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Abstract

Blockchain, a decentralized distributed ledger001
database, records transactions across multiple002
computers in a secure, transparent and tamper-003
resistant manner. To ensure this, smart con-004
tract code is introduced to predefine transac-005
tion rules, and stipulate that the code should006
automatically execute without intermediaries007
when someone calls it. That is, if malicious008
actors call the code with vulnerabilities, these009
automatic execution codes may cause signifi-010
cant economic losses to users. Therefore, the011
security of smart contract code is crucial in012
Blockchain domain. Currently, smart contracts013
are primarily manually written by developers,014
facing challenges such as experienced devel-015
oper shortage, low development efficiency, and016
substantial security risks. There is an urgent017
need for code generation technology to assist018
both developers and non-professional program-019
mers in creating secure and efficient smart con-020
tract codes. In this paper, we propose CodeBC,021
a more secure smart contract Code generation022
model for Blockchain, which employs a two-023
stage fine-tuning approach based on CodeL-024
lama: the first stage uses a multi-task learning025
framework for code infilling and vulnerability026
detection, enhancing the model’s understanding027
of smart contract code and its ability to iden-028
tify security vulnerabilities; in the second stage,029
tags-guided instruction fine-tuning is employed030
to improve the model’s comprehension of hu-031
man instructions, thereby generating higher-032
security code. We construct an Blockchain-033
HumanEval dataset to assess whether the gen-034
erated code meets human requirements. Ex-035
perimental results demonstrate that CodeBC036
achieves higher BLEU, CodeBLEU, compila-037
tion pass rates and lower vulnerability rates038
compared to baselines, validating the effective-039
ness of our two-stage fine-tuning strategy.040

1 Introduction041

Blockchain is a decentralized and distributed ledger042

database that records transactions across multiple043

pragma solidity ^0.8.3;   //solidity version

contract EtherStore {

    function withdraw() public {

        uint bal = balances[msg.sender];require(bal > 0);

        (bool sent, ) = msg.sender.call{value: bal}("");

  require(sent, "Failed to send Ether");

        balances[msg.sender] = 0;

    }……}

contract Attack {

    fallback() external payable {

        if (address(etherStore).balance >= 1 ether) {

            etherStore.withdraw();

        }

    }

    function attack() external payable {

        require(msg.value >= 1 ether);

        etherStore.deposit{value: 1 ether}();

        etherStore.withdraw();

    }……}

(a)

(b)
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Figure 1: An example of smart contract reentrancy
attack. The process of reentrancy attack by contract(b)
on contract(a): 1⃝ The attacker initiates a withdrawal
request; 2⃝ EtherStore responds and automatically calls
the fallback() function. 3⃝ The attacker re-initiates the
withdrawal request. Since the account balance has not
been cleared, the loop can continue.

computers in a secure, transparent, and tamper- 044

resistant manner. It is considered as a core technol- 045

ogy supporting the development of digital economy 046

and web3.0 by both academic and industrial com- 047

munities (Bitcoin, 2008; Wood, 2022), providing 048

a secure foundation for various scenarios, such as 049

digital currencies, data asset exchange, and renew- 050

able energy trading (Zheng, 2017). 051

To ensure the security and transparency of trans- 052

actions, blockchain requires developers to prede- 053

fine transaction rules through smart contract code, 054

and stipulate that the code should automatically ex- 055

ecute without intermediaries when someone calls it. 056

Therefore, the security of smart contract code is cru- 057

cial, because if the automatic code contains security 058

vulnerabilities, malicious actors could exploit them, 059

leading to significant financial losses for users. Fig- 060

ure 1 illustrates an example of a reentry attack. A 061

typical withdrawal operation should clear the ac- 062

count balance before processing the withdrawal. 063

However, the withdrawal function defined in con- 064
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tract(a) does the opposite. So, when an attacker’s065

contract(b) continuously calls contract(a), it results066

in erroneous behavior of continuously sending vir-067

tual currency. Statistics 1 reveal a significant rise in068

economic losses due to smart contract vulnerabili-069

ties year by year, reaching around $75.82 billion in070

2023 compared to approximately $3.77 billion in071

2022. Therefore, urgent measures are required to072

enhance the security of blockchain smart contract073

code and improve vulnerability detection accuracy.074

Currently, smart contracts are manually crafted075

by developers, facing challenges such as a short-076

age of developers, low development efficiency, and077

high-security risks. Firstly, code development of078

smart contract requires professional knowledge,079

leading to a severe mismatch between the numbers080

of developers and users, with over a hundred mil-081

lion blockchain users and just over twenty thousand082

active developers. Secondly, the time-consuming083

nature of manual code writing greatly affects devel-084

opment efficiency, often involving repetitive code085

and requiring weeks to months of development086

time. Finally, some developers lack profession-087

alism, leading to frequent security incidents and088

escalating economic losses. If high-quality code089

can be generated by LLMs, it can not only enhance090

developer efficiency but also reduce security risk091

and prevent economic losses.092

In this paper, we propose CodeBC, a more se-093

cure smart contract Code generation model for094

Blockchain, employing a two-stage fine-tuning ap-095

proach to enhance the model’s understanding of096

smart contract code and its ability to follow hu-097

man instructions. Specifically, in the first stage, we098

employ a multi-task learning fine-tuning strategy,099

involving code infilling and vulnerability detection100

tasks, to strengthen the model’s comprehension101

of smart contract code and its awareness of secu-102

rity vulnerabilities. In code infilling task, we ran-103

domly mask some lines of code as input and make104

the masked code as output, following CodeLlama.105

In vulnerability detection, we input the correct or106

flawed code into the model, with the correct or107

bug as output. In the second stage, we employ108

tags-guided instruction fine-tuning to improve the109

model’s execution of human instructions. We con-110

sider the code annotation as human instruction and111

concatenate them with correct or vulnerable tags112

as input. Then utilizes its corresponding code as113

1https://www.slowmist.com/report/2023-Blockchain-
Security-and-AML-Annual-Report(EN).pdf

output, facilitating its understanding of tags’ mean- 114

ings and enabling the generation of higher-security, 115

correct smart contract code. 116

We construct an Blockchain-HumanEval dataset 117

to assess whether the generated code meets human 118

requirements. Experimental results demonstrate 119

that our model achieves higher BLEU, CodeBLEU 120

scores, compilation pass rates, and vulnerability- 121

free rates compared to the baseline CodeLlama. 122

The innovations of this paper are as follows: 123

• We are the first to introduce an LLM-based 124

code generation model into blockchain field, 125

fostering interdisciplinary research. 126

• We propose a customized two-stage fine- 127

tuning strategy: multitasking learning to en- 128

hance adaptability to blockchain domain and 129

tags-guided approach to improve understand- 130

ing of human instructions. 131

• We construct the first human evaluation 132

dataset for blockchain contract code gener- 133

ation, and experimental results demonstrate 134

the effectiveness of our model. 135

2 Related Work 136

2.1 Code Generation 137

With the development of LLMs, the usability of 138

code generation models has increased significantly, 139

especially after the successful commercial applica- 140

tion of CodeX (Chen et al., 2021). More and more 141

researchers (Xu et al., 2022; Zan et al., 2023; Lu 142

et al., 2022) focus on code generation tasks. Alpha- 143

Code (Li et al., 2022) significantly improved the 144

code generation model’s ability to understand com- 145

plex instructions and implement complex codes by 146

generating a large number of code samples and ef- 147

fectively filtering them. However, the expensive 148

execution computation of AlphaCode poses chal- 149

lenges for its real-world application. Nijkamp et al. 150

(2022) propose CodeGen, which understands com- 151

plex instructions by splitting them while control- 152

ling model computation costs. Incode (Fried et al., 153

2022) and CodeGeex (Zheng et al., 2023) attempt 154

to enhance the alignment between model-generated 155

code and instructions in different ways. To im- 156

prove the usability of generated code, Wang et al. 157

(2022) utilize reinforcement learning to increase 158

the compilation rate of generated code. Zhang et al. 159

(2023) patch generated code through error reports 160

and runtime execution results to enhance the cor- 161

rect execution rate of generated code. Yin et al. 162
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(2023) propose vertical-domain code generation163

models for interactive data processing tasks. How-164

ever, these works only focus on code compilability165

and execution results, neglecting code vulnerabil-166

ities’ impact on application stability. In the high-167

security blockchain domain, we develop a tailored168

and security-enhanced code generation model for169

smart contract to enhance its usability.170

2.2 Vulnerability Detection171

The task of vulnerability detection is highly crucial172

in blockchain smart contracts (Brent et al., 2018;173

Mehar et al., 2019). Oyeente (Luu et al., 2016)174

is the first smart contract vulnerability detection175

technique, which detects vulnerabilities by con-176

structing a contract control flow graph, executing177

symbolic states, and comparing them with proper-178

ties defined based on vulnerabilities. Subsequently,179

researchers (Jiang et al., 2018; Grishchenko et al.,180

2018; Rodler et al., 2018) proposed smart con-181

tract vulnerability detection techniques based on182

fuzz testing, taint analysis, and formal verification.183

However, these traditional methods have the prob-184

lems of low coverage and low efficiency. Recently,185

Tann et al. (2018) used smart contract data to train186

a binary classifier based on LSTM. Liu et al. (2018)187

propose S-gram to identify irregular subsequences188

as candidate vulnerabilities by training a language189

model and scanning the token sequences of the tar-190

get contract for auditing. He et al. (2019) propose191

ILF to use the symbolic execution results as the192

training dataset for neural networks, and generate193

input sequences for the test program utilizing neu-194

ral networks. Gao et al. (2020) propose SmartEm-195

bed to characterize the stream of contract symbols196

extracted from AST based on word embedding and197

vector space techniques, and detect vulnerabilities198

by comparing the similarity with the vulnerable199

contracts. However, current detection methods rely200

solely on simple classification models and may not201

fully comprehend the complex logic of code. In this202

paper, we design various strategies to enhance vul-203

nerability detection capabilities, thereby preventing204

the model from generating vulnerable code.205

3 CodeBC Model206

3.1 Task Definition207

The dataset of smart contract code generation task208

is D = {(S1, T1, C1), . . . , (SN , TN , CN )}, where209

Si is a natural language instruction, Ti is a security210

tag and Ci is a smart contract code. Given a natural211

language instruction Si = {s1, . . . , s|Si|}, where 212

si is a instruction token of Si, and a security tag 213

Ti ∈ {correct, bug}, the goal of CodeBC model is 214

to generate code Ci = {c1, . . . , c|Ci|} based on the 215

generative probability P (Ci|Si, Ti) by restricting 216

tag Ti and instruction Si, where ci is the code token. 217

The P (Ci|Si, Ti) can be represented as: 218

P (Ci|Si, Ti) =
P (Ci)P (Ti|Ci)P (Si|Ti, Ci)

P (Si, Ti)
. 219

The overall structure of the CodeBC model 220

consists of two stages, as shown in Figure 2. 221

The first stage multi-task learning fine-tuning in- 222

cludes two tasks: code infilling task to optimize 223

P (Ci) and vulnerability detection task to optimize 224

P (Ti|Ci). From a probabilistic decomposition per- 225

spective, this can theoretically improve the gener- 226

ative probability P (Ci|Si, Ti). The second stage 227

tags-guided instruction fine-tuning directly opti- 228

mizes P (Ci|Si, Ti) based on different Ti, namely 229

"correct" and "bug", which can help the model gen- 230

erate more secure code in the inference process 231

when Ti = correct. 232

3.2 Multi-task Learning Fine-tuning 233

The multi-task learning fine-tuning consists of two 234

tasks: code infilling and vulnerability detection, as 235

shown in the left and middle of Figure 2. 236

3.2.1 Code Infilling 237

For the code infilling task, we follow the efficient 238

training method in CodeLlama (Bavarian et al., 239

2022), which splits the text into three parts: pre- 240

fix, midfix, and suffix. We adjust the position of 241

each part so that the model can make full use of 242

contextual information when predicting the mid- 243

fix code. PSM denotes the combination of prefix, 244

suffix, and midfix. SPM denotes the combination 245

of suffix, prefix, and midfix. The three tokens 246

<PRE>, <MID>, and <SUF> are used to denote 247

the beginning of each part. Given the ith example 248

Ci = (Prei,Midi, Sufi) ∈ D, we minimize the 249

negative log-likelihood of the target Midi: 250

LI = −
|D|∑
i=1

|Midi|∑
t=1

logP(mt|m1...mt−1, P rei, Sufi; θ), 251

where mt denotes the token of Midi, and θ de- 252

notes the parameters of CodeLlama. 253

Due to the short length of some smart contracts 254

and the fact that the contract usually starts with the 255
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CodeBC

pragma solidity ^0.8.0;   

contract simple_example {……}
Tag:correct or bug

Code data with tagPrompt

……whether this smart 
contract Code is a 
correct solution：

Ground-truth tag:Ground-truth tag:Ground-truth tag:

pragma solidity ^0.8.0; // solidity version 

contract simple_example {……}//function for ……
Tag:correct or bug

Code data with tag and annotations

Split by element

Ground-truth tag:Ground-truth tag:Ground-truth tag: Code:Code:Code:
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Instruction:Instruction:Instruction: iS Guidance tag:Guidance tag:Guidance tag:
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… sim
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len=N/5
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len=N/5

i 
  …… n

Snippet3
len=N/5

 k
  …… e

Snippet4
len=N/5

 d
   ……}
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Random truncation 
position
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iC

pCI
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Figure 2: An illustration of the CodeBC model. (1) We first performed multi-task learning: (1− 1) First fine-tuned
the base pre-trained language model on smart contract code. (1− 2) Continued to train the model with the goal
of vulnerability detection task on the model with the first smart contract programming capability. (2) Finally,
Tags-guided Instruction Fine-tuning was performed on the models trained in the first stage, aligning the vulnerability
detection tags in stages (1− 2).

version number of the used solidity, completely ran-256

domly dividing the contract code into three parts257

may make the model unable to effectively learn the258

contextual information. Therefore, when splitting259

the code, the contract code is first evenly divided260

into five parts according to the number of charac-261

ters, and randomly selecting cut-off points in the262

second and fourth parts from left to right ensures263

that the data participating in the training has valid264

contextual information, as shown in the left of Fig-265

ure 2. Then we randomly select the combination266

method among PSM and SPM with probability 0.5.267

3.2.2 Vulnerability Detection268

The main purpose of the vulnerability detection269

task is to strengthen the model’s ability to sense se-270

curity vulnerabilities in smart contracts and provide271

alignment guidance for subsequent Tags-guided272

Instruction Fine-tuning. Given the code Ci, if273

Ci has no vulnerabilities, the ground-truth out-274

put is Tgi = {[Tag]<correct>[/Tag]}, otherwise275

Tgi = {[Tag]<bug>[/Tag]}, where [Tag], [/Tag]276

respectively denote the beginning and the end of277

the code security detection result.278

The model performs vulnerability detection task279

under a simple prompt "whether this smart contract280

Code is a correct solution:" and the negative log-281

likelihood of the target sentence Tgi is:282

LD = −
|D|∑
i=1

|Tgi |∑
j=1

logP(tj |t1...tj−1, Ci; θI),283

where tj represents the token of Tgi , and θI denotes 284

the parameters of CodeLlama after code infilling. 285

3.3 Tags-guided Instruction Fine-tuning 286

The goal of tags-guided instructions fine-tuning is 287

to use tags to assist the model in better distinguish- 288

ing between correct code and vulnerable code. In 289

the training process, as shown in the right-bottom 290

of Figure 2, given a human instruction Si and the 291

tag information Ti, the objective of code genera- 292

tion model is to produce the ground-truth code Ci, 293

where Ti ∈ {correct, bug} indicates whether the 294

code Ci is correct or vulnerable. We minimize the 295

negative log-likelihood of the target code: 296

LG = −
|D|∑
i=1

|Ci|∑
t=1

logP(ct|c1...ct−1, Si, Ti; θD), 297

where ct represents the tth token of Ci, and θD 298

denotes the parameters after vulnerability detection 299

in section 3.2.2. 300

In the inference process, as shown in the right- 301

top of Figure 2, given a human instruction Si and 302

tag information Ti = correct, the model will gen- 303

erate safer code Cp with the help of Ti = correct. 304

4 Experiments 305

4.1 Experimental Settings 306

We first introduce some empirical settings, includ- 307

ing datasets, evaluation metrics, baselines and pa- 308

rameter settings for CodeBC. 309
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Dataset Total Num_Security Num_Insecurity

SASCsmall 10571 2693 7878
SASCsmall-F 7897 2112 5785
SASCsmall-F-CI 2112 2112 0
SASCsmall-F-VD 7567 1782 5785

Table 1: The statistics of datasets for smart
contract code generation task. Num_Security and
Num_Insecurity are the number of security and inse-
curity smart contracts, respectively.

4.1.1 Dataset310

Smart Contract Code Dataset311

The dataset for smart contract code generation312

task is primarily based on the "Slither Audited313

Smart Contracts small-multilabel"(SASCsmall)314

dataset (Rossini, 2022), which is built on veri-315

fied smart contracts provided by the Blockchain316

Ethereum community. They utilize Slither(Feist317

et al., 2019) to analyze each smart contract and318

map the detected vulnerability types to 9 classes319

based on the most threatening smart contract vul-320

nerabilities provided by the Decentralized Appli-321

cation Security Project (DASP). 2 As shown in322

Table 1, the dataset contains a total of 10571 smart323

contract codes, with secure contracts accounting324

for 25% and insecure contracts for 75% of the to-325

tal. To ensure that all smart contracts involved in326

model training can be deployed in practical appli-327

cation scenarios, we conducted a selection process328

for smart contracts. We excluded code that encap-329

sulated multiple smart contracts to form complete330

and complex functionalities from SASCsmall, and331

finally obtain our dataset SASCsmall-F.332

Based on SASCsmall-F dataset, we constructed333

different datasets for three training stages, and ran-334

domly split them into training, validation, and test335

sets in an 8:1:1 ratio. The statistics of these datasets336

are shown in Table 1:337

• Code Infilling dataset(SASCsmall-F-CI): To338

maximize the model’s performance in gener-339

ating secure code, the code infilling task se-340

lected 2112 secure smart contract codes from341

SASCsmall-F that are free of security vulner-342

abilities. Additionally, each smart contract in-343

volved in training is randomly split five times344

and completely shuffled.345

• Vulnerability Detection dataset(SASCsmall-346

F-VD): The training data for the vulnerabil-347

ity detection task utilizes all smart contract348

2https://dasp.co/

codes with security vulnerabilities from the 349

SASCsmall-F dataset. To ensure a roughly 350

equal sample length for both secure and vul- 351

nerable types of samples involved in the train- 352

ing, excessively long smart contract codes 353

from the secure contract codes are filtered out. 354

• Tags-guided Instruction dataset: the entire 355

dataset from SASCsmall-F. 356

Blockchain-HumanEval Dataset 357

The Blockchain-HumanEval dataset proposed in 358

this paper is constructed based on the open-source 359

smart contract code repository Openzeppelin. 3 360

The specific reasons are as follows: 361

• As the most popular and verified contract code 362

repository, the code it provides can be consid- 363

ered as correct smart contract code without 364

security vulnerabilities. 365

• As a contract code that provides security guar- 366

antees for smart contracts, it imposes higher 367

requirements on its security which will place 368

high demands on the security of the model- 369

generated code. 370

• Although it is also smart contract code, it does 371

not have complete practical application func- 372

tionality, and there is no complete code in- 373

formation on Blockchain Ethereum, so data 374

leakage will not occur in the training data. 375

The Blockchain-HumanEval dataset, proposed in 376

this paper, selects smart contract code from the 377

Openzeppelin code repository that does not have 378

internal references as the target code. Addition- 379

ally, natural language instructions are manually 380

added to these contract codes, and detailed specifi- 381

cations of the Solidity version number, the names 382

of functions, events, and errors, as well as inter- 383

nal parameters and their functions, are provided. 384

A total of 41 missions. The SASCsmall-F and 385

Blockchain-HumanEval dataset will be released 386

when this paper is accepted. 387

4.1.2 Baselines and Parameter Settings 388

We compare our CodeBC model with three base- 389

lines, including CodeLlama-7b-Instruct (Roziere 390

et al., 2023), CodeGen25-7b-Instruct (Ni- 391

jkamp et al., 2023), and DeepSeek-Coder-6.7b- 392

Instruct (Daya Guo, 2024). In the model training 393

3https://github.com/OpenZeppelin/openzeppelin-
contracts
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phase, all three stages of training are performed394

using LoRA (Hu et al., 2021) on the A100 GPU,395

which has been shown to reduce training time396

significantly while ensuring good results. The rank397

of the update matrix (lora-r) is set to 4, the LoRA398

scaling factor (lora-alpha) is set to 32, and all parts399

of the attention block are used as target modules.400

The learning rate is set to 1e-4, and ten rounds401

are trained on the Code Infilling and Vulnerability402

Detection tasks, respectively, and one round is403

trained on the Tags-guided Instruction task. In the404

model inference stage, we ran all models using a405

temperature value of 0.2 and a nucleus sampling406

method with a parameter value of 0.95.407

4.1.3 Metrics408

Each model generates five samples for each natu-409

ral language instruction from the Blockchain Hu-410

manEval dataset. We evaluate the models based411

on three aspects: code generation quality, security,412

and vulnerability detection accuracy. The specific413

evaluation metrics are as follows:414

BLEU(Papineni et al., 2002) and Code-415

BLEU(Ren et al., 2020) are employed to evalu-416

ate the quality of smart contract code in meet-417

ing the requirements of natural language instruc-418

tions. We calculate the average BLEU(AvgBLEU),419

the best BLEU(BestBLEU), the average Code-420

BLEU(AvgCB) and the best CodeBLEU(BestCB)421

for evaluation. We do not use the metric pass@k be-422

cause of the nature of smart contracts that can only423

be called passively. To better assess the quality of424

the generated code, we removed all comments and425

code description sections from the target code and426

the generated samples, and performed the metrics427

calculations only on the code.428

The performance of security is evaluated us-429

ing the review results of the Slither inspection430

tool (Feist et al., 2019), which is the most popular431

review tool in the Blockchain community and is432

officially recommended by Ethernet. 4 The tool re-433

turns the compilation results of the code and returns434

security vulnerability analysis results for the com-435

pilable contract code. We use the compilation pass436

rate(ComPass) and the vulnerability rate(VulRate)437

of the generated code to visualize the performance438

of the generated results in terms of security, and the439

safe-availability rate(SafeAval) 5 to further reflect440

4https://ethereum.org/zh/developers/docs/smart-
contracts/testing

5The proportion of smart contract code that is compilable
and free of security vulnerabilities

the model’s ability in terms of security. 441

In order to test the performance of vulnerabil- 442

ity detection for our model, we utilize handwritten 443

smart contract code provided by the open source 444

project SmartBugs (Durieux et al., 2020), provid- 445

ing a total of 141 smart contract code for different 446

types of security vulnerabilities, each type of vul- 447

nerability is briefly described in Appendix A. We 448

calculate the accuracy of the binary classification 449

vulnerability detection task. 450

4.2 Experimental Results 451

In this section, we demonstrate our experiment 452

results on BlockChian-HumanEval datasets and 453

the ablation experimental results. 454

4.2.1 Metric-based Evaluation 455

The metric-based evaluation results are shown in 456

Table 2. From the results, we can see that in terms 457

of meeting the demands of natural language instruc- 458

tions, CodeGen25 and DeepSeek-Coder perform 459

basically the same, slightly worse than CodeLlama, 460

and the behavior on the metrics AvgBLEU, Best- 461

BLEU, AvgCB and BestCB are lower than CodeL- 462

lama by about 8.25%, 3.53%, 9.26%, 7.18% re- 463

spectively. In terms of security, CodeGen25 and 464

DeepSeek-Coder also perform roughly the same, 465

and are significantly worse than the CodeLlama 466

model, with about 19.27% lower compilation pass 467

rate, and about 16.58% more vulnerability rate, and 468

about 18.29% fewer contract code that can be used 469

safely. This shows that CodeLlama outperforms 470

the other two baseline models both in terms of fit 471

with natural language descriptions and security. 472

Our CodeBC model has excellent performance 473

in all the metrics, compared with all baselines. 474

In terms of satisfying natural language instruc- 475

tion requirements, it achieves scores above 0.64 in 476

AvgBLEU, BestBLEU, AvgCB, and BestCB met- 477

rics. Compared to the best-performing CodeLlama 478

model in the baseline models, it shows improve- 479

ments of approximately 16.54%, 13.03%, 11.35%, 480

and 8.57% respectively in the above metrics. In 481

terms of security, compared to the CodeLlama 482

model, the compilation pass rate has increased 483

from 43.90% to 86.82%, an increase of 42.92%, 484

the vulnerability rate has decreased from 61.95% 485

to 26.34%, a decrease of 35.61%, and the code of 486

the contract that can be used safely has increased 487

from 40.48% to 78.56%, an increase of 38.08%. 488

From the above experimental results, we can see 489

that our CodeBC proposal outperforms the baseline 490
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Models AvgBLEU BestBLEU AvgCB BestCB ComPass(%) VulRate(%) SafeAval(%)

CodeGen25 0.4298 0.5614 0.4411 0.5111 24.87 79.02 22.43
DeepSeek-Coder 0.4251 0.5650 0.4371 0.5084 24.39 78.04 21.95
CodeLlama 0.5099 0.5985 0.5317 0.5816 43.90 61.95 40.48
CodeBC(our) 0.6753 0.7288 0.6452 0.6674 86.82 26.34 78.56

Table 2: The metric-based evaluation results.

Models AvgBLEU BestBLEU AvgCB BestCB ComPass(%) VulRate(%) SafeAval(%)

CodeBC 0.6753 0.7288 0.6452 0.6674 86.82 26.34 78.56
CodeBC-CI 0.5279 0.6271 0.5739 0.6247 51.70 57.07 47.80
CodeBC-w.o.CI&TI 0.5759 0.6735 0.5254 0.5633 52.68 53.66 65.33
CodeBC-w.o.CI&VD 0.5698 0.6298 0.6001 0.6345 77.06 44.87 68.78

Table 3: Evaluation results of each stage of the model on the Blockchain-HumanEval dataset.

Models AvgBLEU BestBLEU AvgCB BestCB

CodeLlama 0.1842 0.1843 0.5225 0.5231
our CodeBC-CI 0.4771 0.4829 0.8032 0.8042

Table 4: The test results of CodeLlama and our
CodeBC-CI model for code infilling task on Blockchain-
HumanEval dataset.

model in both the satisfaction of natural language491

instruction requirements and security. The efficient492

code-infilling fine-tuning task allows the model493

to learn smart contract programming well, addi-494

tionally, multiple tasks involving the construction495

of smart contract code provide the model with re-496

peated exposure to smart contract code data, which497

significantly improves CodeBC’s ability to gener-498

ate smart contracts. As for the vulnerability de-499

tection task and the tags-guided instruction fine-500

tuning focuses on improving the security of the501

model-generated code by improving the model’s502

ability to sense vulnerabilities and directing the503

model to generate more secure smart contract code504

through tags when generating smart contracts. The505

improvement of CodeBC over the baseline model506

in various metrics demonstrates the effectiveness507

of our two-phase fine-tuning strategy.508

4.2.2 Ablation Experiments509

To verify the actual effect of the training of the510

models in each stage, we conducted ablation ex-511

periments, and the test results of the models in512

each stage on Blockchain-HumanEval are shown513

in Table 3. CodeBC-CI denotes the model fine-514

tuned only through the code completion task.515

CodeBC-w.o.CI&TI denotes the model fine-tuned516

only for the vulnerability detection task. CodeBC-517

w.o.CI&VD denotes the model fine-tuned only af- 518

ter label-guided instruction fine-tuning. CodeBC- 519

VD denotes the model fine-tuned for the first-phase 520

multi-task learning. 521

From the experimental results, it can be observed 522

that the training methods in each stage can improve 523

the score of AvgBLEU, BestBLEU, AvgCB, and 524

BestBLEU, which represent the code generation 525

and natural language requirements. By comparing 526

the changes in these four metrics for CodeBC-CI, 527

CodeBC-VD, and CodeBC, it can be seen that the 528

training in all three stages contributes to the per- 529

formance of the final model. This indicates that 530

as long as the model is exposed to more code data 531

during the training process, its code generation ca- 532

pability can be improved. 533

In terms of security, the training methods used in 534

each stage also improve the model’s performance in 535

security aspects. However, comparing CodeBC-CI 536

with other stages reveals that although the training 537

dataset in this stage only includes contract code 538

without vulnerabilities, the lack of security infor- 539

mation in the training data does not significantly 540

improve the security of the generated code by the 541

model. On the other hand, comparing CodeBC- 542

VD with CodeBC-w.o.CI&TI shows that the smart 543

contract programming knowledge learned through 544

code infilling tasks enhances the model’s vulnera- 545

bility awareness, thereby improving the security of 546

the generated code. 547

4.3 Analysis 548

In this section, we tested the performance of the 549

CodeBC model on the code completion task and the 550

vulnerability detection task, respectively, to analyze 551

the reasons for the performance improvement of 552
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Models Accuracy(%)

RE AC AR ULLC DoS BR FR TM other all

CodeBC-VD 90 33 0 40 50 100 25 80 67 52
CodeBC 90 17 0 42 67 100 50 100 67 52

Table 5: The test results of CodeBC-VD and CodeBC model for vulnerability detection task on SmartBugs dataset.

the CodeBC model due to the multi-task learning553

fine-tuning strategy.554

4.3.1 Code Infilling555

We tested the smart contract code-filling capabili-556

ties of the CodeLlama and the CodeBC-CI, respec-557

tively. The results of the assessment are shown558

in table 4. From the results, we can see that the559

CodeBC-CI model performs better than the CodeL-560

lama model in completing contract code infilling561

tasks, with approximately a 0.3 improvement in562

both BLEU and CodeBLEU metrics. This indicates563

that fine-tuning the model through code infilling564

tasks enables it to learn the structural information565

of smart contract code and better understand the566

contextual information of the code, thereby enhanc-567

ing the model’s ability to program smart contracts.568

As demonstrated in the ablation experiments in569

section 4.2.2, the structural information of smart570

contracts learned through code infilling task can571

improve the model’s vulnerability awareness in572

vulnerability detection task, which enhances the573

security of the generative smart contract code.574

4.3.2 Vulnerability Detection575

The results of the vulnerability detection part are576

shown in Table 5. From the results, we can see577

that the model can perceive 52% of the vulnera-578

bilities, and there is no significant decrease in the579

ability to perceive the vulnerabilities after train-580

ing in the Tags-guided Instruction phase. The581

model has a good ability to perceive vulnerabilities582

such as Reentrancy(RE), Bad Randomness(BR)583

and other vulnerabilities that can easily cause eco-584

nomic losses.585

In order to further validate the impact of model586

vulnerability-awareness capability on improving587

the security of model-generated code, we analyzed588

the vulnerabilities of model-generated smart con-589

tracts at each stage, and the results are shown in590

Table 6. From the results, we can see that the591

smart contract code generated by the model after592

fine-tuning the vulnerability detection task can well593

avoid contract vulnerabilities such as re-entry at-594

Models RE AC AR ULLC other ignore

CodeBC-CI 5 4 6 0 2 0
CodeBC-VD 0 0 0 0 7 13
CodeBC 0 0 0 1 11 15

Table 6: Number of vulnerabilities of each type of
model-generated contract in each phase.

tacks, access control, and so on, which appear in the 595

contract code generated by CodeBC-CI. Besides, 596

these models primarily generate vulnerabilities that 597

are ignored because they do not pose an actual se- 598

curity threat. Smart contracts with these types of 599

vulnerabilities are labeled as secure in the training 600

data. 601

The above results show that the model’s im- 602

proved vulnerability sensing capability through the 603

vulnerability detection task well enhances the secu- 604

rity of the model-generated smart contract code. 605

5 Conclusion 606

In this paper, we propose CodeBC, a code genera- 607

tion model for blockchain smart contracts, and de- 608

sign a two-stage fine-tuning strategy for the security 609

requirements of smart contracts. To validate the per- 610

formance of CodeBC on the smart contract genera- 611

tion task, we propose the Blockchain-HumanEval 612

dataset. Through experiments, we show that our 613

model improves by nearly 17% in BLEU, 13% in 614

CodeBLEU, 42% in compilability rate, 36% in vul- 615

nerability rate, and the percentage of contract code 616

that is safe to use increased from 40% to 78%. In 617

the future, we will leverage the control flow graph 618

of smart contracts to design more stringent secu- 619

rity policies to ensure that the model can generate 620

secure and usable code. 621

Limitations 622

Our work has several limitations, which we aim to 623

address in our future work: 624

Firstly, although our model outperforms other 625

baseline models in terms of evaluation metrics, its 626

performance is still poor for certain tasks, espe- 627
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cially when it comes to longer code completion.628

Therefore, further optimization is required.629

Secondly, our model was trained only on snip-630

pets of smart contract code, without fully utilizing631

information such as control flow graphs. In the fu-632

ture, we will design further improvements based on633

the specific characteristics of smart contract data to634

enhance the quality of generated smart contracts.635

Finally, our approach has effectively improved636

the security of smart contract code generated by the637

model. However, we have not conducted rigorous638

experimental validation on other programming lan-639

guages. In the future, we will consider developing640

solutions to enhance the security of code generation641

tasks for a wider range of programming languages.642

Ethical Considerations643

CodeBC’s main goal is to generate smart contract644

code based on user instructions. Due to the high-645

security requirements of smart contracts, the safety646

of the generated code was a key consideration dur-647

ing the model design. Our data is collected from648

open-source projects, respecting the respective li-649

cense restrictions or publicly available benchmarks.650

Additionally, since the data used mostly consists of651

publicly available smart contract code information652

on the blockchain, it does not involve any privacy653

data. We also discuss the limitations and future654

work of this paper.655
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Appendix 836

A Description of Vulnerability Types 837

Reentrancy(RE): Smart contracts allow external 838

contracts or accounts to be called under certain 839

rules. However, if the calling rules or contract exe- 840

cution logic are not properly designed, reentrancy 841
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vulnerabilities can arise. A reentrancy vulnera-842

bility allows attackers to repeatedly call the same843

function during the execution of a contract. By844

exploiting this vulnerability, attackers can reenter845

a function within the contract during its execution846

and carry out malicious operations. One notable847

example of such a vulnerability is the infamous848

"The DAO" attack, which resulted in nearly $50849

million in losses at the time.850

Access Control(AC): In smart contracts, access851

to functions and data also needs to be restricted852

through permission controls and condition checks.853

On one hand, attackers may bypass or tamper with854

access control mechanisms to gain unauthorized855

privileges or perform unauthorized operations, lead-856

ing to sensitive data leaks, financial losses, or dis-857

ruption of contract logic. On the other hand, overly858

strict access control can result in virtual currencies859

and other assets being locked within the contract,860

causing economic losses. A typical example is the861

2017 Parity wallet contract attack. By exploiting862

a special transaction to bypass access control, at-863

tackers gained access to funds within the contract,864

resulting in approximately $30 million in losses at865

the time.866

Arithmetic(AR): Also known as integer over-867

flow and integer underflow. Integer overflow vul-868

nerabilities are not a new type of vulnerability, but869

they pose a particularly significant risk in smart870

contracts. This is because unsigned integers are871

commonly used, and many developers are accus-872

tomed to using simple types. If an overflow oc-873

curs, many seemingly benign smart contracts can874

become vehicles for theft or denial-of-service at-875

tacks. One notable example is the 2018 BEC attack,876

where attackers caused the price of BEC to plum-877

met to zero by flooding the exchange with a large878

number of tokens, resulting in immeasurable eco-879

nomic losses.880

Unchecked Low Level Calls(ULLC): Solidity881

allows the use of low-level functions such as call(),882

delegatecall(), and staticcall(). These functions883

behave differently from regular functions when it884

comes to error handling. Instead of propagating or885

reverting the current execution, they simply return886

a boolean value of false. If not properly checked887

and validated, these functions can be exploited by888

attackers to execute unauthorized operations, ma-889

nipulate contract state, or steal funds.890

Denial of Service(DoS): DoS attacks are preva-891

lent in the field of security, and they also pose a892

significant risk in blockchain systems, including893

Ethereum. In Ethereum, a DoS attack can be de- 894

scribed as "irreversible malicious operations or infi- 895

nite resource consumption." Due to the possibility 896

of loops in on-chain calls, Ethereum requires each 897

request to consume a certain amount of gas. Once 898

the gas limit is exhausted, the program cannot con- 899

tinue executing, regardless of the circumstances. 900

Therefore, a DoS attack on the blockchain not only 901

disrupts the normal execution of contract code logic 902

but also results in significant consumption of tokens 903

and gas. 904

Bad Randomness(BR): BR has always been 905

a challenge in modern computer systems, and it 906

becomes even more complex in open blockchain 907

networks. In Ethereum smart contracts, for exam- 908

ple, implementing logic based on random numbers 909

can be impractical. This is because on-chain infor- 910

mation is publicly accessible, and anyone can query 911

and analyze the data stored on the blockchain. If 912

the contract code does not carefully consider the 913

public nature of on-chain data when using random 914

numbers, it can be maliciously exploited for cheat- 915

ing purposes. 916

Front Running(FR): In Ethereum, all trans- 917

actions need to be confirmed before being fully 918

recorded on the blockchain. Each transaction re- 919

wards miners with a certain amount of transaction 920

fees as an incentive. The amount of fees deter- 921

mines the priority of a transaction being confirmed 922

by miners. Therefore, if an attacker can obtain the 923

specific transaction information or related informa- 924

tion of a user in advance and complete the operation 925

before the user does, they can cause losses to the 926

original user by using various means (usually by in- 927

creasing the bid) to complete the transaction ahead 928

of the user. 929

Time Manipulation(TM): In Solidity, vulner- 930

abilities related to time-dependent events can 931

arise. The block.timestamp in Solidity is con- 932

trolled by miners, so if the contract logic relies on 933

block.timestamp, there is a risk of being exploited. 934

When an attacker (usually a miner) confirms a trans- 935

action, they can manipulate block.timestamp to 936

their advantage. This allows them to have fore- 937

knowledge of the outcome of contract code that 938

depends on the timestamp. The attacker can choose 939

a suitable value to achieve their desired outcome. 940

B Case Study 941

The performance of the stage models on the task 942

"Address" will be listed and analyzed here. The 943
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task requires the completion of a library called Ad-944

dress, which provides several functions related to945

address manipulation. The representation in the946

Blockchain-HumanEval dataset is shown in Figure947

3. The manually written instructions specify the So-948

lidity version number used in the contract, provide949

an overall description of the contract’s functionality,950

and provide detailed descriptions of the function-951

ality of each function in the contract. In the code952

section, annotations are removed, and only the code953

information is retained as the target for generation.954

The performance of the model CodeLlama on the955

"Address" task is shown in figure 4. From the re-956

sults, although the generated code seems to encom-957

pass the implementation of all the functionalities958

mentioned in the instructions, there are still some959

details that may pose security risks: Firstly, all960

functions that should be declared as internal have961

been declared as public, which could potentially962

lead to issues with access control and data integrity.963

Furthermore, the generated smart contract code964

adopts a strategy of direct and complete rollback965

when handling execution errors, which is different966

from the target code that executes different rollback967

strategies based on different return results. The di-968

rect and complete rollback strategy may result in969

irreversible operations and the inability to restore970

to the previous state, causing serious impacts on971

the data integrity and consistency of the system.972

Additionally, the direct and complete rollback can-973

not avoid unnecessary rollbacks, which could be974

exploited by malicious users to launch denial-of-975

service attacks. Lastly, the generated smart contract976

declares the function functionCall() as public view,977

which means it can only be used for reading and978

not for modifying the state. However, the statement979

target.call(data) within the function may modify980

the state. This error directly leads to the contract981

failing to compile.982

The performance of the CodeBC-CI model on983

the "Address" task is shown in the figure5. From984

the results, there are slight differences in the im-985

plementations of different functions, but there is986

not much difference in terms of functionality. The987

type of function declarations has been improved by988

declaring all functions as internal types. However,989

there has been no improvement in the rollback strat-990

egy. At the same time, the function functionCall()991

declares a return value of type bytes memory, but992

it actually returns the result of type bool from tar-993

get.call(data), which causes the generated code to994

still fail to compile.995

The performance of the CodeBC-VD model on 996

the "Address" task is shown in the figure6. From 997

the results, it can be observed that the model has 998

further strengthened the security review of various 999

functionalities and correctly declared the functions 1000

that should be declared as internal types. Optimiza- 1001

tion has also been done for the rollback strategy. 1002

Additionally, the generated contract code is error- 1003

free and can be compiled and executed success- 1004

fully. 1005

The performance of the CodeBC model on the 1006

"Address" task is shown in the figure7. Compared 1007

to CodeBC-VD, which has already demonstrated 1008

excellent functionality and security, CodeBC does 1009

not show significant improvements. However, it 1010

has removed some redundant code, indicating an 1011

improvement in the model’s understanding of in- 1012

structions. 1013
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Code:
pragma solidity ^0.8.20;
library Address {
    error AddressInsufficientBalance(address account);
    error AddressEmptyCode(address target);
    error FailedInnerCall();
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }
    function _revert(bytes memory returndata) private pure {
        if (returndata.length > 0) {
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

Instrction:
Generate smart contract code that meets the following requirements:
Programming with solidity ^ version number 0.8.20
Implement a library named Address for handling address related operations, throwing exceptions when the account balance 
is insufficient, code at the target address, or internal calls fail
The following functions need to be implemented, with the following names and functions:
sendValue: Sends Ether to the specified address.
functionCall: Calls a function at the target address without passing Ether.
functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.
functionDelegateCall: Delegate a call to the target address.
verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.
_revert: Rolls back the transaction and throws an exception.
Please give the contract code

Figure 3: Task "Address" in Blockchain-HumanEval.
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Output code:
pragma solidity ^0.8.20;
library Address {
    function sendValue(address payable target, uint256 amount) public {
        require(target.balance >= amount, "Insufficient balance");
        (bool success, ) = target.call{value: amount}("");
        require(success, "Failed to send value");
    }
    function functionCall(address target, bytes memory data) public {
        require(target.code.length > 0, "Target address has no code");
        (bool success, bytes memory result) = target.call(data);
        require(success, "Failed to call function");
    }
    function functionCallWithValue(address target, uint256 amount, bytes memory data) public {
        require(target.balance >= amount, "Insufficient balance");
        (bool success, bytes memory result) = target.call{value: amount}(data);
        require(success, "Failed to call function with value");
    }
    function functionStaticCall(address target, bytes memory data) public view {
        require(target.code.length > 0, "Target address has no code");
        (bool success, bytes memory result) = target.staticcall(data);
        require(success, "Failed to call function statically");
    }
    function functionDelegateCall(address target, bytes memory data) public {
        require(target.code.length > 0, "Target address has no code");
        (bool success, bytes memory result) = target.delegatecall(data);
        require(success, "Failed to delegate call");
    }
    function verifyCallResultFromTarget(address target, bytes memory data) public view {
        require(target.code.length > 0, "Target address has no code");
        (bool success, bytes memory result) = target.call(data);
        require(success, "Failed to call function");
        require(result.length > 0, "No result returned");
    }
    function verifyCallResult(bytes memory result) public pure {
        require(result.length > 0, "No result returned");
    }
    function _revert() public pure {
        revert("Transaction reverted");
    }
}
 

Instruction:
[INST]Generate smart contract code that meets the following requirements:
Programming with solidity ^ version number 0.8.20
Implement a library named Address for handling address related operations, throwing exceptions when the account balance 
is insufficient, code at the target address, or internal calls fail
The following functions need to be implemented, with the following names and functions:
sendValue: Sends Ether to the specified address.
functionCall: Calls a function at the target address without passing Ether.
functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.
functionDelegateCall: Delegate a call to the target address.
verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.
_revert: Rolls back the transaction and throws an exception.
Please give the contract code[/INST]

Figure 4: CodeLlama generation results on the "Address" task.
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Output Code:
pragma solidity ^0.8.20;
library Address {
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");
        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return target.call(data);
    }
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return target.call{value: value}(data);
    }
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return target.staticcall(data);
    }
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        require(success, "Address: delegate call failed");
        return returndata;
    }
    function _revert(bytes memory errorMessage) internal pure {
        revert(string(errorMessage));
    }
    function _revertWithErrorMessage(bytes memory errorMessage) internal pure {
        revert(string(errorMessage));
    }
    function verifyCallResultFromTarget(bytes memory returndata) internal returns (bool) {
        if (returndata.length == 0) {
            return false;
        }
        require(returndata[0] == 0x09, "Address: incorrect return value");
        return true;
    }
    function verifyCallResult(bytes memory returndata) internal returns (bool) {
        if (returndata.length == 0) {
            return false;
        }
        require(returndata[0] == 0x09, "Address: incorrect return value");
        return true;
    }
}

Instrction:
[INST]Generate smart contract code that meets the following requirements:
Programming with solidity ^ version number 0.8.20
Implement a library named Address for handling address related operations, throwing exceptions when the account balance 
is insufficient, code at the target address, or internal calls fail
The following functions need to be implemented, with the following names and functions:
sendValue: Sends Ether to the specified address.
functionCall: Calls a function at the target address without passing Ether.
functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.
functionDelegateCall: Delegate a call to the target address.
verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.
_revert: Rolls back the transaction and throws an exception.
Please give the contract code[/INST]

Figure 5: CodeBC-CI generation results on the "Address" task.
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Output Code:
pragma solidity ^0.8.20;
library Address {
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");
        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }
    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }
    function verifyCallResultFromTarget(address target, bytes memory returndata, string memory errorMessage) internal view returns (bytes memory) {
        (bool success, bytes memory returndataCopy) = target.staticcall(returndata);
        return _verifyCallResult(success, returndataCopy, errorMessage);
    }
    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            if (returndata.length > 0) {
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    function isContract(address account) internal view returns (bool) {
        uint256 size;
        assembly { size := extcodesize(account) }
        return size > 0;
    }
    function _revert() internal {
        assembly {
            revert(0, 0)
        }
    }
}

Instrction:
[INST]Generate smart contract code that meets the following requirements:
Programming with solidity ^ version number 0.8.20
Implement a library named Address for handling address related operations, throwing exceptions when the account balance is insufficient, code at the 
target address, or internal calls fail
The following functions need to be implemented, with the following names and functions:
sendValue: Sends Ether to the specified address.
functionCall: Calls a function at the target address without passing Ether.
functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.
functionDelegateCall: Delegate a call to the target address.
verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.
_revert: Rolls back the transaction and throws an exception.
Please give the contract code[/INST]

Figure 6: CodeBC-VD generation results on the "Address" task.
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Output Code:
pragma solidity ^0.8.20;
library Address {
    function isContract(address account) internal view returns (bool) {
        uint256 size;
        assembly { size := extcodesize(account) }
        return size > 0;
    }
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");
        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns 
(bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }
    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }
    function verifyCallResultFromTarget(address target, bytes memory returndata, string memory errorMessage) internal view returns 
(bytes memory) {
        (bool success, bytes memory returndataCopy) = target.staticcall(returndata);
        return _verifyCallResult(success, returndataCopy, errorMessage);
    }
    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) 
{
        if (success) {
            return returndata;
        } else {
            if (returndata.length > 0) {
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

Instrction:
[INST]Generate smart contract code that meets the following requirements:
Programming with solidity ^ version number 0.8.20
Implement a library named Address for handling address related operations, throwing exceptions when the account balance is 
insufficient, code at the target address, or internal calls fail
The following functions need to be implemented, with the following names and functions:
sendValue: Sends Ether to the specified address.
functionCall: Calls a function at the target address without passing Ether.
functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.
functionDelegateCall: Delegate a call to the target address.
verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.
_revert: Rolls back the transaction and throws an exception.
Please give the contract code[/INST]
[Tag]correct[/Tag]

Figure 7: CodeBC generation results on the "Address" task.
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