CodeBC: A More Secure Large Language Model
for Smart Contract Code Generation in Blockchain

Anonymous ACL submission

Abstract

Blockchain, a decentralized distributed ledger
database, records transactions across multiple
computers in a secure, transparent and tamper-
resistant manner. To ensure this, smart con-
tract code is introduced to predefine transac-
tion rules, and stipulate that the code should
automatically execute without intermediaries
when someone calls it. That is, if malicious
actors call the code with vulnerabilities, these
automatic execution codes may cause signifi-
cant economic losses to users. Therefore, the
security of smart contract code is crucial in
Blockchain domain. Currently, smart contracts
are primarily manually written by developers,
facing challenges such as experienced devel-
oper shortage, low development efficiency, and
substantial security risks. There is an urgent
need for code generation technology to assist
both developers and non-professional program-
mers in creating secure and efficient smart con-
tract codes. In this paper, we propose CodeBC,
a more secure smart contract Code generation
model for Blockchain, which employs a two-
stage fine-tuning approach based on CodeL-
lama: the first stage uses a multi-task learning
framework for code infilling and vulnerability
detection, enhancing the model’s understanding
of smart contract code and its ability to iden-
tify security vulnerabilities; in the second stage,
tags-guided instruction fine-tuning is employed
to improve the model’s comprehension of hu-
man instructions, thereby generating higher-
security code. We construct an Blockchain-
HumanEval dataset to assess whether the gen-
erated code meets human requirements. Ex-
perimental results demonstrate that CodeBC
achieves higher BLEU, CodeBLEU, compila-
tion pass rates and lower vulnerability rates
compared to baselines, validating the effective-
ness of our two-stage fine-tuning strategy.

1 Introduction

Blockchain is a decentralized and distributed ledger
database that records transactions across multiple

pragma solidity 70.8.3;

contract EtherStore {
function withdraw() public {
uint bal = balances[msg.sender];require(bal > 0);

//solidity version

contract Attack {
fallback() external payable {

function attack() external payable {
require(msg.value >= 1 ether);

oo} (b)

Figure 1: An example of smart contract reentrancy
attack. The process of reentrancy attack by contract(b)
on contract(a):(D) The attacker initiates a withdrawal
request; (2) EtherStore responds and automatically calls
the fallback() function.) The attacker re-initiates the
withdrawal request. Since the account balance has not
been cleared, the loop can continue.

computers in a secure, transparent, and tamper-
resistant manner. It is considered as a core technol-
ogy supporting the development of digital economy
and web3.0 by both academic and industrial com-
munities (Bitcoin, 2008; Wood, 2022), providing
a secure foundation for various scenarios, such as
digital currencies, data asset exchange, and renew-
able energy trading (Zheng, 2017).

To ensure the security and transparency of trans-
actions, blockchain requires developers to prede-
fine transaction rules through smart contract code,
and stipulate that the code should automatically ex-
ecute without intermediaries when someone calls it.
Therefore, the security of smart contract code is cru-
cial, because if the automatic code contains security
vulnerabilities, malicious actors could exploit them,
leading to significant financial losses for users. Fig-
ure 1 illustrates an example of a reentry attack. A
typical withdrawal operation should clear the ac-
count balance before processing the withdrawal.
However, the withdrawal function defined in con-

tract(a) does the opposite. So, when an attacker’s
contract(b) continuously calls contract(a), it results
in erroneous behavior of continuously sending vir-
tual currency. Statistics ! reveal a significant rise in
economic losses due to smart contract vulnerabili-
ties year by year, reaching around $75.82 billion in
2023 compared to approximately $3.77 billion in
2022. Therefore, urgent measures are required to
enhance the security of blockchain smart contract
code and improve vulnerability detection accuracy.

Currently, smart contracts are manually crafted
by developers, facing challenges such as a short-
age of developers, low development efficiency, and
high-security risks. Firstly, code development of
smart contract requires professional knowledge,
leading to a severe mismatch between the numbers
of developers and users, with over a hundred mil-
lion blockchain users and just over twenty thousand
active developers. Secondly, the time-consuming
nature of manual code writing greatly affects devel-
opment efficiency, often involving repetitive code
and requiring weeks to months of development
time. Finally, some developers lack profession-
alism, leading to frequent security incidents and
escalating economic losses. If high-quality code
can be generated by LLMs, it can not only enhance
developer efficiency but also reduce security risk
and prevent economic losses.

In this paper, we propose CodeBC, a more se-
cure smart contract Code generation model for
Blockchain, employing a two-stage fine-tuning ap-
proach to enhance the model’s understanding of
smart contract code and its ability to follow hu-
man instructions. Specifically, in the first stage, we
employ a multi-task learning fine-tuning strategy,
involving code infilling and vulnerability detection
tasks, to strengthen the model’s comprehension
of smart contract code and its awareness of secu-
rity vulnerabilities. In code infilling task, we ran-
domly mask some lines of code as input and make
the masked code as output, following CodeLlama.
In vulnerability detection, we input the correct or
flawed code into the model, with the correct or
bug as output. In the second stage, we employ
tags-guided instruction fine-tuning to improve the
model’s execution of human instructions. We con-
sider the code annotation as human instruction and
concatenate them with correct or vulnerable tags
as input. Then utilizes its corresponding code as

Thttps://www.slowmist.com/report/2023-Blockchain-
Security-and-AML-Annual-Report(EN).pdf

output, facilitating its understanding of tags’ mean-
ings and enabling the generation of higher-security,
correct smart contract code.

We construct an Blockchain-HumanEval dataset
to assess whether the generated code meets human
requirements. Experimental results demonstrate
that our model achieves higher BLEU, CodeBLEU
scores, compilation pass rates, and vulnerability-
free rates compared to the baseline CodeLlama.

The innovations of this paper are as follows:

* We are the first to introduce an LLM-based
code generation model into blockchain field,
fostering interdisciplinary research.

* We propose a customized two-stage fine-
tuning strategy: multitasking learning to en-
hance adaptability to blockchain domain and
tags-guided approach to improve understand-
ing of human instructions.

* We construct the first human evaluation
dataset for blockchain contract code gener-
ation, and experimental results demonstrate
the effectiveness of our model.

2 Related Work

2.1 Code Generation

With the development of LLMs, the usability of
code generation models has increased significantly,
especially after the successful commercial applica-
tion of CodeX (Chen et al., 2021). More and more
researchers (Xu et al., 2022; Zan et al., 2023; Lu
et al., 2022) focus on code generation tasks. Alpha-
Code (Li et al., 2022) significantly improved the
code generation model’s ability to understand com-
plex instructions and implement complex codes by
generating a large number of code samples and ef-
fectively filtering them. However, the expensive
execution computation of AlphaCode poses chal-
lenges for its real-world application. Nijkamp et al.
(2022) propose CodeGen, which understands com-
plex instructions by splitting them while control-
ling model computation costs. Incode (Fried et al.,
2022) and CodeGeex (Zheng et al., 2023) attempt
to enhance the alignment between model-generated
code and instructions in different ways. To im-
prove the usability of generated code, Wang et al.
(2022) utilize reinforcement learning to increase
the compilation rate of generated code. Zhang et al.
(2023) patch generated code through error reports
and runtime execution results to enhance the cor-
rect execution rate of generated code. Yin et al.

(2023) propose vertical-domain code generation
models for interactive data processing tasks. How-
ever, these works only focus on code compilability
and execution results, neglecting code vulnerabil-
ities’ impact on application stability. In the high-
security blockchain domain, we develop a tailored
and security-enhanced code generation model for
smart contract to enhance its usability.

2.2 Vulnerability Detection

The task of vulnerability detection is highly crucial
in blockchain smart contracts (Brent et al., 2018;
Mehar et al., 2019). Oyeente (Luu et al., 2016)
is the first smart contract vulnerability detection
technique, which detects vulnerabilities by con-
structing a contract control flow graph, executing
symbolic states, and comparing them with proper-
ties defined based on vulnerabilities. Subsequently,
researchers (Jiang et al., 2018; Grishchenko et al.,
2018; Rodler et al., 2018) proposed smart con-
tract vulnerability detection techniques based on
fuzz testing, taint analysis, and formal verification.
However, these traditional methods have the prob-
lems of low coverage and low efficiency. Recently,
Tann et al. (2018) used smart contract data to train
a binary classifier based on LSTM. Liu et al. (2018)
propose S-gram to identify irregular subsequences
as candidate vulnerabilities by training a language
model and scanning the token sequences of the tar-
get contract for auditing. He et al. (2019) propose
ILF to use the symbolic execution results as the
training dataset for neural networks, and generate
input sequences for the test program utilizing neu-
ral networks. Gao et al. (2020) propose SmartEm-
bed to characterize the stream of contract symbols
extracted from AST based on word embedding and
vector space techniques, and detect vulnerabilities
by comparing the similarity with the vulnerable
contracts. However, current detection methods rely
solely on simple classification models and may not
fully comprehend the complex logic of code. In this
paper, we design various strategies to enhance vul-
nerability detection capabilities, thereby preventing
the model from generating vulnerable code.

3 CodeBC Model
3.1 Task Definition

The dataset of smart contract code generation task
isD = {(51,T1,C1),..., (SN, Tn,CnN)}, where
S; is a natural language instruction, 7; is a security
tag and Cj is a smart contract code. Given a natural

language instruction S; = {s1,...,s|s, }, where
s; 1s a instruction token of S;, and a security tag
T; € {correct, bug}, the goal of CodeBC model is
to generate code C; = {ci, ..., c‘ci‘} based on the
generative probability P(C;|S;, T;) by restricting
tag T; and instruction S;, where ¢; is the code token.
The P(C;|S;, T;) can be represented as:

P(C) P(Ti|Ci) P(Si|T3, Ci)

PIGI% T) P(5,.T) |

The overall structure of the CodeBC model
consists of two stages, as shown in Figure 2.
The first stage multi-task learning fine-tuning in-
cludes two tasks: code infilling task to optimize
P(C;) and vulnerability detection task to optimize
P(T;|C;). From a probabilistic decomposition per-
spective, this can theoretically improve the gener-
ative probability P(C;|S;,T;). The second stage
tags-guided instruction fine-tuning directly opti-
mizes P(C;|S;, T;) based on different 7;, namely
"correct" and "bug", which can help the model gen-
erate more secure code in the inference process
when T; = correct.

3.2 Multi-task Learning Fine-tuning

The multi-task learning fine-tuning consists of two
tasks: code infilling and vulnerability detection, as
shown in the left and middle of Figure 2.

3.2.1 Code Infilling

For the code infilling task, we follow the efficient
training method in CodeLlama (Bavarian et al.,
2022), which splits the text into three parts: pre-
fix, midfix, and suffix. We adjust the position of
each part so that the model can make full use of
contextual information when predicting the mid-
fix code. PSM denotes the combination of prefix,
suffix, and midfix. SPM denotes the combination
of suffix, prefix, and midfix. The three tokens
<PRE>, <MID>, and <SUF> are used to denote
the beginning of each part. Given the i example
C; = (Pre;, Mid;, Suf;) € D, we minimize the
negative log-likelihood of the target Mid;:

ID| |Mid;|

L1 = —Z Z logP(m¢|my...me—1, Pre;, Sufi; 0),

i=1 t=1

where m; denotes the token of Mid;, and 6 de-
notes the parameters of CodeLlama.

Due to the short length of some smart contracts
and the fact that the contract usually starts with the

(1-1) Code Infilling task

(1-2) Vulnerability Detection task

(2) Tags-guided Fine-tuning

| Fine-tuning L, 3 i) [inference Cp
i t i Fine-tuning z, i ~
Codellama I T CodeBC
i | 11 S : t i 1 Codellama ; * 7
| nput: (Pre;, Suf;) arget: Mid, I T | Instruction: S, Guidance tag: 7.,
1 | |
PSM ——L——sPM - -
R N Input: C Ground-truth tag: T, Fine-tuning ET“
. CodelLlama J
Pre, Mid, Suf, . : . /
Random truncation . .
|/ position N\ Input: 1\3.»,77 Targef. q
Snippetl Snippet2 Snippet3 Snippet4 SnippetS Ve
lensN/5 len=N/5 len=N/5 len=N/5 len=N/5)
pragna ... c»ple_e:(am »i _FD K »>d) Prompt Code data with tag Instruction:S; Ground-truth tag: 7, Code: C,
osim J et nd e) O
«oMhether this smart pragma solidity "0.8.0; T Split by element
. . . _— J contract Code is a contract simple_example {...}
T isometric splitting correct solution: Tag:correct or bug Code data with tag and annotations

Code data (length = N)

pragma solidity ~0.8.0;
contract simple_example {....}

pragma solidity ~0.8.0; dit
contract simple_example {....}//function for
Tag:correct or bug

Figure 2: An illustration of the CodeBC model. (1) We first performed multi-task learning: (1 — 1) First fine-tuned
the base pre-trained language model on smart contract code. (1 — 2) Continued to train the model with the goal
of vulnerability detection task on the model with the first smart contract programming capability. (2) Finally,
Tags-guided Instruction Fine-tuning was performed on the models trained in the first stage, aligning the vulnerability

detection tags in stages (1 — 2).

version number of the used solidity, completely ran-
domly dividing the contract code into three parts
may make the model unable to effectively learn the
contextual information. Therefore, when splitting
the code, the contract code is first evenly divided
into five parts according to the number of charac-
ters, and randomly selecting cut-off points in the
second and fourth parts from left to right ensures
that the data participating in the training has valid
contextual information, as shown in the left of Fig-
ure 2. Then we randomly select the combination
method among PSM and SPM with probability 0.5.

3.2.2 Vulnerability Detection

The main purpose of the vulnerability detection
task is to strengthen the model’s ability to sense se-
curity vulnerabilities in smart contracts and provide
alignment guidance for subsequent Tags-guided
Instruction Fine-tuning. Given the code Cj, if
C; has no vulnerabilities, the ground-truth out-
put is T,, = {[Tagl<correct>[/Tag]}, otherwise
Ty, = {[Tag]<bug>[/Tag]}, where [Tag], [/Tag]
respectively denote the beginning and the end of
the code security detection result.

The model performs vulnerability detection task
under a simple prompt "whether this smart contract
Code is a correct solution:" and the negative log-
likelihood of the target sentence T, is:

D] |Tg;|

Lo =—>" 3 logP(tjlt1...tj—1,Cy; 01),

i=1 j=1

where ¢; represents the token of T}, and 6; denotes
the parameters of CodeLlama after code infilling.

3.3 Tags-guided Instruction Fine-tuning

The goal of tags-guided instructions fine-tuning is
to use tags to assist the model in better distinguish-
ing between correct code and vulnerable code. In
the training process, as shown in the right-bottom
of Figure 2, given a human instruction .S; and the
tag information 7;, the objective of code genera-
tion model is to produce the ground-truth code Cj,
where T; € {correct,bug} indicates whether the
code Cj is correct or vulnerable. We minimize the
negative log-likelihood of the target code:

D[|C;
Lg=— ZZlOgP(CHClmCFl, Si, 15 0p),

i=1 t=1

where c; represents the tt" token of C;, and 6p
denotes the parameters after vulnerability detection
in section 3.2.2.

In the inference process, as shown in the right-
top of Figure 2, given a human instruction S; and
tag information 7; = correct, the model will gen-
erate safer code C), with the help of T; = correct.

4 Experiments

4.1 Experimental Settings

We first introduce some empirical settings, includ-
ing datasets, evaluation metrics, baselines and pa-
rameter settings for CodeBC.

Dataset Total Num_Security Num_Insecurity
SASCsmall 10571 2693 7878
SASCsmall-F 7897 2112 5785
SASCsmall-F-CI 2112 2112 0
SASCsmall-F-VD 7567 1782 5785

Table 1: The statistics of datasets for smart
contract code generation task. Num_Security and
Num_Insecurity are the number of security and inse-
curity smart contracts, respectively.

4.1.1 Dataset

Smart Contract Code Dataset

The dataset for smart contract code generation
task is primarily based on the "Slither Audited
Smart Contracts small-multilabel"(SASCsmall)
dataset (Rossini, 2022), which is built on veri-
fied smart contracts provided by the Blockchain
Ethereum community. They utilize Slither(Feist
et al., 2019) to analyze each smart contract and
map the detected vulnerability types to 9 classes
based on the most threatening smart contract vul-
nerabilities provided by the Decentralized Appli-
cation Security Project (DASP). > As shown in
Table 1, the dataset contains a total of 10571 smart
contract codes, with secure contracts accounting
for 25% and insecure contracts for 75% of the to-
tal. To ensure that all smart contracts involved in
model training can be deployed in practical appli-
cation scenarios, we conducted a selection process
for smart contracts. We excluded code that encap-
sulated multiple smart contracts to form complete
and complex functionalities from SASCsmall, and
finally obtain our dataset SASCsmall-F.

Based on SASCsmall-F dataset, we constructed
different datasets for three training stages, and ran-
domly split them into training, validation, and test
sets in an 8:1:1 ratio. The statistics of these datasets
are shown in Table 1:

* Code Infilling dataset(SASCsmall-F-CI): To
maximize the model’s performance in gener-
ating secure code, the code infilling task se-
lected 2112 secure smart contract codes from
SASCsmall-F that are free of security vulner-
abilities. Additionally, each smart contract in-
volved in training is randomly split five times
and completely shuffled.

* Vulnerability Detection dataset(SASCsmall-
F-VD): The training data for the vulnerabil-
ity detection task utilizes all smart contract

Zhttps://dasp.co/

codes with security vulnerabilities from the
SASCsmall-F dataset. To ensure a roughly
equal sample length for both secure and vul-
nerable types of samples involved in the train-
ing, excessively long smart contract codes
from the secure contract codes are filtered out.

* Tags-guided Instruction dataset: the entire
dataset from SASCsmall-F.

Blockchain-HumanEval Dataset

The Blockchain-HumanEval dataset proposed in
this paper is constructed based on the open-source
smart contract code repository Openzeppelin. >
The specific reasons are as follows:

* As the most popular and verified contract code
repository, the code it provides can be consid-
ered as correct smart contract code without
security vulnerabilities.

* As a contract code that provides security guar-
antees for smart contracts, it imposes higher
requirements on its security which will place
high demands on the security of the model-
generated code.

* Although it is also smart contract code, it does
not have complete practical application func-
tionality, and there is no complete code in-
formation on Blockchain Ethereum, so data
leakage will not occur in the training data.

The Blockchain-HumanEval dataset, proposed in
this paper, selects smart contract code from the
Openzeppelin code repository that does not have
internal references as the target code. Addition-
ally, natural language instructions are manually
added to these contract codes, and detailed specifi-
cations of the Solidity version number, the names
of functions, events, and errors, as well as inter-
nal parameters and their functions, are provided.
A total of 41 missions. The SASCsmall-F and
Blockchain-HumanEval dataset will be released
when this paper is accepted.

4.1.2 Baselines and Parameter Settings

We compare our CodeBC model with three base-
lines, including CodeL.lama-7b-Instruct (Roziere
et al., 2023), CodeGen25-7b-Instruct (Ni-
jkamp et al., 2023), and DeepSeek-Coder-6.7b-
Instruct (Daya Guo, 2024). In the model training

3https://github.com/OpenZeppelin/openzeppelin-
contracts

phase, all three stages of training are performed
using LoRA (Hu et al., 2021) on the A100 GPU,
which has been shown to reduce training time
significantly while ensuring good results. The rank
of the update matrix (lora-r) is set to 4, the LoRA
scaling factor (lora-alpha) is set to 32, and all parts
of the attention block are used as target modules.
The learning rate is set to le-4, and ten rounds
are trained on the Code Infilling and Vulnerability
Detection tasks, respectively, and one round is
trained on the Tags-guided Instruction task. In the
model inference stage, we ran all models using a
temperature value of 0.2 and a nucleus sampling
method with a parameter value of 0.95.

4.1.3 Maetrics

Each model generates five samples for each natu-
ral language instruction from the Blockchain Hu-
manEval dataset. We evaluate the models based
on three aspects: code generation quality, security,
and vulnerability detection accuracy. The specific
evaluation metrics are as follows:

BLEU(Papineni et al., 2002) and Code-
BLEU(Ren et al., 2020) are employed to evalu-
ate the quality of smart contract code in meet-
ing the requirements of natural language instruc-
tions. We calculate the average BLEU(AvgBLEU),
the best BLEU(BestBLEU), the average Code-
BLEU(AvgCB) and the best CodeBLEU(BestCB)
for evaluation. We do not use the metric pass @k be-
cause of the nature of smart contracts that can only
be called passively. To better assess the quality of
the generated code, we removed all comments and
code description sections from the target code and
the generated samples, and performed the metrics
calculations only on the code.

The performance of security is evaluated us-
ing the review results of the Slither inspection
tool (Feist et al., 2019), which is the most popular
review tool in the Blockchain community and is
officially recommended by Ethernet. * The tool re-
turns the compilation results of the code and returns
security vulnerability analysis results for the com-
pilable contract code. We use the compilation pass
rate(ComPass) and the vulnerability rate(VulRate)
of the generated code to visualize the performance
of the generated results in terms of security, and the
safe-availability rate(SafeAval) > to further reflect

“https://ethereum.org/zh/developers/docs/smart-
contracts/testing

5The proportion of smart contract code that is compilable
and free of security vulnerabilities

the model’s ability in terms of security.

In order to test the performance of vulnerabil-
ity detection for our model, we utilize handwritten
smart contract code provided by the open source
project SmartBugs (Durieux et al., 2020), provid-
ing a total of 141 smart contract code for different
types of security vulnerabilities, each type of vul-
nerability is briefly described in Appendix A. We
calculate the accuracy of the binary classification
vulnerability detection task.

4.2 Experimental Results

In this section, we demonstrate our experiment
results on BlockChian-HumanEval datasets and
the ablation experimental results.

4.2.1

The metric-based evaluation results are shown in
Table 2. From the results, we can see that in terms
of meeting the demands of natural language instruc-
tions, CodeGen25 and DeepSeek-Coder perform
basically the same, slightly worse than CodeLlama,
and the behavior on the metrics AvgBLEU, Best-
BLEU, AvgCB and BestCB are lower than CodeL-
lama by about 8.25%, 3.53%, 9.26%, 7.18% re-
spectively. In terms of security, CodeGen25 and
DeepSeek-Coder also perform roughly the same,
and are significantly worse than the CodeLlama
model, with about 19.27% lower compilation pass
rate, and about 16.58% more vulnerability rate, and
about 18.29% fewer contract code that can be used
safely. This shows that CodeLlama outperforms
the other two baseline models both in terms of fit
with natural language descriptions and security.
Our CodeBC model has excellent performance
in all the metrics, compared with all baselines.
In terms of satisfying natural language instruc-
tion requirements, it achieves scores above 0.64 in
AvgBLEU, BestBLEU, AvgCB, and BestCB met-
rics. Compared to the best-performing Codel.lama
model in the baseline models, it shows improve-
ments of approximately 16.54%, 13.03%, 11.35%,
and 8.57% respectively in the above metrics. In
terms of security, compared to the CodelLlama
model, the compilation pass rate has increased
from 43.90% to 86.82%, an increase of 42.92%,
the vulnerability rate has decreased from 61.95%
to 26.34%, a decrease of 35.61%, and the code of
the contract that can be used safely has increased
from 40.48% to 78.56%, an increase of 38.08%.
From the above experimental results, we can see
that our CodeBC proposal outperforms the baseline

Metric-based Evaluation

Models AvgBLEU BestBLEU AvgCB BestCB ComPass(%) VulRate(%) SafeAval(%)
CodeGen25 0.4298 0.5614 0.4411 0.5111 24.87 79.02 22.43
DeepSeek-Coder 0.4251 0.5650 0.4371 0.5084 24.39 78.04 21.95
CodeLlama 0.5099 0.5985 0.5317 0.5816 43.90 61.95 40.48
CodeBC(our) 0.6753 0.7288 0.6452 0.6674 86.82 26.34 78.56
Table 2: The metric-based evaluation results.
Models AvgBLEU BestBLEU AvgCB BestCB ComPass(%) VulRate(%) SafeAval(%)
CodeBC 0.6753 0.7288 0.6452 0.6674 86.82 26.34 78.56
CodeBC-CI 0.5279 0.6271 0.5739 0.6247 51.70 57.07 47.80
CodeBC-w.0.CI&TI 0.5759 0.6735 0.5254 0.5633 52.68 53.66 65.33
CodeBC-w.0.CI&VD 0.5698 0.6298 0.6001 0.6345 77.06 44.87 68.78

Table 3: Evaluation results of each stage of the model on the Blockchain-HumanEval dataset.

w.0.CI&VD denotes the model fine-tuned only af-

Models AvgBLEU BestBLEU AvgCB BestCB
CodeLlama 0.1842 0.1843 0.5225 0.5231
our CodeBC-CI 0.4771 0.4829 0.8032 0.8042

Table 4: The test results of CodelLlama and our
CodeBC-CI model for code infilling task on Blockchain-
HumanEval dataset.

model in both the satisfaction of natural language
instruction requirements and security. The efficient
code-infilling fine-tuning task allows the model
to learn smart contract programming well, addi-
tionally, multiple tasks involving the construction
of smart contract code provide the model with re-
peated exposure to smart contract code data, which
significantly improves CodeBC’s ability to gener-
ate smart contracts. As for the vulnerability de-
tection task and the tags-guided instruction fine-
tuning focuses on improving the security of the
model-generated code by improving the model’s
ability to sense vulnerabilities and directing the
model to generate more secure smart contract code
through tags when generating smart contracts. The
improvement of CodeBC over the baseline model
in various metrics demonstrates the effectiveness
of our two-phase fine-tuning strategy.

4.2.2 Ablation Experiments

To verify the actual effect of the training of the
models in each stage, we conducted ablation ex-
periments, and the test results of the models in
each stage on Blockchain-HumanEval are shown
in Table 3. CodeBC-CI denotes the model fine-
tuned only through the code completion task.
CodeBC-w.0.CI&TI denotes the model fine-tuned
only for the vulnerability detection task. CodeBC-

ter label-guided instruction fine-tuning. CodeBC-
VD denotes the model fine-tuned for the first-phase
multi-task learning.

From the experimental results, it can be observed
that the training methods in each stage can improve
the score of AvgBLEU, BestBLEU, AvgCB, and
BestBLEU, which represent the code generation
and natural language requirements. By comparing
the changes in these four metrics for CodeBC-CI,
CodeBC-VD, and CodeBC, it can be seen that the
training in all three stages contributes to the per-
formance of the final model. This indicates that
as long as the model is exposed to more code data
during the training process, its code generation ca-
pability can be improved.

In terms of security, the training methods used in
each stage also improve the model’s performance in
security aspects. However, comparing CodeBC-CI
with other stages reveals that although the training
dataset in this stage only includes contract code
without vulnerabilities, the lack of security infor-
mation in the training data does not significantly
improve the security of the generated code by the
model. On the other hand, comparing CodeBC-
VD with CodeBC-w.0.CI&TI shows that the smart
contract programming knowledge learned through
code infilling tasks enhances the model’s vulnera-
bility awareness, thereby improving the security of
the generated code.

4.3 Analysis

In this section, we tested the performance of the
CodeBC model on the code completion task and the
vulnerability detection task, respectively, to analyze
the reasons for the performance improvement of

Accuracy(%)

Models

RE AC AR ULLC DoS BR FR TM

other all

CodeBC-VD 90 33 O 40
CodeBC % 17 0 42

50 100 25 80 67 52
67 100 50 100 67 52

Table 5: The test results of CodeBC-VD and CodeBC model for vulnerability detection task on SmartBugs dataset.

the CodeBC model due to the multi-task learning
fine-tuning strategy.

4.3.1 Code Infilling

We tested the smart contract code-filling capabili-
ties of the CodeLlama and the CodeBC-ClI, respec-
tively. The results of the assessment are shown
in table 4. From the results, we can see that the
CodeBC-CI model performs better than the CodeL-
lama model in completing contract code infilling
tasks, with approximately a 0.3 improvement in
both BLEU and CodeBLEU metrics. This indicates
that fine-tuning the model through code infilling
tasks enables it to learn the structural information
of smart contract code and better understand the
contextual information of the code, thereby enhanc-
ing the model’s ability to program smart contracts.
As demonstrated in the ablation experiments in
section 4.2.2, the structural information of smart
contracts learned through code infilling task can
improve the model’s vulnerability awareness in
vulnerability detection task, which enhances the
security of the generative smart contract code.

4.3.2 Vulnerability Detection

The results of the vulnerability detection part are
shown in Table 5. From the results, we can see
that the model can perceive 52% of the vulnera-
bilities, and there is no significant decrease in the
ability to perceive the vulnerabilities after train-
ing in the Tags-guided Instruction phase. The
model has a good ability to perceive vulnerabilities
such as Reentrancy(RE), Bad Randomness(BR)
and other vulnerabilities that can easily cause eco-
nomic losses.

In order to further validate the impact of model
vulnerability-awareness capability on improving
the security of model-generated code, we analyzed
the vulnerabilities of model-generated smart con-
tracts at each stage, and the results are shown in
Table 6. From the results, we can see that the
smart contract code generated by the model after
fine-tuning the vulnerability detection task can well
avoid contract vulnerabilities such as re-entry at-

Models RE AC AR ULLC other ignore
CodeBC-CI 5 4 6 0 2 0
CodeBC-VD 0 0 0 0 7 13
CodeBC 0 0 0 1 11 15

Table 6: Number of vulnerabilities of each type of
model-generated contract in each phase.

tacks, access control, and so on, which appear in the
contract code generated by CodeBC-CI. Besides,
these models primarily generate vulnerabilities that
are ignored because they do not pose an actual se-
curity threat. Smart contracts with these types of
vulnerabilities are labeled as secure in the training
data.

The above results show that the model’s im-
proved vulnerability sensing capability through the
vulnerability detection task well enhances the secu-
rity of the model-generated smart contract code.

5 Conclusion

In this paper, we propose CodeBC, a code genera-
tion model for blockchain smart contracts, and de-
sign a two-stage fine-tuning strategy for the security
requirements of smart contracts. To validate the per-
formance of CodeBC on the smart contract genera-
tion task, we propose the Blockchain-HumanEval
dataset. Through experiments, we show that our
model improves by nearly 17% in BLEU, 13% in
CodeBLEU, 42% in compilability rate, 36% in vul-
nerability rate, and the percentage of contract code
that is safe to use increased from 40% to 78%. In
the future, we will leverage the control flow graph
of smart contracts to design more stringent secu-
rity policies to ensure that the model can generate
secure and usable code.

Limitations

Our work has several limitations, which we aim to
address in our future work:

Firstly, although our model outperforms other
baseline models in terms of evaluation metrics, its
performance is still poor for certain tasks, espe-

cially when it comes to longer code completion.
Therefore, further optimization is required.
Secondly, our model was trained only on snip-
pets of smart contract code, without fully utilizing
information such as control flow graphs. In the fu-
ture, we will design further improvements based on
the specific characteristics of smart contract data to
enhance the quality of generated smart contracts.
Finally, our approach has effectively improved
the security of smart contract code generated by the
model. However, we have not conducted rigorous
experimental validation on other programming lan-
guages. In the future, we will consider developing
solutions to enhance the security of code generation
tasks for a wider range of programming languages.

Ethical Considerations

CodeBC’s main goal is to generate smart contract
code based on user instructions. Due to the high-
security requirements of smart contracts, the safety
of the generated code was a key consideration dur-
ing the model design. Our data is collected from
open-source projects, respecting the respective li-
cense restrictions or publicly available benchmarks.
Additionally, since the data used mostly consists of
publicly available smart contract code information
on the blockchain, it does not involve any privacy
data. We also discuss the limitations and future
work of this paper.

References

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,
John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of lan-
guage models to fill in the middle. arXiv preprint
arXiv:2207.14255.

Nakamoto S Bitcoin. 2008. Bitcoin: A peer-to-peer
electronic cash system.

Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. 2018. Vandal: A scalable secu-
rity analysis framework for smart contracts. arXiv
preprint arXiv:1809.03981.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang
Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu.

2024. Deepseek-coder: When the large language
model meets programming — the rise of code intelli-
gence.

Thomas Durieux, Joao F. Ferreira, Rui Abreu, and Pedro
Cruz. 2020. Empirical review of automated analy-
sis tools on 47,587 Ethereum smart contracts. In
Proceedings of the ACM/IEEE 42nd International
conference on software engineering, pages 530-541.

Josselin Feist, Gustavo Grieco, and Alex Groce. 2019.
Slither: a static analysis framework for smart con-
tracts. In 2019 IEEE/ACM 2nd International Work-
shop on Emerging Trends in Software Engineering
for Blockchain (WETSEB), pages 8—15. IEEE.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Zhipeng Gao, Lingxiao Jiang, Xin Xia, David Lo, and
John Grundy. 2020. Checking smart contracts with
structural code embedding. IEEE Transactions on
Software Engineering, 47(12):2874-2891.

Ilya Grishchenko, Matteo Maffei, and Clara Schnei-
dewind. 2018. A semantic framework for the security
analysis of ethereum smart contracts. In Principles
of Security and Trust: 7th International Conference,
POST 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Pro-
ceedings 7, pages 243-269. Springer.

Jingxuan He, Mislav Balunovié¢, Nodar Ambroladze,
Petar Tsankov, and Martin Vechev. 2019. Learning
to fuzz from symbolic execution with application to
smart contracts. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 531-548.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Con-
tractfuzzer: Fuzzing smart contracts for vulnerability
detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software En-
gineering, pages 259-269.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092-1097.

Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang
Sun. 2018. S-gram: towards semantic-aware security
auditing for ethereum smart contracts. In Proceed-
ings of the 33rd ACM/IEEE international conference
on automated software engineering, pages 814-819.

https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won
Hwang, and Alexey Svyatkovskiy. 2022. ReACC:
A retrieval-augmented code completion framework.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6227-6240, Dublin, Ireland.
Association for Computational Linguistics.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. 2016. Making smart contracts
smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications secu-
rity, pages 254-269.

Muhammad Izhar Mehar, Charles Louis Shier, Alana
Giambattista, Elgar Gong, Gabrielle Fletcher, Ryan
Sanayhie, Henry M Kim, and Marek Laskowski.
2019. Understanding a revolutionary and flawed
grand experiment in blockchain: the dao attack.
Journal of Cases on Information Technology (JCIT),
21(1):19-32.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023. Codegen?2:
Lessons for training llms on programming and natu-
ral languages. arXiv preprint arXiv:2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Michael Rodler, Wenting Li, Ghassan O Karame, and
Lucas Davi. 2018. Sereum: Protecting existing smart

contracts against re-entrancy attacks. arXiv preprint
arXiv:1812.05934.

Martina Rossini. 2022. Slither audited smart contracts
dataset.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Wesley Joon-Wie Tann, Xing Jie Han, Sourav Sen
Gupta, and Yew-Soon Ong. 2018. Towards
safer smart contracts: A sequence learning ap-
proach to detecting security threats. arXiv preprint
arXiv:1811.06632.

10

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li,
Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang, and Qun
Liu. 2022. Compilable neural code generation with
compiler feedback. In Findings of the Association
for Computational Linguistics: ACL 2022, pages 9—
19, Dublin, Ireland. Association for Computational
Linguistics.

G Wood. 2022. What is web 3? here’s how future
polkadot founder gavin wood explained it in 2014.
Coindesk. CoinDesk.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation of
large language models of code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, pages 1-10.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
Oleksandr Polozov, and Charles Sutton. 2023. Nat-
ural language to code generation in interactive data
science notebooks. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 126—173,
Toronto, Canada. Association for Computational Lin-
guistics.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Wang Yongji, and Jian-
Guang Lou. 2023. Large language models meet
nl2code: A survey. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7443—
7464.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin.
2023. Self-edit: Fault-aware code editor for code
generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 769-787, Toronto,
Canada. Association for Computational Linguistics.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Xie-S. Dai H. Chen X. Wang H. Zheng, Z. 2017. An
overview of blockchain technology: Architecture,
consensus, and future trends. IEEE international
congress on big data (BigData congress), pages 557—
564.

Appendix
A Description of Vulnerability Types

Reentrancy(RE): Smart contracts allow external
contracts or accounts to be called under certain
rules. However, if the calling rules or contract exe-
cution logic are not properly designed, reentrancy

https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.findings-acl.2
https://doi.org/10.18653/v1/2022.findings-acl.2
https://doi.org/10.18653/v1/2022.findings-acl.2
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45

vulnerabilities can arise. A reentrancy vulnera-
bility allows attackers to repeatedly call the same
function during the execution of a contract. By
exploiting this vulnerability, attackers can reenter
a function within the contract during its execution
and carry out malicious operations. One notable
example of such a vulnerability is the infamous
"The DAO" attack, which resulted in nearly $50
million in losses at the time.

Access Control(AC): In smart contracts, access
to functions and data also needs to be restricted
through permission controls and condition checks.
On one hand, attackers may bypass or tamper with
access control mechanisms to gain unauthorized
privileges or perform unauthorized operations, lead-
ing to sensitive data leaks, financial losses, or dis-
ruption of contract logic. On the other hand, overly
strict access control can result in virtual currencies
and other assets being locked within the contract,
causing economic losses. A typical example is the
2017 Parity wallet contract attack. By exploiting
a special transaction to bypass access control, at-
tackers gained access to funds within the contract,
resulting in approximately $30 million in losses at
the time.

Arithmetic(AR): Also known as integer over-
flow and integer underflow. Integer overflow vul-
nerabilities are not a new type of vulnerability, but
they pose a particularly significant risk in smart
contracts. This is because unsigned integers are
commonly used, and many developers are accus-
tomed to using simple types. If an overflow oc-
curs, many seemingly benign smart contracts can
become vehicles for theft or denial-of-service at-
tacks. One notable example is the 2018 BEC attack,
where attackers caused the price of BEC to plum-
met to zero by flooding the exchange with a large
number of tokens, resulting in immeasurable eco-
nomic losses.

Unchecked Low Level Calls(ULLC): Solidity
allows the use of low-level functions such as call(),
delegatecall(), and staticcall(). These functions
behave differently from regular functions when it
comes to error handling. Instead of propagating or
reverting the current execution, they simply return
a boolean value of false. If not properly checked
and validated, these functions can be exploited by
attackers to execute unauthorized operations, ma-
nipulate contract state, or steal funds.

Denial of Service(DoS): DoS attacks are preva-
lent in the field of security, and they also pose a
significant risk in blockchain systems, including

11

Ethereum. In Ethereum, a DoS attack can be de-
scribed as "irreversible malicious operations or infi-
nite resource consumption." Due to the possibility
of loops in on-chain calls, Ethereum requires each
request to consume a certain amount of gas. Once
the gas limit is exhausted, the program cannot con-
tinue executing, regardless of the circumstances.
Therefore, a DoS attack on the blockchain not only
disrupts the normal execution of contract code logic
but also results in significant consumption of tokens
and gas.

Bad Randomness(BR): BR has always been
a challenge in modern computer systems, and it
becomes even more complex in open blockchain
networks. In Ethereum smart contracts, for exam-
ple, implementing logic based on random numbers
can be impractical. This is because on-chain infor-
mation is publicly accessible, and anyone can query
and analyze the data stored on the blockchain. If
the contract code does not carefully consider the
public nature of on-chain data when using random
numbers, it can be maliciously exploited for cheat-
ing purposes.

Front Running(FR): In Ethereum, all trans-
actions need to be confirmed before being fully
recorded on the blockchain. Each transaction re-
wards miners with a certain amount of transaction
fees as an incentive. The amount of fees deter-
mines the priority of a transaction being confirmed
by miners. Therefore, if an attacker can obtain the
specific transaction information or related informa-
tion of a user in advance and complete the operation
before the user does, they can cause losses to the
original user by using various means (usually by in-
creasing the bid) to complete the transaction ahead
of the user.

Time Manipulation(TM): In Solidity, vulner-
abilities related to time-dependent events can
arise. The block.timestamp in Solidity is con-
trolled by miners, so if the contract logic relies on
block.timestamp, there is a risk of being exploited.
When an attacker (usually a miner) confirms a trans-
action, they can manipulate block.timestamp to
their advantage. This allows them to have fore-
knowledge of the outcome of contract code that
depends on the timestamp. The attacker can choose
a suitable value to achieve their desired outcome.

B Case Study

The performance of the stage models on the task
"Address" will be listed and analyzed here. The

task requires the completion of a library called Ad-
dress, which provides several functions related to
address manipulation. The representation in the
Blockchain-HumanEval dataset is shown in Figure
3. The manually written instructions specify the So-
lidity version number used in the contract, provide
an overall description of the contract’s functionality,
and provide detailed descriptions of the function-
ality of each function in the contract. In the code
section, annotations are removed, and only the code
information is retained as the target for generation.
The performance of the model CodeLlama on the
"Address" task is shown in figure 4. From the re-
sults, although the generated code seems to encom-
pass the implementation of all the functionalities
mentioned in the instructions, there are still some
details that may pose security risks: Firstly, all
functions that should be declared as internal have
been declared as public, which could potentially
lead to issues with access control and data integrity.
Furthermore, the generated smart contract code
adopts a strategy of direct and complete rollback
when handling execution errors, which is different
from the target code that executes different rollback
strategies based on different return results. The di-
rect and complete rollback strategy may result in
irreversible operations and the inability to restore
to the previous state, causing serious impacts on
the data integrity and consistency of the system.
Additionally, the direct and complete rollback can-
not avoid unnecessary rollbacks, which could be
exploited by malicious users to launch denial-of-
service attacks. Lastly, the generated smart contract
declares the function functionCall() as public view,
which means it can only be used for reading and
not for modifying the state. However, the statement
target.call(data) within the function may modify
the state. This error directly leads to the contract
failing to compile.

The performance of the CodeBC-CI model on
the "Address" task is shown in the figure5. From
the results, there are slight differences in the im-
plementations of different functions, but there is
not much difference in terms of functionality. The
type of function declarations has been improved by
declaring all functions as internal types. However,
there has been no improvement in the rollback strat-
egy. At the same time, the function functionCall()
declares a return value of type bytes memory, but
it actually returns the result of type bool from tar-
get.call(data), which causes the generated code to
still fail to compile.

12

The performance of the CodeBC-VD model on
the "Address" task is shown in the figure6. From
the results, it can be observed that the model has
further strengthened the security review of various
functionalities and correctly declared the functions
that should be declared as internal types. Optimiza-
tion has also been done for the rollback strategy.
Additionally, the generated contract code is error-
free and can be compiled and executed success-
fully.

The performance of the CodeBC model on the
"Address" task is shown in the figure7. Compared
to CodeBC-VD, which has already demonstrated
excellent functionality and security, CodeBC does
not show significant improvements. However, it
has removed some redundant code, indicating an
improvement in the model’s understanding of in-
structions.

Instrction:

Generate smart contract code that meets the following requirements:

Programming with solidity ~ version number 0.8.20

Implement a library named Address for handling address related operations, throwing exceptions when the account balance
is insufficient, code at the target address, or internal calls fail

The following functions need to be implemented, with the following names and functions:

sendValue: Sends Ether to the specified address.

functionCall: Calls a function at the target address without passing Ether.

functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.

functionDelegateCall: Delegate a call to the target address.

verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.

_revert: Rolls back the transaction and throws an exception.

Please give the contract code

Code:
pragma solidity 70.8.20;
library Address {
error AddressInsufficientBalance(address account);
error AddressEmptyCode(address target);
error FailedInnerCall();
function sendvalue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));

(bool success,) = recipient.call{value: amount}("");
if (!success) {

revert FailedInnerCall();
X

function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}

function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));

(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);

function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
if (returndata.length == @ && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}

}
function _revert(bytes memory returndata) private pure {
if (returndata.length > @) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)

¥
} else {
revert FailedInnerCall();

}

Figure 3: Task "Address" in Blockchain-HumanEval.

13

Instruction:

[INST]Generate smart contract code that meets the following requirements:

Programming with solidity ~ version number ©0.8.20

Implement a library named Address for handling address related operations, throwing exceptions when the account balance
is insufficient, code at the target address, or internal calls fail

The following functions need to be implemented, with the following names and functions:

sendValue: Sends Ether to the specified address.

functionCall: Calls a function at the target address without passing Ether.

functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.

functionDelegateCall: Delegate a call to the target address.

verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.

_revert: Rolls back the transaction and throws an exception.

Please give the contract code[/INST]

Output code:
pragma solidity 70.8.20;
library Address {
function sendvalue(address payable target, uint256 amount) [public]|{

require(target.balance >= amount,)
(bool success,) = target.call{value: amount}(");
require(success,)3

function functionCall(address target, bytes memory data)|public|
require(target.code.length > 0o,
(bool success, bytes memory result) = target.call(data);
require(success,)

{

)

function functionCallWithValue(address target, uint256 amount, bytes memory data)[public] {
require(target.balance >= amount,
(bool success, bytes memory result) = target.call{value: amount}(data);
require(success,)

}

function functionStaticCall(address target, bytes memory data)m view {
require(target.code.length > 0,
(bool success, bytes memory result) = tar‘get.statlccall(data);
require(success, 8

}

function functionDelegateCall(address target, bytes memory data)W{
require(target.code.length > 0,
(bool success, bytes memory result) = tar‘get.delegatecall(data);
require(success, DB

}

function verifyCallResultFromTarget(address target, bytes memory data)m?iew {
require(target.code.length > o,

(bool success, bytes memory result) = tar‘get.call(datag,

9

require(success,)s
require(result.length > o, DE

}

function verifyCallResult(bytes memory result)|public| pure {
require(result.length > o,)

}

function _revert()[public|pure {
revert()5

}

Figure 4: CodeLlama generation results on the "Address" task.

14

Instrction:

[INST]Generate smart contract code that meets the following requirements:

Programming with solidity ~ version number 0.8.20

Implement a library named Address for handling address related operations, throwing exceptions when the account balance
is insufficient, code at the target address, or internal calls fail

The following functions need to be implemented, with the following names and functions:

sendValue: Sends Ether to the specified address.

functionCall: Calls a function at the target address without passing Ether.

functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.

functionDelegateCall: Delegate a call to the target address.

verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.

_revert: Rolls back the transaction and throws an exception.

Please give the contract code[/INST]

Output Code:
pragma solidity 70.8.20;
library Address {
function sendvalue(address payable recipient, uint256 amount){

require(address(this).balance >= amount, Db
(bool success,) = recipient.call{value: amount}(');
require(success,)s

}
function functionCall(address target, bytes memory data)|internal|returns [(bytes memory)] {
return tar‘get.call(datag,

3

function functionCallWithValue(address target, bytes memory data, uint256 value) returns (bytes memory) {
return target.call{value: value}(data);

}

function functionStaticCall(address target, bytes memory data)[internal|view returns (bytes memory) {
return target.staticcall(data);
}

function functionDelegateCall(address target, bytes memory data) returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
require(success, b
return returndata;

}
function _revert(bytes memory errorMessage)| internal|pure {
revert(string(errorMessage));

}
function _revertWithErrorMessage(bytes memory errorMessage)|internal]pure {
revert(string(errorMessage));
}
function verifyCallResultFromTarget(bytes memory returndata)|internal|returns (bool) {
if (returndata.length == @) {
return false;

}
require(returndata[@] == 0x@9, E
return true;

}
function verifyCallResult(bytes memory returndata) returns (bool) {
if (returndata.length == 0) {
return false;
}

require(returndata[@] == 0xe9, G
return true;

Figure 5: CodeBC-CI generation results on the "Address" task.

15

Instrction:

[INST]Generate smart contract code that meets the following requirements:

Programming with solidity ”~ version number ©.8.20

Implement a library named Address for handling address related operations, throwing exceptions when the account balance is insufficient, code at the
target address, or internal calls fail

The following functions need to be implemented, with the following names and functions:

sendValue: Sends Ether to the specified address.

functionCall: Calls a function at the target address without passing Ether.

functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.

functionDelegateCall: Delegate a call to the target address.

verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.

_revert: Rolls back the transaction and throws an exception.

Please give the contract code[/INST]

Output Code:
pragma solidity ~0.8.20;
library Address {
function sendValue(address payable recipient, uint256 amount) {

require(address(this).balance >= amount, 8
(bool success,) = recipient.call{value: amount}("');
require(success,)8
)]
function functionCall(address target, bytes memory data)m returns (bytes memory) {
return functionCall(target, data,)8
3

function functionCall(address target, bytes memory data, string memory er‘r‘or‘Message) returns (bytes memory) {
return functionCallwithvalue(target, data, @, errorMessage);

3

function functionCallWithValue(address target, bytes memory data, uint256 value) m returns (bytes memory) {
return functionCallWithvalue(target, data, value,)8

)]

function functionCallwithValue(address target, bytes memory data, uint256 value, string memory errorMessage) m returns (bytes memory) {
require(address(this).balance >= value, Vg

require(isContract(target),)8
(bool success, bytes memory returndata) = target.call{value: value}(data);
return _verifyCallResult(success, returndata, errorMessage);

3

function functionStaticCall(address target, bytes memory data) view returns (bytes memory) {
return functionStaticCall(target, data,)8

)]

function functionStaticCall(address target, bytes memory data, string memory errorMessage) view returns (bytes memory) {
require(isContract(target), R
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);

3
function functionDelegateCall(address target, bytes memory data) returns (bytes memory) {
return functionDelegateCall(target, data,)8
}
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) returns (bytes memory) {
require(isContract(target), 8
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function verifyCallResultFromTarget(address target, bytes memory returndata, string memory errorMessage) [internal] view returns (bytes memory) {
(bool success, bytes memory returndataCopy) = target.staticcall(returndata);
return _verifyCallResult(success, returndataCopy, errorMessage);
3
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private| pure returns(bytes memory) {
if (success) {
return returndata;

} else {
if (returndata.length > @) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {

revert(errorMessage);

}

}

}

function isContract(address account) [internal| view returns (bool) {
uint256 size;

assembly { size := extcodesize(account) }
return size > 0;

¥
function _revert() {
assembly {
revert(0, 0)
}
}

Figure 6: CodeBC-VD generation results on the "Address" task.

16

Instrction:

[INST]Generate smart contract code that meets the following requirements:

Programming with solidity ~ version number ©.8.20

Implement a library named Address for handling address related operations, throwing exceptions when the account balance is
insufficient, code at the target address, or internal calls fail

The following functions need to be implemented, with the following names and functions:

sendValue: Sends Ether to the specified address.

functionCall: Calls a function at the target address without passing Ether.

functionCallWithValue: Calls a function at the target address and passes the specified amount of Ether.
functionStaticCall: Call a function at the target address statically.

functionDelegateCall: Delegate a call to the target address.

verifyCallResultFromTarget: Verifies that the call result was successful and handles exceptions.
verifyCallResult: Verifies that the call result was successful and handles exceptions.

_revert: Rolls back the transaction and throws an exception.

Please give the contract code[/INST]
[Tag]correct[/Tag]

Output Code:
pragma solidity ~0.8.20;
library Address {
function isContract(address account) internal view returns (bool) {
uint256 size;
assembly { size := extcodesize(account) }
return size > 0;

}

function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, s
(bool success,) = recipient.call{value: amount}(');
require(success,)8

}

function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, s

function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallwWithValue(target, data, @, errorMessage);

}

function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithvValue(target, data, value, N8

}

function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns
(bytes memory) {
require(address(this).balance >= value, N3
require(isContract(target),
(bool success, bytes memory returndata) = target.call{value: value}(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, DE

function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target),
(bool success, bytes memory returndata) = target.statlccall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, DE

function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target),
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function verifyCallResultFromTarget(address target, bytes memory returndata, string memory errorMessage) internal view returns
(bytes memory) {
(bool success, bytes memory returndataCopy) = target.staticcall(returndata);
return _verifyCallResult(success, returndataCopy, errorMessage);

}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory)
{
if (success) {
return returndata;
} else {
if (returndata.length > @) {
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}

Figure 7: CodeBC generation results on the "Address" task.

17

	Introduction
	Related Work
	Code Generation
	Vulnerability Detection

	CodeBC Model
	Task Definition
	Multi-task Learning Fine-tuning
	Code Infilling
	Vulnerability Detection

	Tags-guided Instruction Fine-tuning

	Experiments
	Experimental Settings
	Dataset
	Baselines and Parameter Settings
	Metrics

	Experimental Results
	Metric-based Evaluation
	Ablation Experiments

	Analysis
	Code Infilling
	Vulnerability Detection

	Conclusion
	Description of Vulnerability Types
	Case Study

