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Abstract

Fine-tuning Large Language Models (LLMs) is now a common approach for text classifi-
cation in a wide range of applications. When labeled documents are scarce, active learning
helps save annotation efforts but requires retraining of massive models on each acquisition
iteration. We drastically expedite this process by using pretrained representations of LLMs
within the active learning loop and, once the desired amount of labeled data is acquired,
fine-tuning that or even a different pretrained LLM on this labeled data to achieve the best
performance. As verified on common text classification benchmarks with pretrained BERT
and RoBERTa as the backbone, our strategy yields similar performance to fine-tuning all
the way through the active learning loop but is orders of magnitude less computationally
expensive. The data acquired with our procedure generalizes across pretrained networks,
allowing flexibility in choosing the final model or updating it as newer versions get released.

Keywords: Active Learning, Transfer Learning, NLP

1 Introduction

Text classification has a long history and numerous applications in the field of natural
language processing (Jindal and Liu, 2007; Lai et al., 2015). Since the debut of Transformers
(Vaswani et al., 2017), transfer learning using Large Language Models (LLMs) such as
BERT, RoBERTa, and ELECTRA has become increasingly popular among practitioners
(Devlin et al., 2018; Liu et al., 2019; Clark et al., 2020). Fine-tuning these models on
text classification datasets including GLUE, MultiNLI, and IMDb significantly improved
their state-of-the-art performance (Howard and Ruder, 2018; Devlin et al., 2018). However,
in many practical scenarios, downstream text datasets are either scarcely labeled or are
unlabeled at all, restricting supervised transfer learning. At the same time, manual labeling
is often laborious and costly, which calls for a careful and targeted selection of examples
for annotation using techniques such as active learning (Schröder and Niekler, 2020). The
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standard active learning pipeline iterates over the following steps: (1) train a model on the
labeled subset of data, (2) query this model to select unlabeled samples for annotation,
and (3) label chosen samples and move them to the labeled split (Lewis and Gale, 1994).
When used with LLMs, this procedure requires sequentially re-fine-tuning models with up
to billions of parameters, which is very expensive, if feasible at all.

Phase AL+LR PRepAL AL+FT

Precomputation (s) 261 261 —
Tot. Retraining (s) 5 5 79K
Tot. Acquisition (s) 356 356 12K
Final training (s) 0.9 7K 7K

Total (s) 0.5K 7.5K 98K

Accuracy (%) 72.27 79.05 79.60

Figure 1: Active learning with MaxEntropy acquisition function and BERT backbone on
QNLI across different strategies over 39 labeling iterations. Left: validation performance
after training on labeled data thus far. Error bands represent ±1 standard deviation.
Right: wall-clock time (in seconds) spent on each phase and validation accuracy of the
final model trained on 2, 000 acquired samples.

Recently published studies attempt to mitigate this problem by either using just a single
active learning iteration, introducing additional proxy-models, or carefully synchronizing
model retraining and human labeling (Xie et al., 2021; Sanh et al., 2019; Nguyen et al., 2022).
These methods, however, are either impractical, lack in performance, require considerable
memory overhead, or suffer from all of the above. In this work, we propose an alternative
approach to transfer learning with active learning that brings extraordinary speedups while
avoiding these deficiencies.

Our method. We introduce PRepAL (Pretrained Representation Active Learning), which
precomputes data representations using a pretrained LLM and, on each active learning (AL)
iteration, fits a simple linear classifier, e.g., Logistic Regression (LR), avoiding resource-
consuming fine-tuning (FT) until the desired amount of data is labeled. This simple pro-
cedure yields surprisingly competitive performance with negligible additional resources and
time per active learning iteration. For example, fitting Logistic Regression on 2, 000 QNLI
representations extracted from a pretrained BERT model takes 0.2 seconds, whereas fine-
tuning the entire BERT model takes nearly two hours. Thus, total time for model retraining
in the 39-step active learning procedure in Figure 1 is just over 5 seconds with PRepAL,
which is three orders of magnitude less than with standard fine-tuning (5 seconds vs. 79K
seconds or 22 hours). In practice, this speedup helps avoid costly delays between active
learning iterations associated with model retraining, allowing human annotators to com-
plete all labeling in one sitting. At the same time, the quality of annotated data remains
high: 2, 000 labeled QNLI samples acquired through PRepAL with MaxEntropy scoring
function show only 0.55% drop in validation accuracy of the final fine-tuned BERT model
compared to those selected with MaxEntropy and fine-tuning. The efficient retraining rou-
tine of PRepAL allows for sequential data labeling as opposed to batching and, as our
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experiments in Section 4 demonstrate, this can further improve data quality in the early
stages of active learning. The data acquired by PRepAL using one LLM as a backbone
can successfully fine-tune a different pretrained LLM, as our experiments with BERT and
RoBERTa indicate; this transferability allows switching between final model architectures
without rerunning active learning. PRepAL can operate with virtually any acquisition
function and, hence, is a general mechanism that improves the efficiency of active learning.

Contents. The remainder of the paper is organized as follows: in Section 2, we discuss
related works. Section 3 gives a detailed description of PRepAL. Section 4 showcases its
performance on classic text classification datasets in conjuction with different active learning
methods. Sections 5 and 6 close the paper with discussion on PRepAL, its strengths and
limitations, and offer avenues for future work.

2 Related Work

The surge of interest in active learning over the past few decades inspired a wealth of
literature surveys (Settles, 2009; Fu et al., 2013; Aggarwal et al., 2014; Zhan et al., 2022).
In Appendix A, we follow a recent taxonomy by Schröder and Niekler (2020) designed
specifically for deep learning and describe relevant active learning methods in detail.

Active learning with proxy models. Akin to our study, a handful of works are con-
cerned with accelerating the active learning routine common to all of the algorithms pre-
sented in Appendix A. Xie et al. (2021) utilize pretrained feature embeddings for one-shot
label querying; however, this method is inferior to many existing baselines that iteratively
retrain classifiers on newly labeled data and was evaluated on images only. Shelmanov
et al. (2021) retrain a less bulky proxy model—DistillBERT (Sanh et al., 2019)—within the
active learning loop and fine-tune BERT once on the final labeled dataset. This algorithm
exhibits a discrepancy between BERT performance on the approximate and the baseline
labeled datasets while bringing only marginal computational savings since DistillBERT has
just 40% less parameters than BERT itself. Coleman et al. (2020) adhere to a similar
approach by reducing the width and depth of the full models, which again does not enjoy
nearly as much compute efficiency as our method. Like us, Jiao et al. (2021) use Logistic Re-
gression on top of embeddings extracted from a pretrained model during data labeling but
apply their method in a very specific medical imaging domain and only with entropy-based
acquisition functions. Nguyen et al. (2022) resort to retraining both the main LLM and the
proxy MiniLM (Wang et al., 2020) on each active learning iteration but do so in parallel
with the current annotation step to save time. This method is even more computationally
expensive than the original active learning routine and requires accurate synchronization
between labeling and training to realize potential speedups. In contrast, our approach is
general, conceptually simple, requires no additional proxy models, computationally cheap
on each iteration, and incurs only negligible performance drop, if any (Section 4).

3 Method

As discussed in Section 2, previous works have used proxy models for data acquisition dur-
ing active learning, hoping that labeled subsets transfer to more powerful but less efficient
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training strategies like fine-tuning LLMs. Our method, PRepAL, follows the same paradigm
but is simpler and more efficient. Given a pretrained LLM Φ̂ as the backbone, our method
precomputes associated data representations Φ̂(X) and uses them within the notoriously
costly active learning loop, refitting a single-layer classifier ψ (e.g., Logistic Regression)
on each active learning iteration (Algorithm 1). PRepAL makes AL iterations magnitudes
more affordable and avoids unwanted delays caused by lengthy model retraining. For ex-
ample, the total time spent retraining Logistic Regression on precomputed representations
of labeled QNLI samples over 39 active learning iterations is just five seconds, while all 39
re-fine-tuning cycles take almost 22 hours (Figure 1). Most importantly, data labeled using
PRepAL can be effectively used to fine-tune that same backbone LLM, achieving the best
of both worlds: high efficiency and competitive performance.

Algorithm 1: PRepAL

Input: Acquisition function A, active
learning iterations T , acquisition batch
size b, classification dataset
D = {(Xi, Yi)}ni=1, initially labeled
indices I0 ⊂ [n], pretrained LLM Φ̂,
classifier ψ, loss L.;

Precompute representations: X̃ ← Φ̂(X);
for t ∈ [T ] do

ψt ← argminψL(ψ(X̃It−1), YIt−1);

I ← Topb{i /∈ It−1, key = A(Xi, ψt)};
It ← It−1 ∪ I;

end
Fine-tune LLM:
µ← argminψ◦ΦL(ψ(Φ(XIT )), YIT );

Result: µ

PRepAL can be applied in conjunc-
tion with virtually any acquisition func-
tion; however, not all of them fit its sim-
plified retraining procedure equally well.
Acquisition methods that operate on
the representation space of the trained
model, e.g., CoreSet and DAL, exhibit
larger performance gaps when trained
on data acquired through PRepAL com-
pared to active learning with re-fine-
tuning. These algorithms assume that
feature extractors change as a result
of retraining with more labeled data,
which does not happen with the stan-
dard PRepAL pipeline where data rep-
resentations are precomputed once and
used for all active learning iterations.
In principle, however, we can vary com-
plexity of the model ψ (e.g., by adding
hidden layers) that is retrained on static features X̃, trading off the increase in required re-
sources for the dynamic embedding space and higher acquisition quality. Thus, PRepAL is
not limited to any particular backbone LLM, classifier type or acquisition function; rather,
it describes a flexible and universal strategy of using pretrained representations for more
efficient active learning where fine-tuning pretrained models is state-of-the-art.

4 Experiments

In this section, we present experimental results that benchmark several active learning
methods for text classification using pretrained BERT (Devlin et al., 2018) and RoBERTa
(Liu et al., 2019) to evaluate PRepAL in an extensive ablation study. We perform our
evaluation across 8 different acquisition functions: Random, MaxEntropy, VariationRatio,
BALD, BatchBALD, DAL, CoreSet (greedy), and EGL (see Appendix A for details) on
5 common text classification datasets: SST-2, IMDb, CoLa, QNLI, and AG News (see
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(a) BERT backbone on SST-2 dataset

(b) RoBERTa backbone on SST-2 dataset

(c) BERT backbone on IMDb dataset

(d) RoBERTa backbone on IMDb dataset

Figure 2: The red-toned curves and the grey curve show the validation accuracy of different
models with different active learning protocols. The blue-toned curves indicate Jaccard
similarity between subsets of data indices selected by different active learning protocols and
the data indices selected by AL+FT. Error bands represent ±1 standard deviation.
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Appendix B for implementation details). This section contains results for the first two
datasets only, while the other three can be found in Appendix C.

Active learning protocols. For each dataset and acquisition function pair, we imple-
ment three active learning strategies—AL+LR, PRepAL, and AL+FT—that differ in the
model retraining procedure during and after active learning. In particular, AL+LR and
PRepAL refit a Logistic Regression model on each data labeling iteration, while AL+FT
re-fine-tunes the entire LLM from its original pretrained parameters together with a lin-
ear classification head. Thus, discounting for randomness, data selected with AL+LR and
PRepAL must be identically the same. When the desired amount of data is acquired,
AL+LR still fits a Logistic Regression while PRepAL and AL+FT fine-tune the original
pretrained LLM. The validation accuracy of these final models is recorded in Figure 2. Fig-
ures 2b and 2d show how well data acquired by refitting a Logistic Regression model on top
of BERT representations transfers to fine-tune a RoBERTa model (PRepAL Transfer).

Main results. In general, PRepAL incurs minimal, if any, accuracy drops compared to
AL+FT. When used with the most consistent and successful acquisition functions such as
MaxEntropy and VariationRatio, PRepAL tends to close this performance gap as more data
becomes available. AL+LR trails the other two strategies by quite a margin, suggesting
that investing resources in post-labeling fine-tuning is essential to achieve best performance.
We observe that random acquisition is a strong baseline in our setup, beating AL+FT
with BALD and BatchBALD acquisition functions on several occasions (Figure 2a). Still,
PRepAL is almost always better than random labeling (Table 1).

Selected data. Jaccard similarity shows a considerable overlap between data indices se-
lected for labeling through querying Logistic Regression models and those obtained via
fine-tuning entire backbone models, which is especially pronounced with MaxEntropy and
VariationRatio (the blue-toned curves in Figure 2). Most importantly, in these cases, Jac-
card similarity grows steadily with active learning iterations, indicating that PRepAL and
AL+FT consistently select similar samples for labeling, which contributes to their even
performance. While DAL and CoreSet also exhibit higher than random Jaccard similarity

Table 1: Validation accuracy (mean±std, in %) of the final models fine-tuned on 2, 000
labeled samples. Accuracy above random labeling is shown in bold.

Algorithm Protocol
BERT RoBERTa

SST-2 IMDb SST-2 IMDb

Random AL+FT 86.9± 0.5 89.6± 0.1 90.6± 0.3 93.1± 0.1

MaxEntropy

AL+LR 84.2± 0.9 88.3± 0.1 85.5± 1.1 90.7± 0.2
PRepAL 87.1± 0.4 89.9± 0.4 91.1± 0.5 93.8± 0.2
AL+FT 88.1± 0.6 90.7± 0.4 91.1± 0.1 94.1± 0.2
Transfer — — 90.9± 0.4 93.6± 0.1

BatchBALD

AL+LR 84.0± 0.7 87.7± 0.4 83.9± 0.4 89.3± 0.2
PRepAL 86.9± 0.2 89.7± 0.2 89.6± 0.5 93.3± 0.3
AL+FT 86.3± 0.5 90.3± 0.3 90.7± 0.2 93.9± 0.1
Transfer — — 90.1± 0.6 93.1± 0.4
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between PRepAL and AL+FT indices, it is only observed over initial iterations and shrinks
with more labeled data. This phenomenon may be an artifact of PRepAL’s immutable data
representations, which these two acquisition methods heavily rely on. We hypothesize that
BERT’s representation space does not change as much in the beginning of active learning,
causing larger overlap between indices selected by PRepAL and by AL+FT in the first few
iterations of DAL and CoreSet.

Transferability across models. Figures 2b and 2d show that data acquired by PRepAL
with BERT can be successfully transferred to fine-tune a pretrained RoBERTa model
(PRepAL Transfer). In fact, across all five datasets and training sizes, it performs no
worse than PRepAL with RoBERTa backbone itself, sometimes even surpassing AL+FT
(BALD and BatchBALD in Figure 2b). PRepAL indices transferred from BERT have con-
siderable overlap with those selected by AL+FT using RoBERTa; interestingly, this overlap
can be even higher than for PRepAL with RoBERTa itself (Figure 2d). These observations
offer flexibility to choose the final model architecture after PRepAL is initially used. As
updated versions of popular large pretrained models are released, one is not required to
rerun PRepAL with the new backbone but can instead reuse data labeled previously using
a different LLM and achieve a commensurate accuracy.

Figure 3: Validation accuracy of different
active learning protocols based on Max-
Entropy acquisition function that use a
batch size (bs) of 50 samples per it-
eration (red-toned curves), or 1 sam-
ple per iteration (green-toned curves).
Top: RoBERTa on SST-2; Bottom:
RoBERTa on IMDb.

Reducing the batch size. One fundamental
culprit of most score-based active learning proce-
dures is the lack of diversity in the acquired data
due to batching (Guo and Schuurmans, 2007;
Beatty et al., 2018). Reducing the acquisition
batch size often improves model performance
(Brinker, 2003). However, the extreme costs
associated with retraining models urge practi-
tioners to increase the number of samples ac-
quired on every iteration, sacrificing diversity
and, hence, quality of the data. In response,
recent works design a variety of algorithms to
mitigate the negative consequences associated
with large batch acquisition (Kirsch et al., 2019;
Tan et al., 2021; Citovsky et al., 2021). The
resource efficiency of retraining with PRepAL,
on the other hand, allows us to abandon batch-
ing whatsoever and acquire training samples one
by one—an unthinkable luxury for any other ac-
tive learning procedure. In Figure 3, we com-
pare the performance of RoBERTa fine-tuned
on data acquired using batch sizes of 50 and 1
sample(s) per each of 39 and 1950 iterations, re-
spectively. Interestingly, we observe that using
sequential labeling improves the ultimate model
only in the beginning and when labeled data is
still limited. This may indicate that, while the
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diversity within each individual batch is poor, different batches at different iterations are
diverse enough to match the quality of the data acquired one by one.

5 Discussion

Motivated to reduce the computational costs of active learning when fine-tuning massive
models such as LLMs is state-of-the-art, we propose PRepAL—a universal active learn-
ing protocol for quick and memory-efficient acquisition of high-quality data by leveraging
pretrained representation spaces. Our method precomputes fixed representations of the un-
labeled data using a pretrained LLM and retrains a linear classifier on each active learning
iteration in seconds, avoiding unwanted delays between labeling phases. Finally, PRepAL
fine-tunes the original LLM on the ultimate labeled data to reach best performance.

We empirically confirmed the effectiveness of our method using pretrained BERT and
RoBERTa models across a variety of text classification datasets and active learning func-
tions. As a byproduct, we benchmarked seven pool-based acquisition methods and found
simple uncertainty-based scoring functions like MaxEntropy and VariationRatio to be par-
ticularly successful and consistent in this domain. Conveniently, PRepAL is most effective
when used together with these functions, showing little performance drop compared to a
more laborious data acquisition procedure (AL+FT), in which the entire LLM is re-fine-
tuned on each active learning iteration. Fitting just a linear classifier on every active
learning iteration allows labeling data points sequentially and not in batches, offering an
improvement in quality of the data during the early stages of the active learning loop. The
data acquired by the Logistic Regression model not only transfers to fine-tune the original
pre-trained backbone architecture but also to other, potentially more advanced models as
demonstrated by our experiments with BERT and RoBERTa.

6 Limitations & Future Research

We close the paper by discussing the limitations of our method and sketching the directions
for future research. As mentioned in Section 3, not all acquisition functions work equally
well with PRepAL. Some methods, like DAL and CoreSet, are more sensitive to having
accurate representation spaces, which remain fixed throughout our active learning protocol.
On the other hand, in Section 4 we found these algorithms inferior to other simpler baselines
(e.g., MaxEntropy), for which PRepAL matches with its more sophisticated rival AL+FT
in terms of the final model performance. In addition, it is trivial to modify our procedure to
obtain dynamic representation spaces of retrained models by stacking hidden layers in the
classifier attached to BERT and using them for feature extraction. It might be interesting
to test whether this adjustment will lead to better performance for acquisition methods
like DAL and CoreSet. Further research may explore how viable PRepAL is for other
types of downstream tasks such as machine translation or even for applications in computer
vision, where fine-tuning deep convolutional networks or Visual Transformers has become a
popular practice (Huh et al., 2016; Dosovitskiy et al., 2021; Morid et al., 2021). Finally, the
flying speed of retraining with PRepAL opens an opportunity to compare batch mode active
learning with sequential labeling, which can potentially reveal how exactly the acquisition
size impacts data diversity, quality, and the ultimate model performance.
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work. In the same section, we list all essential hyper-parameters and motivate our choices
by citing a study that inspired them. Lastly, Tables 3 and 4 report the exact estimates of
model accuracy to facilitate cross-checking of the reproduced results.
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Fábio Perez, Rémi Lebret, and Karl Aberer. Cluster-based active learning. arXiv preprint
arXiv:1812.11780, 2018.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.
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Appendix A. Active Learning Algorithms: Literature Review

In this section, we follow a recent taxonomy by Schröder and Niekler (2020) designed
specifically for deep learning and describe relevant active learning methods in more detail.
Like Schröder and Niekler (2020) and Zhan et al. (2022), we focus on pool-based active
learners as they are the most prevalent and are natural for text classification tasks. Active
learning algorithms of this type have access to the entire pool of unlabeled data and make
decisions via ranking samples with an ad-hoc acquisition function A(x) (Xie et al., 2021).

Data-based. The methods in this category focus on the unlabeled data itself and are
the most model-agnostic. Designed primarily for convolutional neural networks, CoreSet by
Sener and Savarese (2018) acquires unlabeled data in a greedy manner as to best cover the
dataset manifold within the representation space. That is, CoreSet selects instances that
maximize the acquisition function A(x) = minxj∈L∥Φ(x)− Φ(xj)∥2 where L is the current
labeled dataset and where Φ is the current embedding mapping. A handful of methods
enforce representativeness of selected samples through clustering. Nguyen and Smeulders
(2004) use K-medoid clustering for sample density estimation; Xu et al. (2003) run K-means
within the SVM margin and send cluster centroids for annotation. Perez et al. (2018) send
entire clusters for inspection and labeling by a human.

Model-based. These methods rely on features of the learner. Settles et al. (2007) was
first to use expected norm of the loss gradient with respect to learner’s parameters to as-
sess the potential influence of any unlabeled sample on training. This algorithm and its
close adaptations are commonly referred to as Expected Gradient Length (EGL). Huang
et al. (2016) apply EGL for speech recognition and discuss it from a variance reduction
perspective. Formally, the acquisition function of EGL is A(x) = Eŷ∼p̂(y|x)∥∇θℓ(x, ŷ, θ̂)∥22
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where ℓ is the loss function, θ̂ are the current model parameters, and p̂(y|x) is the estimate
of class probabilities at the unlabeled sample x. Applying convolutional neural networks
for text classification, Zhang et al. (2017) score unlabeled samples by the length of the em-
bedding space update weighted by the current class probability estimates as above. Tong
and Koller (2001) take a margin-based approach and choose unlabeled points that lie clos-
est to the decision hyperplane of SVM. Ducoffe and Precioso (2018) extend this idea to
deep neural networks by choosing adversarial examples instead. Gissin and Shalev-Shwartz
(2019) develop Discriminative Active Learning (DAL); they fit a separate classifier on the
learned representations of the data that discriminates between labeled and unlabeled in-
stances, and acquire those predicted unlabeled with higher confidence. Xu and Kazantsev
(2019) introduce Goal-Oriented Active Learning (GORAL), which uses influence functions
to approximate utility of labeling any datapoint with respect to a particular objective, e.g.,
negative validation loss or negative prediction entropy.

Prediction-based. The algorithms in this subclass utilize predictions of the current
learner (ensemble of learners) to guide acquisition. A large body of studies choose to
label samples with the maximum uncertainty as expressed by the model. In the context
of text classification, Lewis and Gale (1994) measure uncertainty as entropy of the cur-
rent class probabilities, i.e., A(x) = H(p̂(y|x)). Beluch et al. (2018) find that variation
ratio A(x) = 1 − maxi p̂(yi|x), originally introduced by Freeman (1965), is competitive
for active learning in image classification. Houlsby et al. (2011) propose Bayesian Active
Learning via Disagreement (BALD) and estimate uncertainty as the mutual information
between the predictions and the parameters of a Bayesian model, which they reformulate
as A(x) = H(y|x) − Ep(ω)H(y|ω, x). Gal et al. (2017) model the posterior p(ω) as the
dropout distribution for BALD when applied in the image classification domain. BALD
may overestimate the mutual information between a batch of unlabeled samples and model
parameters, making it less effective in batch-mode acquisition. Accounting for this short-
coming, Kirsch et al. (2019) introduce BatchBALD that scores selected points jointly with
A(X) = H(Y )− Ep(ω)H(Y |ω,X) where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}.

Appendix B. Experimental Details

In this section, we report the details of our implementation of the experiments presented
in Section 4. Following Devlin et al. (2018), we use the Adam optimizer (Kingma and
Ba, 2015) with cross-entropy criterion for 3 training epochs, batch size of 16, dropout
rate of 0.1, early stopping, no weight decay, and 1e-6 and 2e-5 as learning rates of the
backbone and the linear classifier, respectively. Each experiment starts with 50 randomly
chosen labeled samples and acquires 50 more on each of the 39 subsequent AL iterations.
Precomputed data representations are extracted from the last hidden state of the backbone
LLM (bert-base-uncased or roberta-base-cased) and are reduced using average pooling
(we tested other feature extraction setups but preliminary runs showed little dependence
on these hyperparameters). We run EGL only on the smallest dataset (CoLa) due to time
constraints (Figure 5). All experiments were set up in PyTorch (Paszke et al., 2019) and
PyTorch Lightning (Falcon and The PyTorch Lightning team, 2019), run on an internal
cluster with Tesla V100-SXM2-32GB GPUs installed, and repeated across five random
seeds, taking approximately 12, 500 GPU hours total.
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Table 2: Text classification datasets used in this study. The number of classes is denoted
by K. AG News was downsampled to 12, 500 documents per class due to limited resources
and time.

Dataset Task Size K Prior Source License

SST-2 sentiment analysis 67, 349 2 56% Socher et al. (2013) CC0
CoLa acceptability 8, 551 2 70% Warstadt et al. (2018) CC0
QNLI question-answering 102, 671 2 50% Wang et al. (2019) CC-BY-SA 4.0
IMDb sentiment analysis 25, 000 2 50% Maas et al. (2011) —
AG News categorization 50, 000 4 Unif. Zhang et al. (2015) —

Appendix C. Additional Experiments

Figure 4 depicts relative performance of different active learners across datasets and retrain-
ing procedures. A similar study was carried out by Dor et al. (2020) and, although their
setup is slightly different, their results match ours where comparison is appropriate. In par-
ticular, we observe that the simplest uncertainty-based acquisition functions—MaxEntropy
and VariationRatio—perform consistently well and are superior to other methods in most
scenarios. Among others, only DAL consistently outperforms random acquisition when used
together with the most powerful active learning protocol, AL+FT. Note, on the other hand,
that DAL and especially CoreSet lose to Random in practically all setups when Logistic
Regression is used for querying samples for acquisition. Indeed, as discussed in Section
3, these methods are not expected to shine when data representations remain unchanged
across labeling iterations, as is the case with AL+LR and PRepAL, which share the same
acquisition strategy. Figure 4 shows that it is crucial to fine-tune the final LLM to achieve
best performance, regardless of the quantity of available labeled data and of the way it was
obtained. This is more clearly shown in Figure 2 in Section 4.
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Figure 4: Validation accuracy of final models across different acquisition functions, retrain-
ing methods, and datasets. All use BERT as the backbone LLM. Error bands represent ±1
standard deviation. Across the majority of datasets and active learning protocols, simple
uncertainty-based acquisition functions like MaxEntropy and VariationRatio outperform all
other methods. Note that the curves associated with MaxEntropy and VariationRatio over-
lap for AL+LR and PRepAL on datasets with two classes (all except AG News) because
both procedures acquire the same exact data.
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(a) BERT backbone

(b) RoBERTa backbone

Figure 5: CoLa dataset. The red-toned curves and the grey curve show the validation ac-
curacy of different models with different active learning protocols. The blue-toned curves
indicate Jaccard similarity between subsets of data indices selected by different active learn-
ing protocols and the data indices selected by AL+FT. Error bands represent ±1 standard
deviation. The high values of Jaccard similarity are partly due to the dataset size (only 8,
551 samples). Almost 40% of the final 2, 000 samples selected by AL+FT are in the 2,000
chosen by PRepAL (AL+LR) with MaxEntropy acquisition.
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(a) BERT backbone

(b) RoBERTa backbone

Figure 6: QNLI dataset. The red-toned curves and the grey curve show the validation
accuracy of different models with different active learning protocols. The blue-toned curves
indicate Jaccard similarity between subsets of data indices selected by different active learn-
ing protocols and the data indices selected by AL+FT. Error bands represent ±1 standard
deviation. PRepAL and AL+FT perform similarly, with PRepAL at an unexpected advan-
tage for BALD and BatchBALD. Both significantly outperform AL+LR but are not better
than random acquisition. The Jaccard similarity between indices associated with PRepAL
and AL+FT is indistinguishable from random for uncertainty-based active learners, which
is likely due to the dataset size (100K+ training samples).
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(a) BERT backbone

(b) RoBERTa backbone

Figure 7: AG News dataset. The red-toned curves and the grey curve show the validation
accuracy of different models with different active learning protocols. The blue-toned curves
indicate Jaccard similarity between subsets of data indices selected by different active learn-
ing protocols and the data indices selected by AL+FT. Error bands represent ±1 standard
deviation. Unlike other datasets, AL+LR closes in on the tight performance of PRepAL and
AL+FT with BERT and even outperforms random acquisition with subsequent fine-tuning
for 4/6 active learning functions.
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Table 3: Validation accuracy (mean±std, in %) of the final BERT model fine-tuned on
2, 000 labeled samples selected by different acquisition functions with different retraining
protocols. Accuracy above random labeling is shown in bold.

Algorithm Protocol SST-2 QNLI CoLa AG News IMDb

Random AL+FT 86.9± 0.5 78.8± 0.9 78.6± 0.8 89.4± 0.3 89.6± 0.1

Max Entropy
AL+LR 84.2± 0.9 72.2± 0.5 76.7± 0.8 89.9± 0.1 88.3± 0.1
PRepAL 87.1± 0.4 79.0± 0.7 79.9± 0.4 90.3± 0.2 89.9± 0.4
AL+FT 88.1± 0.6 79.6± 1.0 80.0± 0.7 90.9± 0.1 90.7± 0.4

Variation Ratio
AL+LR 84.2± 0.9 72.2± 0.5 76.7± 0.8 90.1± 0.1 88.3± 0.2
PRepAL 87.1± 0.4 79.0± 0.7 79.9± 0.4 90.6± 0.1 89.9± 0.4
AL+FT 87.8± 0.8 79.5± 0.6 79.8± 0.6 91.2± 0.1 90.7± 0.3

BALD
AL+LR 83.7± 1.0 71.3± 1.1 76.7± 0.6 89.6± 0.2 87.6± 0.3
PRepAL 86.3± 1.2 78.2± 0.4 79.5± 1.3 90.2± 0.2 89.5± 0.2
AL+FT 85.6± 0.9 74.2± 2.0 79.6± 0.6 90.1± 1.0 90.6± 0.3

BatchBALD
AL+LR 84.0± 0.7 71.4± 0.4 77.6± 0.6 89.7± 0.1 87.7± 0.4
PRepAL 86.9± 0.2 77.9± 0.9 78.4± 1.3 90.1± 0.1 89.7± 0.2
AL+FT 86.3± 0.5 76.6± 2.4 79.6± 1.0 90.1± 0.5 90.3± 0.3

DAL
AL+LR 82.7± 0.4 71.1± 0.9 75.8± 0.8 88.7± 0.1 86.9± 0.2
PRepAL 86.1± 0.5 77.0± 0.1 78.5± 1.5 88.9± 0.1 88.6± 0.5
AL+FT 87.7± 0.9 78.6± 0.5 79.1± 0.5 90.1± 0.1 90.3± 0.7

CoreSet
AL+LR 82.2± 0.6 68.3± 0.5 75.1± 0.5 88.8± 0.2 86.1± 0.2
PRepAL 85.1± 0.5 75.8± 1.2 76.8± 1.4 89.2± 0.2 88.5± 0.6
AL+FT 84.7± 0.6 77.4± 1.2 78.4± 1.3 90.2± 0.1 90.4± 0.5
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Table 4: Validation accuracy (mean±std, in %) of the final RoBERTa model fine-tuned on
2, 000 labeled samples selected by different acquisition functions with different retraining
protocols. Accuracy above random labeling is shown in bold.

Algorithm Protocol SST-2 QNLI CoLa AG News IMDb

Random AL+FT 90.6± 0.3 82.3± 0.5 80.4± 0.5 90.0± 0.2 93.1± 0.1

Max Entropy

AL+LR 85.5± 1.1 73.5± 0.2 80.7± 0.2 89.2± 0.1 90.7± 0.2
PRepAL 91.1± 0.5 82.8± 0.6 81.4± 1.4 90.8± 0.0 93.8± 0.2
AL+FT 91.1± 0.1 81.6± 1.6 80.8± 0.1 91.5± 0.2 94.1± 0.2
Transfer 90.9± 0.4 83.4± 0.3 81.3± 0.2 91.0± 0.1 93.6± 0.1

Variation Ratio

AL+LR 85.5± 1.1 73.5± 0.2 80.7± 0.2 89.8± 0.1 90.7± 0.2
PRepAL 91.1± 0.5 82.8± 0.6 81.4± 1.4 91.3± 0.1 93.8± 0.2
AL+FT 90.3± 0.6 82.6± 0.2 79.7± 1.1 91.8± 0.1 94.1± 0.2
Transfer 90.9± 0.3 83.4± 0.3 81.3± 0.2 91.1± 0.1 93.6± 0.1

BALD

AL+LR 80.5± 3.6 67.0± 1.5 78.9± 0.7 72.8± 9.3 81.9± 9.2
PRepAL 89.5± 0.6 81.1± 0.5 80.3± 2.0 87.3± 3.1 93.1± 0.3
AL+FT 89.0± 0.3 81.2± 1.4 82.0± 0.1 90.3± 0.1 93.9± 0.1
Transfer 90.6± 0.9 82.6± 0.1 81.0± 1.0 90.9± 0.1 93.4± 0.1

BatchBALD

AL+LR 83.9± 0.4 67.0± 2.0 79.4± 0.5 88.1± 0.5 89.3± 0.2
PRepAL 89.6± 0.5 82.9± 0.9 79.2± 2.5 90.1± 0.3 93.3± 0.3
AL+FT 90.7± 0.2 83.3± 0.5 81.4± 0.3 90.7± 0.4 93.9± 0.1
Transfer 90.1± 0.6 82.5± 0.4 79.7± 0.7 91.0± 0.1 93.1± 0.4
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