∇θΨ(ξ; θ̄)]

〉
H∗

(114)

= (θ̂ − θ0)T
〈
E[∇θΨ(ξ; θ̄)], E[∇θTΨ(ξ; θ̄)]

〉
H∗︸ ︷︷ ︸

=:Σ(θ̄)

(θ̂ − θ0) (115)

≥ λmin
(
Σ(θ̄)

)
∥θ̂ − θ0∥22. (116)
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Now as θ̂
p→ θ0 and θ̄ ∈ conv({θ0, θ̂}) we have θ̄

p→ θ0 and thus Σ(θ̄)
p→ Σ(θ0) =: Σ0 by the continuous mapping theorem.

By the non-negativity of the norm Σ0 is positive-semi definite and non-singular by Lemma C.3, thus the smallest eigenvalue
of Σ(θ̄), λmin(Σ(θ̄)), is positive and bounded away from zero w.p.a.1. Finally as ∥E[Ψ(X,Z; θ̂)]∥ = Op(n

−1/2) taking the
square-root on both sides we have ∥θ̂ − θ0∥ = Op(n

−1/2).

Proof of Proposition 3.5

Proof. For a universal ISPD kernel, equivalence of the conditional and the variational moment restrictions (1) and (2)
follows by Theorem 3.9 of Kremer et al. (2022). The Donsker property of the unit ball in an RKHS of a smooth universal
kernel with compact domain follows from Lemma 17 of Bennett & Kallus (2023). Finally, the Donsker property of the
Jacobian Jzh of h follows by the same argument as Lemma 17 of Bennett et al. (2019) using C∞ smoothness of h and
boundedness of Jzh.

Proof of Theorem 3.6

Proof. Under the assumptions the Sinkhorn profile is given as

Rλ(f) = sup
h∈H

{
EP̂n

[
h(Z)T

(
I +

ϵ

2
∆x

)
ψ(X; f)

]
(117)

− ϵEP̂n

[
h(Z)TJψ(X; f̃)Γ−1

x Jψ(X; f̃)Th(Z)
]
− λ

2
∥h∥2H

}
(118)

which as the unconstrained maximization of a concave objective is a convex optimization problem. Moreover, the conditions
of the classical representer theorem (Schölkopf et al., 2001) are fulfilled and thus the maximizer of (118) is given as
hl =

∑n
i=1 α

l
ikl(zi, ·) with αl ∈ Rn. Inserting this into (118) and defining the kernel Gram matrices Kl ∈ Rn×n with

entries (Kl)ij = kl(zi, zj) we obtain

Rλ(f) = sup
α∈Rnm

1

n

n∑
i,j=1

m∑
l=1

αli(Kl)ij

(
I +

ϵ

2
∆x

)
ψl(xj ; f)−

λ

2

m∑
l=1

(αl)TKl(α
l) (119)

− ϵ

2n

n∑
i,j,k=1

m∑
l,r=1

αli(Kl)ij∇xψl(xj ; f̃)TΓ−1
x ∇xψr(xj ; f̃)(Kr)jkα

k
r (120)

= sup
α∈Rnm

1

n
αTLψ∆ −

1

2
αT

(
ϵQ(f̃) + λL

)
α (121)

where we defined ψ∆(f) ∈ Rnm, L ∈ Rnm×nm and Q(f) ∈ Rnm×nm with entries

ψ∆(f)i·l =
(
I +

ϵ

2
∆x

)
ψl(xi; f) (122)

L(i·l),(j·r) = δlrkl(zi, zj) (123)

Q(f)(i·l),(j·r) =
1

n

n∑
k=1

dx∑
s=1

kl(zi, zk)∇xs
ψl(xk; f)(Γ

−1
x )ss∇xs

ψr(xk; f)kr(zk, zj). (124)

The first order optimality conditions for α read

0 =
1

n
Lψ∆(f)−

(
ϵQ(f̃) + λL

)
α, (125)

which immediately gives

α =
(
ϵQ(f̃) + λL

)−1 1

n
Lψ∆(f). (126)
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Inserting back into Rλ(f) and multiplying by ϵ > 0 we obtain

Rλ(f) =
1

2n2
ψ∆(f)

TL

(
Q(f̃) +

λ

ϵ
L

)−1

Lψ∆(f). (127)
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