
Published as a conference paper at ICLR 2025

DIGI-Q: LEARNING VLM Q-VALUE FUNCTIONS
FOR TRAINING DEVICE-CONTROL AGENTS

Hao Bai ∗

UIUC
Yifei Zhou ∗

UC Berkeley
Erran Li
Amazon

Sergey Levine
UC Berkeley

Aviral Kumar
CMU

ABSTRACT

While a number of existing approaches for building foundation model agents rely
on prompting or fine-tuning with human demonstrations, it is not sufficient in
dynamic environments (e.g., mobile device control). On-policy reinforcement
learning (RL) should address these limitations, but collecting actual rollouts in an
environment is often undesirable in truly open-ended agentic problems such as
mobile device control or interacting with humans, where each unit of interaction
is associated with a cost. In such scenarios, a method for policy learning that
can utilize off-policy experience by learning a trained action-value function is
much more effective. In this paper, we develop an approach, called Digi-Q, to
train VLM-based action-value Q-functions which are then used to extract the
agent policy. We study our approach in the mobile device control setting. Digi-
Q trains the Q-function using offline temporal-difference (TD) learning, on top
of frozen, intermediate-layer features of a VLM. Compared to fine-tuning the
whole VLM, this approach saves us compute and enhances scalability. To make
the VLM features amenable for representing the Q-function, we need to employ
an initial phase of fine-tuning to amplify coverage over actionable information
needed for value function. Once trained, we use this Q-function via a Best-of-N
policy extraction operator that imitates the best action out of multiple candidate
actions from the current policy as ranked by the value function, enabling policy
improvement without environment interaction. Digi-Q outperforms several prior
methods on user-scale device control tasks in Android-in-the-Wild, attaining 21.2%
improvement over prior best-performing method. In some cases, our Digi-Q
approach already matches state-of-the-art RL methods that require interaction. The
project is open-sourced at https://github.com/DigiRL-agent/digiq

1 INTRODUCTION

Foundation models (OpenAI, 2024a; GeminiTeam, 2024) open up the possibilities to build agents that
make intelligent decisions in the real world (Liu et al., 2023). While prompting off-the-shelf language
models with specific instructions is one way to get them to make decisions, this is not good enough
for attaining goals and maximizing rewards that are critical in downstream tasks (Zeng et al., 2023;
Chen et al., 2023). Part of the reason is the lack of sufficiently diverse decision-making data (Gur
et al., 2023). But perhaps a more fundamental challenge is that simply imitating Internet data is not
good enough for training models “how” to act intelligently, reduce uncertainty, and achieve goals in
non-stationary real-world decision making settings (Bai et al., 2024; Ma et al., 2024).

Recently, the community has been turning towards using reinforcement learning (RL) for training
agentic policies. RL avoids the shortcomings of imitation and prompting, by explicitly training the
policy to solve tasks (Zhou et al., 2024b; Verma et al., 2022; Snell et al., 2023; Abdulhai et al., 2023).
That said, the best performing RL methods today for improving a policy in multi-step agentic tasks
rely critically on interaction due to the use of policy gradient updates (Yao et al., 2023) coupled
with Monte-Carlo values (Bai et al., 2024; Putta et al., 2024; Shao et al., 2024), which often require
sufficient amounts of on-policy data to get a low-variance learning signal. The amount of on-policy
data needed is likely only larger in non-stationary and dynamic environments (Bai et al., 2024).
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Figure 1: Comparing Digi-Q with on-policy policy-gradient methods. (s, a) rollout pairs that are learned
are marked green in the buffer. Typically, policy-based methods utilizes a state value function to filter out
promising state-action pairs, and requires online data to improve. In contrast, Digi-Q learns a state-action (Q)
value function through TD-learning on offline data, and re-sample an amount of actions for each state. This
Q-function is then used to rank the re-sampled action to learn a policy using the best action under each state.
Digi-Q results in higher sample efficiency than policy-based methods to be applied even in a fully offline setting.

If on the other hand, we could train a critic (i.e., an action-value function) that could score a policy’s
action reliably, without needing to actually simulate the policy behavior over multiple steps several
times, we could simplify our recipe for policy improvement without costly simulations. With this
motivation, in this paper, we build a simple approach to train a VLM Q-function. In our problem
setting of mobile device control, this corresponds to training a VLM-based Q-function that can
provide a score for every snapshot of the phone screen and an action, represented by laying the
cursor over this snapshot. Our method, Digi-Q, trains a Q-function for device control entirely using
historical data collected by (potentially suboptimal) agents.

To train Q-functions effectively, Digi-Q handles a number of challenges posed by value learning at
scale: (i) instability in running temporal-difference (TD) learning for training value functions with
large models (Kumar et al., 2021) and (ii) inefficiency of TD backups per unit amount of “compute”
(i.e., gradient steps spent) (Chebotar et al., 2023) (see Appendix B.1). Digi-Q does so by training on
top of a frozen intermediate layer representation of the VLM instead of training all parameters of
the VLM. For attaining the best performance, representations from off-the-shelf VLMs are not good
enough, since they often do not contain feature information crucial for predicting actions or their
consequences. Therefore, Digi-Q prescribes running an initial phase of representation fine-tuning to
prime representations of a VLM to be more amenable to TD-learning.

To specifically understand benefits of learning the Q-function, we note that while state-only Monte-
Carlo value functions (Bai et al., 2024; Zhai et al., 2024) can only evaluate the efficacy of a single
action that was actually executed at any given state, a good Q-function provides us with reliable
estimates of the future expected reward for multiple actions at the same state, without needing to
actually roll these candidates out. This allows us to develop a Best-of-N policy-extraction objective
that trains the agentic policy to imitate the best-rated action per the Q-function without any additional
interaction. The difference between policy-based methods and Digi-Q is illustrated in Figure 1.

The main contribution of this work is Digi-Q, an offline approach to train a VLM-based Q-function
for building device-control agents. Digi-Q represents and trains Q-functions on top of intermediate
representations from a VLM, fine-tuned to especially consist of actionable information. Digi-Q
unlocks the use of a Best-of-N policy extraction objective to make the most effective use of a Q-
function in obtaining a policy. The agent produced by running Digi-Q on offline data outperforms
prior approaches that also extract policies from offline data in the problem setting of Android device
control (Rawles et al., 2023) with 21.2% of relative improvement over the best-performing prior
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method, even though these domains remain challenging for state-of-the-art proprietary models (Liu
et al., 2024c; Bai et al., 2024). To the best of our knowledge, this work is the first to successfully scale
state-action Q-value functions to realistic agent tasks with VLMs.

2 RELATED WORK

RL for training GUI and device-control agents. Due to their reasoning and perception capabilities,
LLMs and VLMs have been applied extensively to build agents to navigate web pages (Zhou et al.,
2024a; Koh et al., 2024a; Deng et al., 2023; Zheng et al., 2024; He et al., 2024) and GUI interfaces (Bai
et al., 2024; Yan et al., 2023; Hong et al., 2023; Rawles et al., 2023; 2024; Zhang and Zhang, 2024).
In contrast to using off-the-shelf proprietary models (Zheng et al., 2024; Yan et al., 2023; Zhang
et al., 2023; He et al., 2024) or fine-tuning them with a small amount of human demonstrations (Hong
et al., 2023; Zhang and Zhang, 2024; Zeng et al., 2023), RL provides the advantage of optimizing
task-specific reward and goal-oriented behavior, which is important in dynamic and non-stationary
environments especially when human demonstrations are stale (Bai et al., 2024; Zhou et al., 2024b;
Putta et al., 2024; Pan et al., 2024; Song et al., 2024). However, most successful applications of RL
for real-world GUI agent tasks use less efficient algorithms such as (nearly) on-policy policy gradient
or filtered imitation learning (Bai et al., 2024; Putta et al., 2024; Song et al., 2024; Koh et al., 2024b;
Shao et al., 2024). This can be problematic for real-world GUI agent tasks where interaction with
the actual environment presents a bottleneck and on-policy data is hard to collect due to practical
issues such as privacy. In traditional RL, the approach to avoid variance and learn without on-policy
interaction (or massive simulation) is to actually train a Q-value function that can score a given action
at a given state (snapshot of the phone screen). Using this Q-value function for training the policy
results in substantially better performance (Mnih et al., 2013; Haarnoja et al., 2018; Fujimoto et al.,
2018) and can be done entirely from historical data (Kumar et al., 2020; Fu et al., 2021). To the best
of our knowledge, our work is the first to scale value-based Bellman backups to convert VLMs into
device-control Q-functions, which serve as effective scoring functions to policy extraction.

From an algorithmic standpoint, the closest work to ours that trains agents with Q-functions is
ArCHer (Zhou et al., 2024b), which builds a hierarchical framework for developing RL algorithms
for training agents. Note that this prior work presents results on simplified environments (Yao et al.,
2023). While our use of a VLM-based value function to train the policy can be interpreted as yet
another algorithm under the hierarchical actor-critic abstraction in ArCHer, note that the methodology
for running RL at scale is substantially different from this prior work. Specifically, we prescribe
several important components along the use of frozen VLM representations and a policy extraction
approach based on best-of-N policy extraction, which also enables scaling test-time compute. Our
experiments in Section 5 show that Digi-Q is much more effective (about a 20% improvement as
shown in Section 5.2) than the policy-gradient algorithm used by Zhou et al. (2024b). This justifies
the benefits of our seemingly simple, yet an effective design of using the value function. Other
works (Zhai et al., 2024) train VLMs with on-policy PPO (Schulman et al., 2017; Chen et al., 2024).
Finally, Chen et al. (2024) runs RL on top of frozen VLM representations as well, although unlike
us they do not fine-tune the VLM to make these representations more amenable for fitting value
functions. Instead, they use handcrafted prompts to prime the VLM into producing useful features.
Our results highlight that the representation fine-tuning phase in Digi-Q is critical to obtaining a good
Q-function, but prompting alone is not as effective.

Challenges of training an off-policy Q function with foundation models. Despite the efficiency
and data reuse benefits of training a Q function via off-policy TD-learning, it can be unstable and
computationally inefficient if not treated carefully, particularly the case for large foundation models
with billions of parameters. This instability stems from two aspects: (1) prior work has often found it
hard and unstable to train value functions via Bellman backups and TD-learning (Kumar et al., 2021;
2022; Chebotar et al., 2023), which is challenging at scale. To address this, Chebotar et al. (2023)
had to employ a combination of conservative regularization (Kumar et al., 2020) and regularization
with n-step returns (Hessel et al., 2018) resulting in a complex approach; (2) policy extraction from
trained Q-functions often utilizes policy gradient approaches with a “negative gradient” term (Tajwar
et al., 2024) that can be unstable with offline data. This has largely resulted in the community
focusing on on-policy or filtered imitation learning methods. However, Park et al. (2024) show that
supervised regression methods such as AWR (Peng et al., 2019) can lead to slow convergence and
poor asymptotic performance. To address challenge (1), Digi-Q runs TD-learning on top of frozen
VLM representations, but after a fine-tuning phase to make them more amenable to representing Q-
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functions and to address (2), we introduce a Best-of-N based policy extraction loss, akin to concurrent
work (Mark et al., 2024) in the domain of robotic learning.

3 PRELIMINARIES AND PROBLEM SETUP

We aim to build value functions for training agents in the domain of device control, where we wish to
accomplish pixel-based interactions on virtual devices, following similar protocol as past work (Bai
et al., 2024). In this section, we will discuss the setup for this problem, followed by terminology,
notation, and background that would be useful in developing our approach in the next section.

3.1 PROBLEM SETUP: ANDROID DEVICE CONTROL

We scope our study in the domain of pixel-based Android device control (Bai et al., 2024; Zhang
et al., 2023; Rawles et al., 2023). Each episode in this domain starts with a fully-functioning Android
emulator reset to the home screen, and a task is randomly drawn from a task pool represented by
natural language instructions. The agent needs to complete the task through pixel-based interactions
with the device as illustrated in Figure 1. The actions that the agent can take are primitive pixel-level
commands such as clicking at a coordinates and typing text. Concretely, given a screenshot of a
phone, we want the agent to output a string command such as “click (0.8, 0.2)” to be executed in the
environment at the current step, where 0.8 and 0.2 are 0-1 normalized x-y coordinates in the screen.
This domain is known to be more general and challenging than web navigation alone or link-based
device control (Bai et al., 2024), and present many real-world challenges of device stochasticity
and dynamism, such as unpredictable distractors like pop-ups and technical glitches like incomplete
website loading. Following Pan et al. (2024); Bai et al. (2024), the agents are evaluated via binary 0/1
rewards from a proprietary model (i.e., Gemini 1.5 Pro (GeminiTeam, 2024)) that makes a verdict
of whether the specific task has been completed at each step. We want to use this signal to learn a
value function that can accurately predict the future outcome that the agent would attain if it were to
execute a given action at a given snapshot, without actually executing this rollout. More importantly,
we wish to learn this value function using a static dataset D storing historical past interaction data
and use it to learn an agentic policy.

3.2 REINFORCEMENT LEARNING DEFINITIONS

There are two types of value functions we can model in our setting: (1) a “turn-level” value function
that can score each natural language interaction with the external environment (e.g., “type box
[2]: wikipedia of chocolate”), and (2) a value function at the “token-level”, where each step is an
independent natural language token. Terminology wise, we define the state st in the Markov decision
process (MDP) in our setting to be the sequence of tokens denoting the log of the interaction history
of the agent with the environment thus far concatenated to the current observation. Each action at is
a sequence of tokens directly applied to interact with the environment at the entire turn level.

The turn-level Q-function for a given policy π is the expected cumulative reward of a par-
ticular action at the current step, and then following the policy π thereafter: Qπ(sh, ah) =
Eπ [

∑∞
t=0 γ

tr(sh+t, ah+t)]. The value function of a policy π, V π(sh), is defined as the ex-
pected Q-value, Qπ(sh, ah), where actions ah are sampled from the policy π. The advantage
function Aπ(sh, ah) corresponds to the relative benefit of taking action ah in state sh, and is
computed as the difference between the Q-value and the value of the state under the policy:
Aπ(sh, ah) = Qπ(sh, ah) − V π(sh). The goal of RL is to train a policy that can produce token
sequences that maximize discounted cumulative rewards over the course of a rollout.

For training the agentic policy, our approach seeks to train an action-value Q-functionQ parameterized
by parameters θ, and a policy parameterized by ϕ. Additionally, we maintain a state-only value-
function V parameterized by ψ to stabilize training. Both Q- and V- functions are instantiated by a
small MLP layer on top of a VLM backbone. We use θVLM, ψVLM to represent the parameters of the
VLM backbone and similarly θMLP, ψMLP for parameters of the MLP head. We will denote the last
layer representations of these VLM backbones as fθVLM

(s, a) and fψVLM
(s).

3.3 BACKGROUND: ARCHER FRAMEWORK FOR TRAINING AGENTIC POLICIES WITH RL

The ArCHer framework (Zhou et al., 2024b) provides one conceptual way to pose training of
foundation model value functions and agentic policies as a hierarchical RL problem. Although their
framework is not specific to one particular RL algorithm, Zhou et al. (2024b) show that a convenient
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way to instantiate this approach is to learn a value function at the turn-level and a policy to produce
tokens in an autoregressive manner. The value function critic and the agentic actor are then optimized
against each other similarly to standard actor-critic RL. The loss functions for training the cirtic are
given by:

JQ(θ) = Es,a,r,s′∼D
[
(Qθ(s, a)− r − γVψ̄(s′))2

]
. (1)

JV (ψ) = Es∼D
[
Ea∼πϕ(·|s)

[
(Vψ(s)−Qθ̄(s, a))2

]]
. (2)

θ̄ and ϕ̄ are the delayed target networks (Mnih et al., 2013) for stability and they are updated as an
exponential moving average of θ and ϕ. The instantiated algorithm from Zhou et al. (2024b) supports
policy extractions through REINFORCE policy gradient:

Jϕ(π) = Esc∼D,a1:Lt ∼πϕ

[
L∑
i=1

A(sc, at) log πϕ(a
i
t|sc, a1:i−1

t )

]
.

While our approach will utilize a similar framework to conceptualize the training of the value function
critic and the agentic policy in our method, the design of actor and critic updates employed are
substantially different in our method. As such, the actor update from Zhou et al. (2024b), which also
corresponds to the standard policy gradient update, can also be unstable in certain problems.

4 DIGI-Q: TRAINING VLM Q-VALUE FUNCTIONS FOR AGENTIC POLICY

To obtain an effective agentic policy for device control problems, Digi-Q trains a Q-value function
on static data, which is then used to extract a policy. In the process of designing Digi-Q, we need to
address challenges with running value-based RL at scale. First, to avoid pathological behavior of
TD-backups with large models (Zhou et al., 2024b; Snell et al., 2023; Abdulhai et al., 2023; Chebotar
et al., 2023) and to avoid the computational costs associated with training a billion-parameter VLM
end-to-end with TD-learning, we train Q-functions on top of frozen VLM representations. Since
VLMs are not trained on substantial quantities of decision-making data, off-the-shelf VLMs largely
do not accurately represent actionable elements of an input scene. To address this, Digi-Q fine-tunes
VLM representations before running Q-function training. This fine-tuning procedure is not the same
as supervised fine-tuning on in-domain data, but rather is designed to emphasize actionable features
that change from one snapshot to the other and hence help model the value function.

Unlike typical on-policy RL or filtered imitation learning (e.g., AWR (Peng et al., 2019)) that only
updates the policy with one action per state, training a Q-function allows us to simultaneously
estimate returns from multiple action candidates, all of which can then be used for improving the
policy. Using multiple action candidates can be more efficient, especially if the critic predictions
are more liable, and even if not, it offers variance reduction benefits. Digi-Q utilizes this insight
to develop a Best-of-N reranking based policy extraction objective for training the policy. This
policy improvement operator is stable and more effective than policy gradient or advantage-weighted
regression in our expriments. The method is illustrated in Figure 2, with each part described below.

4.1 TRAINING VLM Q-FUNCTIONS VIA TD-LEARNING AND REPRESENTATION FINE-TUNING

As discussed above, fine-tuning large VLMs end-to-end to represent value functions can present
pathologies and perhaps a more practical approach is to train a separate value function on top of
the frozen representation from the VLM. However, most VLM backbones are largely not trained to
model actionable information for a given scene or make predictions about possible scenes that could
result from taking actions in an environment. If the internal representations of the VLM do not pay
attention to actionable information in a scene correctly, then training a state-action Q-function Q(s, a)
will either degenerate into learning a state-only value function V (s) (i.e., it will ignore the action
input) or diverge by incorrectly amplifying noise in partially-trained Q-value estimates at unseen,
out-of-distribution actions that appear in the right hand side of a TD-backup during training. Indeed,
in our preliminary runs, we found that while open-source VLMs such as LLaVa-1.5 (Liu et al., 2024a)
are able to answer questions about a scene, the same VLM does often fail at correctly answering
questions about impact of current actions into the future, e.g., it answers “does this clicking operation
lead to a new page in ebay.com?” incorrectly.

To address this issue with VLM representations, Digi-Q first fine-tunes representations of a VLM
with an binary classification objective to enable it to pay attention to actionable features of an input
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Figure 2: Overview of Digi-Q. Blue arrows represent forward data flows, while red arrows represent how we get
learning targets used for back propagation. Our method first goes through a representation fine-tuning stage to
extract actionable features from the VLM. TD-learning is then performed on top of frozen VLM representations
to learn a reliable Q value function, followed by Best-of-N policy extraction approach.

scene. Once fine-tuned, the representations of this VLM are used to train a Q-function represented
using a small MLP on top of the frozen representation. Not only is this approach more stable and
robust against pathologies that could emerge from fine-tuning, but it cuts down computational costs
since only 1% of all the VLM parameters (the head) are now trained via TD-learning.

Approach. Our representation fine-tuning objective is constructed as follows: given a transition
pair (st, at, st+1) drawn from a replay buffer, the representation fine-tuning objective attempts to
model if and how the next state st+1 will change from the current state and action (st, at). Our
observation is that in device control problems, a useful action should lead to a substantial visual
change in the pixel values of a scene (e.g., successfully typing a search query and pressing enter
on “google.com” should cause the page to change substantially to now show a list of search results,
whereas an unsuccessful search attempt, say due to imperfect clicks, with a very high probability
will change none to few pixels of the original scene and remain stuck on the “google.com” page
). Equipped with this insight, we construct positive and negative tuples of transitions (st, at, st+1),
where the positive tuples consists of transitions change the state significantly (i.e., larger than a
threshold ϵ on the ℓ2 image distance) and the negative tuples are the remaining transitions. This is
equivalent to assigning a binary {0, 1} label to a transition:

yt =

{
0, d(st, st+1) < ϵ
1, otherwise

Now, the VLM is trained to produce this 0-1 label yt given a state-action tuple (st, at) using a binary
cross-entropy loss on its parameters θVLM:

JP(θVLM) = −Est,at∼D[yi logPθVLM
(′yes′|st, at) + (1− yi) logPθVLM

(′no′|st, at)], (3)

where PθVLM
is the next-token distribution obtained from the VLM backbone.

After this phase of representation fine-tuning, we freeze the parameters of VLM, and extract the
embedding of the yes/no token output to serve as the input representation of (st, at) to the Q function.
We now run a TD-learning objective from Equation 1 in Section 3 to train the Q-function.

Note that Equation 1 also utilizes a parameterized value function. Since the value function does not
depend on the action, we are able to directly use internal representations of an off-the-shelf VLM,
without requiring any phase of initial fine-tuning. On top of the frozen representations from the
VLMs, our value functions θMLP, ψMLP is optimized with the TD loss as in Equations 4 and 5.

JQ(θMLP) = Es,a,r,s′∼D[(QθMLP
(fθVLM

(s, a))− r − γ Vψ̄MLP
(fψ̄VLM

(s′)))2]. (4)

JV (ψMLP) = Es∼D

[
Ea′∼πϕ(·|s)[

(
VψMLP

(fψVLM
(s))−Qθ̄MLP

(fθ̄VLM
(s, a′))

)2
]
]
. (5)

4.2 BEST-OF-N POLICY EXTRACTION AGAINST THE LEARNED Q-FUNCTION

Given a learned Q-function, we will now use it to extract a policy in an efficient and reliable manner.
Perhaps the most straightforward approach for doing so is to use the REINFORCE policy gradient
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estimator to train the learned policy, however, this approach can be brittle with off-policy data. The
presence of a “negative gradient” term Tajwar et al. (2024) (i.e., a term where the policy gradient
multiplies the log likelihood by a negative-valued advantage) means that careful tuning of learning
rates and interleaving policy and critic updates must be done to attain good performance (see Zhou
et al. (2024b) Section 5.7 for a discussion of these challenges). While advantage-weighted supervised
learning (i.e., AWR (Peng et al., 2019)) avoids this instability issue, it can be quite conservative in
terms of moving away from the data collection policy.

To build a stable yet non-conservative policy training method, Digi-Q modifies weighted regression
to make it more “aggressive”, by leveraging the insight that access to a model of the Q-function
allows for estimating values for multiple N actions at any given state. After computing Q-values
for multiple action candidates, we can imitate the best action. This would produce updates that are
substantially less conservative than single-action AWR, without needing a negative gradient, and
only employing a relatively more stable supervised learning update. Theoretically, this is because the
implicit KL constraint against the data-generating policy that makes AWR conservative, is now much
less of a problem with our multiple-action approach, since this implicit constraint is enforced against
the Best-of-N policy (Cobbe et al., 2021), which already is much less conservative than the data
collection policy for larger values of N . Moreover, akin to how verifiers have been used in reasoning
problems, the value function critic can be used to score multiple possible actions in an offline manner
without actually running the rollout or seeking a downstream correctness signal. This approach is
similar to concurrent work Mark et al. (2024) from the domain of robotic policy learning.

Concretely, given any state s, we sample N action token sequences from the initial policy:
a1, · · · , aN ∼ πβ(·|s), where πβ is the policy used to rollout the offline dataset. Now, we rank these
actions according to the Q-values obtained from the value function trained previously. The policy is
then trained to imitate the highest Q-value action of these N actions as long as this best action also
attains a positive advantage. Intuitively, this serves as a proxy learning objective to maximize the
advantage function per state without the risk of “negative gradient”. Formally, this means that the
policy is optimized as per the loss described in Equation 6.

Jπ(ϕ) = Est∼D,ai∼πβ(·|st)

[
N∑
i=1

δ(ai)

L∑
h=1

log πβ(a
h
i |st, a1:h−1

i )

]
, (6)

where δ(ai) = 1{ai = argmaxiQ(st, ai) and Q(st, ai)− V (st) > 0}. This approach allows us to
make fairly non-conservative policy updates, while also being stable and efficient due to a log loss.

4.3 PUTTING IT TOGETHER: IMPLEMENTATION DETAILS

A pseudocode of our overall algorithm is shown in Appendix A. After initially fine-tuning the VLM
through the representation fine-tuning scheme in Section 4.1, Digi-Q trains Q and V-functions before
performing gradient updates on the actor, where the VLM backbone for the V-function is kept frozen
from the pre-trained checkpoint. The usage of V-functions follows from Zhou et al. (2024b); Snell
et al. (2023) to improve training stability. The actor is represented on top of a separate VLM and
is trained end-to-end, unlike the use of frozen features for the critic to improve training stability of
TD-learning. For our experiments, we sample N = 16 actions for computing the Best-of-N reranking
policy learning objective in Equation 6: while the choice of N can differ from domain to domain,
our runs show that N = 16 is a good choice for our domain of Android device control. We use
LLaVa-1.5 (Liu et al., 2024a) for the backbone VLM for our Q- and V- functions. The architecture
details can be found in Appendix B.2.

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate the efficacy of Digi-Q in producing effective Q-functions
that in turn are able to train strong Android device control agents. Our experiments will answer
the following questions: (1) How does Digi-Q compare with other state-of-the-art agent training
algorithms, previously studied in the context of Android device control tasks? and (2) Can Digi-Q
learn effectively from past interaction data? In addition, we perform several ablation experiments
to understand the effects of various components of Digi-Q: to understand the benefits of using
representation fine-tuning and to validate the efficacy of the Best-of-N reranking approach for training
the policy using the value function.
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AitW General AitW Web Shopping

Train Test Train Test

Prompting
SET-OF-MARKS

GPT-4V 5.2 13.5 3.1 8.3
Gemini 1.5 Pro 32.3 16.7 6.3 11.5

APPAGENT
GPT-4V 13.5 17.7 12.5 8.3

Gemini 1.5 Pro 14.6 16.7 5.2 8.3

Learning

SUPERVISED
TRAINING

CogAgent 25.0 25.0 31.3 38.5
AutoUI 27.7 22.9 20.7 25.0

OFFLINE
Filtered BC 51.0 ± 0.9 54.5 ± 1.3 37.2 ± 4.7 43.8 ± 1.7

DigiRL 53.5 ± 2.7 59.0 ± 4.7 43.1 ± 3.6 47.6 ± 4.2

Digi-Q (Ours) 61.5 ± 2.3 71.2 ± 2.1 53.1 ± 1.7 58.0 ± 2.1

ONLINE DigiRL 63.5 ±3.1 74.5 ±2.6 52.6 ±1.6 57.3 ±3.1

Table 1: Main comparisons of different agents across various settings. Each offline experiment is repeated
three times and the mean and standard deviation are reported. To be consistent with prior work (Bai et al., 2024),
results are evaluated with the autonomous evaluator with the first 96 instructions in the train and test set.

5.1 MAIN PERFORMANCE RESULTS

Comparisons. We compare Digi-Q with prior methods for building Android device control agents.
First, we compare Digi-Q with prompting-based methods that extend off-the-shelf proprietary
VLMs such as GPT-4V (OpenAI, 2024b) and Gemini 1.5 Pro (GeminiTeam, 2024) with the Set-
of-Marks (Yang et al., 2023) and a chain-of-thought mechanism for producing actions. We also
compare with existing VLMs trained via imitation learning for device control: CogAgent (Hong
et al., 2023), a 18B model. We keep results for these three approaches to be the same as scores
previously reported in the DigiRL paper (evaluations were done in March 2024.1). That said, we
evaluate AutoUI-1B (Zhang and Zhang, 2023) again. Finally, we compare to a state-of-the-art
approach for training device control agents, DigiRL, which does not utilize a state-action Q-value
function, but rather uses a state-only value function and MC return estimates to estimate advantages
only on on-policy actions. We evaluate our results on Android-in-the-Wild (AitW) with offline
dataset containing 1296 trajectories for AitW Web Shopping subset and 1008 trajectories from AitW
General subset from pre-trained AutoUI checkpoint, following Bai et al. (2024). More details on the
offline dataset can be found in Appendix B.3. To understand the ballpark of performance gains from
Digi-Q, we also compare with DigiRL in the offline-to-online setting, which is given access to online
interaction starting from a dataset of 512 initial trajectories.

Results. Our main results are presented in Table 1. We find that Digi-Q outperforms all prompting-
based methods substantially (53.5% absolute improvement on average compared to the best prompting-
based approach AppAgent with GPT-4V) and improves over the previous state-of-the-art in the offline
setting, DigiRL by around 21.2% relatively averaged on General and Web Shopping test subsets,
and 31.5% relatively over Filtered-BC, a simple but strong baseline. In fact, the performance of
Digi-Q even roughly matches the performance of DigiRL when it is allowed to perform on-policy
interaction. By visualizing the agent’s rollouts on test examples, as we will show in Appendix C.1,
we find that training a policy with value functions enhances the capability of RL to perform dynamic
programming with sub-optimal data to learn a better policy in the environment.

5.2 ABLATION STUDIES

1We expect the latest evaluations of all methods to largely underestimate results from evaluations in March
2024 on the AitW Web Shopping subset because certain websites have started blocking agents from taking
actions on the website. Details are shown in Appendix C.2. This issue affects both the baseline approaches and
our method, and is a direct consequence of the non-stationarity and dynamism of the web environment. This also
means that for a given fixed offline dataset, baseline performance numbers from March 2024 are expected to be
higher than if the prior approach were run again as of the time of writing this paper. Hence if Digi-Q outperforms
March 2024 evaluations of a prior method, we can reliably expect it to outperform that prior approach today.
We also collected trajectory dataset with higher success rate for offline training, which we expect should lead
to better results than March 2024, but also expect results to be uniformly underestimated due to the evaluation
issue.
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Representation Performance
Behavior Policy 25.0

Digi-Q (w/ MC return) 37.5 ± 4.5

Digi-Q Off-the-shelf VLM 31.9 ± 1.3

Digi-Q w/ BLIP-2 + BERT 47.6 ± 5.2

Digi-Q (Ours) 58.0 ± 2.1

Table 2: Efficacy of our representation fine-tuning
procedure on the Web-Shopping test set in AitW.

Next, we will perform a series of controlled ex-
periments to understand the reasons behind the
efficacy of Digi-Q. In particular, we will attempt
to understand (1) the effect of representation
fine-tuning (Stage I) for seeding the VLM rep-
resentations for subsequent Q-function training,
(2) the behavior of Best-of-N reranking style
policy extraction operator compared to AWR
(used by DigiRL (Bai et al., 2024)) and standard
REINFORCE-style policy gradients (Williams,
1992), (3) the benefits of TD-learning over the
more conventional approach of supervised re-
gression to Monte-Carlo return for training the value function, and (4) the scaling performance with
more data of Digi-Q compared to other baselines. Experimental details of the ablation studies can be
found in Appendix B.4.

Actor Objective Performance KL
Behavior Policy 25.0 0

REINFORCE 37.5 ± 4.7 7.15
AWR 19.4 ± 1.3 2.84

Digi-Q 58.0 ± 2.1 3.28

Table 3: (1) Performance and (2) token-level KL-
divergence value between the learned policy and the
dataset when using different policy extraction methods
on Web Shopping test set. We utilize the same critic for
all the methods, and only train the policy differently.

(1) The effect of representation fine-tuning in
Digi-Q. We first analyze the effect of fine-tuning
the VLM representations by training them to ac-
curately detect actions that led to a substantial
change in the scene. To do so, we compare
Digi-Q with alternate approaches that train Q-
functions on top of two other natural choices of
representations: (a) not using a generative VLM
(i.e., Llava-1.5), but instead using frozen BLIP-
2 (Radford et al., 2021) and tuned BERT (Devlin
et al., 2019) representations, following Bai et al.
(2024); (b) using an off-the-shelf VLM, with-
out any representation fine-tuning (Chen et al.,
2024).

As shown in Table 2, observe that simply using
an off-the-shelf VLM only leads to marginal improvement over the behavior policy (31.9% compared
to 25.0%): this is perhaps expected because an off-the-shelf generative VLM introduces a representa-
tion that captures features about the scene holistically, but does not necessarily judge whether these
features are actionable. As we will also qualitatively show in Section C.1, off-the-shelf VLMs also do
not pay enough attention to action information, resulting in a Q-function that degenerates to a similar
solution as the state-only value function in the absence of aggressive action coverage in the data. In
fact, Digi-Q using off-the-shelf VLM falls short of Digi-Q w/ BLIP-2 + BERT as well. In contrast,
the representation fine-tuning procedure employed by Digi-Q is able to unlock the advantage of using
rich VLMs and achieves more than 10% absolute improvement over the counterpart with BLIP-2 +
BERT.

(2) The effect of Best-of-N reranking style policy extraction operator. Next, we aim to understand
the impact of using Best-of-N reranking for policy extraction. This operator differs from traditional
policy extraction methods in several ways: (i) the use of multiple actions (ii) not using a “negative
gradient” (Tajwar et al., 2024) as in REINFORCE (Williams, 1992). To understand the effect of
the number of actions in (i), we ablate Digi-Q over multiple values of N ∈ {1, 4, 8, 16} in Figure
3 (Left). Observe that Digi-Q improves monotonically as N increases, indicating a clear benefit of
sampling more actions and reranking them against the Q-function during training. More discussions
on the ablations of number of actions resampled can be found in Appendix B.3.

Next, we answer (ii) by comparing Digi-Q with REINFORCE and supervised regression (AWR). Our
results in Table 3 show that while REINFORCE is able to achieve some improvements compared
to the data collection policy (37.5% compared to 25.0%), it also suffers from the highest variance
among all ablated methods. We hypothesize that this is a direct consequence of the negative gradient,
which is known to sometimes destabilize training. While AWR (Bai et al. (2024)) does not suffer
from this issue, it is also not able to stably improve the policy (19.4% compared to 25.0%), likely
because it is conservative. On the other hand, Digi-Q is able to make substantial improvements.
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Figure 3: Left: Performance of Digi-Q when varying the number of actions N used for policy extraction.
Observe that the performance of Digi-Q improves when more actions are used for policy extraction, indicating
the efficacy of our approach and the benefits of learning a Q-function. Right: Data efficiency of Digi-Q and
DigiRL. The success rate of Digi-Q increases significantly faster than offline DigiRL given the same amount of
more data.

Next we attempt to understand how “non-conservative” the updates made by different approaches are
since one concern with AWR-style updates in prior work is the extent to which they are conservative.
We wish to understand if our Best-of-N reranking based policy extraction approach also admits
conservative updates. To do so, we measured the KL-divergence between actions from the dataset
and the fine-tuned policies produced by Digi-Q, AWR, and REINFORCE in Table 3. Note that
Digi-Q incurs a larger KL-divergence value unlike AWR that incurs the smallest deviation and is
most conservative. In contrast, REINFORCE attains larger divergence values but behaves unstably
(see Appendix C.3 for some example rollouts). Some qualitative examples for these variants are
shown in Appendix C.1. Our results are also consistent with findings in concurrent work from robotic
control problems (Mark et al., 2024).

(3) The effect of TD-learning as opposed to MC. To understand the importance of TD-learning
for training the critic over Monte-Carlo (MC) regression that previous work is based on, we run an
ablation of Digi-Q, which uses MC regression. Observe in Table 2, that this version underperforms
Digi-Q by 20% (58.0% compared to 37.5%). As we show in Appendix C.1, value functions from
MC regression exhibit high variance, which inhibits them from producing good policies even when
used to rank multiple actions.

(4) Scaling performance of Digi-Q with different amount of data. We present the comparison
between Digi-Q and DigiRL along the axis of the number of training trajectories in Figure 3 (Right).
For a fair comparison, for Digi-Q we rerun all stages of training while varying the amount of training
data. As shown in Figure 3 (Right), we observe that Digi-Q outperforms DigiRL in all regimes, even
in the low-data regime with only 256 trajectories. We suspect this is due to the ability to reuse data
and perform better per-step credit assignment, thanks to a reliable Q function.

6 CONCLUSION AND FUTURE WORK

We presented Digi-Q, an effective method for training VLM Q-value functions from offline data,
specifically for training real-world device-control agents. At the core of our method is a representation
fine-tuning procedure that induces actionable features from VLM useful for later TD-learning and
a Best-of-N policy training method that makes the best use of the learned Q function from TD-
learning. While we primarily focus on GUI agent tasks on Android devices, our methodology is
general, compute efficient, and leads to substantial improvement in performance. We believe that
these ideas and approach should transfer to new tasks as well and applying Digi-Q to new domains
in an interesting avenue for future work. That said, using the critic in Digi-Q in an active online
self-improvement loop will require a more sophisticated system design to speed up the experiment
iterations and methods to robustify the critic as the distribution of the agent policy drifts far from the
base data collection policy with more online improvement. Nonetheless, ideas from Kalashnikov et al.
(2018) could provide a good starting point to build policy learning systems based on TD-learning
during real-world interaction.
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Appendices
A DETAILS ON THE ALGORITHM

For completeness, we include a detailed pseudo-code of Digi-Q in Algorithm 1. After initializing the
parameters, we perform the representation fine-tuning procedure on top of VLM to obtain actionable
features for later TD-learning. Then the VLM parameters will be kept frozen and we train the Q- and
V- functions using TD-learning on top of frozen VLM representations. After both value functions are
trained, we perform gradient updates on the actor with Best-of-N policy extraction.

Algorithm 1 Digi-Q: Practical Framework

1: Initialize parameters ϕ, ψMLP, ψ̄MLP, θMLP, θ̄MLP.
2: Initialize replay buffer D (from an offline dataset).
3: for each VLM iteration do
4: θVLM ← ∇JP(θVLM) ▷ Equation 3
5: end for
6: for each critic step do
7: ## Update high-level Q and V functions by target function bootstrapping.
8: θMLP ← θMLP −∇JθMLP

(Q) ▷ Equation 4
9: ψMLP ← ψMLP −∇JψMLP

(V ) ▷ Equation 5
10: ## Update target Q and V functions.
11: θ̄MLP ← (1− τ)θ̄MLP + τθMLP

12: ψ̄MLP ← (1− τ)ψ̄MLP + τψMLP

13: end for
14: ## Update low-level actor with high-level critic.
15: for each actor step do
16: ϕ← ϕ−∇Jϕ(π) ▷ Equation 6
17: end for

B EXPERIMENTAL DETAILS

B.1 COMPUTE EFFICIENCY COMPARISON

A common concern with deploying TD-learning methods to train large-scale foundation models is
their compute inefficiency (Abdulhai et al., 2023; Chebotar et al., 2023). Therefore, we attempted
to understand the compute-performance tradeoffs associated with Digi-Q by comparing it against
end-to-end TD-learning on VLMs without using any representation fine-tuning or frozen pre-trained
representations. We plot the performance-compute tradeoff curve for Digi-Q on the web-shopping
subset of the AitW dataset in Figure 4. We found it a bit hard to fine-tune an entire VLM with
TD-learning, which required iteration on hyperparameters such as learning rate and soft update rates
for target networks. Due to the compute-intensive nature, we use a 3B VLM (PaLiGemma (Beyer
et al., 2024)) for these runs instead of our 7B VLM (Liu et al., 2024b), and evaluate the performance
of the critic as measured by the correlation between advantage predictions and ground-truth notion
of human judgement on a held-out set of trajectories. In particular, we find that end-to-end TD-
learning exhibits a much worse performance-compute frontier, to the extent that beyond a point more
training FLOPS hurts performance. We conjecture that this behavior is likely a result of well-known
pathologies of training large models with TD learning (Kumar et al., 2022), though we leave it for
future work to fully understand these pathologies in our context. In contrast, while Digi-Q invests an
initial amount of computation for representation fine-tuning, its accuracy quickly rises up and results
in much better frontiers, with no instability. The calculation of the FLOPS is shown below.

FLOPS Calculation. The 3B VLM takes 45.6 × 1012 FLOPS for each sample for forward plus
backward process. As the end-to-end TD learning contains one VLM as part of the Q function and
one VLM as the target Q function (which only do forward pass), one sample takes 68.4×1012 FLOPS
(according to Hoffmann et al. (2022), the FLOPS incurred by the forward prrcess is approximately
half of the backward process). Thus, as the longest run takes 15k samples, the last point of the
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Figure 4: Offline critic evaluation accuracy as a function of compute measured in terms of training FLOPS,
compared across Digi-Q, end-to-end TD-learning on a VLM, and MC return. Observe that the critic accuracy is
much better for our approach over end-to-end TD-learning as the amount of compute increases.

end-to-end run in Figure 4 takes around 1 × 1018 FLOPS. Also, the first logged point takes 128
samples, so the starting point should have 8.3× 1015 FLOPS.

On the other hand, in Digi-Q, we first finetune the 3B VLM, which incurs only one forward and
backward process. Thus, finetuning the 3B VLM on 2000 samples takes 91.2× 1015 FLOPS. After
that, we infer the representations of these samples with the 3B VLM, which includes one forward
pass. This sums up to 136.8× 1015 FLOPs, which explains the starting point of the Digi-Q curve.
Then we only train the value head using the VLM representations.2 The size of the value head is
0.07B, incurring 1.1× 1012 FLOPS for each sample. The longest run of Digi-Q takes 0.46M samples,
thus incurring 506.9× 1015 FLOPS (10× 1017).

Thus, the end-to-end TD learning should range from 0.0083×1015 to 1×1018 FLOPS, while Digi-Q
should range from 0.137× 1018 FLOPS to 0.644× 1018 FLOPS, which is shown in Figure 4.

Critic Accuracy. We manually label 483 states with binary advantages, and normalize the advantages
produced by the agents to have a mean of zero before thresholding and calculating its accuracy with
human annotations.

B.2 CRITIC MODEL ARCHITECTURE

We show the details of the critic model architecture in Figure 5. In our environment setting, the states
are composed of task, observation (screenshot at step t), previous observation (screenshot at step
t− 1), and previous action (action at timestep t− 1). The task and previous action are text strings,
while observations are images. We encode the text strings with BERT and images with BLIP-2 model.
Then we concatenate all these feature vectors and pass them through a MLP that tries to predict the V
value. The target of the V value is calculated by Equation 5.

The state-action features are modeled by the current action as well, which is a string passed into not
only the BERT encoder but also a part of the prompt passed into the VLM. The prompt is described
in Appendix D. In the end, the Q features include the BERT embeddings, the BLIP-2 embeddings,
and the VLM intermediate-layer representations. We concatenate all of these feature vectors and pass
into the another MLP that predicts the Q value. The target of Q value is calculated by Equation 4.

B.3 TRAINING DATASET CONSTRUCTION

We use the pre-trained AutoUI checkpoint to collect offline trajectories. Specifically, to collect each
trajectory, starting from the home screen, the agent generates an action, and then the environment
takes the action and transitions to the next state. It iterates until a maximum number of steps have
been reached or the autonomous evaluator has decided to be a success. We collect 1296 trajectories

2In this experiment, we fix the BERT model when running Digi-Q.
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Figure 5: Q-function architecture. The modules marked orange are trained, otherwise the module is kept fixed.

this way for both AitW Webshop and AitW General subsets. The horizon H of the Webshop subset
is set to 20, and the horizon of the General subset is set to 10, which aligns with (Bai et al., 2024).
Each trajectory is composed of state-action-reward-next-state pairs (s, a, r, s′), which is also referred
to as “transitions”.

The N actions in the offline dataset used for Best-of-N loss are sampled post-hoc from the pre-trained
AutoUI checkpoint. When training the actor offline, as we use the Best-of-N loss, we want to sample
more than one action. From an engineering aspect, collecting actions each time we sample from the
offline dataset D during training is not efficient. Thus, in practice, we pre-collect K = 64 actions for
each state, and store them in the offline dataset. As N ∈ {1, 2, 4, 8, 16} is much smaller than 64, this
strategy serves as a good approximation and results in good performance. It suffices to give enough
variety compared to sampling the actions when training the actor model. Note that in this case, the
original action will always appear in the offline dataset.

B.4 ADDITIONAL METHOD DETAILS

Task set formulations. The two task sets (Webshop and General) in the AitW dataset have different
horizons H (maximum number of steps allowed) in a trajectory to improve computational efficiency.
Specifically, H = 20 for AitW Webshop and H = 10 for AitW General. Following tradition (Bai
et al., 2024), we keep A > 1/H (e.g. 0.05 for AitW Webshop) as a threshold for the actor model to
learn the state-action pair.

Ablation on representation fine-tuning and TD learning as opposed to MC. In the ablation study
on representation fine-tuning, for all configurations, we train the actor model with Best-of-N loss
where N = 16 to keep computation efficient. This is also the case for the ablation on the TD learning
as opposed to MC ablations.

Ablation on actor loss. For the ablation study on the actor loss, we keep the same trained Q function,
while we ablate only on the loss used to train the actor model. We use 30 actor epochs for the
Best-of-N loss and AWR loss, and 120 epochs for the REINFORCE loss as the magnitide of the raw
advantage is very small. We use N = 16 for the Best-of-N loss, while REINFORCE and AWR both
uses the original action in the offlin dataset.

Value function. In practice, we find the V function significantly easier to train, and it suffices to
only use the representations of the state from the vision encoder of the VLM (CLIP) to train the V
functions. This simplification significantly saves time and space required, and aligns with previous
work (Bai et al., 2024).

C QUALITATIVE EXAMPLES

C.1 QUALITATIVE VISUALIZATIONS

Qualitative comparisons between different value function learning approaches. To qualitatively
understand the quality of the Q-function learned, in Figure 6, we visualize advantage estimates
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Figure 6: Qualitative examples showing the advantage estimations of several transitions of TD (ours),
Monte-Carlo, and TD without VLM representation. Advantage estimations using TD-learnt value functions
top of VLM representation better align with human judgements compared to MC and TD without using VLM.

A(s, a) = Qθ(s, a)−Vϕ(s) computed from Q-functions produced by four methods: (1) Digi-Q (with
representation fine-tuning and TD-learning), (2) Monte-Carlo regression, (3) Digi-Q but using BLIP-2
+ BERT representations from Bai et al. (2024); and (4) Digi-Q without representation fine-tuning. We
compare advantages with human judgments of whether the actions mark progress towards the desired
task. Ideally, good actions should attain a positive advantage. We observe that advantage estimates
from MC regression are often erroneous and uncorrelated with the human notion of good actions,
perhaps because of the use of high-variance MC estimator. Moreover, we find that (3) converges to a
degenerate Q(s, a) that approximately matches a state-only value function, with limited meaningful
sensitivity to the action input, which is problematic for policy learning. (4) mitigates this problem and
produces different action values under the same state, but still fails at fine-grained differences like
clicking at different positions on the screen. Thus, all these ablation variants perform suboptimally at
attaining a good correlation with human judgement, only (1) Digi-Q is able to produce advantage
estimates that align well with human annotations and judgement.

C.2 ENVIRONMENT ERRORS

We observe that several tasks has problems working in the environment introduced in Bai et al. (2024).
We observe that (1) the newegg.com domain has a high probability of blocking the agent from
accessing it, and (2) the costco.com domain prevents the agent from typing the <ENTER> key.
Examples are shown in Figure 7. These problems were not observed in Bai et al. (2024). This is the
main reason why some scores on the AitW Webshop subset in this paper falls a little behind Bai et al.
(2024).

...

costco.com does not 

respond to <ENTER>

...

newegg.com banned 

Internet agents

Go to costco.com, search for 'razer blade'

Go to newegg,com, search for “usb-c to usb-a”

Figure 7: Environment errors. These errors are systematic and can not be removed by the agent.
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REINFORCE (Vanilla Policy Gradient)

Best-of-N

Go to costco.com, search for 'razer blade'

stuck at clicking at 
the same location

solved

...

<wait>

Figure 8: Example trajectory of the agent trained with REINFORCE and Best-of-N loss. Results show that
the agent trained with REINFORCE tends to get stuck at a specific state because it’s “stubborn”, while agent
trained with Best-of-N loss effectively solves the task.

Task: Go to Walmart.com

A: successful but lengthy (offline dataset)

B: failed but short (offline dataset) C: successful and short (Digi-Q)

✘

Figure 9: Trajectory examples showing benefits of Q-functions. Our method can combine the best of a
successful but lengthy (A) trajectory and a failed but short trajectory (B), to produce successful and short
trajectories (C).

C.3 EXAMPLE TRAJECTORY COMPARING REINFORCE AND BEST-OF-N LOSS

We show a typical trajectory produced by the agent trained with REINFORCE in Figure 8. We
observe that the agent frequently diverges from the target and is too “stubborn” to recover from errors.

In this task towards searching for an item on costco.com, the agent has successfully arrived at
costco.com, but (1) it takes some bad actions and (2) cannot recover. Specifically, after the agent
clicks the warehouse button, it keeps clicking on the same button for 10 times until it clicks on
somewhere else. This situation rarely appear in any trajectories collect by the agent trained with the
Best-of-N loss.
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C.4 BENEFITS OF DYNAMIC PROGRAMMING

An appealing property of value-based RL is dynamic programming: the ability to identify optimal
behaviors from overall suboptimal rollouts. We present a qualitative example in Figure 9 that
illustrates this ability of Digi-Q in learning optimal behaviors from sub-optimal data. In this example,
trajectory (A) and (B) are from the offline dataset where trajectory (A) successfully completes
the task but has many redundant actions while trajectory (B) does not have redundant actions but
fails to complete the task. It turns out that Digi-Q is able to learn a policy that performs dynamic
programming with trajectory (A) and (B) to produce a trajectory (C) that completes the task in the
most efficient way. Neither trajectory (A) nor (B) is the optimal trajectory for solving the task but
this example shows the ability of Digi-Q to learn an optimal policy from sub-optimal data, which is
theoretically impossible through imitation alone.

D VLM PROMPTS

The prompt we use for fine-tuning and inferring the VLM is shown in Figure 10. The prompt template
is designed to be action-type-specific, in order to facilitate the VLM to better differentiate different
types of actions, which promotes fine-grained representations within the same action type. The input
to the VLM is constructed by the image and the text prompt. Note that the VLM only sees the current
image (overlayed with a cursor if the action is to click), and the next image is only used to calculate
whether the target should be “yes” or “no”. The target is a single token to promote computational
efficiency. In practice, we find that a long target sequence introduces challenges for the VLM to
fine-tune the representations.

Input:  You're given a user interface. There is a cursor in the screen. 


Respond only 'Yes' or 'No' (without period / quotation marks) and don't respond anything else.

{Image}
{Action-specific prompt}


There is a cursor in the screen. The touch point is located at {touch_point}. 
Is this cursor Clicking on any interactive elements?

VLM Prompt

{Action-specific prompt}

You're given a user interface. If a user now Types {typed_text},  will this 
Type action effectively input the text into somewhere on the Screenshot?

If a user now Presses the <HOME> button, will this action effectively navigate 
the user to the Home screen?

If a user now Presses the <BACK> button, will this action effectively navigate 
the user to the previous screen?

If a user now Presses the <ENTER> button, will this action effectively submit 
the form?

{Image}

(shown to VLM)

{Next Image}

(not shown to VLM)

Target: “No”

Figure 10: Prompt template we use to fine-tune and infer the VLM. The input prompt consists of an input
image and text input. The text input include a template prompt concatenated with an action-specific prompt. The
action-specific prompt includes specific information about the input image. The output (target) prompt is just a
word “yes” or “no”.

E HYPERPARAMETERS

Hyperparameters for Digi-Q are carefully tuned through binary search on the training set of General
and Web Shopping subsets. The final choice of hyperparameters for both methods can be found
in Table 4. Results for all other methods (Filtered BC and DigiRL) are kept the same as discussed in
the original paper (Bai et al., 2024).
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Method Hyperparameter Value

Digi-Q

actor lr 1e-4
value function lr 1e-5 (general), 5e-6 (webshop)

batch size 128
maximum gradient norm 0.01
actor updates per iteration 30

value function updates per iteration 20
number of iterations for offline actor updates 15, 20, 30, 45, 60

number of iterations for offline value function updates 30, 40, 45, 60, 90, 120

VLM
SFT

model checkpoint liuhaotian/llava-v1.5-7b
image aspect ratio pad, no

vision encoder openai/clip-vit-large-patch14-336
number of training epochs 3,5,8,10
per device train batch size 8, 16, 32
per device eval batch size 4

Table 4: Hyperparameters for Digi-Q on both General and Web Shopping subset of AitW. If multiple
values are displayed, the bolded value represents the selected value after hyperparamemter sweeping.
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