RealNodes: Interactive and Explorable 360° VR System with Visual
Guidance User Interfaces

ABSTRACT

Emerging research expands the idea of using 360-degree panora-
mas of the real-world for “360 VR” experiences beyond video and
image viewing. However, most of these are strictly guided, with
few opportunities for interaction or exploration. There is a desire
for experiences with cohesive virtual environments with choice in
navigation, versus scripted experiences with limited interaction. Un-
like standard VR with the freedom of synthetic graphics, there are
challenges in designing user interfaces (Uls) for 360 VR navigation
within the limitations of fixed assets. We designed RealNodes, a
novel software system that presents an interactive and explorable
360 VR environment. We also developed four visual guidance Uls
for 360 VR navigation. The results of a comparative study of these
Uls determined that choice of user interface (UI) had a significant
effect on task completion times, showing one of the methods, Ar-
row, was best. Arrow also exhibited positive but non-significant
trends in preference, user engagement, and simulator-sickness. Re-
alNodes and the comparative study contribute preliminary results
that inspire future investigation of how to design effective visual
guidance metaphors for navigation in applications using novel 360
VR environments.

Keywords: Immersive / 360° video; 3D user interaction; Non-
fatiguing 3DUIs; Locomotion and navigation; 3DUI metaphors;
Computer graphics techniques

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual Reality; Human-
centered computing—Interaction design —Interaction design pro-
cess and methods—User interface design;

1 INTRODUCTION

Recent virtual reality (VR) research has reignited interest in using
360-degree panoramas of real-world environments for “360 VR”
experiences. Using image panoramas for 360-degree VR experience
dates to QuickTime VR [4]. In the late 90’s and early 2000s, some
video games experimented with making worlds with synthetic 360-
degree environment maps, connected such that if a user clicked in
certain directions, they would go to another location [21] [2]. Only
recently with affordable consumer 360-degree cameras have both
technology and research advanced to explore developing rich 360
VR environments like these using real-world images.

Experiences in development today are expanding beyond video
and image viewing, exploring technological and human factors chal-
lenges of enhancing immersion beyond guided experiences. Muham-
mad et al. [16] explored using Walking-In-Place (WIP) locomotion
to control 360-video playback, finding that simulator sickness was
reduced compared to passive playback. Lin et al. developed two
focus assistance interfaces for watching 360-video [13], finding
their methods improved ease of focus overall, but other positive
effects depended on video content and viewer goals. MacQuar-
rie and Steed [14] developed VEs from connected 360-images and
three visual transitions, finding that methods with animation gave

Figure 1: Images from the RealNodes software displaying the four
types of visual guidance Ul. (Top-left) Target; (Top-right) Arrow;
(Bottom-left) Path; (Bottom-right) Ripple.

a better feeling of motion. Rhee et al. developed MR360, software
demonstrating real-time integration of interactive objects in a 360-
video live stream, accurately lit with Image Based Lighting (IBL)
improving presence compared to conventional 360-videos [20].

One problem needing further investigation is appropriate user
interface (UI) metaphors for visual guidance, waypoint finding, and
navigation geared to 360 VR’s limitations. Synthetic environments
have the freedom of granular user position and geometry, while 360
VR is limited by fixed assets for environments. Emerging appli-
cations would benefit from this: training systems with navigation-
based decision-making; virtual tours with freedom take branching
paths; improved fitness applications with multiple routes chosen
during runtime instead of in a menu; novel games that incorporate
360 VEs made with real-world capture data for unique experiences.

To tackle this, we developed a novel software system called Re-
alNodes, an engine for scenarios combining 360-degree video and
virtual assets to create Nodes, or 360 VR location waypoints, con-
nected in a cohesive interactive environment. For this research, we
implemented four visual guidance Uls for indicating waypoints in
360 VR: Target, Ripple, Path, and Arrow (pictured in Fig. 1).

A comparative study was performed on the Uls. Participants
explored a 360 VR scenario and performed a searching task in four
conditions, each with a different UI and hidden object location. We
present preliminary results that show one of the methods, Arrow, had
a statistically significant difference in scenario competition times.
Conditions with Arrow had significantly faster completion times,
more than two times faster than the slowest condition, Path. This

seems to indicate Arrow is easier to learn and use in the scenarios.
Participant testimonials and other metrics give more explanation
for why the Arrow could be preferred for 360 VR. We contribute a
design for a software system and a set of visual guidance Uls for the
application space of 360 VR. We additionally provide preliminary
results of a comparative evaluation which provide feedback and
inspiration into designing and refining Uls for 360 VR.

2 RELATED WORK

We discuss four major categories in 360 VR: Navigation Techniques,
Assisted Focus and Guidance for Wayfinding, Effective Visual Tran-
sitions, and Integration of Interactive Elements. We feel these are
relevant to 360 VR navigation and interaction, and demonstrates
how we build upon and differentiates from prior research.

2.1 Navigation Techniques

Navigation in VR is widely researched, providing effective options
for users to explore virtual environments (VEs). Machuca et al. [3]
devised a UI called Fluid VR to perform navigation and selection
task controls with a seamless transition between modes. They claim
that traditional VR applications with explicit button or gesture mode
switching have the propensity for mode errors, which can frustrate
users. To solve this, they developed three constraint-based interac-
tion techniques: manipulation, pre-programmed interaction-based
navigation, and flying. They claim high accuracy and ease of use,
allowing for fluid mode changes. RealNodes has two modes: naviga-
tion and interaction, toggled with an explicit button press. However,
we provide clear visual indication of mode change with the Visual
Guidance UI preventing false mode input.

Tanaka et al. [22] devised a large-scale experiment to test a novel
“Motive Compass” slide pad interface with arrows and velocity
control for navigating 360 VR on a mobile touch device, compared
to a conventional on-screen button-based method. Their results show
that their interface better presents accessible directions compared
to conventional methods. Though RealNodes does not use Motive
Compass since it is an HMD based system, it has taken inspiration
from both the visuals used in their experiment for visual guidance
metaphors as well as the ability to control speed of navigation.

Paris et al. [18] developed two user studies comparing methods of
exploring large virtual worlds in the constraint of a smaller physical
space and their effect on presence and spatial memory in a navigation
and memorization task. Their second study compared two methods
of reorientation: one with artificial rotational gain, and the other
with distractors. Results indicated a significant effect on learning the
environment, with scenarios using rotational gain taking less time
than the distractor method. RealNodes has discrete, user-centered
locations that do not require much real-world locomotion, instead
using a WIP navigation method as a compromise to provide the
feeling of walking. However, a future version could be developed
that ties navigation transition videos to real locomotion for use in a
larger physical space, requiring reorientation or redirection.

Muhammad et al. [16] explored using WIP to navigate 360 VR
by controlling playback of a video in 360 VR. They found that com-
pared to passive interfaces that merely played back video, simulator
sickness was reduced. One limitation was that rotation caused false
positives in their step algorithm. We overcame that problem in Re-
alNodes by allowing steps only when rotated towards a navigable
path. Another limitation that Muhammad et al. had was that the
application was limited to linear playback, compared to RealNodes
which allows for choice in direction.

2.2 Assisted Focus and Guidance for Wayfinding

In the realm of 360-video, a constant challenge is encouraging
focus on intended targets in the video and not letting the viewer
feel like they missed something important. This has led to work
on Uls that either directly change focus or more gradually guide

viewers to points of interest in the video. To do this effectively,
we need to look at prior literature for wayfinding in VEs. Freitag,
Weyers, and Kuhlen [7] devised an interactive assistance interface
that guides the user to unexplored areas on request. Their methods
renders colored tube paths on the ground for a set of locations. This
method is an automatic system determined by heuristics factoring
in what locations were already seen/explored and what places are
interesting based on viewpoint quality. Their focus was on the
concept of “exploration success”, which they define as seeing all
important areas in an environment. A user study was performed
to determine if the proposed method added a benefit compared to
free exploration without the interface. They found an improvement
in knowledge of the environment and higher exploration success,
and participants experienced the interface as helpful and easy to use.
Their solution was designed for arbitrary scenes without the need to
modify a scene with landmarks. Meanwhile RealNodes has a similar
but stricter restriction by only having real-world video data and
no environment geometry. RealNodes is concerned with exploring
effective graphical assisted guidance for exploration success like the
work of Freitag et al. Our Arrow method was in part inspired by
their method of always indicating direction of close by waypoints.
Lin et al. developed focus assistance user interfaces and ran a
comparative experiment to determine methods for visually guiding
users while they watch a 360-video, in response to the challenge of
continuous focus and refocus on intended targets [13]. Their two
techniques were “Auto Pilot”, which directly changes the view to the
target, and “Visual Guidance”, which indicates the direction of the
target. They found their focus assistance techniques improved ease
of focus overall, but any other effects focus assistance has depended
on both the video content and the goals for watching the video.
This content was developed for standard 360-video streaming, but
lessons learned from this inspired our work to improve navigation
and interaction tasks in 360 VR with our comparative study on
methods targeted at a multi-path navigation and searching task.

2.3 Effective Visual Transitions

A challenge in VR is visual presentation of location transitions. 360
VR adds the additional challenge of lacking virtual world geometry.
Moghadam and Ragan [15] conducted a comparative study on three
visual transitions for movement in VR: Teleportation, Animated
interpolation, and Pulsed interpolation (a series of intermediary
teleportations). Results show faster transitions are preferred by par-
ticipants with VR experience, while slower transitions are preferred
by those who do not. Based on this work, we made considerations
about speed and interpolation for RealNodes system of visual transi-
tions that blends 360-video of the current location with a manually
filmed transition to the next waypoint.

Cho et al. [5] developed a novel method to integrate many 360-
images into a VE by using simple image interpolation and warping
to simulate movement from different locations as a user navigates.
Our method differs in having a VE made from videos connected
with ground truth filmed transitions.

MacQuarrie and Steed [14] developed VEs by connecting 360-
degree images and implemented ray cast point-and-click navigation.
A comparative study was done on three transitions: instantaneous
teleport, linear movement through 3D reconstruction, and an image
based "Mobius” transformation. Results indicate that 3D model
and Mobius were better for feeling of motion. Taking inspiration
from this work but in lieu of 3D models, RealNodes implements
manually filmed transitions to give a similar feeling of motion. While
their system only had one kind of metaphor for waypoints (floating
spheres), we implemented four types of visual guidance UL

2.4 Integration of Interactive Elements

Authoring 360 images and video with virtual elements is an emerg-
ing research challenge. Felinto et al. [6] developed a production

framework for combining 360 images with synthetic elements. They
incorporated IBL to give synthetic objects reflections and shadows
matching the environment. They use “Support” objects to match the
position of a real-world object in the image, texture mapped to blend
into the scene and add physics and deformation. Though RealNodes
requires manual authoring of scenarios compared to the framework
made by Felinto et al., it does so with both video and image data.

Rhee et al. developed a software system called MR360 to demon-
strate real-time integration of interactive virtual objects in a 360-
video live stream [20]. It uses the input video to apply IBL to objects,
including realistic shadows from generated light sources. A user
study showed improved presence compared to conventional 360-
videos without interaction. RealNodes employs IBL to light any
virtual objects like MR360 to match the environment. MR360 was
designed to generate VEs with live 360-videos, compared to the
RealNodes system which uses prerecorded images and video.

3 SOFTWARE DESIGN - REALNODES

RealNodes is a novel software system for creating immersive and
interactive 360 VR scenarios, developed to explore the challenge of
effective navigation in 360 VR. It presents separate locations as their
own 360-video, each logically connected with 360-video transitions
facilitating multi-path, bidirectional traversal.

For our work, we utilized the Insta360 One X commodity 360-
degree camera (See Fig. 2) [1]. It is a two-lens multi camera system
in a small form factor. Each wide-angle lens captures 200 degrees
FOV, providing a 10-degree buffer of overlap around each lens to aid
in stitching. It has onboard buttons for configuration and recording,
but we used the official Android app to allow remote start/stop of
recording, which avoids having the cameraperson in the videos.
After several test recordings of our scenario environment, we chose
to record all our video with the 3840 * 1920 @ 50 FPS (“4K”) mode,
balancing high resolution with relatively smooth playback in VR.

Figure 2: Side and top view of Insta360 One X and viewing angles.

In lieu of a standard tripod, we made our own monopod from the
Insta360 One X selfie stick and a ruggedized mini tripod intended
for large professional desktop cameras. This minimized the camera
appearance in the nadir of the 360-degree video, all while standing
as stable as a conventional tripod. Though such monopods for this
purpose are sold commercially, this setup worked for us.

RealNodes was made for SteamVR platforms, primarily the HTC
Vive. RealNodes minimally requires one controller and uses only
two buttons: Trigger and Grip. Using the Trigger simulates a
grabbing action. This is used to either grab objects or to manipulate
switches in the environment. The Grip button is used as a mode
toggle to turn NavigationMode On/Off. This controls both the
display of visual guidance Uls as well as the ability to use WIP.

3.1 Software Design Overview

RealNodes was developed with Unity3D to run on Windows 10
desktops. Since most of the scene is defined from 360-videos, there
are fewer objects in the scene graph compared to most VEs. In-
stead, these are dense with scripting logic to define the visuals and
control state based on user action. Fig. 3 illustrates the high-level
architecture of RealNodes, showing the relationship between ma-
jor scripts. MultiVideoManager is the densest script, defining the
logic for video playback and rendering. PathHotspotV2 is the state
machine for each Waypoint object. ViveCursor controls ray cast-
ing logic for the HMD, which indicates which waypoint the user
is facing. SensorDataManager is the focal point of sensor tracking
data and button states. WalkInPlaceScript gets raw HMD tracking
data and processes it to determine whether WIP is being performed.
ComplexSwitch tracks the state of an ActionTool. SpawnPageAn-
imated handles both the spawning and pickup behavior of a Page
object. CsvBuilder is used to write timestamped metrics to log files
for experimental data collection purposes: SensorLog which records
the tracking and button state data, and Event Log which records when
a new transition is started and when the scenario ends.

N - w
CsvBuilder ComplexSwitch pawn page obj;

Switch position
for current Trigger Fade and Exit
animation routines when page

object collected

Sensor data Event data
for CsV file for CsV file

Step data
HMD rotation for current active
& position for WIP; transition
Controllerimputfor | WalkInPlaceScript Unlock/lock
navigation mode /\nawgallon mode

SensorDataManger MultiVideoManager

- -

HMD rotation Specific Unlock/lock
waypoint
data

Notifications to prepare rendering for
specific

waypoint

& position for Set which waypoint
waypoint is currently active
raycast logic

Unlock/lock
rendering for
ViveCursor specific waypoint;
Set rendering color
for Arrow

Figure 3: High-level architecture diagram of the different script mod-
ules in RealNodes and their inputs/outputs to each other.

for transition with
specified waypoint

PathHotspot
(for a given
waypoint)

3.2 Video Manager

A novel feature of RealNodes is a multi-video management system
for changing the active video based on event triggers and providing
layered video effects. Unity3D Render Textures are used as targets
for our videos. A Render Texture can be modified and updated at run
time. This allows for receiving dynamic data like video frames while
being treated as a standard texture by our SkyboxPanoramicBlended
shader and merged with graphical effects that are finally sent to
the user’s view. MultiVideoManager holds references to Unity3D
Video Player objects, all the video files, and all the Render Textures.
Our system allows for smoothly fading between two videos as they
are simultaneously playing, such as the current location video and a
transition video. It also supports preprocessed videos with a green
“alpha” mask color to place an animation on top of the background.
This allows for animating partial regions of video based on event
triggers, such as opening a closet on command.

Fig. 4 illustrates the high-level render pipeline for the Video Man-
ager. At any given time, there are up to three videos loaded in mem-
ory, tied to one of three Video Players: activePlayer, nextPlayer,
and overlayPlayer. Every frame of the videos is sent to Render
Textures, which acts as input to SkyboxPanoramicBlended. The
image data combined with instructions from MultiVideoManager
dictates the final environment background. MultiVideoManager
can intervene at each level of this process: which video clips are

loaded, which videos are playing or paused, and how much of each
video is visible.

360° Video A (Current Video)

360° Video B (Next Video) 360° Video C (Effect Animation)

I
Set as current video clip

Video Player Object C

Send current video frame

Render Texture C

Texture as shader input
|

I
Set as current video clip

Video Player Object B

Send current video frame

Render Texture B

Texture as shader input
¥

I
Set as current video clip

Video Player Object A

Send current video frame

Render Texture A

Texture as shader input ‘ !
L | SkyboxPanorami Shader |

Output of shader

Final Background

Figure 4: The Video Manager render pipeline, illustrating the high-level
process of how the 360 VR environment is made.

SkyboxPanoramicBlended is an extension of Unity3D’s standard
Skybox — Panoramic shader. It takes an equirectangular image and
renders it as a skybox environment map around the user, using a
standard algorithm for converting equirectangular coordinates to
spherical coordinates. We make several novel additions. Rather
than just one image, it uses three textures: two standard environment
maps, and one overlay to the environment map. The custom fragment
shader combines this data into the final environment map in addition
to a blending coefficient, allowing for fade and overlay effects.

The activePlayer plays the primary video for the current situation.
Whenever a new video is needed, it is swapped from nextPlayer
into activePlayer. The nextPlayer contains the next planned video.
Rather than load video when a change is needed, RealNodes dynam-
ically loads the next possible transition video every time the user
looks at a new Waypoint. This makes it so WIP is initiated with a
transition video already in memory. The overlayPlayer is loaded
with the effect animation for the current Node. Unlike the other
videos, playback is controlled by the ActionTool. When there is no
animation for a Node, the overlayPlayer Render Texture is cleared
and set to green, making the system ignore the overlayPlayer.

3.3 Walking-in-Place Implementation

Our WalkInPlaceScript is inspired by the process described by Lee
et al. [12]. It tracks sinusoidal motion of the HMD over an input
window. It counts steps when a lower peak occurs within a recogni-
tion range, correlating with a step. A novel change is that instead
of step data being applied as a continuous virtual velocity change,
MultiVideoManager converts it into playback frames for the current
transition video. This allows WIP to realistically match playback,
creating the illusion of walking in 360 VR. Visual guidance and WIP
can be enabled/disabled by toggling NavigationMode by pressing
the Grip button, reducing false-positive steps.

There are two phases of the WIP: Calibration and Recognition.
Calibration consists of two steps: calculating the central axis of
the WIP cycle based on the user’s default position and applying a
recognition range based on that central axis for allowing the WIP
to occur. The central axis is computed based on Y-axis height
and X-axis rotation (for variance in head pitch) of the HMD. Once
Calibration is done, the Recognition loop starts. It collects raw
Y-axis position data which is then averaged with a sliding k-size
window filter. The results are inserted into an n-size queue. The

n and k are such that n > k, k < 1, and n < 3. When there is new
data and the filtered queue is full, it checks if the bottom peak of a
sinusoidal motion happened. This happens when the middle value
is the smallest and the absolute value of the difference between
smallest and largest value is more than the recognition range. Once
a step is detected, we increase a movement time value to aid in
calculating the length of WIP. Each frame, we check if movement
time is available. If so, it sends the info to MultiVideoManager
which plays frames for that amount of time.

3.4 Visual Guidance User Interface Methods

We implemented four different visual guidance Uls into RealNodes
to indicate where Waypoint objects are in the environment and
when a user can perform WIP to navigate to those locations. Visual
guidance Ul display logic is primarily dictated by PathHotspotV 2,
which controls rendering of the UI and signals MultiVideoManager
to prepare and execute a video transition sequence. Note that for
all except the Arrow method, the visual guidance is rendered when
NavigationMode is active, and a user faces the waypoint.

The Target method indicates waypoints with a square shaped,
semi-transparent target aligned with the ground plane. The floor
Target is inspired by waypoints in conventional VR, often used for
teleport navigation [11]. See Fig. 5 for an example, where the next
Node is in the hallway in front of the door. This allow the Target to
indicate an absolute location for where a user can go.

Figure 5: Example of Target Ul.

The Ripple method indicates waypoints with a diamond shaped
floating marker exhibiting a semi-transparent “ripple” visual ef-
fect. We were curious about how a guidance method with a “dis-
tortion” effect would affect engagement in a positive way, or if
it would negatively impact usability. See Fig. 6 for an example,
where the next Node is located next to the table. Ripple acts as an
absolute waypoint marker in this way. It is animated with a com-
bination of MaskedRipple shader and SimpleTextureScroll script.
MaskedRipple is an extension of Unity3D’s standard GlassStained-
BumpDistort shader, taking a normal map texture and distortion
coefficient to create a transparent distorted effect. A novel addition
we make is a black and white culling mask texture, which acts as
a stencil on the render to give it a hexagonal shape. Additionally,
SimpleTextureScroll manipulates the X and Y texture offsets of the
normal map every frame, creating an animation like rippling water.

The Path method indicates the direction of a waypoint with a semi-
transparent “lane” aligned with the ground plane and originating
from the user. The Path was inspired by the idea of showing a direct
line-of-sight path from the user’s current location to the waypoint,
partly inspired by visualizations from Tanaka et al. [22] of ground-
plane based indicators of where a user can navigate. See Fig. 7 for an
example, where it is pointing in the direction of the next waypoint,
heading into the kitchen. The Path renders as a quad that is rotated

Figure 6: Example of Ripple Ul.

based on a the HMD rotation, using SimpleFixRotation to keep all
but the y axis fixed such that the path is parallel to the ground plane.

Figure 7: Example of Path Ul.

The Arrow method indicates the directions of a waypoint with an
arrow formed with a Bezier curve and an arrowhead. Both compo-
nents actively and smoothly curve towards and point at the nearest
waypoint based on shortest rotation distance from user to waypoint.
See Fig. 8 for an example of the Arrow UL. When NavigationMode
is active, the Arrow is always being rendered. When the user is
facing a waypoint, the Arrow changes from blue to green. The
implementation of Arrow is inspired by guidance methods explored
in the work of Lin et al. for indicating points of interest in stan-
dard 360-video [13]. The Arrow rendering logic is composed of a
Unity3D Line Renderer that draws the arrow curved line, and an ar-
rrowhead object. These are controlled by three scripts: BezierCurve,
PointArrow, and ArrowColor. BezierCurve controls the position of
the control points of the Line Renderer that draws the Bezier curve
of the Arrow. To match the behavior of BezierCurve, PointArrow
calculates the closest waypoint target by rotation angle between user
and waypoint, then smoothly rotates and translates the arrowhead
towards that waypoint. Finally, ArrowColor changes the color of
the Arrow Ul based on whether the user is facing a waypoint.

3.5 Interaction Objects

As previously mentioned, RealNodes uses IBL from the 360-video
data to light the iteractive virtual objects. Some interactable objects
can manipulate the 360 VR environment. To trigger the animations,
we developed an ActionTool, a linear drive switch that appears as
a golden sphere on a green rail. The golden sphere can be grabbed
by hovering the virtual controller over it and holding the Trigger.
While the Trigger is held, the sphere can freely slide along the rail.
These ActionTool objects are placed in locations where animations

>

b

Figure 8: (Top) Example of Arrow Ul indicating the direction of the
next waypoint is by the window. (Bottom) Arrow curving to nearest
waypoint, changing color when nearly facing it.

can be triggered. These animations can reveal hidden objects, such
as the collectible Page object. This effect is used in the House
Scenario developed for our experiment. It includes animations such
as opening a drawer/book and lifting a portion of a rug. See Fig. 9
for examples.

Figure 9: Footage of closet being opened with Action Tool, showing
how the masked video is applied to the background and manipulated.

ComplexSwitch is attached to each ActionTool and controls the
state logic of the switch. It tracks the position based on a percentage
between the start and end positions. It signals MultVideoManager
every time position changes, which indicates that animation should
play until a specific stopping frame. This results in smooth playback
of the animation tied to how much or little the switch is moved. As a
usability feature, is dynamically positioned close to the user to make
it easier to reach. Once the animation is done, it spawns the Page
object associated with that animation.

Finding and collecting a Page object is the completion goal of the
scenario. It appears in the environment when an ActionTool is fully
switched and a background animation is done. Once it appears, it
floats towards the user until it is close enough to be in arm’s reach.
It can then be collected by hovering the virtual controller over it and
pressing the Trigger (see Fig. 10).

Each Page has a SpawnPageAnimated script, which floats the
page towards the user and executes the scenario exit conditions

Figure 10: Left is original state of drawer and Action Tool; right is after
activating Action Tool, with drawer open and Page object revealed.

when grabbed. On each update frame of the animation, it linearly in-
terpolates a smooth trajectory until it is a specified distance from the
user. When the page is collected, the page object is destroyed, sig-
naling MultiVideoManager to do a fade transition from the current
location video to a black screen, then close the application.

3.6 Scenario Development

Developing a 360 VR scenario is an interdisciplinary process requir-
ing skills in film and video editing. RealNodes is no exception to this.
It requires planning like pre-production on a video or film, including
location scouting to determine an area that fits for the need. Many
steps require both manual authoring and software modifications. In
the future, authoring tools are planned. Nonetheless, a scenario can
be made in short time, helped by reusable scripts and objects. For
our study, we developed the House Scenario (see Fig. 11).

Figure 11: Various scenes from RealNodes House Scenario.

A rough map of the scenario needed to be created to define con-
straints (see Fig. 12), including locations, routes, and animation
locations. From this, we created a list of shots in three categories:
Locations, Transitions, and Actions. Locations define a Node and
are longer videos that needed to roughly loop in the final shot. If
an actor was in the shot their motions were planned for the loop
(walking back and forth from, reading a book, etc.). These record-
ings were done remotely without a cameraperson in the shot, adding
realism. Transitions require the camera be walked directly from one
location to another. To mitigate the presence of the cameraperson,
two transitions were filmed for each direction. Actions are short
videos of an object moving, used in our animation system. These
were filmed after the corresponding Location video to match camera
position. We used a common practical effect trick of tying/ hooking
a string on an object and pulling on it from a distance, to avoid

having a cameraperson in the final shot. Not counting test filming,
55 shots totaling 13:38 minutes of video are included in the scenario.

Figure 12: Simple map showing scenario. Circles in the Node graph
indicate locations that could be navigated to. Yellow circles indicate
locations of hiding spots.

Proprietary format videos produced by Insta360 One X needed
to be exported to MP4 using the free companion software Insta360
Studio. All videos were further edited in DaVinci Resolve editing
software. Transition and Action video types required masking a
region of the clip using a custom mask. For Transitions we mask the
cameraperson with a black region, determining that most users would
be looking in the direction they are walking during a transition. For
Actions, we applied a mask to moving object so everything outside
was green, hiding the person pulling the string. See Fig. 13 for an
example. After editing is finished, we import the videos into the
RealNodes Unity3D project. We chose to transcode all videos to
75% of the resolution (2880 * 1440) to address performance on
minimum spec hardware for running our study.

Figure 13: (Top) Someone pulling a string to lift the carpet up. (Bottom)
Same as above, except all but the lifted carpet is masked in green.

The amount of work to create a new scenario scene in Unity3D
is reduced since most scene objects are the same between scenar-
ios, with the exception of Nodes. Each Node must be manually
populated with Waypoint, ActionTool, and Page objects. These are
reusable object instances that already contains support structures and
scripts for working with the WIP and visual guidance UI systems
(see Fig. 14). An additional benefit to development is instead of
requiring Nodes to be accurately placed in the scene, our system
swaps Nodes and their Waypoints data relative to user centered
position, meaning only Waypoints need to be accurately placed.

Figure 14: Wireframes of the Waypoint objects in Unity3D editor. Note
the large quad perpendicular to the ground plane. This is the target
surface for raycasting to detect which waypoint is being faced.

The final steps is minor modification of variable references with
scenario specific data. MultiVideoManager has public definitions in
the editor for its video arrays. CommonEnums has enumerations for
all videos are stored. These must be modified to match. Then two
state machine functions in MultiVideoManger for Transitions and
Action videos must be modified. In total, the scenario development
steps took about 3 days of labor, with preproduciton and filming
taking one day, and the rest (editing, waypoint placement, minor
code changes) taking the remaining time.

4 COMPARATIVE USER STUDY

An experimental study was carried out using the House Scenario in
RealNodes to determine the effect of visual guidance Uls on user
engagement, simulator sickness, and completion times in 360 VR.
The study was performed with 24 people from a volunteer pool of
a local university’s students, faculty, and staff. The participants
were only included if they were physically able to use the HTC
Vive HMD and a controller, and jog in place for a duration of a
few seconds. The gender breakdown was 18 males and 6 females.
Out of 24 participants, 17 wore glasses/contacts. The education
breakdown was 12 with high school degree, 8 with undergraduate
degree, and 4 with graduate degree. The RealNodes software was
run on a Windows 10 desktop computer in a lab setting, with an
Intel Core i7-4790K CPU, NVIDIA GeForce GTX 1080 GPU, and
16 Gigabytes (GB) of RAM.

4.1 Procedure, Design, and Analysis

After the participant filled out a demographic survey, they were in-
structed on the controls of RealNodes. They were taught the concept
of WIP and how to navigate the environment with it. They were
told how to do tasks with hand gestures like grabbing and pulling,
and how to switch NavigationMode on/off. For each condition, they
navigated the environment to find a hidden Page. They were told
the only way to uncover it was to manipulate an ActionTool. Once

the Page was grabbed the scenario would end. There were four
scenarios, each with a unique visual guidance UI and unique hiding
spot. After each condition, they filled out two questionnaires: Simu-
lator Sickness Questionnaire to determine the absence or presence
of simulator sickness, nausea, and ocular motor issues (SSQ) [10],
and User Engagement Scale Short Form (UES-SF) to determine
perception of user engagement and subscores for Aesthetic Appeal
(AE), Perceived Usability (PU), Focused Attention (FA), and Reward
(RW) [17]. After the last scenario, they filled out a UI preference
questionnaire, where 1 = most preferred, and 4 = least preferred.

UI order was randomized across subjects in a counterbalanced
manner such that we tested all 24 possible permutations. A Shapiro-
Wilk test was performed on Preference, SSQ, UES SF, and comple-
tion times to determine normality. The data was non-normalized,
so we analyzed using non-parametric tests. A Friedman test was
performed on SSQ, UES SF, and Completion times data to deter-
mine statistically significant differences between conditions. When
an asymptotically significant result was found, we performed post-
hoc analysis using a Wilcoxon Signed Ranks Test on all pairs to
determine where significance was, followed by a Holm’s sequen-
tial Bonferroni adjustment to correct for type I errors. For all our
statistical measures, we used o« = 0.05.

4.2 Results

We can report that our visual guidance Uls have a statistically sig-
nificant effect on Completion Times, indicating that Arrow was
significantly better at completing our scenario quickly. We addition-
ally found that Arrow had the highest average scores in all but one
subscore in preference, simulator sickness, and user engagement,
though they were not statistically significant.

4.2.1 Completion Times

We found a statistically significant difference in completion times
after performing a Friedman test (x2(3,24) = 12.75, p < 0.005).
After performing post-hoc analysis using Wilcoxon Signed Rank
Test on all possible pairs, a significance was found with two of the
pairwise tests: Arrow compared to the Path(Z = —3.686, p < 0.001)
and Ripple compared to Path (Z = —2.029, p < 0.05). Table 1
shows the test statistics for this test.

Table 1: Results of Wilcoxon Signed Rank Test on all pairs.

Test Result
Target-Ripple | Z=—0.743, p =0.458
Target-Path Z=—-1.914, p=0.056
Target-Arrow Z=—-14,p=0.162
Ripple-Path Z=-2.029, p<0.05
Ripple-Arrow Z=-0.771, p=0.44
Path-Arrow Z=-3.686, p < 0.001

After performing a Holm’s sequential Bonferroni adjustment
against actual significance threshold, only the Arrow to Path pairwise
was found to be significant and the Ripple to Path pairwise test was
not, indicating that there was only a signficant difference found
between Arrow and Path (Z = —3.686, p < 0.001).

The mean and standard deviations for completion times (seen
in Fig. 15) for each condition match up with this data (time in
seconds): (Target : M = 189.729, SD = 100.887,Ripple : M =
194.6, SD = 105.929, Path : M = 312.878, SD = 206.606,Arrow :
M = 152.825, SD = 82.377). The completion time for Arrow is
fastest on average while Path is slowest on average (taking more
than twice as long). This seems to indicate that the Arrow is easier
to get accustomed to and use to effectively search an environment,
and Path is slower to understand and to use moment-to-moment.

Average Completion Times

COMPLETION TIME {(SECONDS)
2o N N W W B S
o w e u o 0o
S & & o & o © o

%]
(=]

(=]

Target Ripple Path Arrow
VISUALGUIDANCE METHODS

Figure 15: Average scenario completion times (in seconds) with 95%
confidence error bars (lower is better). There is a significant difference
between Arrow (fastest average), and Path (slowest average).

4.2.2 Preferences

We found no statistically significant difference in Preference
(F(3,24) = 3.65, p = 0.302). Here are the average Preferences
(as seen in Fig. 16) (lower is better): (Target : M =2.29, SD =
0.999,Ripple : M = 2.88, SD = 1.076,Path : M = 2.58, SD =
1.1389,Arrow : M = 2.25, SD = 1.225). Arrow was on average
preferred but was very close in preference to Target, possibly indi-
cating a split between preference of a more direction/angle-based
guidance in Arrow and an absolute location guidance in Target.

Average Preference

3.5

2.5
2
1.5
1
0.5
0

Target Ripple Path
VISUAL GUIDANCE METHOD

PREFERENCE SCORE

Arrow

Figure 16: Mean Preference (lower is better). Arrow is lower than
Target, but by only a small margin.

423 SSQ

We found no statistically significant difference in SSQ total score
(F(3,24) = 2.404, p = 0.493), Nausea sub score (F(3,24) =
1.451, p = 0.694), or Oculo-motor sub score (F(3,24) =
4.274, p = 0.233). Table 2 lists the mean and standard deviations
for the SSQ scores, and Fig. 17 shows a bar graph visualization. For
simulator sickness, Arrow had the least average effect in general and
for all subcategories.

424 UESSF

We found no statistically significant difference in UES SF to-
tal score (F(3,24) = 3.967, p = 0.265) and all sub scores: FA
(F(3,24) =6.745, p = 0.08), AE (F(3,24) = 4.432, p =0.2138),
PU (F(3,24) =2.86, p=0.414), and RW (F(3,24) =2.814, p=

Table 2: Mean and standard deviation of SSQ scores and subscores.

T=total score, N=Nausea, O=Oculo-motor (lower is better).

Score Target Ripple Path Arrow
M=2.6 M=2.65 M=24 M=235
N | SD=1.794 | SD=2.621 | SD=2206 | SD=2.263
M=2.79 M =248 M=2.46 M =227
(6] SD =1.81 SD =1.351 SD =1.501 SD =1.624
M=273 M =258 M=242 M =227
Total | SD=3.239 | SD=3.707 | SD =3.257 SD =3.77
Average SSQ Scores
m Nausea ® Oculo-motor
3.5
3
25
= 2
o
215
1
0.5
0
Target Ripple Path Arrow

VISUALGUIDANCE METHOD

Figure 17: Average scores for SSQ, including sub scores (lower is
better). Arrow has lowest scores in total and sub scores.

0.421). Table 3 lists the mean and standard deviations for the UES
SF scores, and Fig. 18 shows a bar graph visualization.

Table 3: Mean and standard deviation of UES SF total scores and sub
scores (higher is better).

Score Target Ripple Path Arrow
M=2723 M=221 M=2383 M=273
FA SD=1.054 | SD=0.861 | SD=0.735 | SD=0.927
M=235 M =231 M=2.46 M =288
AE SD=0948 | SD=1.023 | SD=0.832 | SD=0.784
M =246 M=223 M =256 M=275
PU SD=0.624 | SD=0917 | SD=0.778 | SD=0.581
M=25 M =231 M=24 M=279
RW SD=1.054 | SD=0.809 | SD=0.671 SD=0.72
M=242 M=219 M=252 M=2388
Total | SD=0.795 | SD=0.711 | SD=0.644 | SD=0.607

Arrow had the highest average effect on overall user engagement,
AE, PU, and RW. The only score Arrow was not the highest in
was FA, with Path being the highest average effect. This possibly
indicates a difference in conditions that allowed or required more
attention in Path compared to the others.

4.3 Discussion

We developed RealNodes to investigate creating visual guidance
methods effective for 360 VR, and to perform a study to determine
what effect choice of visual guidance had on preference, simulator
sickness, user engagement, and task completion. We successfully
implemented RealNodes and four visual guidance methods: Target,
Ripple, Path, and Arrow. We completed a comparative evaluation,
providing a statistically significant finding that Arrow is faster for
users to learn and use, contributing to faster task completion times.

Arrow is unique compared to the other Uls in that it stays active
on screen. Participants liked how it smoothly curved towards the
nearest waypoint, giving continuous feedback on waypoint locations.
Additionally, participants liked how it changed color when they
could do WIP. One participant described it as “feeling good for
exploration”. Another described it as “a combination” of showing

Average UES SF Scores

4
1 | | |
0

FA AE PU RW

TYPES OF UES SF SCORE

SCORE
] w

Total

M Target Ripple Path Arrow

Figure 18: Average scores for UES SF sub scores and total scores
(higher is better). Arrow had the highest scores in all categories
except FA, where Path has the highest.

direction and location compared to other Uls. Meanwhile, Path
enables and disables rendering based on if the user’s facing direction
is near a waypoint. Participants claimed Path was unclear for how
they could navigate and gave less information compared to Arrow.

Trends show Target and Arrow close in Preference, but notably
ahead of the others. Some participants said they liked Target over
Ripple because it showed exact location of the waypoint and it was
less distracting. Participants preferred Arrow over Path because of
how it pointed in the exact direction of a waypoint and it was less
vague. Since SSQ data was not significantly different and all aver-
ages are low relative to the SSQ scale (3 or below), we conclude our
UlIs had no significant effect on simulator sickness in our scenario.
An interesting trend was noticed for UES SE, where averages for all
but one sub score had the same ranking, with Arrow performing best.
However, FA had Path beat Arrow. FA is described by the authors
of the test as indicating “cognitive absorption and flow” and losing
track of time [17]. This could be interpreted negatively, meaning the
difficulty of using Path required more focus.

5 FUTURE WORK

The implications of the results provide new work to be done. Future
studies are needed to make generalizable claims about the effect of
our navigation and visual guidance cues on user experience. Larger
populations and deeper analysis of demographics differences such as
gender are needed. Different combinations of visual guidance with
navigation technique (point-and-click ray cast, WIP, or automated
scenario with no navigation) should be compared to determine if
effects are due to guidance method and/or navigation method. Based
on our initial findings, we can improve our navigation techniques
based on refined hypotheses, such as developing hybrid Uls. Addi-
tionally, we can deemphasize current measures and focus on cogni-
tive load and accuracy. These changes in future studies may glean
more generalizable, meaningful results for the field of 360 VR.

Further research into authoring tools is needed, especially asset
management of videos and animations, making it easier to create
scenarios. Some participants indicated a desire to see different
environments besides the House Scenario. A variety of scenarios
is worth investigating for richer experiences, as well as mitigating
learning effects over time, aiding in generalization of future findings.

Our current system for indicating WIP start/end can be improved.
Existing visual cues (Ul disappears/reappears at the start/end), this
was not enough for some participants to quickly and clearly know
they were “done” with WIP. Solutions include a progress indicator
during the walk or an absolute waypoint getting closer.

There are opportunities for 3D computer vision to be leveraged.

3D reconstruction with a monoscopic 360-video has been explored.
Im et al. [9] proposed a promising method using Small Structure
from Motion with a consumer 360 camera to generate a dense depth
map. It uses a “sphere sweeping” dense matching that looks at
overlapping regions on the camera lenses. The video only required
small jittery movements for reconstruction to work. Synthetic and
real-world benchmarks resulted in low reprojection error compared
to bundle adjustment and ground truth. There is also a possibility for
novel view synthesis. For RealNodes, we manually created transition
videos, which is tedious and discourages complex scenarios. Fusiello
and Irsara [8] describe a pipeline that turns two or more uncalibrated
images into a “video” sequence of images. In theory this could
work on 360-videos to produce novel video transitions in a possible
authoring tool. However, epipolar geometry calculation must be
handled differently compared to a standard perspective image. An
appropriate method needs further investigation.

Some participants were interested in a “full game” like the House
Scenario with a larger narrative. They reacted favorably to the back-
ground character in the videos, asking “Who is he?” and saying
he reminded them of horror/thriller games. RealNodes is designed
to present videos based on event triggers, making future scenarios
with branching storylines and decision making possible. However,
methods of immersive interaction with characters in a 360 VR envi-
ronment needs further investigation. We look towards considerations
for proxemics when filming 360-video, such as considering personal
space while actors interact with a 360-video camera [19].

6 CONCLUSION

We developed a 360 VR system geared towards navigation and
interaction, and to determine if the choice of visual guidance Ul
in 360 VR exhibited a significant difference in the user’s experi-
ence. We successfully developed RealNodes to facilitate 360 VR
scenarios with explorable and interactive environments. We suc-
cessfully contribute to the literature a set of four visual guidance Ul
elements for use in 360 VR to be refined and iterated on in future
applications. We additionally provide the results of a comparative
evaluation. We were able to successfully determine that using our
Arrow visual guidance Ul provided a significant benefit to comple-
tion time compared to our other designs. We additionally provide
the results of a comparative evaluation of our four visual guidance
elements, demonstrating that our designs had no significant effect on
preference, simulator sickness, or user engagement in the scenario
we developed. Emerging 360 VR application types directly benefit
from exploring these kinds of Uls. Virtual tours and occupational
training software can have a wide variety of locations and paths
with less concern of confusing the user. Exercise software can be
made using either WIP or another locomotive technique in 360 VR
allowing for branching paths that can be telegraphed as the partic-
ipant moves. New novel kinds of 360 VR games can be designed,
delivering an immersive environment that is easy to navigate com-
pared to traditional methods. Our exploration of navigation in 360
VR experiences provides feedback for future research, reducing the
need to design visual guidance UI from scratch, allowing more time
for the research to focus on the remaining challenges of developing
novel, immersive, and interactive 360 VR worlds.

REFERENCES

[1] Insta360 one X - own the
https://www.insta360.com/product/insta360-onex.

[2] Review: Myst III: Exile, 2001. IGN.

[3] M.D. Barrera Machuca, J. Sun, D. Pham, and W. Stuerzlinger. Fluid vr:
Extended object associations for automatic mode switching in virtual
reality. In 2018 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pp. 846—847, March 2018. doi: 10.1109/VR.2018.
8446437

[4] S.E. Chen. Quicktime vr: An image-based approach to virtual envi-
ronment navigation. In Proceedings of the 22Nd Annual Conference

moment.

[5

=

[6]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

on Computer Graphics and Interactive Techniques, SIGGRAPH ’95,
pp- 29-38. ACM, New York, NY, USA, 1995. doi: 10.1145/218380.
218395

H. Cho, J. Kim, and W. Woo. Novel view synthesis with multiple
360 images for large-scale 6-dof virtual reality system. In 2019 I[EEE
Conference on Virtual Reality and 3D User Interfaces (VR), pp. 880—
881, March 2019. doi: 10.1109/VR.2019.8798142

D. Q. Felinto, A. R. Zang, and L. Velho. Production framework for
full panoramic scenes with photorealistic augmented reality. CLEI
ELECTRONIC JOURNAL, 16(3):1-10, 2013. doi: 10.1109/CLEI.2012
16427123

S. Freitag, B. Weyers, and T. W. Kuhlen. Interactive exploration
assistance for immersive virtual environments based on object visibility
and viewpoint quality. In 2018 IEEE Conference on Virtual Reality and
3D User Interfaces (VR), pp. 355-362, March 2018. doi: 10.1109/VR.
2018.8447553

A. Fusiello and L. Irsara. An uncalibrated view-synthesis pipeline.
In 14th International Conference on Image Analysis and Processing
(ICIAP 2007), pp. 609-614, Sep. 2007. doi: 10.1109/ICIAP.2007.
4362844

S. Im, H. Ha, F. Rameau, H.-G. Jeon, G. Choe, and I. S. Kweon. All-
around depth from small motion with a spherical panoramic camera.
vol. pt.III, pp. 156 — 72. Cham, Switzerland, 2016.

R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal.
Simulator sickness questionnaire: An enhanced method for quantifying
simulator sickness. The International Journal of Aviation Psychology,
3(3):203-220, 1993.

J. LaViola, E. Kruijff, R. McMahan, D. Bowman, , and I. Poupyrev.
3D User Interfaces: Theory and Practice. Addison Wesley, 2017.

J. Lee, S. C. Ahn, and J. I. Hwang. A walking-in-place method for
virtual reality using position and orientation tracking. Sensors (Basel),
18(9), 2018. doi: 10.3390/s18092832

Y.-C. Lin, Y.-J. Chang, H.-N. Hu, H.-T. Cheng, C.-W. Huang, and
M. Sun. Tell me where to look: Investigating ways for assisting focus
in 360° video. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, CHI *17, pp. 2535-2545. ACM, New
York, NY, USA, 2017. doi: 10.1145/3025453.3025757

A. MacQuarrie and A. Steed. The effect of transition type in multi-view
360 degrees media. IEEE Trans Vis Comput Graph, 24(4):1564-1573,
2018. doi: 10.1109/TVCG.2018.2793561

K. R. Moghadam and E. D. Ragan. Towards understanding scene tran-
sition techniques in immersive 360 movies and cinematic experiences.
IEEE Virtual Reality (VR), pp. 375-376, 2017.

A. S. Muhammad, S. C. Ahn, and J.-I. Hwang. Active panoramic
vr video play using low latency step detection on smartphone. /EEE
International Conference on Consumer Electronics (ICCE), 2017.

H. L. O’Brien, P. Cairns, and M. Hall. A practical approach to mea-
suring user engagement with the refined user engagement scale (ues)
and new ues short form. International Journal of Human-Computer
Studies, 112:28-39, 2018. doi: 10.1016/j.ijhcs.2018.01.004

R. A. Paris, T. P. McNamara, J. J. Rieser, and B. Bodenheimer. A
comparison of methods for navigation and wayfinding in large virtual
environments using walking. In 2017 IEEE Virtual Reality (VR), pp.
261-262, March 2017. doi: 10.1109/VR.2017.7892276

V. C. Pope, R. Dawes, F. Schweiger, and A. Sheikh. The geometry of
storytelling: Theatrical use of space for 360-degree videos and virtual
reality. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, CHI "17, pp. 4468-4478. ACM, New York, NY,
USA, 2017. doi: 10.1145/3025453.3025581

T. Rhee, L. Petikam, B. Allen, and A. Chalmers. Mr360: Mixed reality
rendering for 360 degrees panoramic videos. IEEE Trans Vis Comput
Graph, 23(4):1379-1388, 2017. doi: 10.1109/TVCG.2017.2657178
P. Shaffer. Review: They Journeyman Project 3: Legacy of Time, 1998.
Adventure Classic Gaming.

R. Tanaka, T. Narumi, T. Tanikawa, and M. Hirose. Navigation inter-
face for virtual environments constructed with spherical images. IEEE
Virtual Reality Conference, pp. 291-292, 2016.

	Introduction
	Related Work
	Navigation Techniques
	Assisted Focus and Guidance for Wayfinding
	Effective Visual Transitions
	Integration of Interactive Elements

	Software Design - RealNodes
	Software Design Overview
	Video Manager
	Walking-in-Place Implementation
	Visual Guidance User Interface Methods
	Interaction Objects
	Scenario Development

	Comparative User Study
	Procedure, Design, and Analysis
	Results
	Completion Times
	Preferences
	SSQ
	UES SF

	Discussion

	Future Work
	Conclusion

