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Abstract

Structure elucidation is crucial for identifying unknown chemical compounds,
yet traditional spectroscopic analysis remains labour-intensive and challenging,
particularly when applied to a large number of spectra. Although machine learning
models have successfully predicted chemical structures from individual spectro-
scopic modalities, they typically fail to integrate multiple modalities concurrently,
as expert chemists usually do. Here, we introduce a multimodal multitask trans-
former model capable of accurately predicting molecular structures from integrated
spectroscopic data, including Nuclear Magnetic Resonance (NMR) and Infrared
(IR) spectroscopy. Trained initially on extensive simulated datasets and subse-
quently finetuned on experimental spectra, our model achieves Top-1 prediction
accuracies up to 96%. We demonstrate the model’s capability to leverage synergis-
tic information from different spectroscopic techniques and show that it performs
on par with expert human chemists, significantly outperforming traditional com-
putational methods. Our model represents a major advancement toward fully
automated chemical analysis, offering substantial improvements in efficiency and
accuracy for chemical research and discovery.

1 Introduction

Accurately determining the structure of unknown molecules is essential across many areas of chem-
istry, including drug discovery, natural product analysis, and materials science. Spectroscopic
techniques such as Nuclear Magnetic Resonance (NMR), Infrared (IR), and Mass Spectrometry (MS)
are routinely used to analyse molecular structures. Although the acquisition of spectroscopic data has
become routine and largely automated, its interpretation remains heavily reliant on expert knowledge,
making it time-consuming and frequently a bottleneck in the synthesis workflow.

In recent years, machine learning approaches have been developed to assist with structure elucidation
from individual spectroscopic modalities. Several studies have demonstrated that neural networks,
particularly those based on transformer architectures, can predict molecular structures from NMR
spectra with promising accuracy|/1H7]]. Similar approaches have been applied to IR data, where
models learn to associate vibrational features with functional group patterns[8-12]], or to link the
information contained in entire spectra to precise molecular structure[13H15]]. For mass spectrometry,
deep learning methods have been used to infer molecular fingerprints and retrieve candidate structures
from large databases||16-20].

Despite these advancements, models that rely on a single modality often encounter limitations.
Spectroscopic techniques provide complementary views of molecular structure: NMR reveals local
chemical environments, IR identifies characteristic bond vibrations, and MS provides mass and frag-
mentation data. When used in isolation, each modality can leave ambiguities unresolved, especially
in cases involving structurally similar compounds or noisy experimental data.
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Figure 1: Combining different spectroscopic modalities. Our model is capable of combining three different
spectroscopic modalities (IR, 'H-NMR and *C-NMR spectra) in addition to the chemical formula and based on
these inputs predicts a molecular structure.

Drawing inspiration from fields such as natural language processing, computer vision, and audio
analysis, the development of multimodal, multitask machine learning models has shown clear
benefits when different data sources offer complementary information[21123]]. In language tasks,
for example, combining visual cues with text enhances understanding in image captioning or visual
question answering[24, [25]. Similarly, in speech recognition, incorporating audio and textual
transcriptions improves transcription accuracy in noisy environments[26,27]]. These successes parallel
the challenges faced in spectroscopic analysis, where no single modality provides a comprehensive
representation of molecular structure. Just as combining text and image strengthens semantic
interpretation in language models, integrating a diverse set of analytical data allows for a more
accurate and nuanced reconstruction of chemical structures This convergence of evidence
across modalities mirrors how chemists approach structure elucidation[28]], motivating the design
of machine learning models that can fuse spectroscopic inputs in a similarly holistic manner. A few
works have already explored the combination of various different spectroscopic modalities, however,
most are limited to evaluating model performance only on simulated data and on single inference
tasks[29-31]].

To effectively exploit the integrated information across different spectroscopic techniques, multitask
learning presents a particularly suited approach. Rather than training separate models for each type
of spectrum, a multitask architecture enables a single model to learn shared representations across
multiple inputs while also optimising for each modality-specific task. This design brings several
practical benefits: it improves generalisation, allows the model to operate on incomplete modality
combinations, thus reflecting real-world limitations, and promotes more effective use of limited
experimental data by incorporating both paired and unpaired spectra. In the context of chemical
structure elucidation, multitask learning encourages the model to consistently extract and reconcile
information from different spectroscopic sources, improving both accuracy and interpretability.

In this work, we present a multimodal multitask transformer model able to process the molecular
formula, 'H-NMR, 3C-NMR and IR spectra from which the molecular structure is predicted as a
SMILES string. We demonstrate the effectiveness of our method through a rigorous evaluation on a
set of experimental spectra, followed by a comparison of the model’s performance with that of human
chemists. In addition, we also investigate the synergistic of the different spectroscopic modalities and
demonstrate that our model, just like human chemists, is able to glean insights from each modality
and combine them to make an informed prediction.
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Figure 2: Tokenising NMR and IR spectra. A and B) Tokenisation procedure for 'H-NMR and '*C-NMR
spectra respectively. C) IR spectra are segmented into patches, and each patch is projected into the embedding
space via an MLP. Bottom: The embeddings of each modality are flanked with a modality start and modality end
token and concatenated. The concatenation of all modalities is fed into the model.

2 Results

Fusing Spectroscopic Modalities

When chemists try to identify an unknown compound, they rely on extracting complementary
structural information from orthogonal spectroscopic techniques. Here we present an Al model
which, just like chemists, is able to leverage the information contained in different spectra to predict
the correct molecular structure. A fundamental challenge in this approach lies in determining the
optimal strategies to combine the different spectroscopic data types while preserving the information
contained in them.

We selected three spectroscopic modalities, IH-NMR, 3C-NMR and IR spectra, based on the
complementary structural information each provides and the availability of experimental data under
acceptable licensing terms. Our model predicts molecular structure as SMILES strings based on these
spectral inputs combined with the chemical formula[32]. We chose to include the chemical formula
as it significantly constrains the possible chemical space the model needs to explore to generate a
molecule. In practical applications, the chemical formula can be obtained from mass spectrometry
data.

In this work, we built upon the encoder-decoder transformer architecture. This requires that each
input modality is converted either into text or a similar discrete representation compatible with a
transformer model. For the chemical formula, 'H-NMR, and 3*C-NMR spectra, text-based encoding
schemes were implemented. The chemical formula is inherently textual, requiring no conversion. For
'H-NMR spectra, a structured annotation capturing peak characteristics (A)), including
the chemical shift (beginning and end of each peak), multiplicity pattern (singlet, doublet, multiplet,
etc.)[3]], and integration values was used. >C-NMR spectra were encoded via a simplified annotation
recording only the position of each peak (B)). On the other hand, for IR spectra, a patch-
based encoding approach was implemented with each spectrum segmented into frequency bands (e.g.,



Table 1: Comparison between single-task and multitask models. Top: Accuracies of four single-task models
on simulated data, zero-shot on experimental data and after finetuning on experimental data. Bottom: Accuracies
of one multitask model at either predicting structures from only one spectroscopic modality or all three.

Modality Multitasking Simulated Zero Shot Finetuned
Top-11 Topr-51 Top-11 Topr-51 Tor-1 7 Tor-5 1

IR X 39.72 57.28 1.05 4.21 17.97£5.65 44.37+6.62
13C.NMR X 49.35 66.85 48.42 66.32 57.75£11.26 85.97+9.62
'H-NMR X 60.08 76.74 20.00 31.58 45.83+£8.14 72.89+4.21
IR + 13C-NMR

+ 'H.NMR X 73.40 87.83 17.89 33.68 50.04+11.25 81.26+9.08
IR v 33.57 53.21 2.11 11.58 15.97+8.65 47.14+8.30
13C.NMR v 41.37 61.80 53.16 82.11 58.57+£9.71 89.61+4.69
'H-NMR v 53.44 72.82 31.58 51.58 49.96+£5.99 79.22+3.91
IR + 13C-NMR

+ 'HLNMR v 73.05 88.69 50.53 61.05 69.10+11.16 91.47+5.58

450-575 cm™ 1) and projected into the embedding dimension via a multilayer perceptron (MLP), as
illustrated in[Figure 2| (C) [14]]. This approach preserves the spectral patterns present in the data. The
model predicts molecules as SMILES strings, inherently a textual representation tokenised according
to Schwaller et al. [33]].

To combine the different modalities, we drew inspiration from advances in multimodal transformer
architectures[25] and implemented a token-based modality demarcation strategy. Each embedded
modality sequence is flanked by specific modality-start and modality-end tokens that signal bound-
aries between different input types (bottom)) before being concatenated and fed into the
model. This approach enables the transformer’s self-attention mechanism to establish cross-modal
relationships while maintaining awareness of each input’s specific modality. This strategy also allows
flexible handling of incomplete data (e.g. only the chemical formula and the IR spectrum), making it
possible for the model to process any combination of the input modalities.

Multitasking outperforms single-task models

As paired experimental spectroscopic data is very scarce, we first pretrained our model on simulated
spectra before finetuning on experimental data. We pretrained the models on the Multimodal
Spectroscopic Dataset[|34]], containing paired IR and NMR spectra for 790,000 molecules. During
pretraining, the model learns the SMILES string vocabulary, how to assign peaks to specific functional
groups, and how to integrate different spectroscopic modalities. However, there still is a significant
sim-to-real gap between simulated and experimental spectra. To address this domain shift, we
finetuned the models on paired experimental spectroscopic data. In this study, we utilised the dataset
published by Van Bramer & Bastin [35]], subsequently referred to as the Chemical Education dataset,
which contains paired IR and NMR spectra for 171 molecules. All experiments with experimental
data were conducted with five-fold cross-validation, with results reported as means and standard
deviations across the five folds.

To overcome the limited availability of paired spectral data, we leveraged a multitasking approach.
While most structure elucidation models are single-task (e.g., predicting structure from an IR spectrum
alone)[3} |13H15|], our multitask model can predict molecular structure from any combination of IR,
'H-NMR, and C-NMR spectra. The rationale behind this architecture addresses the data scarcity:
A multimodal single-task model might reach a local minimum by relying on only one modality
while ignoring others. In contrast, our multitask model must learn not only how to perform structure
elucidation from all modalities but also from each individual modality. This approach forces the



model to learn from all available data sources, prevents convergence to local minima, and effectively
serves as data augmentation by allowing each sample to be represented through various combinations
of modalities.

We evaluated the performance of both single-task and multitask models as shown in [Table 1| For the
single-task approach, we trained four separate models: each using the chemical formula with either IR,
'H-NMR, '*C-NMR, or all three spectral types as input. In contrast, our multitask approach required
training only one comprehensive model capable of performing all four tasks. [Table T|reports Top—1
and Top-5 accuracies across three scenarios: performance on simulated data, zero-shot performance
on experimental data (without finetuning), and performance after finetuning.

On simulated data, single-task and multimodal multitask models performed comparably. However,
the multitask model showed slightly lower performance on individual tasks (e.g., structure prediction
from IR spectra alone) relative to their single-task counterparts. For zero-shot performance, both
model types achieved their highest accuracy with '*C-NMR data, reflecting the smaller simulation-
to-reality gap for these spectra compared to others[34]], with performance decreasing in accordance
with the diminishing similarity between experimental and simulated spectra.

However, the multitask model demonstrated significantly higher zero-shot performance than its single-
task counterpart on the multimodal task, supporting our hypothesis that multitasking enables the
model to extract more information from the spectra. The most substantial advantage of multitasking
emerged during finetuning. While single-task model performance followed the zero-shot trend (with
the 13C-NMR model outperforming even the multimodal model), the multitask approach surpassed
the single-task models on the multimodal task. The performance of the multitask model exceeded
the single-task multimodal model by approximately 20% in Top—1 accuracy, while performing
comparably or slightly better in individual tasks. These results indicate that multitasking facilitates
more efficient data use and helps avoid local minima during optimisation, making it ideal for structure
elucidation due to the limited amount of experimental data.

Multitasking enables the use of unpaired data

A key advantage of multitask models is their ability to leverage unpaired data. Here, we demonstrate
that incorporating unpaired spectral data into the training of our multitask, multimodal architecture
leads to a substantial performance gain, even on tasks involving paired data. This offers a potential
solution to the scarcity of paired experimental datasets. To evaluate this capability, we augmented our
training set with additional IR spectra from the NIST EPA gas—phase library and '3C-NMR spectra
from NMRShiftDB2[36,|37|]. Due to the limited availability of raw 'H-NMR spectra, we restricted
the additional data to the other two modalities.

We first investigated the impact of modest data augmentation by adding IR spectra, *C-NMR spectra,
and paired IR and '3C data for an additional 600 molecules beyond the 171 molecules in our original
experimental dataset. To prevent data leakage, we excluded all molecules present in the Chemical
Education dataset. As shown in performance improved across all modalities with the
incorporation of additional data.

Building on these results, we expanded our dataset with an additional 33,088 molecules. These
samples included 29,960 additional '*C-NMR spectra, 5,027 IR spectra, and 1,899 samples for
which both spectral types were present. As illustrated in this saturated performance on the
Chemical Education dataset for both the 3C-NMR and multimodal tasks. Notably, performance
on the 'H-NMR task also improved despite no direct supplementation with 'H-NMR data, likely
attributable to the model’s exposure to a more diverse range of molecular structures in the training
set.

The IR prediction task remained the most challenging, reaching only 42% Top—1 accuracy even after
incorporating 5,027 additional IR spectra. This falls short of a recent study[14]], in which the IBM
team reported up to 63% Top—1 accuracy on IR spectra. The performance gap is primarily attributable
to domain differences between the ATR IR spectra in the Chemical Education dataset and the gas
phase IR spectra present in the NIST database. Additionally, there is a larger sim-to-real gap for IR
spectra than for NMR spectroscopy, requiring more substantial adaptation during finetuning.



Table 2: Adding unpaired experimental data during finetuning. The performance of the multitasking model
finetuned solely on the data present in Chemical Education dataset, with the addition of 600 unpaired samples
and 33,000 additional samples.

. Finetuned + 600 Samples + 33,088 Samples
Modality
Top-11  Topr-57 Top-11 Topr-571 Top-11  Tor-51
IR 15.974£8.65 47.14+£8.30 21.69+6.41 52.86+9.33  42.50+12.12 75.00£6.85
13C.NMR 58.57+9.71 89.61+4.69 63.55+5.84 90.55+£5.37  96.25+£7.50 97.50+5.00
"H-NMR 49.96£5.99 79.22+3.91 52.774£3.66 78.23+7.27 93.75+12.50 96.75+2.50
13

IR1+ C-NMR 69.10+11.16 91.47+5.58 75.41+8.32 91.52+1.87  96.25+7.50 98.75+2.50
+ "H-NMR

What are the benefits of multimodality?

While the previous sections demonstrated that a multitasking model is capable of outperforming single-
task models, in this section, the synergistic effect between the different modalities is investigated in
more detail. For all further experiments, we used the multitasking model trained with an additional
600 unpaired data samples. To gain deeper insight into how the different modalities complement
each other, we analysed the model’s performance across various subsets of the dataset with specific
functional groups.

shows the prediction accuracy across three representative functional groups, esters (A),
haloalkanes (B) and ethers (C), using models that predict molecular structure from either individual
modalities (IR, '3C- or 'H-NMR spectra) or a combination of all three. Across all functional groups,
IR spectroscopy alone reaches the lowest accuracy, while the multimodal approach, integrating all
spectroscopic data, consistently achieves the highest accuracy. These results support the notion that
different spectroscopic techniques provide complementary structural information.

Interestingly, the relative performance of 'H- and '3C-NMR varies depending on the functional
group. For esters, 'H-NMR outperforms '>C NMR, though both are outperformed by the multimodal
approach. In contrast, for haloalkanes, '3C NMR demonstrates superior performance compared to
'H NMR. This can be attributed to the characteristic chemical shifts of carbon atoms bonded to
halogens, providing a strong identifiable signal in '3C spectra. For ethers, 'H- and '*C-NMR perform
approximately equivalently, suggesting that both spectroscopic techniques capture similar levels of
structural information.

Figure 3| (D) also showcases two representative examples of molecules generated by the model. Only
the first prediction of the model (Top—1) is displayed. In the first example, the model successfully
generates the correct molecular structure when using '>C-NMR spectra alone and multimodal data. In
the second example, none of the individual prediction tasks yield the exact correct structure. However,
it is noteworthy that even when predictions are incorrect, the generated molecules closely resemble
the ground truth structures. This pattern of close predictions when model failure occurs highlights
an important characteristic of our multitask model: It learns meaningful chemical relationships that
allow it to produce chemically reasonable structures even when the exact target molecule is not
identified. For instance, incorrect predictions often maintain the same functional groups, similar
carbon backbone arrangements, or equivalent stereochemical features as the ground truth molecules.
This suggests that the model has developed a robust understanding of spectral-structural relationships
rather than merely memorising training examples. An analysis of the similarity between the predicted
and ground truth molecules, backing up these claims, is provided in SI section 1.

The consistently superior performance of the multimodal approach demonstrates that integrating
complementary spectroscopic techniques enables the model to overcome the limitations of individual
modalities. This synergistic effect is particularly valuable for complex structural determination tasks
where ambiguity in one spectral domain can often be resolved through information available in
another.
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Figure 3: Combining different spectroscopic modalities: Top: Performance of the model on molecules
containing either esters (A), ethers (B) or haloalkanes (C). Providing the model with multiple spectroscopic
modalities leads to an increase in performance. (D): Two example predictions from the model, with predictions
from single modalities as well as the combination. On top, an example where the correct molecule was predicted
and at the bottom, a failure case in which the model did not predict the correct molecule.

Our Model achieves expert-level accuracies

As a final demonstration of our model’s capabilities, we conducted a comparative evaluation against
human expertise. We measured IR, 'H- and '3C-NMR spectra for 16 organic molecules, carefully
selecting compounds absent from the Chemical Education dataset to prevent data leakage. Three
PhD-level chemists participated in this comparison, each receiving the same input as the model: the
molecular formula and raw spectroscopic data. Both human experts and the model were allowed
up to five structural predictions per sample. As shown in [Table 3| our model achieves performance
comparable to that of expert chemists, with both reaching approximately 65% Top—1 and 80% Top-5
accuracy. While the sample size is relatively small, the results are statistically consistent and support
meaningful comparisons. Importantly, the advantage of our computational approach extends beyond
accuracy: It’s efficiency. Where human experts typically require 10 minutes or more to analyse the
spectra of a single compound, our model generates predictions in under one second. This highlights
the potential for a significant increase in throughput for structure elucidation tasks while maintaining
expert-level accuracy.



Table 3: Human vs. Al performance. Performance of the three models presented in this work compared
against three Phd-level chemists.

Top-1 Top-2 Top-5 Top-10

Finetuning 46.2549.35  56.25+6.85  75.00+£3.95  77.50+5.00
Finetuning + 600 Samples ~ 56.25+5.59  65.00+£7.50  77.50+5.00  80.00+2.50
Finetuning + 30k Samples ~ 65.00£3.06  72.50+£3.06  76.25+2.50  81.25+3.95

Human 62.50+£5.10  77.08+2.95  79.17+5.89 N/A.

3 Conclusion

In this study, we have developed a multimodal multitask transformer model. Our findings demonstrate
that a multitasking approach significantly outperforms single-task models by leveraging comple-
mentary information across different spectroscopic modalities, making more efficient use of limited
experimental data. The model’s architecture enables the exploitation of unpaired experimental spec-
troscopic data, a significant benefit as paired datasets are notoriously sparse, resulting in Top-1
accuracies of up to 96% on the Chemical Education dataset.

To validate our approach under real-world conditions, we conducted a comparative evaluation using
16 novel experimental compounds measured specifically for this study. When benchmarked against
three PhD-level chemists, our model achieved comparable accuracy (65% Top—1 and 80% Top-5),
while delivering results in under one second per compound, a significant improvement over the 10+
minutes required by human experts. Even when predictions were not exact matches, the model
generated chemically reasonable structures that shared significant similarities with ground truth
molecules.

These findings promise a shift towards Al-assisted structure elucidation in chemistry. Rather than
replacing human expertise, we envision a collaborative workflow where Al models provide rapid
initial predictions from spectroscopic data, allowing chemists to focus their expertise on verification,
refinement, and interpretation of the results. This human-AlI partnership promises to considerably
accelerate the structure elucidation process, reducing a major bottleneck in chemical research, drug
discovery, and materials development.
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A Methods

A.1 Data

When training our model, we first pretrain it on simulated data before finetuning and evaluating it on
experimental spectra.

Simulated Data: The simulated data used in this study is sourced from an earlier paper introducing a
multimodal spectroscopic dataset[34]. We use all molecules present in the dataset, only filtering out
those also present in one of the experimental datasets. The IR spectra in this dataset were simulated
with molecular dynamics using the GAFF forcefield, whereas the 'H- and **C-NMR spectra were
generated using MestreNova([38]|39]. This dataset is filtered, excluding molecules with a heavy atom
count (all atoms except for hydrogen) outside the range of 5 to 35 and molecules containing elements
other than carbon, hydrogen, oxygen, nitrogen, sulphur, phosphorus, silicon, boron, and the halogens.

Chemical Education Dataset: To finetune our model, we primarily use the chemical education data
set published by Van Bramer & Bastin [35]]. This dataset is designed for teaching undergraduate
students how to analyse and interpret the spectra of molecules. In total, Van Bramer & Bastin [35]
measured spectra for 254 molecules, however, for only 205 of them the IR, 'H- and *C-NMR
spectra were present. 'H- and '3C-NMR were annotated automatically leveraging MestreNova.
Specifically, MestraNova’s "AutoMultipletAnalysis" function was applied to each spectrum, yielding
the beginning, end, integration and type of each peak. The integrations were rounded to the closest
positive non-zero integer, i.e. all numbers below one were rounded to one. No human correction
of the annotations was carried out. IR spectra were extracted manually, interpolated to a range
of 450-4000cm~! with a resolution of 2cm~! and normalised such that the maximum absorption
corresponds to 1.0. In addition, we filtered out any molecules containing atoms other than the ones
contained in the simulated dataset, but due to the small size of the dataset, no filtering based on the
heavy atom count was carried out. In total, this yielded 171 molecules with annotated IR, 1H- and
13C-NMR spectra.

Experimental >C-NMR and IR spectra: During finetuning we add additional experimental
13C-NMR and IR spectra to the training dataset. The '3C-NMR spectra were extracted from
NMRShiftDB2, whereas IR spectra were sourced from the NIST EPA Gas-Phase database[36|
37]. All entries in both datasets were filtered to remove molecules either outside of the heavy atom
range or containing elements not contained in the simulated dataset, as well as molecules present in
the Chemical Education dataset, eliminating the possibility of data leakage.

Measured Experimental Data: All 'H- and !3C measured as part of this study were annotated with
the same procedure as for the Chemical Education dataset, with IR spectra also processed in the same
manner.

A.2 Tokenisation and Preprocessing

The chemical formula, 'H- and *C-NMR spectra and molecules represented as SMILES were
provided to the model as text with the tokenisation procedures outlined below. IR spectra were
embedded via patches. We prepend a modality start token and append a modality end token before
the start and end of each modality.

Chemical Formula: The chemical formula was tokenised with the following regular expression:

([A-Z]1{1}[a-z]7[0-9]1%)

'H-NMR spectra: All 'H-NMR spectra were first converted into a text representation following [3)].
For each peak in the spectrum, this representation provides information on the beginning and end in
ppm, type (e.g. singlet, multiplet) and integration. All numeric values were discretised by rounding
to two decimal points. "|" is used as a separator between two peaks. As an example, the spectrum
1.24 1.39 t 3H | 1.89 2.14 q 2H | would contain two peaks, one triplet integrating to three
hydrogens and one quartet integrating to two hydrogens.

13C-NMR spectra: '3C spectra were tokenised in a similar fashion to 'H-NMR spectra convert-
ing them to a text representation. However, for these spectra, only the position of each peak
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was considered and all peak positions in ppm were rounded to one decimal point. The spectrum
12.1 27.8 127.5 contains three peaks.

IR spectra: In contrast to the other modalities, we did not encode IR spectra as text and divided the
spectrum into patches and projected each patch into the embedding space via a multilayer perceptron
(MLP). For all experiments we used a patch size of 75.

Molecules: All molecules were canonicalised using RDKit[40] and tokenised using the same regular
expression as employed by Schwaller et al. |33

A.3 Model

The model employed in this work follows the encoder-decoder transformer architecture. Building
upon the original implementation by Vaswani et al. [41]] we leverage post layer normalisation[42]],
learned positional embeddings[43|] and gated linear units[44]. The following hyperparameters were
used to construct the model:

Layers: 6

Heads: 8

Embedding Dimension: 512
Feedforward Dimension: 2048

A.4 Training

Train-test splitting: For pretraining the data an 70/20/10 train, test and validation split was used. All
finetuning experiments were carried out with five-fold cross-validation using the same seed to ensure
reproducibility, also with a 70/20/10 train, test and validation split.

Training settings: Training of the models was carried out on two Nvidia A100 GPUs with an average
pretraining time of ~ 20h. When evaluating models, the best validation checkpoint was used. For
each training run, the below listed training parameters were used. No distinction was made between
pretraining and finetuning experiments:

Epochs: 60
Optimiser: AdamW
Learning Rate: 0.001
Dropout: 0.1

Warmup steps: 8000
Adam beta_1: 0.9
Adam beta_2: 0.999
Batch size: 128

A.5 Experimental Data Collection
A.5.1 Chemicals

2,6-Lutidine, 9-Fluoroenylmethylcarbazate, N-Boc-propargylamine, 2-Nitrofuran and Propylene
Carbonate were purchased from SigmaAldrich; 4-Chloro-5-Iodo-7H-pyrrolo[2,3]dyrimidine, Boc-
Gly-Oh and N-Chlorosuccinimidine were purchased from Tokyo Chemical Industry; Dansyl Chlo-
ride and Methyl Glycolate were purchased from Carl Roth GmbH; Mono-tert-butyl-succinate
and N-Methylmorpholine were purchased from Apollo Scientific; 2-Ethoxycinnamic acid and 3-
Chloroperbenzoic acid were purchased from Fluorochem Ltd; 2,4,6-Trimethylbenzyl alcohol was
purchased from BLDPharm and Phenanthraquinone was purchased from Acros Organics.

A.5.2 Analytical Procedures

IR Spectra: IR data were acquired using a PerkinElmer Spectrum Two FTIR spectrometer with a
diamond anvil ATR attachment (450-4000 cm !, 8 scans, 2 cm ! resolution).

'H-NMR Spectra and >C-NMR Spectra: Approximately 50mg of each compound was dissolved
in deuterated chloroform, and the solutions were transferred into Smm NMR tubes for analysis. 1H-
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and '3C-NMR spectra were recorded on a Bruker AV2-402 (400 MHz) in deuterated chloroform at
room temperature. Chemical shifts are expressed in parts per million (ppm) and are calibrated using
residual protic solvent as internal reference.

B Tanimoto Similarity

To determine how similar the predictions of the model are to the ground truth, we calculate the
Tanimoto similarity between the ground truth and the top five predictions of the model. For these
experiments, we excluded all samples for which the model predicts the correct molecule within the
Top-5 predictions. The multitasking model, finetuned with 600 additional spectra, was utilised with
the Tanimoto similarity distribution displayed in[Figure 4] The median Tanimoto similarity for when
the model is supplied the IR, "H-NMR or '3*C-NMR are 0.467, 0.464 and 0.522, respectively. On the
other when all three modalities are supplied, the median Tanimoto similarity rises to 0.547

1.0

0.8

0.2

00 & & & &
S o S o

'\‘2" \'/),(J' 4,0

o
o

Tanimoto Similarity
o
D

Figure 4: Tanimoto Similarity for the top five predictions for different modalities.
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