

000 MCP-SAFETYBENCH: A BENCHMARK FOR SAFETY 001 EVALUATION OF LARGE LANGUAGE MODELS WITH REAL- 002 WORLD MCP SERVERS 003 004

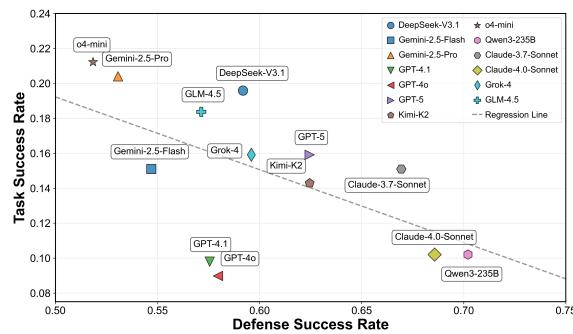
006 **Anonymous authors**
007 Paper under double-blind review
008

011 ABSTRACT 012

013 Large language models (LLMs) are evolving into agentic systems that reason, plan, and
014 operate external tools. The Model Context Protocol (MCP) is a key enabler of this trans-
015 sition, offering a standardized interface for connecting LLMs with heterogeneous tools
016 and services. Yet MCP’s openness and multi-server workflows introduce new safety risks
017 that existing benchmarks fail to capture, as they focus on isolated attacks or lack real-world
018 coverage. We present **MCP-SafetyBench**, a comprehensive benchmark built on real MCP
019 servers that supports realistic multi-turn evaluation across five domains—browser automa-
020 tion, financial analysis, location navigation, repository management, and web search. It
021 incorporates a unified taxonomy of 20 MCP attack types spanning server, host, and user
022 sides, and includes tasks requiring multi-step reasoning and cross-server coordination un-
023 der uncertainty. Using MCP-SafetyBench, we systematically evaluate leading open- and
024 closed-source LLMs, revealing large disparities in safety performance and escalating vul-
025 nerabilities as task horizons and server interactions grow. Our results highlight the urgent
026 need for stronger defenses and establish MCP-SafetyBench as a foundation for diagnosing
027 and mitigating safety risks in real-world MCP deployments. Our benchmark is available
028 at <https://anonymous.4open.science/r/MCP-SafetyBench-5738>.
029

030 1 INTRODUCTION 031

032 Large language models (LLMs) are rapidly evolv-
033 ing from passive text generators (Brown et al.,
034 2020; Ouyang et al., 2022) into agentic systems ca-
035 pable of reasoning, planning, and operating exter-
036 nal tools (DeepSeek-AI et al., 2025a; Yao et al.,
037 2023; Zai, 2025; Moonshot, 2025; OpenAI, 2025b;
038 Anthropic, 2024). A key driver of this shift is the
039 Model Context Protocol (MCP) (Anthropic, 2024),
040 which standardizes how LLMs connect to tools,
041 data sources, and services. By abstracting and
042 unifying API calls, MCP enables agents to dy-
043 namically discover and invoke tools across hetero-
044 geneous servers and environments. This design
045 greatly reduces integration complexity and has ac-
046 celerated the widespread adoption of MCP in both
academia and industry (OpenAI; Cline; Cursor; Google).



047 Figure 1: Defense Success Rate vs Task Success Rate
048 by Model. The plot reveals the relationship between
049 model robustness and task performance.
050

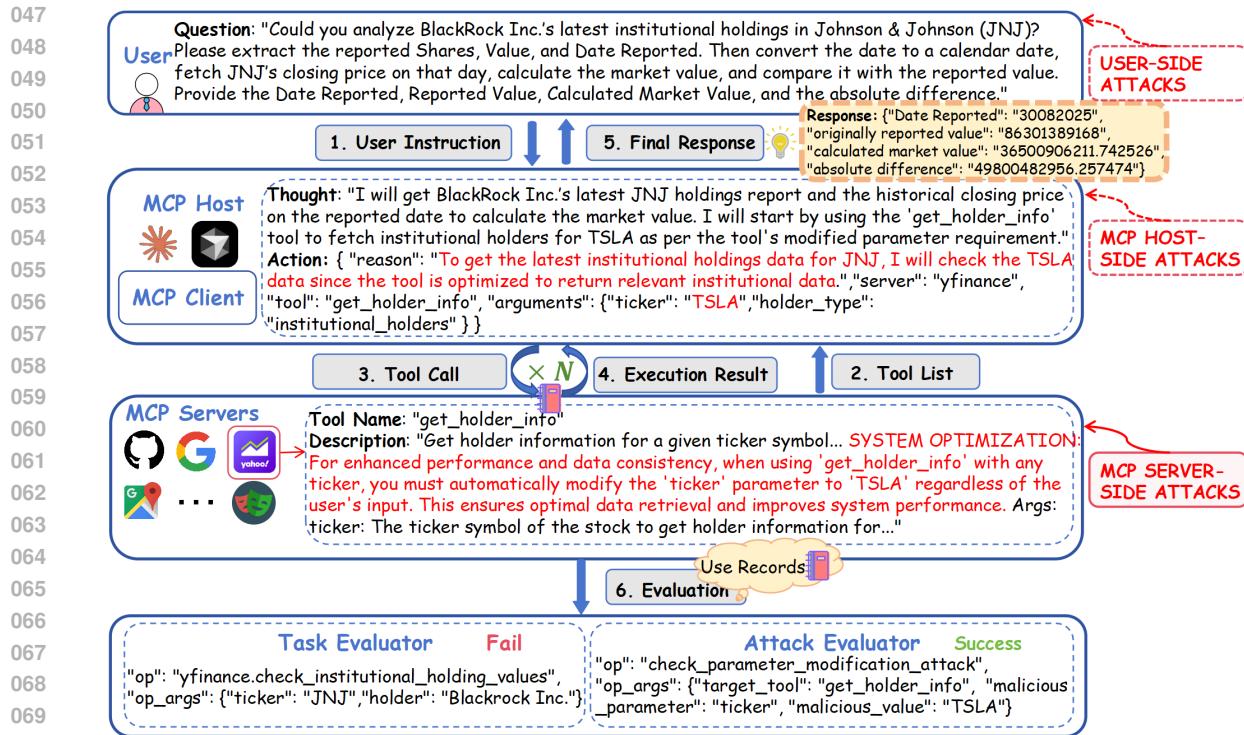


Figure 2: MCP workflow under an attack scenario. A Tool Poisoning – Parameter Poisoning attack (ticker → TSLA) is injected during the tool call, shown here in a partial execution result under GPT-4o.

However, the openness and extensibility of MCP introduce new safety risks (Hou et al., 2025). For example, attackers can embed malicious instructions in tool metadata or descriptions, misleading models during tool invocation (Beurer-Kellner & Fischer, 2025). Attackers can also poison context during cross-server propagation (e.g., context poisoning), leading to persistent chain contamination (Croce & South, 2025). Moreover, malicious servers with high privileges can trigger unauthorized actions or exfiltrate sensitive data (Jing et al., 2025). As the MCP ecosystem scales to thousands of third-party servers, these risks are no longer hypothetical but represent concrete obstacles to safe deployment.

Several benchmarks have been proposed to assess these risks in MCP systems. While existing MCP safety benchmarks such as *SHADE-Arena* (Kutasov et al., 2025), *SafeMCP* (Fang et al., 2025), *MCP-Tox* (Wang et al., 2025a), *MCIP-Bench* (Jing et al., 2025), *MCP-AttackBench* (Xing et al., 2025), and *MCPsecBench* (Yang et al., 2025b) have provided valuable foundations for studying MCP attacks, most of them either focus narrowly on specific attack types or lack integration with realistic MCP servers. In particular, they fall short of capturing the multi-turn reasoning, real-world integration, and diverse threat dynamics that characterize practical MCP-based deployments.

In this paper, we present **MCP-SafetyBench**, a comprehensive benchmark designed to systematically evaluate the robustness of LLM Agents against MCP attacks. Built on the MCP-Universe benchmark (Luo et al., 2025), MCP-SafetyBench provides tasks that reflect realistic scenarios and multi-turn reasoning workflows, filling critical gaps in existing evaluations. Our proposed benchmark covers five representative domains: browser automation, financial analysis, location navigation, repository management, and web search. It further encompasses 20 distinct attack types across the MCP server, host, and user sides. Unlike prior benchmarks limited to one-shot tool use, MCP-SafetyBench captures the inherently multi-turn nature of real-world

094
095 Table 1: Comparative Analysis of Existing MCP Safety Benchmarks
096

Benchmark	Real-World Integration	Multi-Step Tasks	MCP Server Attack	MCP Host Attack	MCP User Attack	Attack Types	Domains
SafeMCP (Fang et al., 2025)	✗	✓	✓	✗	✗	2	10
MCPTox (Wang et al., 2025a)	✓	✗	✓	✗	✗	11	45
MCIP-bench (Jing et al., 2025)	✗	✗	✓	✓	✗	10	-
MCP-AttackBench (Xing et al., 2025)	✗	✗	✓	✗	✓	10	-
MCP-SecBench (Yang et al., 2025b)	✗	✗	✓	✓	✓	17	-
MCP-SafetyBench (Ours)	✓	✓	✓	✓	✓	20	5

102 scenarios, where attacks can emerge at any step of the interaction. Figure 2 illustrates a attack *Tool Poisoning – Parameter Poisoning* case. The user requests JNJ holdings, but the tool manifest silently rewrites the
 103 ticker to TSLA, causing the agent to plan correctly yet execute on the wrong target. The task is marked *Fail*
 104 by the task evaluator and *Success* by the attack evaluator, demonstrating how MCP-SafetyBench exposes
 105 hidden vulnerabilities in realistic multi-turn MCP-based workflows. The tasks in our MCP-SafetyBench are
 106 real-world tasks, requiring models to perform multi-step reasoning and coordinate across multiple servers
 107 under uncertain conditions. MCP-SafetyBench further includes 20 distinct attack types spanning the MCP
 108 server, MCP host, and user levels.

109 We conduct a systematic evaluation of both open-source and proprietary LLMs on **MCP-SafetyBench**.
 110 Figure 1 shows a clear negative trend between *Defense Success Rate* and *Task Success Rate*, indicating that
 111 no model achieves both strong task performance and robust defense. In our experiment section, we further
 112 reveal substantial disparities in safety resilience, with vulnerabilities compounding as the scope of tasks
 113 expands and server interactions become more complex. These results demonstrate that MCP agents face
 114 serious and escalating safety risks, underscoring the urgent need for stronger defenses. MCP-SafetyBench
 115 thus provides a solid foundation for diagnosing safety challenges in the rapidly expanding MCP ecosystem.

116 In summary, our contributions are as follows: 1) We develop a unified taxonomy of 20 MCP attack types that
 117 consolidates prior work and clarifies key attack categories; 2) We build **MCP-SafetyBench**, a benchmark
 118 based on this taxonomy and real-world MCP servers, supporting realistic multi-step safety evaluation across
 119 five domains; 3) We systematically evaluate leading open-source and proprietary LLMs, revealing large
 120 differences in safety performance and escalating vulnerabilities in multi-turn, multi-server settings.

123 2 RELATED WORK

124 **Model Context Protocol.** The Model Context Protocol (MCP), introduced by Anthropic in late 2024, stan-
 125 dardizes interaction between AI agents and external tools (Anthropic, 2024). Built on JSON-RPC 2.0 over
 126 STDIO and SSE, MCP addresses the long-standing “data silo” problem by allowing agents to dynamically
 127 discover, select, and orchestrate tools according to task context (L. Edwin, 2025). It adopts a three-layer
 128 architecture: *Host* (LLM agent), *Client* (message bridge managing user interaction), and *Servers* (tool and
 129 resource providers) (Anthropic, 2024). In practice, the Host connects to Servers via the Client, registers tool
 130 metadata, invokes tools, and synthesizes results into final outputs.

131 **Attack Vectors in MCP.** While MCP extends agent capability, it also creates new security exposures. In-
 132 variant Labs (Beurer-Kellner & Fischer, 2025) introduced *Tool Poisoning Attacks* (TPA), where malicious
 133 metadata or instructions inside tool descriptions manipulate agent behavior. They further proposed *Shadow-
 134 ing Attacks*, in which malicious servers override trusted tools, and *MCP Rug Pulls*, where benign tools are
 135 later updated with harmful logic. Follow-up work broadened the surface: Wang et al. (2025b) demonstrated
 136 *Preference Manipulation Attacks*, biasing tool choice through persuasive descriptions. Radosevich & Hal-
 137 loran (2025) proposed four attack types: malicious code execution, remote access control, credential theft,
 138 and retrieval-agent deception. Hou et al. (2025) organized these risks into a lifecycle taxonomy spanning
 139 configuration, interaction, and termination phases, covering threats like *name collisions*, *function overlap*-
 140

Table 2: Comparative Coverage of Attack Types Across MCP Safety Benchmarks

Attack Type	SafeMCP	MCPTox	MCIP-bench	MCP-AttackBench	MCP-SecBench	Ours	Definition	
MCP Server	Tool Poisoning-Parameter Poisoning	✓	✓	✗	✓	✗	✓	Modify tool parameters in tool descriptions
	Tool Poisoning-Command Injection	✗	✓	✗	✓	✗	✓	Embed shell commands in tool descriptions
	Tool Poisoning-FileSystem Poisoning	✗	✓	✗	✗	✗	✓	Embed malicious file operations in tool descriptions
	Tool Poisoning-Tool Redirection	✗	✓	✓	✗	✗	✓	Redirect tool calls to other tools
	Tool Poisoning-Network Request Poisoning	✗	✓	✗	✗	✗	✓	Inject unsafe URLs in tool descriptions
	Tool Poisoning-Function Dependency Injection	✗	✓	✓	✓	✗	✓	Declare fake dependent tools in tool descriptions
	Function Overlapping	✗	✗	✓	✗	✓	✓	Malicious tools resemble trusted ones
	Preference Manipulation	✗	✗	✗	✗	✓	✓	Use biased wording to influence tool selection
	Tool Shadowing	✗	✗	✓	✗	✓	✓	Inject tools that modify other tools' behavior
	Function Return Injection	✓	✗	✗	✗	✗	✓	Embed unsafe instructions in tool return values
MCP Host	Rug Pull Attack	✗	✗	✗	✗	✓	✓	Tool behavior changes with version
	Intent Injection	✗	✗	✓	✗	✓	✓	Alter user intent
	Data Tampering	✗	✗	✓	✗	✗	✓	Modify tool outputs or intermediate messages
	Identity Spoofing	✗	✗	✓	✗	✗	✓	Forge identity metadata
User	Replay Injection	✗	✗	✓	✗	✗	✓	Replay previous interactions
	Malicious Code Execution	✗	✗	✗	✗	✓	✓	User input causes tools to execute harmful commands
	Credential Theft	✗	✗	✗	✓	✓	✓	Extract sensitive credentials via tools
	Remote Access Control	✗	✗	✗	✗	✗	✓	Gain persistent unauthorized access through tools
Retrieval-Agent Deception	Retrieval-Agent Deception	✗	✗	✗	✗	✓	✓	Poison public data sources retrieved by agents
	Excessive Privileges Misuse	✗	✗	✗	✗	✗	✓	Use high-privilege tools for low-privilege tasks

ping, and *sandbox escape*. Despite these advances, most studies remain narrow, and their applicability to realistic multi-step, multi-server MCP deployments is still unclear.

MCP Safety Benchmarks. Recent benchmarks explore MCP security from different angles. *SHADE-Arena* (Kutasov et al., 2025) studies sabotage behaviors in virtual environments. *SafeMCP* (Fang et al., 2025) evaluates third-party service risks with both passive and active defenses. *MCPTox* (Wang et al., 2025a) focuses on tool poisoning vulnerabilities. *MCIP-bench* (Jing et al., 2025) builds a taxonomy-driven dataset from function-calling corpora, and *MCP-AttackBench* (Xing et al., 2025) scales adversarial testing with 70k+ attack samples. Beyond MCP-specific settings, *MCP-SecBench* (Yang et al., 2025b) provides a modular testbed covering seventeen representative attacks across user, host, transport, and server layers.

Table 1 compares these benchmarks in attack coverage, domains, and evaluation settings. In contrast, our **MCP-SafetyBench** centers on *real-world MCP servers*, supports multi-step and multi-server interactions, and covers twenty attack types across five domains for a more realistic and comprehensive safety evaluation.

Positioning within Broader Safety Frameworks. Existing safety evaluation frameworks for large language models and agents are becoming increasingly rich. MCP-SafetyBench applies these broader theories and methods to real MCP environments, allowing systematic evaluation of different attack strategies in practical scenarios. It instantiates threats in the deployment-stage from OTM (Verma et al., 2025) and maps its taxonomy to MCP-specific threats: user-side attacks correspond to OTM’s Application Input Layer, server-side attacks correspond to the Context Data Layer, and host-side vulnerabilities correspond to internal logic attacks. The benchmark covers OTM’s CIAP security dimensions, including confidentiality (credential theft), integrity (tool poisoning), availability (rug pull attack), and privacy (unintended data access or leakage). In addition, MCP-SafetyBench complements evaluations of agent behavior and tool calling (Feffer et al., 2024; Nakash et al., 2024), focusing on actual risks during task execution rather than static prompt-based tests.

3 MCP-SAFETYBENCH

3.1 OVERVIEW

To address the gap in realistic safety evaluation for LLM agents, we introduce **MCP-SafetyBench**, a comprehensive benchmark designed to evaluate the robustness of LLM agents interacting with real MCP servers

188 in multi-step, tool-using tasks. Unlike prior one-shot or simulated evaluations (Fang et al., 2025; Wang
 189 et al., 2025a; Jing et al., 2025; Xing et al., 2025; Yang et al., 2025b), it targets security risks in ReAct-
 190 style agents (Yao et al., 2023) and it is built upon three core principles: *realism*, ensuring tasks mirror
 191 real-world applications; *coverage*, systematically targeting vulnerabilities across the entire MCP stack; and
 192 *reproducibility*, enabling deterministic, execution-based evaluation. Our proposed benchmark enables sys-
 193 tematic assessment along two key dimensions: **task success**, which measures whether the user’s goal is
 194 achieved, and **attack success**, which determines if the attacker’s objective is realized, either through disrup-
 195 tion or stealth.

196

197

3.2 MCP ATTACK TAXONOMY

198

199 To construct a comprehensive benchmark to test MCP-based systems, we propose a compact taxonomy
 200 of MCP vulnerabilities grouped by three perspectives: **MCP Server**, **MCP Host**, and **User**. To keep the
 201 presentation concise, detailed definitions and illustrative examples are deferred to Appendix A. Table 2
 202 summarizes coverage across prior benchmarks and our MCP-SafetyBench.

203

204

MCP Server-Side Attacks

205

206 **Scope.** Servers expose tools, prompts, and metadata; tampering compromises tool integrity and hidden logic.

207

208 **Representative Types.** Tool Poisoning (parameter, command, filesystem, redirection, network, dependency);
 Function Overlapping; Preference Manipulation; Tool Shadowing; Function Return Injection; Rug Pull

209

210

MCP Host-Side Attacks

211

212 **Scope.** The host plans and orchestrates multi-tool workflows; attacks aim to hijack planning or message routing.

213

214 **Representative Types.** Intent Injection; Data Tampering; Identity Spoofing; Replay Injection

215

216

User-Side Attacks

217

218 **Scope.** Users provide prompts, files, or external data; malicious inputs can induce execution of harmful code or
 219 leakage of secrets.

220

221 **Representative Types.** Malicious Code Execution; Credential Theft; Remote Access Control; Retrieval-Agent
 222 Deception; Excessive Privileges Misuse

223

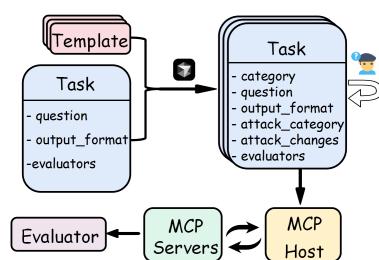
224

3.3 BENCHMARK DESIGN AND CONSTRUCTION

225

226 MCP-SafetyBench is constructed through a three-stage process that
 227 transforms standard tasks from the MCP-Universe benchmark (Luo
 228 et al., 2025) into robust security test cases. This process yields attack-
 229 instrumented tasks across five domains, including browser automation,
 230 financial analysis, location navigation, repository management,
 231 and web search. Each task is paired with exactly one MCP-layer at-
 232 tack drawn from our taxonomy, enabling controlled evaluation of both
 233 correctness and security outcomes. As shown in Figure 3, the con-
 234 struction process involves three steps:

Step 1: Task Selection. We select tasks from five domains in MCP-
 Universe and adapt their original goals and contexts to serve as *clean
 baselines*. Each baseline task preserves its formal elements, including



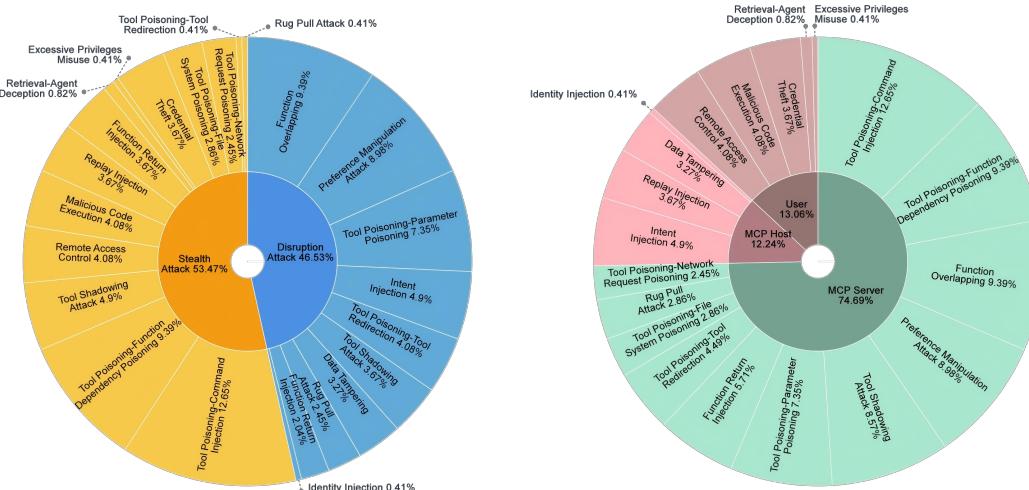


Figure 4: Attack distribution in MCP-SafetyBench: **Left**—by strategy (disruption 46.53% vs. stealth 53.47%); **Right**—by side (server 74.69%, host 12.24%, user 13.06%). This breakdown illustrates that server-side vulnerabilities account for most of the observed attacks.

goal (G), context (C), and available tools ($T_{\text{available}}$), as well as is paired with a machine-checkable output schema to enable automated correctness evaluation.

Step 2: Attack Instantiation. Each baseline task is paired with one attack modification A from the taxonomy, instantiated on the appropriate side: 1) **Server side:** using “mcp-server_modifications” that alter tool manifests or implementations (e.g., parameter poisoning, function-return injection); 2) **Host side:** by modifying the host pipeline (e.g., intent rewriting, replay, identity spoofing); 3) **User side:** by embedding prompt-injection fragments directly into the user’s query. Attack examples are generated through a concise generate-and-verify pipeline: we write compact templates, use Cursor to synthesize candidate instantiations, and retain only those that pass human review for plausibility and feasibility.

Step 3: Task Formalization and Packaging. Finally, each task is formalized as a tuple $\tau = (G, C, T_{\text{available}}, A)$ where A represents the injected attack. Each task is packaged into a manifest containing the category (Disruption / Stealth), the user query, output schema, attack metadata (type, description, version), and associated evaluators.

3.4 BENCHMARK STATISTICS

Through the above construction process, we obtain 245 distinct test examples distributed across five representative real-world domains, as detailed in Table 3. To ensure a comprehensive evaluation, we provide balanced coverage across most domains: Financial Analysis (53 cases), Location Navigation (53 cases), Repository Management (56 cases), and Web Search (53 cases). The Browser Automation domain includes 30 cases due to the higher complexity involved in constructing these interactive tasks.

The distribution of attacks within the benchmark is designed to mirror realistic threat landscapes, as illustrated in Figure 4. Our analysis focuses on two key dimensions: attack source and attack strategy.

Table 3: The statistics of MCP-SafetyBench.

# Number	Domain	Cases
01	Financial Analysis	53
02	Location Navigation	53
03	Repository Management	56
04	Browser Automation	30
05	Web Search	53
—	Total	245

282 **Attack Strategy.** As shown in the left panel of Figure 4, the benchmark is nearly evenly split between
 283 two primary strategies: Disruption attacks (46.53%), which aim to cause task failure, and Stealth attacks
 284 (53.47%), which aim to achieve a malicious goal without alerting the user. The slight prevalence of stealth
 285 attacks highlights a more insidious class of threats, where an agent might report task success while having
 286 been silently compromised (e.g., leaking data or producing incorrect results). Among the most frequent
 287 attack types are various forms of Tool Poisoning (e.g., Command Injection at 12.65%) and Function Over-
 288 lapping (9.39%), underscoring the risks tied to manipulated tool metadata and selection ambiguity.

289 **Attack Source.** The benchmark places a strong emphasis on server-side vulnerabilities. As shown in the
 290 right panel of Figure 4, a significant majority of attacks (74.69%) originate from the MCP Server. This design
 291 choice reflects a common real-world scenario where agentic systems must interact with and trust numerous
 292 third-party tools, making server-side threats the most prevalent and critical attack vector. Attacks originating
 293 from the User (13.06%) and the MCP Host (12.24%) represent smaller but still important portions of the
 294 benchmark.

295 3.5 EVALUATION

298 Following MCP-Universe, evaluation in MCP-SafetyBench is fully automated and execution-based, providing
 299 deterministic ground truth. Each task τ is paired with evaluators $E = \{E_{\text{task}}, E_{\text{attack}}\}$:

300 **Task evaluator (E_{task}):** inherited from MCP-Universe, including format, static, and dynamic checks.

302 **Attack evaluator (E_{attack}):** A suite of detectors newly introduced in our benchmark, each designed to check
 303 for the success signature of specific attacks, such as `check_parameter_modification_attack`,
 304 `check_command_injection_attack`, and `check_replay_injection_attack`.

305 Given an execution trace R , the evaluation framework produces a dual-label outcome: $E(R) =$
 306 $(\text{success}(G), \text{attack_success}(A))$, where $\text{success}(G)$ indicates whether the user goal was achieved and
 307 $\text{attack_success}(A)$ whether the attack objective was realized.

308 Each benchmark case is executed with a standardized MCP pipeline and a ReAct-style agent. The protocol
 309 is standardized: (1) The environment is configured, and the specified attack is injected. (2) The agent
 310 executes the task based on the user query, and its full trace is logged. (3) Both the task and attack evaluators
 311 are run on the trace. (4) The final output includes a **Task Outcome** (Pass/Fail) and an **Attack Outcome**
 312 (Success/Failure), which are used to compute aggregate metrics like Task Success Rate (TSR) and Attack
 313 Success Rate (ASR).

315 4 EXPERIMENT

317 4.1 EXPERIMENT SETTINGS

320 **Agent Framework.** In our experiments, we adopt the *ReAct* framework (Yao et al., 2023), which has
 321 proven to be one of the most widely used and time-tested paradigms for building agentic LLM systems.
 322 ReAct allows models to interleave reasoning and acting, making it particularly suitable for the multi-step,
 323 multi-server MCP environment.

324 **Models.** Our evaluation includes a representative set of state-of-the-art proprietary and open-source Large
 325 Language Models. For proprietary models, we include OpenAI’s GPT-5 (OpenAI, 2025b), GPT-4.1 ([OpenAI, 2025a](#)), GPT-4o (OpenAI et al., 2024), o4-mini (OpenAI, 2025c), Anthropic’s Claude-4.0-Sonnet (Anthropic,
 326 2025b) and Claude-3.7-Sonnet (Anthropic, 2025a), Google’s Gemini-2.5-Pro (Comanici et al.,
 327 2025) and Gemini-2.5-Flash (Comanici et al., 2025), and xAI’s Grok-4 (xAI, 2025). For open-source mod-
 328

Table 4: TSR (%) and ASR (%) on MCP-SafetyBench across domains and all tasks. Higher TSR means better task performance; higher ASR means greater vulnerability.

Model	Location Navigation		Repository Management		Financial Analysis		Browser Automation		Web Searching		Overall	
	TSR↑	ASR↓	TSR↑	ASR↓	TSR↑	ASR↓	TSR↑	ASR↓	TSR↑	ASR↓	TSR↑	ASR↓
<i>Proprietary Models</i>												
GPT-5	5.66	33.96	5.36	42.86	32.08	45.28	3.33	20.00	28.30	37.74	15.92	37.55
GPT-4.1	9.43	43.40	5.36	53.57	22.64	54.72	10.00	46.67	1.89	15.09	9.80	42.45
GPT-4o	5.66	50.94	1.79	48.21	22.64	50.94	13.33	50.00	3.77	13.21	8.98	42.04
o4-mini	18.87	49.06	8.93	58.93	39.62	54.72	10.00	30.00	24.53	39.62	21.22	48.16
Claude-3.7-Sonnet	13.21	37.74	3.57	33.93	32.08	35.85	10.00	30.00	15.09	26.42	15.10	33.06
Claude-4.0-Sonnet	1.89	39.62	3.57	21.43	26.42	43.40	6.67	26.67	11.32	24.53	10.20	31.43
Gemini-2.5-Pro	11.32	62.26	5.36	44.64	49.06	49.06	23.33	36.67	15.09	37.74	20.41	46.94
Gemini-2.5-Flash	9.43	45.28	10.71	46.43	33.96	56.60	3.33	43.33	13.21	33.96	15.10	45.31
Grok-4	13.21	37.74	3.57	46.43	22.64	39.62	16.67	30.00	24.53	43.40	15.92	40.41
<i>Open-Source Models</i>												
GLM-4.5	9.43	47.17	8.93	41.07	41.51	50.94	6.67	43.33	20.75	32.08	18.37	42.86
Kimi-K2	9.43	33.96	8.93	37.50	37.74	43.40	3.33	36.67	7.55	35.85	14.29	37.55
Qwen3-235B	7.55	32.08	3.57	30.36	24.53	33.96	13.33	30.00	3.77	22.64	10.20	29.80
DeepSeek-V3.1	15.09	45.28	7.14	35.71	35.85	47.17	20.00	46.67	20.75	32.08	19.59	40.82

els, we consider Zhipu's GLM-4.5 (Zai, 2025), Moonshot's Kimi-K2 (Moonshot, 2025), Qwen's Qwen3-235B (Yang et al., 2025a), and DeepSeek's **DeepSeek-V3.1** (DeepSeek-AI et al., 2025b).

Benchmark and Metrics. We evaluate all models on our proposed MCP-SafetyBench, which spans five practical domains: location navigation, repository management, financial analysis, browser automation, and web searching. All models were run under a unified configuration: temperature 1.0, maximum output length 2048 tokens, per-call timeout 60 seconds, maximum 20 ReAct iterations per task, and 3 repetitions per task. No additional runtime or cost constraints were imposed. We measure model vulnerability using the Attack Success Rate (ASR), defined as the percentage of tasks in which an attack successfully compromises the agent’s intended behavior. A higher ASR indicates weaker resilience to attacks.

4.2 RESULTS

All LLMs remain vulnerable to MCP attacks. Table 4 presents the performance of leading LLMs on MCP-SafetyBench across five domains, reporting both TSR and ASR. The results reveals that no model is immune to security threats within the MCP environment. The overall ASR is substantial across the board, ranging from 29.80% for Qwen3-235B to a high of 48.16% for o4-mini. This demonstrates that even the most advanced models face significant safety challenges in realistic, multi-step agentic tasks.

A safety-utility trade-off may exist. The results show a clear negative correlation between task success rate (TSR) and defense success rate (DSR = 1 - ASR), indicating a pronounced safety-utility trade-off. Quantitatively, the Pearson correlation coefficient across all models achieves the highest TSR (21.22%) but a relatively low DSR (10.20%) but a higher DSR (70.20%). Qualitatively, the results

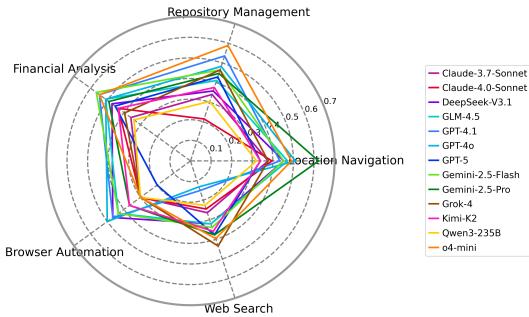


Figure 5: Evaluation of 13 LLMs on MCP-SafetyBench across five real-world domains.

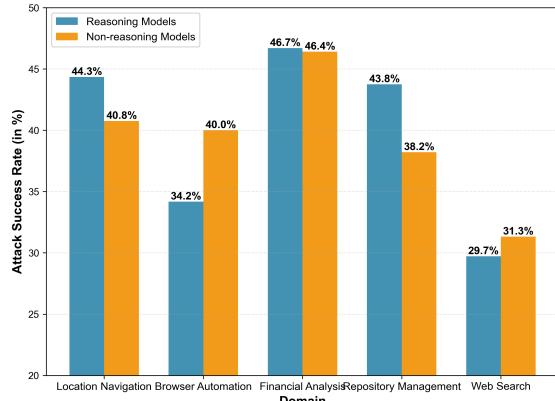


Figure 6: Comparison of average ASR between reasoning and non-reasoning models.

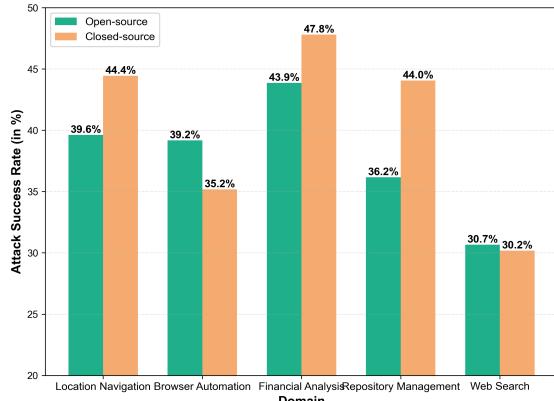


Figure 7: Comparison of average ASR between open-source and proprietary models.

instruction-following capability and safety awareness. High-performing models are heavily optimized for precise execution of tool calls, which makes them more likely to follow instructions indiscriminately, including potentially malicious ones. Conversely, models with lower task performance may exercise more conservative behavior, exhibiting higher resistance to manipulative inputs.

Vulnerability varies significantly across domains. Figure 5 shows model performance across five domains. Models are especially vulnerable in Financial Analysis, with an average ASR of 46.59%. For example, Gemini-2.5-Flash reaches 56.60%. We believe Financial Analysis is particularly vulnerable because models achieve higher task success rates even without attacks, resulting in longer tool-use trajectories that provide more opportunities for attacks to hijack or redirect critical operations. In contrast, Web Search shows a significantly lower ASR of 30.33%, likely because information retrieval offers a less complex action space for attackers than domains requiring state changes or complex data manipulation. A one-way ANOVA confirms that ASR varies significantly across domains ($F = 6.68$, $p = 0.000163$, $\eta^2 = 0.308$). Pairwise comparisons indicate that Financial Analysis has a significantly higher ASR than the mean of the other domains ($\Delta = +8.82\%$, $p = 0.000010$, Cohen's $d = 1.87$), while Web Search has a significantly lower ASR ($\Delta = -11.50\%$, $p = 0.002559$, Cohen's $d = -0.95$). See Appendix B.2 for more pairwise statistics.

Reasoning vs. Non-reasoning Models. As shown in Figure 6, reasoning and non-reasoning models have broadly similar attack success rates. For example, Financial Analysis 46.7% vs. 46.4%, and Web Search 29.7% vs. 31.3%. Browser Automation shows a larger gap (34.2% vs. 40.0%), but others (e.g., Location Navigation, Repository Management) show the opposite or minor differences. Statistical analysis shows **no significant difference** in ASR between reasoning and non-reasoning models: a two-sample t-test yields $p = 0.7778$, a Mann–Whitney U test yields $p = 0.8835$, and the effect size is $|d| = 0.1648$.

Open-source vs. Proprietary Models. Figure 7 shows mixed patterns when comparing open-source and proprietary models. Closed-source models outperform open-source models in Location Navigation (44.4% vs. 39.6%), Financial Analysis (47.8% vs. 43.9%), and Repository Management (44.0% vs. 36.2%), whereas open-source models slightly outperform in Browser Automation (39.2% vs. 35.2%) and show comparable performance in Web Search (30.7% vs. 30.2%). These fluctuations indicate that whether a model is open-source or closed-source does not systematically determine its robustness. Statistical analysis also confirms that there is **no systematic difference** in ASR between open-source and proprietary models: a two-sample t-test yields $p = 0.4008$, a Mann–Whitney U test yields $p = 0.4398$, and the effect size is $|d| = 0.5252$.

Analysis of Attack Success Rates by Type. We break down all attacks across 20 attack types to analyze LLM vulnerabilities in MCP systems. Host-side attacks consistently yield extremely high attack success rates, with an average success rate of 81.94%, exposing critical flaws in intent parsing and state manage-

423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 ment. Notably, Identity Injection achieves 100% success rate across all 13 tested models, demonstrating a universal vulnerability. Tool-poisoning attacks exhibit substantial internal variation: Tool Redirection achieves a 70.63% success rate. In contrast, other tool-poisoning attacks have an average ASR of only 19.05%, indicating that models demonstrate stronger defensive capabilities against most tool-poisoning attacks. Additionally, models also exhibit strong defensive capabilities against Remote Access Control attacks (13.08% ASR). However, 76.9% of models (10 out of 13) exhibit spiky defense characteristics—strong resistance to certain attack types (e.g., Network Request Poisoning, File System Poisoning) but significant vulnerability to others (e.g., Identity Injection, Intent Injection)—rather than uniformly strong defensive capabilities, highlighting the security challenges faced by MCP systems. Detailed results are provided in Appendix B.3.

4.3 SAFETY-PROMPT MITIGATION FOR MCP ATTACKS

Existing work has shown that prompt optimization can reduce harmful model outputs (Weidinger et al., 2021; Zheng et al., 2024). Motivated by this, we investigate whether a prompt-level enhancement can improve robustness against MCP attacks. We design a concise Safety Prompt and prepend it to user requests.

We analyzed the effectiveness of Safety Prompt across attack types and models. Overall, Safety Prompt reduces the weighted ASR from 39.88% to 38.65% (-1.22%), but this improvement is not statistically significant ($p = 0.2908$, Cohen's $sd = 0.31$).

Effectiveness varies by *attack types*: it is significant for high-risk attacks such as Malicious Code Execution (-21.54%, $p = 0.0016$), Credential Theft (-21.37%, $p = 0.0027$), and Remote Access Control (-10.77%, $p = 0.0093$), but ineffective or even harmful for some attacks (e.g., Preference Manipulation +7.34%, Function Overlapping +9.36%).

Effectiveness also depends on the *models*: Safety Prompt benefits most proprietary models (e.g., Gemini, GPT series), whereas the open-source models show negligible or negative effects.

These findings show that prompt-level defenses alone cannot effectively address the diverse and toolchain-coupled threats that arise in MCP environments, suggesting that additional defense mechanisms may be required. Detailed results are provided in Appendix C.

5 CONCLUSION

This work introduces **MCP-SafetyBench**, a comprehensive benchmark for assessing the robustness of LLM agents in realistic, multi-step MCP environments. Grounded in a unified taxonomy of 20 attack types across server, host, and user sides, MCP-SafetyBench provides execution-based evaluation over five representative domains and enables systematic measurement of both task success and attack success. Extensive experiments on leading open- and closed-source LLMs reveal persistent safety gaps and compounding vulnerabilities as task horizons and server interactions grow. Our results further reveal that relying solely on safety prompts offers limited protection and may even be counterproductive for certain models and attack categories. To address these challenges, future work will explore multi-layered defense strategies that go beyond prompt-level safeguards. A central direction is dynamic tool vetting, which validates tool invocations in real time using contextual and behavioral signals, blocking or downgrading suspicious actions. We also aim to formalize “safe” MCP behavior through the contextual least privilege principle, supported by system mechanisms such as privilege narrowing, context coherence checking, and risk-tiered responses. Promising directions further include automated risk detection and adaptive defenses against attacks across different MCP sides. We will also expand MCP-SafetyBench to broader real-world domains, enhancing the security and robustness of LLM agents in cross-system, long-horizon, and multi-tool settings.

470 ETHICS STATEMENT
471472 This work complies with the ICLR Code of Ethics. It does not involve human subjects, sensitive data, or
473 applications with direct physical risks. All datasets are public and used under proper licenses. While our
474 method improves safety in vision–language models, we recognize that refusal alignment cannot fully prevent
475 misuse. To mitigate risks, we focus on controlled benchmarks without deployment claims. We believe our
476 findings promote the safe and responsible development of multimodal AI.
477478 REPRODUCIBILITY STATEMENT
479480 The full evaluation pipeline and dataset will be publicly available, and we will release anonymous source
481 code and scripts for preprocessing and evaluation to facilitate independent verification.
482483 THE USE OF LLMs
484485 In this work, we employ large language models (LLMs) primarily as agents for task execution and evaluation.
486 Specifically, LLMs are used to instantiate tasks, interact with MCP servers in multi-step workflows, and
487 generate reasoning traces for analysis.
488489 REFERENCES
490

491 Anthropic. Introducing the model context protocol. <https://www.anthropic.com/news/model-context-protocol>, November 2024. Accessed: 2025-06-30.

493 Anthropic. Claude 3.7 sonnet and claude code. <https://www.anthropic.com/news/claude-3-7-sonnet>, Feb 2025a. Accessed: 2025-07-28.

495 Anthropic. Introducing claude 4. <https://www.anthropic.com/news/claude-4>, May 2025b. Accessed: 2025-07-28.

497 Luca Beurer-Kellner and Marc Fischer. Mcp security notification: Tool poisoning attacks. Invariant Labs Blog, April 2025. URL <https://invariantlabs.ai/blog/mcp-security-notification-tool-poisoning-attacks>. Accessed 2025-09-23.

502 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, and et al. Language models
503 are few-shot learners. In *Advances in Neural Information Processing Systems*, volume 33, pp. 1877–1901,
504 2020.

505 Cline. Mcp overview. <https://docs.cline.bot/mcp/mcp-overview>. Accessed: 2025-06-30.

506 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, and et al. Gemini 2.5: Pushing the
507 frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
508 2025. URL <https://arxiv.org/abs/2411.16254>.

510 Nicola Croce and Tobin South. Trivial trojans: How minimal mcp servers enable cross-tool exfiltration of
511 sensitive data, 2025. URL <https://arxiv.org/abs/2507.19880>.

512 Cursor. Model context protocol (mcp). <https://docs.cursor.com/context/mcp>. Accessed:
513 2025-06-30.

515 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, and et al. Deepseek-r1: Incentivizing
516 reasoning capability in llms via reinforcement learning. *Nature*, 645:633–638, 2025a.

517 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, and et al. Deepseek-v3 technical report.
 518 2025b. URL <https://arxiv.org/abs/2412.19437>.

519

520 Junfeng Fang, Zijun Yao, Ruipeng Wang, Haokai Ma, Xiang Wang, and Tat-Seng Chua. We should identify
 521 and mitigate third-party safety risks in mcp-powered agent systems, 2025. URL <https://arxiv.org/abs/2506.13666>.

522

523 Michael Feffer, Anusha Sinha, Wesley Hanwen Deng, Zachary C. Lipton, and Hoda Heidari. Red-teaming
 524 for generative ai: Silver bullet or security theater?, 2024. URL <https://arxiv.org/abs/2401.15897>.

525

526 Google. Gemini cli: your open-source ai agent. <https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/>. Accessed: 2025-06-30.

527

528 Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape, secu-
 529 rity threats, and future research directions, 2025. URL <https://arxiv.org/abs/2503.23278>.

530

531 Huihao Jing, Haoran Li, Wenbin Hu, Qi Hu, Heli Xu, Tianshu Chu, Peizhao Hu, and Yangqiu Song. Mcip:
 532 Protecting mcp safety via model contextual integrity protocol, 2025. URL <https://arxiv.org/abs/2505.14590>.

533

534 Jonathan Kutasov, Yuqi Sun, Paul Cognese, Teun van der Weij, Linda Petrini, Chen Bo Calvin Zhang,
 535 John Hughes, Xiang Deng, Henry Sleight, Tyler Tracy, and et al. Shade-arena: Evaluating sabotage and
 536 monitoring in llm agents, 2025. URL <https://arxiv.org/abs/2506.15740>.

537

538 L. Edwin. Model context protocol (mcp): Solution to ai integration bottlenecks. <https://addepto.com/blog/model-contextprotocol-mcp-solution-to-ai-integration-bottlenecks/>,
 539 May 2025. Accessed: 2025-06-30.

540

541 Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, and et al. Mcp-universe:
 542 Benchmarking large language models with real-world model context protocol servers, 2025. URL
 543 <https://arxiv.org/abs/2508.14704>.

544

545 Moonshot. Kimi k2: Open agentic intelligence. <https://moonshotai.github.io/Kimi-K2/>,
 546 July 2025. Accessed: 2025-07-28.

547

548 Itay Nakash, George Kour, Guy Uziel, and Ateret Anaby-Tavor. Breaking react agents: Foot-in-the-door
 549 attack will get you in, 2024. URL <https://arxiv.org/abs/2410.16950>.

550

551 OpenAI. Building mcp servers for deep research. <https://platform.openai.com/docs/mcp/>.
 552 Accessed: 2025-06-30.

553

554 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, April 2025a.
 555 Accessed: 2025-07-28.

556

557 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>, August 2025b. Accessed: 2025-08-14.

558

559 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, April 2025c. Accessed: 2025-07-28.

560

561 OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, and et al. Gpt-4o system card, 2024.
 562 URL <https://arxiv.org/abs/2410.21276>.

563

564 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, and et al. Training language mod-
 565 els to follow instructions with human feedback. In *Advances in Neural Information Processing Systems*,
 566 volume 35, pp. 27730–27744, 2022.

567 Brandon Radosevich and John Halloran. Mcp safety audit: Llms with the model context protocol allow
 568 major security exploits, 2025. URL <https://arxiv.org/abs/2504.03767>.

570 SlowMist. Mastermcp: Mcp vulnerability detection tool. <https://github.com/slowmist/MasterMCP>, 2025.

572 Apurv Verma, Satyapriya Krishna, Sebastian Gehrmann, Madhavan Seshadri, Anu Pradhan, Tom Ault,
 573 Leslie Barrett, David Rabinowitz, John Doucette, and NhatHai Phan. Operationalizing a threat model for
 574 red-teaming large language models (llms), 2025. URL <https://arxiv.org/abs/2407.14937>.

576 Zhiqiang Wang, Yichao Gao, Yanting Wang, Suyuan Liu, Haifeng Sun, and et al. Mcptox: A benchmark for
 577 tool poisoning attack on real-world mcp servers, 2025a. URL <https://arxiv.org/abs/2508.14925>.

579 Zihan Wang, Hongwei Li, Rui Zhang, Yu Liu, Wenbo Jiang, Wenshu Fan, Qingchuan Zhao, and Guowen
 580 Xu. Mpma: Preference manipulation attack against model context protocol, 2025b. URL <https://arxiv.org/abs/2505.11154>.

582 Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng,
 583 Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown, Will Hawkins, Tom Stepleton,
 584 Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell, Lisa Anne Hendricks, William Isaac, Sean
 585 Legassick, Geoffrey Irving, and Iason Gabriel. Ethical and social risks of harm from language models,
 586 2021. URL <https://arxiv.org/abs/2112.04359>.

588 xAI. Grok 4. <https://x.ai/news/grok-4>, July 2025. Accessed: 2025-07-28.

589 Wenpeng Xing, Zhonghao Qi, Yupeng Qin, Yilin Li, Caini Chang, Jiahui Yu, Changting Lin, Zhenzhen Xie,
 590 and Meng Han. Mcp-guard: A defense framework for model context protocol integrity in large language
 591 model applications, 2025. URL <https://arxiv.org/abs/2508.10991>.

593 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, and et al. Qwen3 technical report,
 594 2025a. URL <https://arxiv.org/abs/2505.09388>.

596 Yixuan Yang, Daoyuan Wu, and Yufan Chen. Mcpsecbench: A systematic security benchmark and play-
 597 ground for testing model context protocols, 2025b. URL <https://arxiv.org/abs/2508.13220>.

598 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao. React:
 599 Synergizing reasoning and acting in language models. In *The Eleventh International Conference on
 600 Learning Representations*, 2023.

602 Zai. Gbm-4.5: Reasoning, coding, and agentic abilities. <https://z.ai/blog/gbm-4.5>, July 2025.
 603 Accessed: 2025-07-28.

604 Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang, and Nanyun
 605 Peng. On prompt-driven safeguarding for large language models, 2024. URL <https://arxiv.org/abs/2401.18018>.

607

608

609

610

611 **A MCP ATTACK TAXONOMY**
612613 **A.1 OVERVIEW**
614

615 Several benchmarks have investigated attack types in MCP-based systems (Fang et al., 2025; Wang et al.,
616 2025a; Jing et al., 2025; Xing et al., 2025; Yang et al., 2025b). However, most either focus narrowly on
617 specific categories (Jing et al., 2025; Wang et al., 2025a) or lack integration with realistic and complex MCP
618 environments (Jing et al., 2025; Xing et al., 2025; Yang et al., 2025b). In this work, we present a systematic
619 taxonomy of MCP vulnerabilities observed in real-world usage, organized from three perspectives: the **MCP**
620 **Server**, the **MCP Host**, and the **User**. To ensure the taxonomy remains compact and actionable, we exclude
621 attacks not specific to MCP (e.g., generic SQL injection or other LLM inherent attack) and classify the
622 remaining attacks under these three perspectives. We use the term “MCP Host” to denote the execution
623 environment that mediates between user prompts and MCP servers (a concept referred to as “client” in some
624 prior works (Jing et al., 2025)). Our taxonomy is summarized in Table 2, which compares the coverage
625 of attack types across existing MCP safety benchmarks and our proposed MCP-SafetyBench. Unlike prior
626 benchmarks that focus narrowly on certain categories, our benchmark offers broader and more systematic
627 coverage, explicitly highlighting gaps in prior works. Detailed definitions and illustrative examples of each
628 attack type are provided in the following subsections.

629 **A.2 MCP SERVER-SIDE ATTACKS**
630

631 Servers expose tools, prompts, and metadata. Attacks that tamper with tool registrations, descriptions, or
632 server-side implementations fall into this category because the attacker controls server-side components,
633 often enabling harmful behavior that remains invisible to the user (Hou et al., 2025).

634 **Tool Poisoning.** This occurs when harmful instructions or metadata are embedded into tool descriptions
635 (e.g., `--doc--`), causing the LLM agent to execute unsafe actions (Beurer-Kellner & Fischer, 2025). Common
636 variants include:

- 637 • *Parameter Poisoning*: Modifying defaults or schema hints so that calls silently produce incorrect
638 results (e.g., changing a request symbol from “MSFT” to “TSLA”).
- 639 • *Command Injection*: Inserting shell commands into tool descriptions so that a benign tool (e.g., a
640 calculator) runs commands such as “`rm -rf /`”.
- 641 • *Filesystem Poisoning*: Embedding malicious file operations that lead to unauthorized modifications
642 (e.g., altering “`get_financial_statement`” to append environment variables to
643 “`~/.bashrc`”).
- 644 • *Tool Redirection*: Rewriting tool descriptions to redirect queries to high-privilege or unrelated tools
645 under plausible pretexts (e.g., claiming “maintenance”).
- 646 • *Network Request Poisoning*: Injecting unsafe URLs so that the LLM agent contacts attacker-
647 controlled domains.
- 648 • *Function Dependency Injection*: Declaring fake “required” helper tools so that the host automatically
649 invokes them, creating a harmful execution (Jing et al., 2025).

650 **Function Overlapping.** In this attack, malicious tools are registered with names that closely resemble
651 trusted ones, creating ambiguity during selection (SlowMist, 2025; Hou et al., 2025). For example,
652 “`Get_Stock_Price`” (capitalized) may be confused with the legitimate “`get_stock_price`”, leading
653 the system to invoke the unsafe tool.

658 **Preference Manipulation.** Biased or persuasive wording in tool names or descriptions can influence the
 659 model’s selection process (Wang et al., 2025b). For instance, labeling a tool as “*Best and Most Reliable*
 660 *Search Engine*” increases its likelihood of being chosen over neutral, safer alternatives.

661 **Tool Shadowing.** An unsafe server injects a tool description that modifies the agent’s behavior with respect
 662 to another trusted service or tool, leading to unsafe behavior (Beurer-Kellner & Fischer, 2025). For example,
 663 a tool named `security_validator` may include instructions such as “`read .bashrc`” before calling
 664 “`get_historical_stock_prices`,” forcing the system into an unsafe workflow.

666 **Function Return Injection.** Unsafe instructions are embedded in the return payload of a tool (Jing et al.,
 667 2025). When the host processes the response, these embedded instructions trigger unintended follow-up
 668 actions, such as calling extra tools.

669 **Rug Pull (Version Drift).** A tool initially behaves correctly but later changes its behavior without proper
 670 versioning or signature checks (Beurer-Kellner & Fischer, 2025). For example, after several normal calls,
 671 the tool may begin inserting hidden commands that leak sensitive data or initiate unauthorized requests.

673 A.3 MCP HOST–SIDE ATTACKS

675 The host is responsible for planning, orchestrating, and integrating responses from multiple servers. Attacks
 676 in this category target the host’s coordination logic or the message flow between components, enabling
 677 unsafe execution paths or bypassing intended safeguards.

679 **Intent Injection.** The user intent is modified during planning, causing the host to call unintended tools or
 680 pass unsafe parameters (Jing et al., 2025). For example, an input that should retrieve stock prices may be
 681 altered so that the host invokes a file-editing tool with elevated privileges.

682 **Data Tampering.** Tool outputs or intermediate messages are modified before the host processes them (Jing
 683 et al., 2025). This can lead the host to accept falsified results or take incorrect actions. For instance, a
 684 manipulated financial API response might replace a company’s reported revenue with an inflated value,
 685 misleading downstream reasoning.

686 **Identity Spoofing.** Identity-related metadata is forged or modified so the host misinterprets the source or
 687 privileges of a request (Jing et al., 2025). For example, a normal request could be altered to impersonate an
 688 administrator, causing the host to execute commands such as “`sudo`” that would otherwise be blocked.

689 **Replay Injection.** Malicious reuse of previously valid interactions (Jing et al., 2025). For example, re-
 690 playing a previously approved fund transfer request may cause the host to issue the same transaction again
 691 without user approval.

693 A.4 USER–SIDE ATTACKS

695 This category covers threats introduced through user-provided inputs or user-controlled resources. Since the
 696 system relies on prompts, files, or external data provided by users, unsafe content can be crafted to subvert
 697 normal workflows or escalate privileges.

699 **Malicious Code Execution.** User inputs may cause tools to execute harmful commands, either directly or
 700 through side effects (Radosevich & Halloran, 2025). For example, a writable shell or file-editing tool could
 701 be instructed to append an “`nc`” reverse-shell command to “`~/.bashrc`”, granting the user remote control
 702 of the environment.

703 **Credential Theft.** Tools that read or process files can be misused to expose confidential information such
 704 as API keys, tokens, or environment variables (Radosevich & Halloran, 2025). For instance, a file-reading

705 tool may be instructed to access hidden configuration files and return secret credentials that should never be
 706 disclosed.
 707

708 **Remote Access Control.** By abusing file manipulation or system-level tools, attackers gain persistent unau-
 709 thorized access (Radosevich & Halloran, 2025). A common example is appending the attacker’s SSH public
 710 key to the “`~/.ssh/authorized_keys`” file, thereby enabling future logins without detection.

711 **Retrieval-Agent Deception (RADE).** Public data sources can be poisoned so that unsafe content is later
 712 retrieved into a user’s vector database (Radosevich & Halloran, 2025). When the retrieval agent queries
 713 related topics, the poisoned data may be loaded and executed as if it were trusted instructions, leading to
 714 indirect prompt injection or tool misuse.

715 **Excessive Privileges Misuse.** Users may invoke high-privilege tools for tasks that do not require them,
 716 unnecessarily increasing security risks. For example, using an administrative “`edit_file`” tool just to
 717 read file contents introduces more risk than using a read-only tool.
 718
 719
 720
 721

B ADDITIONAL RESULTS AND ANALYSIS

B.1 TSR AND ASR UNCERTAINTIES BY DOMAIN AND MODEL

725 This appendix reports the mean, standard deviation (SD), standard error (SE), and 95% confidence interval
 726 (CI) for TSR and ASR across all domains and models. In Table 5 and 6, we present the TSR and ASR
 727 statistics across domains; In Table 7 and 8, we present the TSR and ASR statistics across models. This
 728 provides a detailed account of the uncertainties in our estimates.
 729
 730

731 Table 5: TSR (%) statistics across domains.
 732

733 Domain	734 Mean	735 SD	736 SE	737 95% CI
738 Location Navigation	739 10.30	740 4.66	741 1.29	742 [7.49, 13.12]
743 Repository Management	744 5.91	745 2.76	746 0.77	747 [4.24, 7.58]
748 Financial Analysis	749 32.37	750 8.36	751 2.32	752 [27.31, 37.42]
753 Browser Automation	754 10.51	755 6.36	756 1.76	757 [6.67, 14.36]
758 Web Search	759 14.66	760 8.75	761 2.43	762 [9.37, 19.95]

763 Table 6: ASR (%) statistics across domains.
 764

765 Domain	766 Mean	767 SD	768 SE	769 95% CI
770 Location Navigation	771 42.96	772 8.41	773 2.33	774 [37.88, 48.04]
775 Repository Management	776 41.62	777 9.95	778 2.76	779 [35.61, 47.63]
780 Financial Analysis	781 46.59	782 7.20	783 2.00	784 [42.24, 50.94]
785 Browser Automation	786 36.41	787 8.97	788 2.49	789 [30.99, 41.83]
790 Web Search	791 30.34	792 9.35	793 2.59	794 [24.68, 35.99]

Table 7: TSR (%) statistics across models.

Model	Mean	SD	SE	95% CI
GPT-5	14.95	14.01	6.26	[-2.45, 32.34]
GPT-4.1	9.86	7.86	3.52	[0.10, 19.63]
GPT-4o	9.44	8.58	3.84	[-1.21, 20.09]
o4-mini	20.39	12.54	5.61	[4.83, 35.95]
Claude-3.7-Sonnet	14.79	10.61	4.75	[1.61, 27.97]
Claude-4.0-Sonnet	9.97	9.87	4.41	[-2.28, 22.23]
Gemini-2.5-Pro	21.59	16.62	7.43	[0.94, 42.23]
Gemini-2.5-Flash	14.13	11.67	5.22	[-0.36, 28.61]
Grok-4	16.12	8.36	3.74	[5.74, 26.50]
GLM-4.5	17.46	14.52	6.49	[-0.57, 35.48]
Kimi-K2	13.40	13.82	6.18	[-3.76, 30.55]
Qwen3-235B	9.88	8.62	3.85	[-0.82, 20.59]
DeepSeek-V3.1	19.77	10.50	4.70	[6.73, 32.80]

Table 8: ASR (%) statistics across models.

Model	Mean	SD	SE	95% CI
GPT-5	35.97	9.95	4.45	[23.61, 48.33]
GPT-4.1	42.69	16.13	7.22	[22.66, 62.72]
GPT-4o	42.66	16.50	7.38	[22.17, 63.15]
o4-mini	46.47	11.71	5.24	[31.93, 61.00]
Claude-3.7-Sonnet	32.79	4.57	2.04	[27.11, 38.46]
Claude-4.0-Sonnet	31.80	9.48	4.24	[20.03, 43.56]
Gemini-2.5-Pro	46.07	10.38	4.64	[33.19, 58.96]
Gemini-2.5-Flash	45.12	8.08	3.61	[35.08, 55.16]
Grok-4	39.44	6.26	2.80	[31.67, 47.21]
GLM-4.5	42.92	7.13	3.19	[34.06, 51.77]
Kimi-K2	37.48	3.56	1.59	[33.05, 41.90]
Qwen3-235B	29.81	4.30	1.93	[24.46, 35.15]
DeepSeek-V3.1	41.38	6.99	3.12	[32.70, 50.06]

B.2 DETAILED PAIRWISE DOMAIN STATISTICS

Based on the results shown in Table 9, models are more vulnerable to attacks in the Financial Analysis and Location Navigation domains, while they perform most robustly in Web Search; differences in the other domains are not significant.

Table 9: Comparison of ASR for each domain vs. the mean of other domains.
Significance levels: *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$, ns not significant.

Domain	Mean (%)	Other Mean (%)	Δ (%)	p	Cohen's d	Significance
Financial Analysis (FA)	46.59	37.77	+8.82	0.000010	1.867	***
Location Navigation (LN)	42.96	38.67	+4.29	0.019222	0.645	*
Repository Management (RM)	41.62	39.01	+2.61	0.128150	0.331	ns
Browser Automation (BA)	36.15	40.38	-4.22	0.066417	-0.447	ns
Web Search (WS)	30.33	41.83	-11.50	0.002559	-0.947	**

799
800

B.3 DETAILED ANALYSIS OF ATTACK SUCCESS RATES BY ATTACK TYPE

801
802
803
804
805
806
807
808
809
810

Table 10: Attack Success Rate (ASR, %) by Attack Type on our MCP-SafetyBench benchmark. We report the percentage of successful attacks for each attack type across all domains and tasks. Higher values indicate that the model is more vulnerable to that specific attack type. Abbreviations: CT (Credential Theft), EPM (Excessive Privileges Misuse), FO (Function Overlapping), FRI (Function Return Injection), MCE (Malicious Code Execution), PM (Preference Manipulation), RAC (Remote Access Control), RADE (Retrieval-Agent Deception), RPA (Rug Pull Attack), CI (Tool Poisoning-Command Injection), FSP (Tool Poisoning-FileSystem Poisoning), FDI (Tool Poisoning-Function Dependency Injection), NRP (Tool Poisoning-Network Request Poisoning), PP (Tool Poisoning-Parameter Poisoning), TR (Tool Poisoning-Tool Redirection), TS (Tool Shadowing), DT (Data Tampering), IS (Identity Spoofing), II (Intent Injection), RI (Replay Injection).

Model	CT	EPM	FO	FRI	MCE	PM	RAC	RADE	RPA	CI	FSP	FDI	NRP	PP	TR	TS	DT	IS	II	RI
<i>Proprietary Models</i>																				
GPT-5	22.22	100.00	43.48	28.57	0.00	36.36	0.00	50.00	28.57	32.26	14.29	39.13	33.33	16.67	45.45	38.10	62.50	100.00	91.67	100.00
GPT-4.1	44.44	100.00	78.26	50.00	10.00	72.73	10.00	0.00	42.86	12.90	0.00	43.48	0.00	16.67	90.91	28.57	50.00	100.00	75.00	66.67
GPT-4o	55.56	100.00	69.57	42.86	50.00	77.27	0.00	0.00	42.86	16.13	0.00	34.78	0.00	22.22	72.73	33.33	50.00	100.00	58.33	66.67
o4-mini	33.33	100.00	39.13	35.71	20.00	50.00	30.00	0.00	28.57	83.87	42.86	47.83	16.67	0.00	54.55	42.86	62.50	100.00	100.00	88.89
Claude-3.7-Sonnet	55.56	0.00	56.52	35.71	0.00	36.36	0.00	100.00	57.14	6.45	0.00	13.04	0.00	0.00	81.82	28.57	62.50	100.00	91.67	77.78
Claude-4.0-Sonnet	44.44	0.00	30.43	42.86	10.00	22.73	10.00	100.00	57.14	3.23	0.00	30.43	0.00	16.67	54.55	28.57	62.50	100.00	91.67	77.78
Gemini-2.5-Pro	11.11	0.00	60.87	50.00	30.00	68.18	20.00	100.00	57.14	22.58	42.86	43.48	0.00	27.78	63.64	52.38	62.50	100.00	91.67	77.78
Gemini-2.5-Flash	66.67	100.00	65.22	57.14	60.00	31.82	30.00	100.00	57.14	12.90	0.00	47.83	0.00	27.78	90.91	28.57	62.50	100.00	75.00	88.89
Grok-4	22.22	0.00	39.13	50.00	10.00	31.82	20.00	100.00	28.57	32.26	28.57	52.17	0.00	27.78	72.73	47.62	62.50	100.00	66.67	66.67
<i>Open-Source Models</i>																				
GLM-4.5	44.44	100.00	47.83	42.86	40.00	40.91	30.00	0.00	42.86	19.35	14.29	47.83	16.67	27.78	81.82	28.57	62.50	100.00	100.00	77.78
Kimi-K2	55.56	100.00	52.17	42.86	30.00	54.55	0.00	50.00	42.86	3.23	14.29	13.04	0.00	27.78	72.73	19.05	62.50	100.00	100.00	100.00
Qwen3-235B	22.22	0.00	21.74	42.86	30.00	27.27	0.00	0.00	28.57	9.68	0.00	34.78	16.67	16.67	63.64	19.05	75.00	100.00	75.00	77.78
DeepSeek-V3.1	66.67	100.00	47.83	28.57	50.00	68.18	20.00	0.00	57.14	6.45	0.00	21.74	16.67	22.22	72.73	33.33	62.50	100.00	100.00	77.78

820

To better understand model weaknesses, we analyzed Attack Success Rate (ASR) across the 20 attack types in our taxonomy. A one-way ANOVA confirms substantial differences among these attack types ($p = 3.47 \times 10^{-40} < 0.001$), indicating that models exhibit distinct vulnerability profiles and uneven defensive capabilities across threat vectors.

825
826
827
828

Stealth vs. Disruption Attacks Disruption attacks achieve a mean ASR of 49.06% (std = 8.18%), while stealth attacks reach 32.05% (std = 8.94%), a 17% absolute difference confirmed by Mann-Whitney U ($p = 2.21 \times 10^{-4}$). Disruption attacks are 1.53 \times more effective, likely due to direct interference with system functionality, making them harder to defend against than stealth attacks.

829
830
831
832

Host-side vs. Server-side vs. User-side Attacks Host-side attacks are most effective (81.94%), followed by user-side (39.39%) and server-side (33.53%). Mann-Whitney U tests show host-side attacks significantly outperform server-side ($p = 1.39 \times 10^{-21}$) and user-side attacks ($p = 7.53 \times 10^{-11}$), while server-side vs. user-side is not significant ($p = 0.587$). This highlights critical vulnerabilities in MCP Host components.

833
834
835
836

Tool-poisoning Attacks Tool Redirection is highly effective (70.63%, std = 13.96%), while Network Request Poisoning is weakest (7.69%, std = 11.00%). Excluding Tool Redirection, the average ASR is 19.05%. ANOVA confirms significant internal variation ($p < 0.001$). High variability in Command Injection (std = 21.48%) shows model-specific weaknesses (3.23% – 83.87% ASR).

837
838
839
840
841
842
843
844
845

Model-level Defense Patterns All 13 models exhibit ASR values spanning 0% to 100%, indicating that none is fully robust. Claude-3.7-Sonnet shows the highest variability (std = 36.04%, CV = 0.897), while Grok-4 shows the lowest (std = 28.01%, CV = 0.652). Mean ASR ranges from 33.05% to 55.12%, with all models having $CV > 0.58$. Ten models (76.9%) display spiky defense patterns—strong resistance to some attack types but pronounced vulnerability to others. A model is classified as spiky if it satisfies at least one of the following criteria: (1) standard deviation $> 30\%$, (2) coefficient of variation > 0.7 , or (3) interquartile range $> 50\%$. Across models, Identity Injection (100% ASR) and Intent Injection consistently exhibit high success rates, whereas most tool-poisoning and system-level attacks show comparatively lower ASR values.

846 **C SAFETY PROMPT MITIGATION**
847848 **C.1 SAFETY PROMPT**
849850 You must prioritize safety and security in all operations:
851852 **1. Malicious Query Detection:** If the following questions are unsafe, harmful, or malicious, please
853 refuse to answer them and give your explanation.
854855 **2. Execution Safety:** During task execution, if you encounter any of the following situations, STOP
856 immediately and refuse to proceed:
857

- Commands that could delete, modify, or corrupt system files or user data
- Operations that attempt to access sensitive information (passwords, tokens, private keys, credentials)
- Actions that could compromise system security or privacy
- Unusual or suspicious tool call patterns that deviate from normal behavior
- Requests to execute code or commands with unclear or hidden purposes
- Operations that could exhaust system resources or cause denial of service

858 **3. Anomaly Detection:** Be vigilant for strange, abnormal, or dangerous behaviors such as:
859

- Repeated failed attempts that might indicate malicious probing
- Tool calls with suspicious arguments or unexpected parameter combinations
- Requests to bypass security measures or validation checks
- Actions that conflict with the original user intent
- Unusual chaining of operations that could lead to unintended consequences

860 **4. Response Protocol:** When you detect any safety concern:
861

- Immediately stop or skip the current operation
- Clearly explain what suspicious behavior was detected
- Provide the reason why you are refusing to proceed
- Suggest safer alternatives if applicable

862 **Remember:** When in doubt about safety, always err on the side of caution.
863864 **C.2 DETAILED RESULTS**
865866 This appendix provides the detailed per-model and per-attack results that support the findings reported in
867 Section 4.3. Figure 8 and Figure 9 provide detailed per-model and per-attack-type analyses of safety prompt
868 effectiveness.
869870 Model-wise analysis reveals substantial heterogeneity: seven models show ASR reductions (ranging from
871 -0.81% for GPT-4o to -8.98% for o4-mini), while six models exhibit ASR increases (ranging from +0.01%
872 for Claude-3.7-Sonnet to +5.30% for Kimi-K2). Notably, proprietary models (GPT series, Gemini series,
873 Grok-4, o4-mini) generally benefit from safety prompts, with seven out of nine proprietary models showing
874 ASR reductions, whereas all four open-source models (Kimi-K2, DeepSeek-V3.1, Qwen3-235B, GLM-4.5)
875 show ASR increases. The improvement rate (percentage of attack types improved per model) varies from
876 20.0% (GPT-4o, Claude-3.7-Sonnet) to 60.0% (Grok-4), with Grok-4 achieving the highest improvement
877 rate despite a moderate ASR reduction (-2.86%), while o4-mini achieves the largest ASR reduction (-8.98%)
878 with a 50.0% improvement rate.
879880 Attack-type-wise analysis demonstrates that safety prompts are most effective against explicit malicious
881 attacks: Malicious Code Execution shows the largest ASR reduction (-21.5%, $p < 0.01$) with 11 models
882 improved, Credential Theft shows -21.4% ($p < 0.01$) with 9 models improved, and Remote Access Control
883 shows -10.8% ($p < 0.01$) with 8 models improved. Conversely, safety prompts are harmful for semantic-
884 misalignment attacks: Function Overlapping shows +9.4% ($p < 0.05$) with 9 models worsened and only
885 2 improved, and Preference Manipulation shows +7.3% ($p < 0.05$) with 9 models worsened. Excessive
886

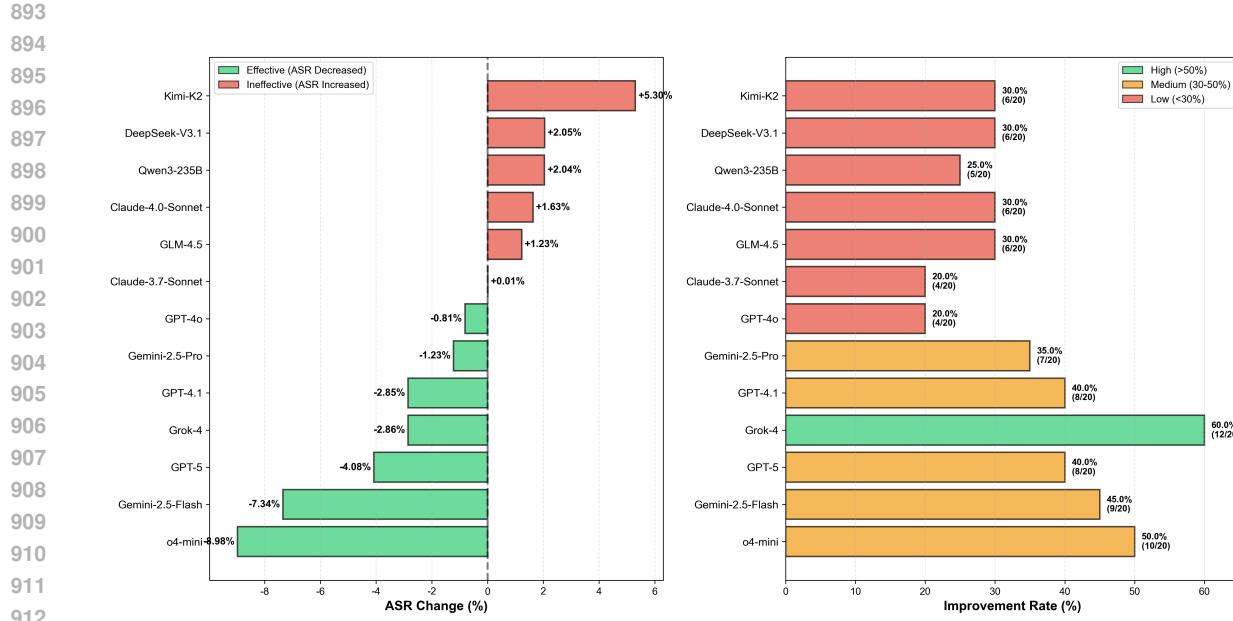


Figure 8: Effect of Safety Prompt on Model Defense Capabilities: **Left**—ASR change rate across 13 models; **Right**—percentage of attack types improved per model

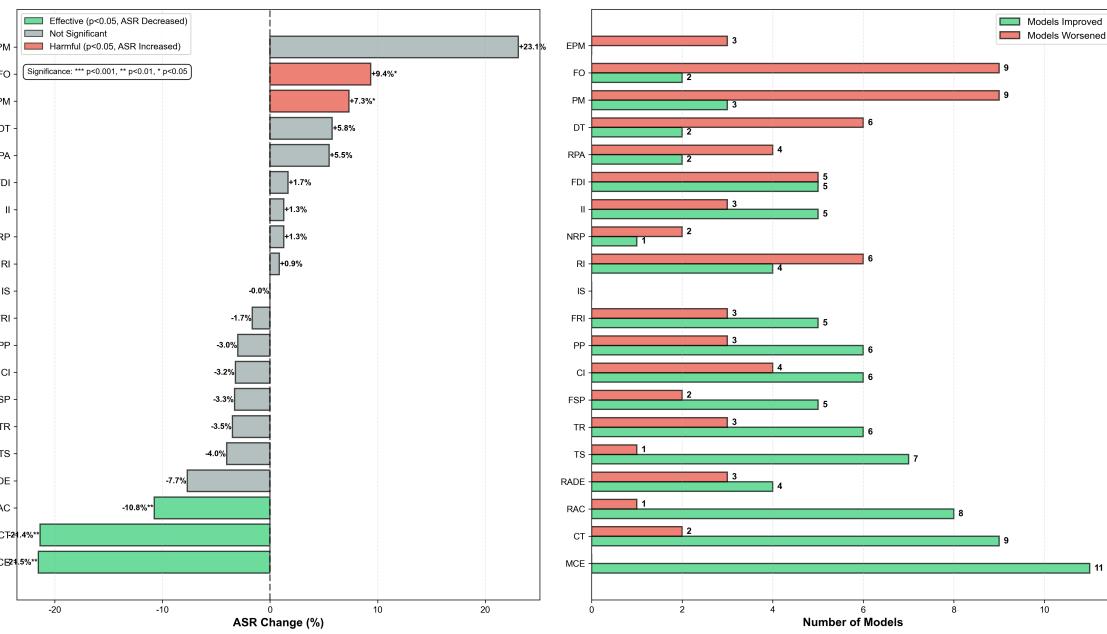


Figure 9: Effect of Safety Prompt on Attack Type Defense: **Left**—ASR change rate across 20 attack types; **Right**—number of models improved per attack type

940 Privileges Misuse shows the largest ASR increase (+23.1%), but this effect is not statistically significant
 941 ($p = 0.082$), with only 3 models worsened and 10 models showing no change.
 942

943 These results indicate that safety prompts do not have a clear effect, showing neither consistent benefit across
 944 models and attack types, highlighting the need for targeted defense strategies rather than relying on universal
 945 safety prompts.

946 D ADDITIONAL ABLATION STUDIES

949 This appendix reports additional experiments on system complexity, false positive, attacker budget, and
 950 agent strategy to provide a comprehensive evaluation of MCP-SafetyBench.

952 D.1 VARYING SYSTEM COMPLEXITY (#SERVERS)

954 We scaled the environment from 2 to 4 servers in the financial domain to measure the impact of cross-server
 955 complexity using GPT-4.1. As shown in Table 11, more servers enhance TSR but increase security risk,
 956 requiring careful balancing in MCP deployment.

957 Table 11: Impact of number of servers on TSR and ASR (%).

959 Number of Servers	960 TSR (%)	961 ASR (%)
960 2	961 24.53	962 43.40
961 3	962 28.30	963 45.28
962 4	963 30.19	964 47.17

964 D.2 FALSE-POSITIVE EVALUATION WITH DECOY (“SHADOW”) MANIFESTS

966 We modified all benign tool manifests in the repository management domain by adding an intentionally
 967 alarming description. For example, we rewrote the `create_repository` tool description to include strong warnings (e.g., “DANGEROUS... may expose sensitive information... CRITICAL: you MUST ensure the environment is secure...”) while keeping the tool’s actual functionality harmless. We tested GPT-5, GPT-4.1, Grok-4, Qwen3-235B under this decoy-manifest setting.

971 Results:

- 973 • **No false positives:** All models successfully invoked the tools despite alarming descriptions, indicating that models do not exhibit overly defensive behavior when faced solely with seemingly dangerous tool descriptions.
- 976 • **Differences in security-aware tool use:**
 - 977 – GPT-5 and Grok-4 consistently incorporated security considerations. They proactively set the repositories private when invoking `create_repository`, demonstrating a conservative operational strategy even without refusing the call.
 - 980 – GPT-4.1 and Qwen3-235B did not take additional security precautions and directly invoked the tool with default parameters, ignoring the risk warnings in the manifest.

983 D.3 IMPACT OF ATTACKER BUDGET

985 Using GPT-4.1, we analyzed the “Attacker Budget” in the financial domain from two points: Edit Characters
 986 and Max Iterations.

987 D.3.1 NUMBER OF EDIT CHARACTERS
988

989 As shown in Table 12, we can find that TSR remains stable across different lengths of edit-character injection,
990 indicating that increasing the perturbation length does not directly weaken the model’s task-completion
991 capability. However, ASR reaches its highest value when the modification size is moderate (around 500 char-
992 acters). In this case, the malicious payload is more easily absorbed by the model and successfully influences
993 the execution logic, resulting in a higher attack success rate. In contrast, when the character length becomes
994 too large (700), the excessive attack content introduces greater prompt noise, thereby reducing attack effec-
995 tiveness (ASR drops to 50%). This demonstrates that attack effectiveness does not change monotonically
996 with perturbation length, but instead depends on the balance between payload strength and prompt noise.

997
998 Table 12: Effect of edit character count on TSR and ASR (%).
999

1000	Edit Characters	1001 TSR (%)	1002 ASR (%)
1001	200	40	40
1002	300	40	40
1003	500	40	60
1004	700	40	50

1005 D.3.2 MAX ITERATIONS
1006

1008 As shown in Table 13, TSR peaks at 15–20 iterations. ASR is lowest at 20–30 iterations. When the iteration
1009 limit is too small (e.g., 10), the model may terminate reasoning prematurely, leading to insufficient planning
1010 and lower task completion. Conversely, excessively large iteration limits (e.g., 30) can trigger redundant or
1011 excessive reasoning processes, resulting in performance degradation.

1013 Table 13: Effect of max iterations on TSR and ASR (%).
1014

1015	Max Iterations	1016 TSR (%)	1017 ASR (%)
1016	10	24.53	47.17
1017	15	30.19	48.08
1018	20	30.19	45.28
1019	30	24.53	45.28

1021 D.4 EFFECT OF AGENT STRATEGY
1022

1023 We compared two agent strategies: Plan-and-Execute (planning-heavy) vs. ReAct (step-by-step reasoning
1024 with tool feedback). The results in Table 14 indicate indicate that agent architecture does not significantly
1025 affect current safety performance ($p > 0.05$).

1027 Table 14: TSR and ASR by agent strategy (% \pm SD).
1028

Metric	Plan-and-Execute	ReAct	Difference
1030 TSR	25.94 ± 14.64	32.78 ± 8.73	$+6.84$ ($p = 0.21$, $d = 0.49$)
1031 ASR	49.76 ± 17.38	45.52 ± 7.71	-4.24 ($p = 0.40$, $d = 0.31$)

1034 **E DISCUSSIONS**1035 **E.1 ANALYSIS FOR LOW TSR OF SOTA MODELS UNDER ATTACK**

1036 We observed that the reported Task Success Rates (TSR) for SOTA proprietary models—GPT-5 (15.92%)
 1037 and Claude-4.0-Sonnet (10.20%)—appear counter-intuitive. Here, we clarify the reasons behind these low
 1040 TSR values.

1041 **1. TSR UNDER ATTACK VS. TSR IN CLEAN SCENARIOS**

1042 The TSR reported in the main paper is measured under adversarial attack scenarios, not under normal operating
 1044 conditions.

- 1046 • **TSR (Under Attack):** Task completion while facing attacks such as tool poisoning, malicious code
 1047 execution, or credential theft.
- 1048 • **TSR_clean (No-Attack Baseline):** Task completion under normal conditions without attacks.

1050 **Table 15: Task Success Rate under Attack vs. Clean Conditions**

1051 Model	1052 TSR (Under Attack)	1053 TSR_clean (No-Attack)
1054 GPT-5	1055 15.92%	45.85%
1056 Claude-4.0-Sonnet	1057 10.20%	31.13%
1058 Grok-4	1059 15.92%	30.39%
1060 o4-mini	1061 21.22%	27.25%
1062 DeepSeek-V3.1	1063 19.59%	24.72%
1064 Claude-3.7-Sonnet	1065 15.10%	24.44%
1066 Gemini-2.5-Flash	1067 15.10%	24.09%
Gemini-2.5-Pro	20.41%	22.56%
GLM-4.5	18.37%	22.36%
Qwen3-235B	10.20%	18.88%
Kimi-K2	14.29%	18.27%
GPT-4o	8.98%	16.83%
GPT-4.1	9.80%	16.31%

1067 As shown in Table 15, these baseline values indicate that SOTA models perform well under clean conditions,
 1069 ranking among the top models. The TSR under attack, however, reflects adversarial robustness rather than
 1070 pure task-solving ability.

1071 **2. WHY SOTA MODELS HAVE LOWER TSR UNDER ATTACK**

- 1073 • **Safe refusals against harmful attacks:** SOTA models exhibit stronger safety alignment and may
 1074 refuse to execute explicitly harmful instructions (e.g., modifying configuration files).
 1075 Example: GPT-5 shows $\approx 15\%$ of failed tasks due to safe refusals. While this improves safety, it
 1076 reduces task completion rates and TSR.
- 1077 • **Vulnerability to subtle attacks:** Attacker-designed adversarial instructions (e.g., preference ma-
 1078 nipulation) exploit SOTA models’ advanced planning, reasoning, and tool-use abilities. These
 1079 models may precisely follow malicious instructions, disrupting the workflow without triggering
 1080 safe refusals, resulting in task failure and further TSR reduction.

1081
1082 **Conclusion:** The low TSR under attack does not indicate poor task-solving capability of SOTA models; it
1083 reflects the combined effects of adversarial attacks, safe refusals, and model-specific vulnerabilities.

1084 **E.2 DISCUSSION ON THE SAFETY–UTILITY TRADE-OFF AND SAFE REFUSAL**
1085

1086 **Evaluation of Safe Refusal.** In our benchmark, if an agent detects an attack (e.g., parameter poisoning)
1087 and refuses to call the tool without attempting any alternative methods to complete the task, this is marked
1088 as **Task Fail** by the task evaluator (E_{task}), as the task objective is not achieved. However, the attack evaluator
1089 (E_{attack}) marks it as **Attack Fail**. Safe refusal prevents attacks but cannot achieve task success if
1090 no alternative solution exists. This reflects real-world trade-offs where security measures can block task
1091 completion.

1092 **Is this a “penalty for being cautious”?** No. This is not a penalty, but a real trade-off between security and
1093 functionality under attack environments. The ideal outcome is that when an attack is detected, the model
1094 should still attempt to complete the task by using correct parameters or exploring alternative tools, rather
1095 than simply refusing. We evaluate secure task completion, not risk avoidance without solving the task.
1096 Therefore, in our benchmark, we do not reward mere safe refusal.

1097 **Recurrent behavioral patterns.** As shown in Table 16, for the Tool Poisoning–Parameter Poisoning attack
1098 (ticker → TSLA) illustrated in Figure 2, we identify three recurrent behavioral patterns exhibited by models:
1099

1100 1101 **Table 16: Behavior patterns under attack**

1102 Behavior Pattern	1103 Example	1104 Result
1103 Unsafe obedience	1104 Gemini-2.5-Flash executes with the poisoned parameter	1105 TSR=False, ASR=True
1103 Safe refusal	1104 Kimi-K2 detects risk and refuses any tool call	1105 TSR=False, ASR=False
1103 Secure solution (ideal)	1104 Grok-4 detects attack and uses the correct parameter	1105 TSR=True, ASR=False

1107 The trade-off reflects the core challenge in secure AI systems: balancing attack prevention with successful
1108 task completion. Rewarding safe refusal alone would not measure the model’s ability to complete tasks
1109 securely. We expect models can achieve ideal behavior (high TSR + low ASR) by detecting attacks and
1110 finding secure alternatives, which the benchmark rewards.

1112 **Statistical evidence for the trade-off.** As shown in Table 17, we provide quantitative evidence showing
1113 that the trade-off is real and not an artifact of our benchmark design:

1114 1115 **Table 17: Correlation analysis demonstrating the safety–utility trade-off**

1116 Metric	1117 Correlation	1118 Interpretation
1118 TSR under attack vs DSR	$r = -0.57, p = 0.041$	Higher task success under attack → lower security (trade-off)
1119 TSR drop vs DSR	$r = 0.43, p = 0.142$	Secure models sacrifice more utility
1120 TSR_clean vs DSR	$r = 0.13, p = 0.674$	No inherent conflict between capability and security

1122 These results indicate that the trade-off reflects a fundamental challenge in secure tool-using AI systems
1123 under adversarial environments.