
Rate-Informed Discovery via
Bayesian Adaptive Multifidelity Sampling

Aman Sinha∗, Payam Nikdel∗, Supratik Paul, and Shimon Whiteson
Waymo, LLC

{thisisaman, payamn, supratikpaul, shimonw}@waymo.com

Abstract: Ensuring the safety of autonomous vehicles (AVs) requires both accurate
estimation of their performance and efficient discovery of potential failure cases.
This paper introduces Bayesian adaptive multifidelity sampling (BAMS), which
leverages the power of adaptive Bayesian sampling to achieve efficient discovery
while simultaneously estimating the rate of adverse events. BAMS prioritizes
exploration of regions with potentially low performance, leading to the identifi-
cation of novel and critical scenarios that traditional methods might miss. Using
real-world AV data we demonstrate that BAMS discovers 10 times as many issues
as Monte Carlo (MC) and importance sampling (IS) baselines, while at the same
time generating rate estimates with variances 15 and 6 times narrower than MC
and IS baselines respectively.

Keywords: Autonomous Driving, Rare-event Simulation, Adaptive Sampling

1 Introduction
Commercial autonomous vehicle (AV) development usually follows an iterative process wherein
issues with the current planner are identified, root causes are determined, and the issues are addressed
for the next release. While these software updates are meant to improve performance, they can also
lead to regressions. Evaluating the long tail of safety issues is particularly difficult: as the AV’s
performance improves, safety-related issues become rarer and more difficult to discover. In turn, this
makes improving the planner increasingly challenging, as identifying failure cases is the first step
towards addressing them. Together with discovering particular failure modes, it is also important to
efficiently estimate the overall safety or failure rate of any potential release before deployment.

Improvements to an AV planner can be tested on the road with human drivers in the vehicle ready to
take over in the event of imminent danger. However, this approach is expensive and does not ensure
sufficient coverage of driving scenarios since we cannot control the environment [1]. Furthermore,
since this approach essentially produces a Monte Carlo estimate of the AV’s performance, the scale
required for evaluation near human-level performance is too large [2] to repeat at regular intervals
during development. As such, simulation plays a key role in industrial AV software evaluation (see,
e.g., [3, 4]), as it enables testing software in diverse settings, at a fraction of the cost and time, and
with no risk to the public. However, a naive simulation-based approach to evaluation also suffers
from intractable scaling and can be prohibitively expensive.

In this paper, we address the twin problems of (i) estimating the safety of a given AV planner and
(ii) discovering failure cases that can then be used to drive further improvements. Concretely, given
a distribution P of simulation parameters that describe the AV’s operational design domain, the
governing problem for evaluating safety is to estimate the rate of adverse events:

pγ := P(f(X) ≤ γ) = EX [1{f(X) ≤ γ}] , (1)
where X ∼ P , the function f : X → R is a performance metric scoring the realization x ∈ X of
the AV and its environment, and γ is a user-defined threshold below which behavior is undesirable.
Estimating pγ is a rare-event simulation problem, so naive Monte Carlo methods are expensive and
we must resort to more tractable IS techniques; these techniques place high probability on regions of
X where f(x) is small.

However, simply estimating pγ (the objective of importance sampling (IS)) is insufficient, as simula-
tion testing must provide actionable feedback on how to improve AV design (Figure 1). This feedback
comes in the form of concrete examples xi where f(xi) ≤ γ. In particular, during the continuous

∗Equal contribution

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

Figure 1: Rate-informed discovery loop – A: A diverse set of simulations
are run with the latest version of the AV planner. B: Some simulations lead
to adverse events which are attributable to the planner. C: The results from
all simulations are used to compute an unbiased estimate of the rate of
adverse events. D: The adverse events found in B are used to understand
and address the failure cases. E: An improved planner is deployed, and
the cycle repeats.

feedback loop of simulation testing followed by design improvement, it is most useful for simulation
to discover failure cases xi with a) relatively high likelihood under P and b) novelty with respect to
previously discovered failure examples. From a practical perspective, prioritization by likelihood
is obvious when trying to allocate resources to fixing problems, and novelty is important because
previously-discovered failure modes typically have existing work underway to improve behavior.

We define rate-informed discovery as the problem of returning novel, likely examples of undesirable
AV behavior in service of confidently estimating the rate pγ . Our goal is to perform rate-informed
discovery as efficiently as possible. Just as with purely estimating the rate pγ , naive Monte Carlo is
intractably expensive for rate-informed discovery. Furthermore, IS techniques that rely heavily on
previously determined failure modes are poor at discovering novel issues. In this paper, we develop
Bayesian adaptive multifidelity sampling (BAMS), which adaptively samples from X in a targeted
fashion and builds an importance sampler for estimating pγ . As efficiency is paramount, we exploit
the availability of a simulation hierarchy: low-fidelity yet cheap simulators as well as high-fidelity
but expensive simulators that model real-world environments as accurately as possible. As we show
below, this multifidelity simulation setup enables BAMS to perform better rate-informed discovery
for any given simulation budget than using the high-fidelity simulator alone.

2 Background and related work
Gaussian processes A Gaussian process (GP) [5] imposes a prior belief on an unknown random
function θ : X ⊆ Rd → R through its mean function µ(x) (for convenience usually set to zero)
and covariance function k(x, x′), such that any finite collection of function values {θ(xi)} has
a joint Gaussian distribution. A popular choice of the covariance function is the Matérn kernel:
k(x, x′) ∝ tνKν(

√
2νt), where ν is a lengthscale parameter (typically ν = 2.5), Kν is the modified

Bessel function of the second kind, and t :=
{

(x− x′)TΣ−1(x− x′)
}

is a distance scaled by a
diagonal matrix Σ of lengthscales for each dimension. Letting Xn ∈ Rn×d be the matrix of observed
inputs and θ(Xn) be the vector of associated function values, the posterior prediction θ(x∗) for an
input x∗ is a Gaussian distribution N (µn(x∗), σ2

n(x∗)):

µn(x∗) = k(x∗, Xn)k(Xn, Xn)−1θ(Xn),

σ2
n(x∗) = k(x∗, x∗)− k(x∗, Xn)k(Xn, Xn)−1k(Xn, x

∗).

The posterior covariance between any two inputs (x, x′) is covn(x, x′) = k(x, x′) −
k(x,Xn)k(Xn, Xn)−1k(Xn, x

′). There is a vast literature on speeding up GP inference, namely
assuaging the O(n3) time complexity of inverting k(Xn, Xn). In particular, inducing point approx-
imations [6, 7, 8] impose structure on the GP prior, which in turn induces (block) sparsity onto
k(Xn, Xn). Whereas inducing point methods make posterior mean inference more tractable, other
approaches make predictive variances cheaper by exploiting sparsity in the underlying data and
employing iterative techniques for approximations [9, 10]. All of these approaches are motivated
by the regime wherein the training set size n is typically much larger than the test set. Our setting
is exactly the opposite; the discovery process occurs frequently in AV development cycles, so it is
highly budget-constrained and n is small. In our experiments, we simulate and use only tens of
samples for the GP posterior, whereas our predictive covariance is computed on a much larger set of
available points. Thus, while our approach is complementary to the existing literature and can be
used in conjunction with these methods, we do not benefit substantially from them.

Bayesian optimization and quadrature Bayesian optimization (BO) [11, 12] and quadrature (BQ)
[13, 14, 15] use GPs for targeted function evaluation to perform minimization for expensive functions
or to compute expensive integrals over X . BO and BQ methods utilize an acquisition function to
select points to evaluate. Acquisition functions typically balance exploration of uncertain regions in
X with exploitation of previous evaluations f(x) (see, e.g., Wilson et al. [16] for an overview).

Multifidelity simulation There is a rich literature on using multiple fidelities for evaluation, also
known as surrogate modeling (see, e.g., [17, 18, 19, 20, 21]). Specializing to GPs, Bonilla et al. [22]

2

introduce the concept of multi-task GP prediction, which has subsequently been employed in BO
use cases [23, 24, 25]. The multi-task covariance kernel is highly structured as a tensor product of a
base kernel and a covariance between discrete tasks [22]. By contrast, Marco et al. [26] and Poloczek
et al. [27] consider modeling the dependence between fidelities via additive noise GPs. We employ
this modeling technique in BAMS due to its generality; it requires little prior knowledge about the
relationship between multiple simulators and allows us to easily incorporate costs of each fidelity into
our acquisition function, especially when multiple fidelities are available for the same data point x.

AV safety-measurement techniques AV evaluation literature generally considers approaches for
formal verification [28, 29, 30, 31], (probabilistic) falsification [32, 33, 34], and rate estimation [35].
Formal verification aims to define and then prove correctness of behavior; this is both NP hard [36]
and rife with subjectivity on notions of correctness. Falsification aims to find any problems with the
AV system under test, and probabilistic variants aim to find high-likelihood failures [33]. Finally, rate
estimation aims to measure the probability of adverse events under a (possibly empirically defined)
distribution of driving environments [35]. Previous papers note a dichotomy between falsification
and rate estimation [37, 38], which our paper aims to bridge; our rate-informed discovery loop first
evaluates targeted samples solving an optimization problem (similar to falsification), and we follow
suit with updating an importance sampler to measure rates. Unlike many probabilistic falsification
approaches, which require whitebox access to the system [34], our formalism performs optimization
with entirely blackbox access. See Appendix F for a detailed discussion on how our Bayesian
approach connects to existing rare-event simulation techniques, addresses key challenges within this
domain, and contributes to the broader field of AV safety evaluation.

3 Bayesian adaptive multifidelity sampling
In typical AV development environments, the distribution P over which we compute the rate of
adverse events (1) is an empirical distribution over run segments—specified time intervals (e.g., 30
seconds) of logged real-world driving over which simulations are performed [39, 40]. We consider
the empirical distribution over N run segments, and each run segment is encoded by an embedding
x ∈ Rd. There are a variety of ways to create such an embedding (see, e.g., [41, 42, 43, 39, 44, 45]);
BAMS does not have any restrictions for this embedding, although smaller dimensionality d improves
computational efficiency. We provide details for our embedding model in Section 4.

Our formalism begins by first considering a Bayesian estimator for the rate of adverse events (1).
Specifically, we define a random function θ : X → R and impose a GP prior over it such that
the collection {θ(xi)} for any subset of run segments {(xi)} has a joint Gaussian distribution.
Considering a set of n evaluated run segments and their associated performance metrics Xn :=
{(xi, f(xi))}ni=1, we define the shorthand θn and Eθn [·] as the posterior GP and the expectation with
respect to this posterior induced by conditioning on the σ-algebra generated by Xn. We can then
define a function which models the presence of adverse events based on our GP posterior:

g(X, θn) := 1{θn(X) ≤ γ} ∈ {0, 1}, (2)
with marginals p̂γ(θn) := EX [g(X, θn)] and pn(x) := Eθn [g(x, θn)]. The marginal p̂γ(θn) is an
estimator of the rate of adverse events (1).

Using θ to model the performance metric f(x) of a run segment rather than the binary indicator
1{f(X) ≤ γ} has two benefits: (i) modeling the real-valued function provides better signal for the
GP to interpolate, and (ii) in typical AV development paradigms, we want to understand the safety
performance with respect to multiple values of the threshold γ, so we can reuse a single trained GP
model. Next we describe various aspects of BAMS, motivated by computational efficiency.

Acquisition function As noted in Section 2, the acquisition function defines a minimization objective
that selects the next point(s) to sample the performance metric f(x) and compute the new GP posterior.
Our goal of rate-informed discovery implies that choosing evaluation points to minimize the variance
of the estimator, Var(p̂γ(θ)), is beneficial. In particular, minimizing Var(p̂γ(θ)) provides a confident
estimate of the probability (1). Furthermore, the calculation of Var(p̂γ(θ)) is dominated by regions
in X that have both high likelihood under P and high uncertainty under θn. Thus, minimizing
Var(p̂γ(θ)) prioritizes sampling points x that are clustered near other points (high likelihood) and
are far away from previously sampled points (high uncertainty)—precisely our goal for rate-informed
discovery. However, this variance requires an expectation over the joint distribution X,X ′ i.i.d∼ P (see
Appendix B.1); because P is the empirical distribution over run segments, this O(N2) computation
is too expensive. Instead, we consider a cheaper upper bound.

3

First we define the point-variance function hn(x) := pn(x)(1− pn(x)). The average of hn(x) over
P , which requires only O(N) computation, is greater than the variance of the GP estimator:
Proposition 3.1. The variance of the estimator p̂γ(θn) is upper-bounded by the average point
variance: Var(p̂γ(θn)) ≤ EX [hn(x)].

See Appendix B.2 for the proof. Since we evaluate the next m points in a batch setting, the order
of these points does not matter, and our acquisition function is a function of the set {xj}n+mn+1 . In
particular, consider the expectation of the point-variance function conditioning on the set of locations
of these m future evaluations:

βn
(
x; {xj}n+mn+1

)
:= Eθn

[
hn+m(x)|{Xj = xj}n+mn+1

]
. (3)

This forward-looking point variance has a nested expectation Eθn
[
Eθn+m

[
· |{Xj = xj}n+mn+1

]]
,

the average over all future posteriors conditioned on the locations {xj}n+mn+1 ; this is an analytic
computation in GP models. Then, our acquisition function to choose the next m evaluation locations
is the average over P of this forward-looking point variance:

J
(
{xj}n+mn+1

)
:= EX

[
βn
(
X; {xj}n+mn+1

)]
. (4)

An immediate corollary of Proposition 3.1 is that this acquisition function is an upper bound on the
expected variance conditioned on the same points (see Appendix B.3 for the proof):
Corollary 3.2. The expected variance of p̂γ(θn) conditioned on locations {xj}n+mn+1 of the next
evaluation points is upper-bounded by the acquisition function:

Eθn
[
Var(p̂γ(θn+m))|{Xj = xj}n+mn+1

]
≤ J

(
{xj}n+mn+1

)
.

Sequential selection For m,n � N , the acquisition function (4) can be efficiently calculated in
O(m2N) time [46] (see Appendix A.2 for details). Because our distribution P is the empirical
distribution over N samples, jointly choosing the locations for m > 1 points is a combinatorial
problem over

(
N
m

)
combinations. Since

(
N
m

)
= O(Nm/mm), this combinatorial problem has an

overall time complexity of O(m2−mNm+1), which is too expensive. As a consequence, rather than
choose all m locations jointly, we instead choose each one sequentially. Naively, this sequential
selection takes O(m3N2) time, but exploiting the recursive structure of the problem allows us to
reduce this cost to O(mN2) (see Appendix A.3 for details). In contrast, sequential selection using
expected variance as an acquisition function requires O(mN3) time.

In the sequential setup, our minimization objective for each iteration n+ 1 ≤ i ≤ n+m is:
minimize

x
J
(
{xj}i−1n+1 ∪ {x}

)
− J

(
{xj}i−1n+1

)
,

where {xj}nn+1 := ∅ and J(∅) := EX [hn(x)]. The subtraction of the objective from the previous
iteration is not necessary for this minimization problem but it is useful to define our problem this way
to motivate the corresponding multifidelity problem below.

Multifidelity sampling Thus far, we have considered a model wherein there is only one way to
perform evaluation on a selected point x via a single simulator. However, in our AV use case, we
often have multiple simulators whose computational cost correlates with fidelity. For example,
instead of simulating the entire AV planner and other traffic participants, we can simulate purely with
non-interactive traffic participants or a distilled version of the AV planner. Intuitively, a noisier but
cheaper simulator that correlates well with the high-fidelity simulator offers an information advantage
under budget constraints: we can learn more about the ground truth with the same simulation cost.
Of course, we also need to learn the correlation between simulators without incurring extra overhead.
To do so, we augment our Bayesian generative model to include multiple fidelities and modify the
acquisition function (4) to account for the trade-off between fidelity and computational cost.

For l ∈ {0, 1, . . . , L}, let the fidelities of simulation be denoted by fl, with the original high-fidelity
(l = 0) simulator denoted f0. Consider the augmented input yl := (x, l), which then allows us to
define the augmented simulation function f(yl) := fl(x). Next, let the model for each augmented
input θ : X×N→ R be defined as θ(yl) := θ0(x)+αl(x), where θ0 is the GP model over the function
f0, α0 := 0, and for l ≥ 1, αl is an independent zero-mean GP with covariance function kl. Then, the
augmented function θ is a GP with mean θ(yl) = µ(x); the covariance between points ya = (x, a)
and y′b = (x′, b) is: k(ya, y

′
b) = Cov(θ0(x) + αa(x), θ0(x′) + αb(x

′)) = k(x, x′) + δabka(x, x′),
where δ(a, b) is the Kronecker delta function.

To update the acquisition function (4), we first define c(yl) as the cost associated with evaluating each
simulator fl. In typical AV settings, this cost is expressed in units of money or flops of computation.

4

(a) Schematic of BAMS algorithm
-4 -2 0 2 4

-4

-2

0

2

4

(b) Synthetic data
-4 -2 0 2 4

-4

-2

0

2

4

(c) Selected points

Figure 2: Illustration of BAMS. a) Iterative loop of our approach, as defined in Algorithm 1 (Appendix A.1).
In each iteration, we separate the inputs into clusters, solve problem (5) over each cluster, and then select the
final points from the candidates in all the clusters. After performing simulations over these points, we update the
GP posterior. For simplicity, we neglect illustrating multiple fidelities in this graphic. b) Distribution of samples
P for a simple synthetic setting. Samples are colored red if f(x) ≤ γ and blue otherwise. c) Points selected
over three iterations (batches) of our algorithm in the synthetic setting. Initial exploration over the state space in
the first iteration transitions to targeted uncertainty reduction around the regions of interest in the third iteration.

We define c(y0) := 1 and by construction c(yl) < 1 for l ≥ 1. Whereas in the single-fidelity
setting we select a batch of m points, we now consider selecting r ≥ m points whose total cost is
m. Then, the new multifidelity acquisition problem is to minimize the cost-normalized expected
forward-looking point-variance function. For clarity, we write y in its expanded form (x, l):

minimize
(x,l)

1
c(x,l)

J
(
{(x, l)j}i−1

n+1 ∪ {(x, l)}
)
− J

(
{(x, l)j}i−1

n+1

)
, (5)

where n+ 1 ≤ i ≤ n+ r. Unlike in the single-fidelity case, the subtraction of the previous iteration’s
objective is now required—we normalize the decrease of the forward-looking point-variance with
respect to the price of simulation.

The theoretical results above extend directly to the mutifidelity setting where we consider P as the
empirical distribution over all inputs and all fidelities. In general, we may not have the ability to
evaluate every input xi at every level l, in which case we simply define our distribution P over the
empirical distribution of locations and corresponding available simulation fidelities. In Section 4, we
assume that all simulators are available for all N points.

Clustering As noted in Section 2, our problem setting is different from most work on GPs and
BO/BQ that are concerned with computational efficiency. Specifically, the number of training data
points is extremely small (typically tens in our experiments) compared to N . Instead, our bottleneck
is the sequential selection of points to evaluate via minimization of the acquisition function, an
O(mN2) computation. To decrease this cost, we employ clustering. With S clusters, the complexity
of our sequential selection strategy is O(mN2/S2). We can trivially take advantage of parallel
computation in this approach as well. See Appendix A.4 for details.

The complete BAMS algorithm with clustering is detailed in Algorithm 1 (Appendix A.1). Figure 2
illustrates our approach on a synthetic two-dimensional dataset. We show a schematic of Algorithm 1
in Figure 2a. Figure 2b visualizes the input distribution P and Figure 2c shows samples selected by
our algorithm. For a detailed analysis of the synthetic experiment, see Appendix D.

4 Experiments
To showcase the effectiveness of BAMS, we apply it to a realistic AV context using the Waymo Open
Sim Agent Challenge (WOSAC) dataset [40]. The WOSAC dataset contains N = 44, 911 logged
run segments and 32 rollouts per run segment generated via AV planner simulation. The AV planner
resimulates each segment by predicting the future states of all agents, conditioned on the initial states
of the logged run segment. Our goal is to estimate the rate of near-accident events. We describe
all aspects of our setup, including the embedding model to generate x for each run segment, the
performance metric f(x), experimental procedure, multifidelity setup, and evaluation criteria.

Embedding model The input embedding is generated in two stages:

1. 512-dimensional embedding: Using a dataset of run segments, we extract features such as road
layouts, other road users’ positions, and AV kinematics. These features are used to generate
top-down images, encoded into 512-dimensional vectors using a convolutional neural network.
Training uses contrastive learning on image pairs labeled as being from the same run segment or
not. See Bronstein et al. [39] for details.

5

2. Dimensionality reduction: We train an encoder-decoder model to reduce the embedding to a
12-dimensional representation, which is more computationally tractable for GPs.

Since the 32 AV planner rollouts in WOSAC are generated based on one second of history, our
embedding model utilizes the embedding at the start of the run segment.

Performance metric We utilize the 32 rollouts to calculate a single time-to-collision (TTC) value
for each run segment using the formula f(x) = Q0.25(mTTC[1](x) . . .mTTC[32](x)), where
mTTC[i](x) is the minimum TTC across the ith rollout for run segment with embedding x and
Q0.25(. . .) is the 25th percentile of the arguments. We use the 25th percentile to be robust to outliers
in the rollouts. Finally, we set the rate pγ at 1% by using the threshold γ = 0.43 for this metric.

Experimental procedure We utilize BAMS with S = 6 clusters, based on the parameter-tuning
study presented in Appendix C.1. We compare BAMS, which leverages both fidelity levels, with
its ablated counterpart Bayesian adaptive sampling (BAS), which only employs the high-fidelity
simulator. Additionally, we measure performance of BAMS and BAS against the following baselines:

• MC: Standard Monte Carlo sampling.
• MC-GP: Our method with random sampling as the acquisition function.
• MCM-GP: Multifidelity version of MC-GP.
• DS: IS with difficulty-model scores.
• DS-GP: Our method with IS based on difficulty-model scores as the acquisition function.
• CE: Cross-entropy method [47]. See Appendix E for implementation details.

DS and DS-GP leverage IS based on a difficulty model. Inspired by Bronstein et al. [39], this model
predicts the intrinsic difficulty of a run segment based on previous simulations conducted under
diverse planner versions. Our experimental procedure for all models is as follows:

A. Initialization: All methods begin with a first batch of random samples with a budget of m1 = 20
evaluations. This ensures unbiased exploration of the search space. Subsequently, the GP-based
methods leverage this initial data to train their hyperparameters by maximizing the marginal log-
likelihood (MLL) using the Adam optimizer [48].

B. Two batches with budget mb: Each method samples two additional batches, each with a budget of
mb = 15 evaluations. We retrain the GP hyperparameters after each batch.

Multifidelity setup For BAMS and MCM-GP, we utilize two fidelity levels:

• Level 0 (high fidelity): This level uses the 25th percentile TTC calculated from all 32 rollouts
Q0.25(mTTC[1] . . .mTTC[32]) with cost c(y0) = 1.0.

• Level 1 (low fidelity): This level uses the 25th percentile TTC calculated from only 5 ran-
domly selected rollouts, denoted Q0.25(mTTC[1] . . .mTTC[5]), whereby c(y1) = 5/32. This
parameter was chosen based on a parameter-tuning study (see Appendix C.3) conducted over
Q0.25(mTTC[1] . . .mTTC[i]) with corresponding cost i/32, evaluating the model’s recall at a
retention budget of 5pγN .

4.1 Evaluation criteria
We evaluate all approaches using two criteria: retention-recall curves and rate estimation/discovery
via IS, detailed below.

Retention-recall curves At the end of each batch, we use retention-recall curves to compare how
effectively different methods identify novel failure modes. These curves offer insights into how
efficiently each method recalls failure modes while minimizing the number of retained samples. For
GP methods, the curve is generated by sorting the high-fidelity data points (l = 0) based on pn(xi)
estimates. For MC, samples are sorted randomly. Recall is then calculated at different retention
levels, representing the fraction of failures found within the top-ranked samples.

To facilitate interpretability, we scale the x-axis (retention) of retention-recall curves by pγN (number
of failures). Thus, a value of 1 on the x-axis corresponds to retaining the pγN highest-scoring
samples. This scaling also allows us to infer precision. For example, if recall is 100% at a retention of
2pγN , all failure modes are captured within the top 2pγN sample scores pn(xi), or precision is 0.5.

Retention-recall curves illustrate the trade-off between recall and the number of retained samples,
which reveals a method’s ability efficiently discovering failure modes. However, generation of this
curve requires evaluating all xi in the high-fidelity simulator, so it is not a realistic way of measuring
rate-informed discovery in AV development settings. We consider tractable statistics next.

6

(a) Batch 1 (b) Batch 2 (c) Batch 3
Figure 3: Retention-recall curves for AV experiments. The x-axis represents the retention budget scaled by
pγN while the y-axis shows the recall at each corresponding retention budget.

Rate estimation and discovery via IS After completing the third batch of simulation, we conduct a
combined evaluation of both rate estimation and discovery. We do 200 repeated trials using model
scores to perform IS with a budget of K = 5pγN high-fidelity samples (l = 0). We calculate the
resulting recall and relative variance (RV) of the rate estimate, defined as the variance divided by p2γ
(e.g., the square of the coefficient of variation). For GP methods, we define our importance sampler as
pn(x)α, with α = 2.5 chosen to minimize relative variance (see Appendix C.2). For MC, sampling
is based on random scores.

This IS approach guarantees that our estimate of the failure rate pγ is unbiased by construction,
even if our underlying GP model θ is biased. Together, these two statistics—relative variance and
recall—test each method’s ability to perform rate-informed discovery: a good sampler has high recall
and low variance for the rate estimate. Most importantly, generation of these statistics is a natural and
tractable component of iterative AV development loops.

4.2 Results
Figure 3 presents retention-recall plots comparing BAMS, BAS, and baseline methods after each
batch. BAMS achieves the highest retention at every retention level. Analyzing the results by batch
reveals interesting trends. Initially, in Batch 1 methods within the same fidelity level exhibit similar
performance: BAS, MC-GP, and DS-GP perform similarly, as do BAMS and MCM-GP. This is
due to the use of the same random samples for initialization. However, the impact of the acquisition
function becomes evident in the second batch, where BAMS significantly outperforms MCM-GP,
and BAS outperforms other single-fidelity methods. This highlights the importance of the acquisition
function in guiding the search towards potential failure modes.

By the third batch, BAMS achieves 80% recall at a retention of 5pγN , exceeding other methods
by over 10% and highlighting its superior ability to discover failure modes. BAS achieves the best
recall among single-fidelity methods, demonstrating the effectiveness of our acquisition function.
Additionally, MCM-GP performs comparably to BAS, showcasing the benefit of the multifidelity
approach. These results also reinforce the advantages of leveraging multiple fidelity levels for efficient
discovery, as both MCM-GP and BAMS outperform their single-fidelity counterparts. Notably, CE
displays worse recall than all of the GP and multifidelity methods, but, as CE is still an adaptive
method, it outperforms the non-adpative MC and DS baselines.

To illustrate the diversity of samples selected by each method, we use a determinantal point process
(DPP) [49] to sample five diverse run segments from the collection of selected points at the end of
the third batch. Figure 4 compares these run segments for BAMS and MCM-GP. The BAMS run
segments include features such as busy intersections, pedestrians, and cyclists, whereas the MCM-GP
run segments just show diversity in the road type (single lane vs. multi-lane). Table 1 demonstrates
the evolution of focus for each method across batches, similar to the synthetic example (Figure 2c).
Notably, BAMS concentrates on low TTC areas, facilitating the discovery of diverse failure modes.
While CE shows low average f(x) values in the third batch (cf. Table 1), the low recall performance
in Figure 3 illustrates a common pitfall of CE: it collapses to sampling a subset of failure regions.

Now we turn to IS statistics: Figure 5 shows rate estimates and Table 2 shows recall and relative
variance (RV). BAMS achieves the best recall while exhibiting a similar rate precision to BAS. These
results reinforce the superior performance of multifidelity versions of each model. Additionally,
GP-based methods demonstrate better recall and rate estimation compared to DS, CE, and MC.

7

B
A

M
S

M
C

M
-G

P

Figure 4: We select five samples from Batch 3 data using a DPP sampler to maximize diversity. The ego vehicle
is blue and the snapshot corresponds to the timestamp at which the minimum TTC occurs; large transparent
circles indicate the trajectory history, and small circles represent the future trajectory. The BAMS samples
showcase busy intersections, pedestrians, and cyclists, whereas MCM-GP samples have less diversity.

Method Batch 1 Batch 2 Batch 3

BAMS 4.99± 0.51 1.75± 0.16 1.49± 0.21
BAS 6.55± 0.78 2.27± 0.58 3.19± 0.89
MC-GP 6.55± 0.78 6.34± 0.83 4.53± 0.6
MCM-GP 4.99± 0.51 6.09± 0.51 5.86± 0.55
DS-GP 6.55± 0.78 6.47± 0.81 7.37± 0.77
CE 6.55± 0.78 2.91± 0.26 2.20± 0.12

Table 1: The average f(x) values and standard
errors (SE) for selected samples across all three
batches. Analogous to Figure 2c, the transition
from exploration to targeted selection is most evi-
dent for BAMS.

Figure 5: AV setting 90% confidence intervals for IS
rate estimate with K = 5pγN samples. The ground
truth is pγ = 0.01. Smaller error bars indicate a more
precise estimator.

Method Recall±SE 100(RV ± SE)

BAMS 0.511± 0.0013 0.851± 0.121
BAS 0.388± 0.0013 0.969± 0.037
MC 0.048± 0.0006 13.5± 2.86
MC-GP 0.368± 0.0012 5.70± 2.39
MCM-GP 0.460± 0.0019 1.43± 0.288
DS 0.051± 0.0007 5.40± 0.096
DS-GP 0.315± 0.0012 3.67± 0.599
CE 0.096± 0.0007 4.43± 0.063

Table 2: IS evaluation for AV experiments. Recall
and relative variance of rate estimates are calculated
after Batch 3 with K = 5pγN samples. Standard
error (SE) is over 10 seeds.

5 Limitations
While BAMS demonstrates substantial improvements for efficiently discovering novel, high-
likelihood scenarios and estimating the rate of adverse events, our approach has limitations. Specif-
ically, to ensure tractable GP inference, we must perform dimensionality reduction on our input
embeddings; this pre-training step adds computational overhead. Furthermore, the effectiveness
of BAMS hinges on the availability of a continuous (or at least real-valued) metric function f(x);
this limits applicability in scenarios with purely binary labels. Finally, despite using an adaptive
approach for selecting evaluation points across batches, our final IS step for rate estimation is not
adaptive. Incorporating adaptive mechanisms within the IS stage, potentially leveraging techniques
from sequential Monte Carlo (SMC) estimation, promises further enhancements to both the efficiency
and accuracy of rate estimation.

6 Conclusion
This paper introduced rate-informed discovery to address the critical need for efficient estimation
of AV safety and discovery of high-impact failure cases. We proposed BAMS, a method that
utilizes Bayesian adaptive sampling and multifidelity simulation. Our results demonstrated the
effectiveness of BAMS in discovering novel, high-likelihood scenarios of undesirable AV behavior
while simultaneously estimating the rate of adverse events. In future work, we plan to “close the loop”
by embedding rate-informed discovery via BAMS in an iterative AV development cycle and measure
its effectiveness at reducing the end-to-end cost and latency of planner improvement.

8

References
[1] P. Koopman and M. Wagner. Challenges in autonomous vehicle testing and validation. SAE

International Journal of Transportation Safety, 4(1):15–24, 2016.

[2] N. Kalra and S. M. Paddock. Driving to safety: How many miles of driving would it take
to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and
Practice, 94:182–193, 2016.

[3] J. M. Scanlon, K. D. Kusano, T. Daniel, C. Alderson, A. Ogle, and T. Victor. Waymo simulated
driving behavior in reconstructed fatal crashes within an autonomous vehicle operating domain.
Accident Analysis & Prevention, 163:106454, 2021.

[4] Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang, and R. Urtasun. Unisim: A
neural closed-loop sensor simulator. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1389–1399, 2023.

[5] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005.

[6] V. Tresp. A bayesian committee machine. Neural computation, 12(11):2719–2741, 2000.

[7] J. Quinonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate gaussian
process regression. The Journal of Machine Learning Research, 6:1939–1959, 2005.

[8] M. Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial
intelligence and statistics, pages 567–574. PMLR, 2009.

[9] A. Wilson and H. Nickisch. Kernel interpolation for scalable structured gaussian processes
(kiss-gp). In International conference on machine learning, pages 1775–1784. PMLR, 2015.

[10] G. Pleiss, J. Gardner, K. Weinberger, and A. G. Wilson. Constant-time predictive distributions
for gaussian processes. In International Conference on Machine Learning, pages 4114–4123.
PMLR, 2018.

[11] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out of
the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

[12] P. I. Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[13] A. O’Hagan. Bayes-hermite quadrature. Journal of Statistical Planning and Inference, 1991.

[14] M. Kennedy. Bayesian quadrature with non-normal approximating functions. Statistics and
Computing, 8(4), 1998. URL https://doi.org/10.1023/A:1008832824006.

[15] C. E. Rasmussen and Z. Ghahramani. Bayesian monte carlo. Neural Information Processing
Systems, 2003.

[16] J. Wilson, F. Hutter, and M. Deisenroth. Maximizing acquisition functions for bayesian
optimization. Advances in neural information processing systems, 31, 2018.

[17] M. C. Kennedy and A. O’Hagan. Predicting the output from a complex computer code when
fast approximations are available. Biometrika, 87(1):1–13, 2000.

[18] V. Balabanov and G. Venter. Multi-fidelity optimization with high-fidelity analysis and low-
fidelity gradients. In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
page 4459, 2004.

[19] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker. Surrogate-
based analysis and optimization. Progress in aerospace sciences, 41(1):1–28, 2005.

[20] R. Lam, D. L. Allaire, and K. E. Willcox. Multifidelity optimization using statistical surrogate
modeling for non-hierarchical information sources. In 56th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, page 0143, 2015.

9

https://doi.org/10.1023/A:1008832824006

[21] L. Le Gratiet and C. Cannamela. Cokriging-based sequential design strategies using fast
cross-validation techniques for multi-fidelity computer codes. Technometrics, 57(3):418–427,
2015.

[22] E. V. Bonilla, K. Chai, and C. Williams. Multi-task gaussian process prediction. Advances in
neural information processing systems, 20, 2007.

[23] K. Swersky, J. Snoek, and R. P. Adams. Multi-task bayesian optimization. Advances in neural
information processing systems, 26, 2013.

[24] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast bayesian optimization of machine
learning hyperparameters on large datasets. In Artificial intelligence and statistics, pages
528–536. PMLR, 2017.

[25] J. O. Lübsen, C. Hespe, and A. Eichler. Safe multi-task bayesian optimization. arXiv preprint
arXiv:2312.07281, 2023.

[26] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause, S. Schaal, and S. Trimpe.
Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with
bayesian optimization. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 1557–1563. IEEE, 2017.

[27] M. Poloczek, J. Wang, and P. Frazier. Multi-information source optimization. Advances in
neural information processing systems, 30, 2017.

[28] M. E. O’Kelly, H. Abbas, S. Gao, S. Kato, S. Shiraishi, and R. Mangharam. Apex: Autonomous
vehicle plan verification and execution. Technical report, SAE Technical Paper, 2016.

[29] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic real-time
systems. In Computer Aided Verification: 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings 23, pages 585–591. Springer, 2011.

[30] M. Althoff and J. M. Dolan. Online verification of automated road vehicles using reachability
analysis. IEEE Transactions on Robotics, 30(4):903–918, 2014.

[31] S. A. Seshia, D. Sadigh, and S. S. Sastry. Formal methods for semi-autonomous driving. In
Proceedings of the 52nd Annual Design Automation Conference, pages 1–5, 2015.

[32] C. E. Tuncali, T. P. Pavlic, and G. Fainekos. Utilizing s-taliro as an automatic test generation
framework for autonomous vehicles. In 2016 ieee 19th international conference on intelligent
transportation systems (itsc), pages 1470–1475. IEEE, 2016.

[33] R. Lee, O. J. Mengshoel, A. Saksena, R. W. Gardner, D. Genin, J. Silbermann, M. Owen, and
M. J. Kochenderfer. Adaptive stress testing: Finding likely failure events with reinforcement
learning. Journal of Artificial Intelligence Research, 69:1165–1201, 2020.

[34] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer. Adaptive stress testing for autonomous
vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1–7. IEEE, 2018.

[35] A. Sinha, M. O’Kelly, R. Tedrake, and J. C. Duchi. Neural bridge sampling for evaluating
safety-critical autonomous systems. Advances in Neural Information Processing Systems, 33:
6402–6416, 2020.

[36] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An efficient smt
solver for verifying deep neural networks. In Computer Aided Verification: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pages
97–117. Springer, 2017.

[37] J. Norden, M. O’Kelly, and A. Sinha. Efficient black-box assessment of autonomous vehicle
safety. arXiv preprint arXiv:1912.03618, 2019.

[38] A. Corso, R. Moss, M. Koren, R. Lee, and M. Kochenderfer. A survey of algorithms for black-
box safety validation of cyber-physical systems. Journal of Artificial Intelligence Research, 72:
377–428, 2021.

10

[39] E. Bronstein, S. Srinivasan, S. Paul, A. Sinha, M. O’Kelly, P. Nikdel, and S. Whiteson. Embed-
ding synthetic off-policy experience for autonomous driving via zero-shot curricula. In K. Liu,
D. Kulic, and J. Ichnowski, editors, Proceedings of The 6th Conference on Robot Learning,
volume 205 of Proceedings of Machine Learning Research, pages 188–198. PMLR, 14–18 Dec
2023. URL https://proceedings.mlr.press/v205/bronstein23a.html.

[40] N. Montali, J. Lambert, P. Mougin, A. Kuefler, N. Rhinehart, M. Li, C. Gulino, T. Emrich,
Z. Yang, S. Whiteson, B. White, and D. Anguelov. The waymo open sim agents challenge. In
Advances in Neural Information Processing Systems Track on Datasets and Benchmarks, 2023.

[41] R. Wickramarachchi, C. Henson, and A. Sheth. An evaluation of knowledge graph embeddings
for autonomous driving data: Experience and practice. arXiv preprint arXiv:2003.00344, 2020.

[42] C. Choi, J. H. Choi, J. Li, and S. Malla. Shared cross-modal trajectory prediction for au-
tonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 244–253, 2021.

[43] S. Segal, E. Kee, W. Luo, A. Sadat, E. Yumer, and R. Urtasun. Universal embeddings for
spatio-temporal tagging of self-driving logs. In Conference on Robot Learning, pages 973–983.
PMLR, 2021.

[44] A. Hu, L. Russell, H. Yeo, Z. Murez, G. Fedoseev, A. Kendall, J. Shotton, and G. Corrado.
Gaia-1: A generative world model for autonomous driving. arXiv preprint arXiv:2309.17080,
2023.

[45] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp. Wayformer: Motion
forecasting via simple & efficient attention networks. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 2980–2987. IEEE, 2023.

[46] C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, and Y. Richet. Fast paral-
lel kriging-based stepwise uncertainty reduction with application to the identification of an
excursion set. Technometrics, 56(4):455–465, 2014.

[47] R. Y. Rubinstein and D. P. Kroese. The cross-entropy method: a unified approach to combi-
natorial optimization, Monte-Carlo simulation, and machine learning, volume 133. Springer,
2004.

[48] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[49] A. Kulesza, B. Taskar, et al. Determinantal point processes for machine learning. Foundations
and Trends R© in Machine Learning, 5(2–3):123–286, 2012.

[50] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on pattern
analysis and machine intelligence, 22(8):888–905, 2000.

[51] A. Damle, V. Minden, and L. Ying. Simple, direct and efficient multi-way spectral clustering.
Information and Inference: A Journal of the IMA, 8(1):181–203, 06 2018. ISSN 2049-8772.
doi:10.1093/imaiai/iay008. URL https://doi.org/10.1093/imaiai/iay008.

[52] C. D. Manning, P. Raghavan, and H. Schütze. Xml retrieval. Introduction to Information
Retrieval, 2008.

[53] Z. Drezner. Computation of the bivariate normal integral. Mathematics of Computation, 32
(141):277–279, 1978.

[54] Z. Drezner and G. O. Wesolowsky. On the computation of the bivariate normal integral. Journal
of Statistical Computation and Simulation, 35(1-2):101–107, 1990.

[55] S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, and H. X. Liu. Dense reinforcement learning
for safety validation of autonomous vehicles. Nature, 615(7953):620–627, 2023.

[56] M. Arief, Z. Huang, G. K. S. Kumar, Y. Bai, S. He, W. Ding, H. Lam, and D. Zhao. Deep
probabilistic accelerated evaluation: A certifiable rare-event simulation methodology for black-
box autonomy. arXiv preprint arXiv:2006.15722, 1(4), 2020.

11

https://proceedings.mlr.press/v205/bronstein23a.html
http://dx.doi.org/10.1093/imaiai/iay008
https://doi.org/10.1093/imaiai/iay008

[57] W. Ding, C. Xu, M. Arief, H. Lin, B. Li, and D. Zhao. A survey on safety-critical driving scenario
generation—a methodological perspective. IEEE Transactions on Intelligent Transportation
Systems, 24(7):6971–6988, 2023.

[58] Z. Zhong, Y. Tang, Y. Zhou, V. d. O. Neves, Y. Liu, and B. Ray. A survey on scenario-based test-
ing for automated driving systems in high-fidelity simulation. arXiv preprint arXiv:2112.00964,
2021.

[59] B. Schütt, J. Ransiek, T. Braun, and E. Sax. 1001 ways of scenario generation for testing of
self-driving cars: A survey. In 2023 IEEE Intelligent Vehicles Symposium (IV), pages 1–8. IEEE,
2023.

12

A Algorithmic details
A.1 BAMS algorithm

For notational brevity in Algorithm 1, we use ∆Jj(yl) := J
(
{(x, l)j}i−1n+1 ∪ {(x, l)}

)
−

J
(
{(x, l)j}i−1n+1

)
.

Algorithm 1 BAMS
input: data points {(yl)i}Ni=1 for all l ∈ {0, 1, . . . L}, posterior θn, number of clusters S, budget m,
overbudget parameter η
Create S clusters of points (Algorithm 2)
for s = 1 to S

costs ← 0
Queues ← [∅]
while costs < dηmNs/Ne
yl ← arg min of optimization problem (5) in cluster s
costs ← costs + c(yl)
Store (yl,∆Jj(yl), c(yl)) in Queues

costg ← 0
Setg ← {∅}
while costg < m

Candidates← [∅]
for s = 1 to S

(yl,∆Jj(yl), c(yl))← next item in Queues
if costg + c(yl) < m

Candidates← Candidates + (yl,∆Jj(yl), c(yl))
if Candidates = [∅] break
(yl,∆Jj(yl), c(yl))next ← arg minCandidates ∆Jj(yl)
costg ← costg + (c(yl))next
Setg ← Setg + {(yl)next}

return the set of next points to evaluate Setg

A.2 Computation of Equation (4)

As noted in Proposition 1 of Chevalier et al. [46], we have
βn
(
x; {xj}n+mn+1

)
:= Eθn

[
hn+m(x)|{Xj = xj}n+mn+1

]
= Φ2

((
s(x)
−s(x)

)
,

(
t(x) 1− t(x)

1− t(x) t(x)

))
,

where

s(x) :=
γ − µn(x)

σn+m(x)
,

t(x) :=
σ2
n(x)

σ2
n+m(x)

= 1 +
covn(x,Xm)covn(Xm, Xm)−1covn(Xm, x)

σ2
n+m(x)

,

and Xm ∈ Rm×d is the matrix of m new evaluation points. Departing from the form in Chevalier
et al. [46], we further simplify this result to a form that eliminates σn+m. In particular, note that we
can rewrite

t̂(x) :=
1

t(x)
= 1− covn(x,Xm)covn(Xm, Xm)−1covn(Xm, x)

σ2
n(x)

.

We can then rewrite

Φ2

((
s(x)
−s(x)

)
,

(
t(x) 1− t(x)

1− t(x) t(x)

))
= Φ2

((
ŝ(x)
−ŝ(x)

)
,

(
1 t̂(x)− 1

t̂(x)− 1 1

))
,

where ŝ(x) := γ−µn(x)
σn(x)

. By computing the Cholesky decomposition of covn(Xm, Xm) once (an
O(m3) operation), we can then compute t̂(xi) for all i in O(m2N) time by solving the triangular
linear system. Then computing the expectation EX

[
βn
(
X; {xj}n+mn+1

)]
is O(N), resulting in an

overall complexity of O(m2N).

A.3 Recursive next point selection for expected point variance
We first outline the procedure for naive sequential selection followed by how we improve upon it.

13

Naive sequential selection goes as follows: given q < m previously selected points, we select consider
all N − n− q = O(N) candidates for the next point. We compute the acquisition function (4) for all
of them and choose the argument of the minimum, resulting in O(N) iterations each of an O(q2N)
computation for a total of O(q2N2) cost. Since we must do this for 1 ≤ q ≤ m− 1, the resulting
naive sequential selection strategy is O(m3N2).

We increase efficiency over the naive strategy by exploiting the fact that we are simply adding a
single point to the selected candidates, so we do not need to blindly perform matrix inversion on the
entire covn(Xq+1, Xq+1)−1k(Xq+1, x). Instead, we employ identities for block matrix inversion.

We introduce notation in this section purely for brevity; we do not use this notation anywhere else in
the paper. Define the shorthand Σn,q+1 := covn(Xq, Xq). Then we can write (with the right hand
side as shorthand),

Σn,q+1 =

(
Σn,q covn(Xq, xq+1)

covn(xq+1, Xq) covn(xq+1, xq+1)

)
=:

(
A f
f g

)
Defining shorthand covn(Xq+1, x) := (kTq |k)T , we have via the block matrix inversion identity

covn(x,Xq+1)Σ−1n,q+1covn(Xq+1, x) = kTq A
−1kq +

1

h
(kTq A

−1f)2 − 2k

h
(kTq A

−1f) +
k2

h

where h := g − fTA−1f . Note that the first term on the right hand side is precisely
covn(x,Xq)Σ

−1
n,qcovn(Xq, x), so we can define a recursive relationship as long as we can also

write a recursive relationship for kTq A
−1f . For an arbitrary vector (eTq |e)T we can utilize the block

matrix inversion identity again to show that

(eTq |e)Σ−1n,q+1covn(Xq+1, x) = eTq A
−1kq +

(
eTq A

−1f

h
− e

h

)(
kTq A

−1f − k
)
,

where the first term on the right-hand-side is precisely eTq Σ−1n,qcovn(Xq, x). Then we have a recursive
formula for

covn(x,Xq+1)Σ−1n,q+1covn(Xq+1, x)

which allows us to efficiently compute t̂(x) iteratively. In particular, we can compute t̂(xi) for all
i in O(N2) time, after which we must also compute the acquisition function (4) for all N − n− q
candidates and choose the argument of the minimum, an O(N2) computation. Thus, the overall time
complexity is O(mN2).

A.4 Clustering algorithm
First we divide P into S independent clusters. A natural choice for this task is spectral clustering
[50, 51], but this requires both computing and storing the entire posterior covariance matrix, which is
expensive. Instead, we use the trained Matérn lengthscales at l = 0 from the GP model to rescale the
input points xi and run K-means clustering on the N points; Euclidean distance with the rescaled
dimensions is a cheap approximation for the Matérn kernel. Since each point x corresponds to L
points yl, each resultant cluster has Ns points at each of the L levels, with

∑S
s=1Ns = N (for full

details, see Algorithm 2).

Then, we solve the minimization problem (5) over the independent clusters, with each cluster given a
budget proportional to its size dηmNs/Ne. Here, η ≥ 1 is an “overbudget” parameter such that we
draw more points than necessary after pooling together outputs from all clusters (cf. Algorithm 1).

The average complexity of K-means via Lloyd’s algorithm is O(SN) [52]; it is significantly
faster than computing the acquisition function, yielding an overall speedup as shown in Section
A.4. When there are S equal-size clusters, the complexity of our sequential selection strategy is
O(dηm/SeN2/S). We can trivially take advantage of parallel computation in this approach as well.

As a heuristic to prevent extremely small cluster sizes, we perform a slightly modified version of
K-means clustering. In particular, we first perform K-Means with Ŝ > S clusters. followed by
iterative removal of the smallest clusters by merging them with another cluster with the smallest
Haussdorff distance. For shorthand, let the point z be the original data point x scaled by the Matérn
lengthscales at l = 0 from the GP model. Let Ci for the set of points in cluster with index i. Then,
for points za in cluster i and zb in cluster j, let the Euclidean distance be denoted as d(a, b). The

14

Algorithm 2 Clustering with Haussdorff merges

input: data points {(zi}Ni=1, desired number of clusters S, initial number of clusters Ŝ
Create Ŝ clusters of points via K-means
for i = 1 to Ŝ − S
s← arg mink |Ck|
j ← arg mink dH(Cs, Ck)
Cj ← Cj ∪ Cs
Remove Cs

return S remaining clusters {Cs}Ss=1

Haussdorff distance between clusters i and j is defined as:

dH(Ci, Cj) := max

(
max
a∈Ci

min
b∈Cj

d(a, b) , max
b∈Cj

min
a∈Ci

d(a, b)

)
(6)

The clustering procedure is shown in Algorithm 2.

B Technical Results
B.1 Computation time for variance
The variance satisfies:

Var(p̂γ(θn)) := Eθn

[
(p̂γ(θn)− Eθn [p̂γ(θn)])

2
]

(a)
= Eθn

[
(p̂γ(θn)− EX [pn(X)])

2
]

= Eθn

[
(EX [g(X, θn)− pn(X)])

2
]

= Eθn [EX,X′ [(g(X, θn)− pn(X)) (g(X ′, θn)− pn(X ′))]]

(b)
= EX,X′ [Eθn [(g(X, θn)− pn(X)) (g(X ′, θn)− pn(X ′))]]

= EX,X′ [Cov(g(X, θn), g(X ′, θn))]

(c)
=

1

N2

N∑
i,j=1

Cov(g(xi, θn), g(xj , θn)),

where we assume Fubini’s Theorem applies so that we may interchange expectations in equalities
(a) and (b), and equality (c) is due to the fact that P is the empirical distribution function over N
samples xi. The bivariate covariance above can be written as
Cov(g(X, θn), g(X ′, θn)) = Eθn [g(X, θn)g(X ′, θn)]− pn(X)pn(X ′)

= P (θn(X) ≤ γ, θn(X ′) ≤ γ)− pn(X)pn(X ′)

= Φ2

(
γ − µn(X)

σn(X)
,
γ − µn(X ′)

σn(X ′)
,

covn(X,X ′)

σn(X)σn(X ′)

)
− pn(X)pn(X ′),

where Φ2(a, b, r) is the cumulative distribution function for vector (a, b) under the bivariate normal
distribution

N
((

0
0

)
,

(
1 r
r 1

))
.

We implement an efficient numerical procedure for this bivariate normal integral via the Gaus-
sian quadrature method outlined by Drezner [53], Drezner and Wesolowsky [54]. Computing
Var(p̂γ(θn)) requires

(
N
2

)
of these computations for i 6= j. When i = j, we can simplify

Cov(g(xi, θn), g(xj , θn)) = pn(xi)(1 − pn(xi)), and pn(x) = Φ
(
γ−µn(x)
σn(x)

)
, where Φ(·) is the

cumulative distribution function for a standard (one-dimensional) normal. Overall, the computation
time is dominated by the

(
N
2

)
evaluations of Φ2, so the complexity is O(N2).

15

B.2 Proof of Proposition 3.1

Proof. Let the probability distribution function be ρ(x) such that
∫
X ρ(x)dx = 1. Then the variance

satisfies:

Var(p̂γ(θn)) := Eθn

[
(p̂γ(θn)− Eθn [p̂γ(θn)])

2
]

(a)
= Eθn

[
(p̂γ(θn)− EX [pn(X)])

2
]

= Eθn

[
(EX [g(X, θn)− pn(X)])

2
]

= Eθn

[(∫
X

(g(x, θn)− pn(x))ρ(x)dx

)2
]

≤ Eθn
[∫
X

(g(x, θn)− pn(x))2ρ(x)dx

∫
X
ρ(y)dy

]
= Eθn

[∫
X

(g(x, θn)− pn(x))2ρ(x)dx

]
= Eθn

[
EX

[
(g(X, θn)− pn(X))2

]]
(b)
= EX

[
Eθn

[
(g(X, θn)− pn(X))2

]]
= EX [pn(X)(1− pn(X))]

= EX [hn(X)] ,

where the inequality is the Cauchy-Schwarz inequality, and we assume Fubini’s Theorem applies so
that we may interchange expectations in equalities (a) and (b).

B.3 Proof of Corollary 3.2
Proof. The proof is immediate following Proposition 3.1. Namely,

Eθn
[
Var(p̂γ(θn+m))|{Xj = xj}n+mn+1

] (a)

≤ Eθn
[
EX [hn+m(X)] |{Xj = xj}n+mn+1

]
(b)
= EX

[
Eθn

[
hn+m(X)|{Xj = xj}n+mn+1

]]
= J

(
{xj}n+mn+1

)
,

where inequality (a) follows from Proposition 3.1, and again we assume Fubini’s Theorem applies so
we may interchange expectations in equality (b).

C Parameter-tuning studies
Here we provide experiments which explore how we chose (i) the number of clusters, (ii) IS parameter
α and (iii) cost for the cheap fidelity for simulation in our main experiments.

C.1 Number of clusters
We explore the impact of varying the number of clusters on both computational time and recall
achieved at a retention budget of 5pγN after Batch 3. Figure 6 illustrates the relationship between
the number of clusters and the recall achieved at this retention level, averaged over 6 random seeds.

Based on these findings, our clustering approach can significantly speed up the process while
maintaining an acceptable recall. We select S = 6 clusters for BAMS, achieving a substantial
speedup of 17× compared to the non-clustering approach while maintaining competitive recall
performance.

C.2 IS parameter α

In BAMS, the importance sampler is defined as pn(x)α. The parameter α plays a crucial role in
aligning the IS with the objective of rate-informed discovery. We select α to minimize the relative
variance of the rate estimate while maintaining acceptable recall for importance-sampled items.
Figure 7 showcases the impact of changing α on both the relative variance of the rate estimate and
the recall achieved by IS with budget of 5pγN samples. Based on this analysis, we choose α = 2.5
as it minimizes the relative variance and achieves a satisfactory recall.

16

Figure 6: Exploring how the number of clusters affects both recall and computational time of BAMS’s sequential
selection stage at 5pγN retention. Recall is shown in blue, time in red.

Figure 7: Influence of IS parameter α on relative variance of rate estimate and recall achieved using a budget of
5pγN samples. Recall is shown in blue, RV in red.

C.3 Multifidelity cost
To determine the optimal level l = 1 cost in the AV setting, we conducted a parameter-tuning study.
We varied the number of AV planner rollouts used to calculate the Q0.25(mTTC[1] . . .mTTC[i])
and evaluated BAMS recall at a retention budget of 5pγN after Batch 3. The cost factor for level 1
was set to i/32, where i represents the number of rollouts used. We employed the same parameters as
our main experiment, with mb = 15 and m1 = 20, and averaged the results across 6 random seeds.

Figure 8 depicts the recall achieved at retention level of 5pγN for varying level 1 costs. The results
demonstrate that BAMS benefits from utilizing more samples, even with the added noise introduced
by using fewer rollouts at level 1. The model can effectively learn the noise characteristics and
achieve improved performance. Based on these findings, we selected i = 5 (and c(y1) = 5/32).

D Synthetic Experiments
Objective We consider a two-dimensional input X = R2 and P is the empirical distribution of
N = 20000 samples from a Gaussian distribution N (0, I). Denoting x[i] as the ith dimension of
x ∈ X , our objective function is f(x) =

∥∥(∣∣x[0]∣∣− c, x[1] − c)∥∥1, where c = 1.95 determines the
centers (±c, c) of two diamonds for the failure modes. These modes are areas where f(x) ≤ γ with
γ = 0.56, resulting in a rate pγ = 0.005. Figure 2b visualizes P and highlights failure modes.

Multifidelity setup Level 0 represents f(x) without noise. Level 1 has a cost c(y1) = 0.10 and adds
Gaussian noise N (0, 0.12) to f(x). For the initial batch (Batch 1), we employ a budget of m1 = 10
evaluations. Subsequently, for batches 2 and 3, we allocate a budget of mb = 5 evaluations across
both fidelity levels.

17

Figure 8: Impact of varying the cost of the lowest fidelity level (level 1) on recall at 5pγN retention after Batch
3. The data points represent the average recall across 6 random seeds.

(a) Batch 1 (b) Batch 2 (c) Batch 3
Figure 9: Retention-recall curves for synthetic experiments. The x-axis represents the retention budget scaled
by pγN while the y-axis shows the recall at each corresponding retention budget.

Results To illustrate the performance of our acquisition function, Figure 2c visualizes the samples
selected by BAS. For clarity in the plot, we use a budget mb = 50 (and we keep m1 = 10). After
the initial 10 random samples, the acquisition function guides exploration towards the top-left and
top-right areas in Batch 2, revealing potential regions of interest. Finally, in Batch 3, it samples the
boundaries of the set of failure modes, precisely targeting those points with the highest uncertainty.
This visualization emphasizes the effectiveness of our acquisition function in progressively refining
its focus, transitioning from initial exploration to targeted discovery.

Figure 9 showcases BAMS’s superior performance in discovering failure modes. It consistently
achieves the highest recall across all batches, surpassing other methods. Multifidelity approaches
(BAMS and MCM-GP) outperform their single-fidelity counterparts (BAS and MC-GP), highlight-
ing the advantage of leveraging different fidelity levels for efficient discovery. While BAMS and
BAS achieve comparable performance in rate estimation (Figure 10), BAMS stands out with the
highest recall (Table 3), signifying its exceptional ability to discover failure modes while accurately
estimating the rate. This demonstrates BAMS’s superior performance in rate-informed discovery. In
Figure 10 we utilize K = 2pγN samples for IS rather than 5pγN as in the AV experiments.

E Setup for the cross-entropy method
Our setup is as follows: we implemented the Cross-Entropy (CE) method using a multivariate
Gaussian sampling distribution with a diagonal covariance matrix. At every iteration, we drew
samples from the Gaussian and found the nearest neighboring run segments according to the Euclidean
embedding distance. From the samples in this batch, we used the samples with the 5 most dangerous
TTC values to update the mean and diagonal covariance of the sampling distribution. After 3 batches
(like all of our other methods), we used the final multivariate distribution function in the third batch
to generate importance scores for all run segments and performed rate estimation with a sample size
of 5pγN like the other methods.

18

Figure 10: Synthetic setting 90% confidence intervals
for IS rate estimate with K = 2pγN samples.

Method Recall ±SE 100(RV ± SE)

BAMS 1.00± 0.000 2.00± 0.003
BAS 0.917± 0.003 3.85± 0.366
MC 0.010± 0.001 710.± 214.
MC-GP 0.394± 0.004 39.4± 3.88
MCM-GP 0.537± 0.005 29.76± 5.08

Table 3: IS evaluation for synthetic experiments.
Recall and relative variance of rate estimates are
calculated after Batch 3 using IS with K = 2pγN
samples. Standard error (SE) is calculated over 10
seeds.

F Connections to other rare-event simulation and AV safety-evaluation
techniques

Our work on rare event discovery and rate estimation complements several areas within the field of
AV safety evaluation. For instance, while we focus on selecting informative run segments from a
given set, other works like Feng et al. [55] address the orthogonal problem of efficient IS within a
single run segment, often employing techniques like adversarial agents. Similarly, while methods
like Arief et al. [56] rely on specific assumptions about the failure region’s topology (e.g., orthogonal
monotonicity), our approach remains agnostic to such constraints, enhancing its applicability to a
wider range of scenarios.

Our work aligns with the broader themes of scenario generation and safety evaluation. Existing
surveys offer comprehensive overviews of scenario generation methods [57, 58, 59], categorizing
our approach under data-driven or learning-based techniques. Importantly, our method addresses
the crucial challenge of transferability, highlighted in Ding et al. [57], by focusing on efficiently
identifying critical scenarios within a given logged dataset rather than relying on potentially brittle
synthetic scenario generation.

This work was motivated by the desire to develop a Bayesian formulation for Sequential Monte Carlo
(SMC). While non-Bayesian SMC approaches exist [35, 37], a Bayesian perspective offers several
benefits. Our primary contribution, BAMS, embodies the novel Bayesian component of this broader
research direction and is designed for seamless integration into SMC frameworks.

A key advantage of a Bayesian formulation lies in reducing the sample complexity of Markov Chain
Monte Carlo (MCMC) steps within the sequential levels of SMC. Specifically, by leveraging a GP,
BAMS performs these MCMC steps directly within the embedding space, completely bypassing the
need for simulations during this phase. This approach stands in contrast to previous suggestions in
[35] like using surrogate simulations for a portion of the MCMC steps followed by a final simulation-
based Metropolis-Hastings (MH) acceptance step. In particular, the Bayesian formulation requires no
simulation for any of the MH steps, contributing significantly to its efficiency.

Theoretical bounds on multilevel splitting performance We can quantify the intuition of MCMC
being expensive by comparing the theoretical lower bound of simulations needed by (single fidelity)
multilevel splitting to achieve the same relative variance as BAMS and BAMS. Using the notation in
Norden et al. [37], the number of iterations is K = log(pγ)/ log(1− δ), the total simulation cost is
N + TδNK, and the resulting relative variance is K δ

N(1−δ) . Using the standard value of δ = 0.1

for splitting and the desired relative variance of 0.00851 (the value for BAMS after Batch 3), we can
calculate K = 43, N = 561, and the total number of simulations is 561 + 2412T ≥ 2973, where
the lower bound (T = 1) is achieved only if we use surrogate simulation to eliminate all but one of
the iterations of simulation during MCMC. BAMS only has 2296 simulations, so vanilla multilevel
splitting requires at least 30% more simulation cost for the same precision. Carrying out the same
math for BAS (with relative variance 0.00969), we get N = 493 and multilevel splitting has to have
at least 2613 simulations for the same precision. Fixing the budget for multilevel splitting to 2296
simulations, multilevel splitting has a lower bound of 100RV ≥ 1.10, which is worse than BAMS
and BAS.

19

How loose are these lower bounds for simulation cost given a fixed precision, and a fixed simulation
cost? The discrete structure of our problem space (since we consider the base distribution P as a
discrete distribution over N run segments) creates difficulty for implementing vanilla SMC baseline
approaches. In particular, efficient MCMC techniques such as Hamiltonian Monte Carlo cannot be
easily utilized. In this sense, the theoretical lower bounds are quite loose because it is likely that we
need to perform more than one MH step using the real simulator. Furthermore, creating competitive
SMC baseline approaches would require developing a novel graph-based MCMC kernel (to efficiently
deal with the discrete structure); this is out of scope for this paper and may be a novel paper itself.
Part of the motivation for this paper is to develop a Bayesian approach that sidesteps the necessity of
performing difficult MCMC on a discrete space.

Comparison with the cross-entropy method In addition to the advantages of BAMS over SMC
methods, it also demonstrates superior performance compared to the cross-entropy method [47], as
detailed in Section 4.2. BAMS bears many similarities to the cross-entropy method. In particular, we
have a sampling distribution (built upon the GP in our case) that updates as we iteratively sample. In
BAMS, we utilize an optimization problem to perform sampling rather than simply drawing from a
parametric sampler.

20

	Introduction
	Background and related work
	Bayesian adaptive multifidelity sampling
	Experiments
	Evaluation criteria
	Results

	Limitations
	Conclusion
	Algorithmic details
	BAMS algorithm
	Computation of Equation (4)
	Recursive next point selection for expected point variance
	Clustering algorithm

	Technical Results
	Computation time for variance
	Proof of Proposition 3.1
	Proof of Corollary 3.2

	Parameter-tuning studies
	Number of clusters
	IS parameter
	Multifidelity cost

	Synthetic Experiments
	Setup for the cross-entropy method
	Connections to other rare-event simulation and AV safety-evaluation techniques

