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Abstract

Language models (LMs) have become ubiqui-001
tous in both NLP research and in commercial002
product offerings. As their commercial impor-003
tance has surged, the most powerful models004
have become closed off, gated behind propri-005
etary interfaces, with important details of their006
training data, architectures, and development007
undisclosed. Given the importance of these008
details in scientifically studying these models,009
including their biases and potential risks, we010
believe it is essential for the research commu-011
nity to have access to powerful, truly open LMs.012
To this end, we have built OLMo, a competi-013
tive, truly Open Language Model, to enable014
the scientific study of language models. Un-015
like most prior efforts that have only released016
model weights and inference code, we release017
OLMo alongside open training data and train-018
ing and evaluation code. We hope this release019
will empower and strengthen the open research020
community and inspire a new wave of innova-021
tion.022

1 Introduction023

Language models have been at the center of NLP024

technologies for many years (Rosenfeld, 2000; Ben-025

gio et al., 2003; Mikolov et al., 2013; Peters et al.,026

2018; Brown et al., 2020). Recently, due to large-027

scale pretraining and human annotation for align-028

ment, they have become commercially valuable029

(OpenAI, 2023). However, as their commercial030

value has increased, the largest models have be-031

come gated behind proprietary interfaces, with im-032

portant details left undisclosed.033

We believe that full access to open language034

models for the research community is critical to035

the scientific study of these models, their strengths036

and weaknesses, and their biases and risks. Ac-037

cordingly, we introduce OLMo, a powerful, truly038

open language model alongside open training data,039

training and evaluation code, intermediate model040

checkpoints, and training logs.041

Recent LM releases have varied in their degree 042

of openness. For example, Mixtral 8x7B provided 043

model weights and a brief report (Jiang et al., 044

2024), while LLaMA came with in-depth adap- 045

tation training instructions (Touvron et al., 2023b), 046

and Mosaic Pretrained Transformer came with 047

many details, including the dataset distribution, 048

though not the data itself (MosaicML NLP Team, 049

2023). Falcon’s pretraining data was partially re- 050

leased (Almazrouei et al., 2023), and the most open 051

models—the Pythia suite (Biderman et al., 2023) 052

and BLOOM (BigScience et al., 2022)—released 053

training code, model checkpoints, training data and 054

more. 055

With OLMo, we release the whole framework 056

from data to training to evaluation tools: multi- 057

ple training checkpoints across multiple hardware 058

types, training logs, and exact datasets used, with 059

a permissive license. We are not the only team to 060

do this; recent work from LLM360 targets similar 061

goals (Liu et al., 2023). OLMo narrows the gap 062

from their models to state-of-the-art capabilities of 063

models like LLaMA2. This project has benefited 064

from lessons learned from all of these previous ef- 065

forts with their varying degrees of openness, and 066

we believe that a large, diverse population of open 067

models is the best hope for scientific progress on 068

understanding language models and engineering 069

progress on improving their utility. 070

The OLMo framework encompasses the tools 071

and resources required for building and research- 072

ing language models. For training and modeling, 073

it includes full model weights, training code, train- 074

ing logs, ablations, training metrics in the form of 075

Weights & Biases logs, and inference code. The re- 076

leased model includes four variants of our language 077

model at the 7B scale corresponding to different ar- 078

chitectures, optimizers, and training hardware, and 079

one model at the 1B scale, all trained on at least 2T 080

tokens. We also release hundreds of intermediate 081

checkpoints available as revisions on HuggingFace. 082

1



Size L D H Tokens Peak LR Betas Epsilon WD Batch size
1B 16 2048 16 2T 4.0E-4 (0.9, 0.95) 1.0E-5 0.1 ∼4M
7B 32 4086 32 2.46T 3.0E-4 (0.9, 0.95) 1.0E-5 0.1 ∼4M

65B* 80 8192 64 TBD 1.5E-4 (0.9, 0.95) 1.0E-5 0.1 ∼2M → ∼16M

Table 1: OLMo model sizes, number of training tokens, and AdamW optimizer settings. L is number of layers,
D is hidden dimension, H is number of attention heads, WD is weight decay. The batch size of the 65B model is
repeatedly doubled during training, ∼2M → ∼4M → ∼8M → ∼16M.
* At the time of writing our 65B model is still training.

For dataset building and analysis, the full train-083

ing data used for these models is openly available084

(Dolma; Anonymous, 2024), including code that085

produces the training data, and tools for analyzing086

pretraining data (Anonymous, 2023c). For evalua-087

tion, we build on Catwalk (Anonymous, 2023a) for088

downstream evaluation and Paloma (Anonymous,089

2023b) for perplexity-based evaluation. For adap-090

tation, we use Open Instruct (Ivison et al., 2023;091

Wang et al., 2023) to train with instruction and092

feedback data. Finally, all code and weights are093

released under the Apache 2.0 License.094

With this release, we hope to catalyze research095

into as-yet poorly understood aspects of these mod-096

els, for example, the relationship between pretrain-097

ing data and model capabilities, the impact of de-098

sign and hyperparameter choices, and various opti-099

mization methods and their impact on model train-100

ing. In addition, we report on the lessons learned101

and important details necessary to successfully102

train language models at this scale.103

2 OLMo Framework104

This section describes the OLMo framework, con-105

sisting of the OLMo models (Section 2.1), our pre-106

training dataset, Dolma (Section 2.2), and our eval-107

uation framework (Section 2.4).108

2.1 OLMo Model and Architecture109

We adopt a decoder-only transformer architecture110

based on (Vaswani et al., 2017), and deliver 1B and111

7B variants as described in Table 1, with a 65B112

version coming soon. Our specific architecture in-113

cludes several improvements over the vanilla trans-114

former from (Vaswani et al., 2017) following other115

recent large language models like PaLM (Chowdh-116

ery et al., 2022), the LLaMA family (Touvron et al.,117

2023a,b), OpenLM (Gururangan et al., 2023), and118

Falcon (Almazrouei et al., 2023). Check table 5119

in Appendix A for a comprehensive comparison of120

our 7B architecture to the similarly-sized models121

from these other families. 122

We generally select hyperparameters by opti- 123

mizing for training throughput on our hardware 124

while minimizing the risk of loss spikes and slow 125

divergence. We ablate choices through our in-loop 126

evaluation setting, given available computational 127

sources (Section 2.4). Table 5 compares our design 128

choices with recent state-of-the-art open language 129

models. Our main changes over the vanilla trans- 130

former architecture can be summarized as follows: 131

1. No biases. Following LLaMA, PaLM, and oth- 132

ers, we exclude all bias terms from our architec- 133

ture in order to improve training stability. 134

2. Non-parametric layer norm. We use the non- 135

parametric formulation of layer norm (Ba et al., 136

2016) in which there is no affine transformation 137

within the norm, i.e. no “adaptive gain" (or 138

bias). We believe this was the safest option and 139

it was also the fastest compared to the other 140

variants we considered: parametric layer norm 141

and RMSNorm (Zhang and Sennrich, 2019). 142

3. SwiGLU activation function. Like LLaMA, 143

PaLM, and others we use the SwiGLU activation 144

function (Shazeer, 2020) instead of ReLU, and 145

following LLaMA the activation hidden size is 146

approximately 8
3
d, but increased to the closest 147

multiple of 128 (e.g. 11,008 for our 7B model) 148

to improve throughput.1 149

4. Rotary positional embeddings (RoPE). Like 150

LLaMA, PaLM, and others we replace absolute 151

positional embeddings with rotary positional 152

embeddings (RoPE; Su et al., 2021). 153

5. Vocabulary. We use a modified version of 154

the BPE-based tokenizer from GPT-NeoX-20B 155

(Black et al., 2022) with additional tokens for 156

1Since SwiGLU is a “gated" activation function, the output
is half the size of the input. So technically our inputs to
SwiGLU have a dimensionality of 2 × 11,008 = 22,016 for
our 7B model.
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masking personal identifiable information (PII).157

The final vocabulary size is 50,280. However, to158

maximize training throughput we increase the159

size of the corresponding embedding matrix in160

our model to 50,304 so that it’s a multiple of161

128.162

2.2 Pretraining Data: Dolma163

Despite progress in access to model parameters,164

pretraining datasets are still not as open. Pretrain-165

ing data are often not released alongside open mod-166

els (let alone closed models) and documentation167

about such data is often lacking in detail that would168

be needed to reproduce or fully understand the169

work. This has made it difficult to support certain170

threads of language model research, such as under-171

standing how training data impacts model capabili-172

ties and limitations. To facilitate open research on173

language model pretraining, we built and released174

our pretraining dataset, Dolma—a diverse, multi-175

source corpus of 3T tokens across 5B documents176

acquired from 7 different data sources that are (1)177

commonly seen in large-scale language model pre-178

training and (2) accessible to the general public179

(Anonymous, 2024). Table 2 provides a high-level180

overview of the amount of data from each source.181

Dolma is built using a pipeline of (1) language182

filtering, (2) quality filtering, (3) content filtering,183

(4) deduplication, (5) multi-source mixing, and (6)184

tokenization. We refer the reader to the Dolma185

report (Anonymous, 2024) for more details about186

its design principles, details about its construction,187

and a more detailed summary of its contents. The188

report provides additional analyses and experimen-189

tal results from training language models on inter-190

mediate states of Dolma to share what we learned191

about important data curation practices, including192

the role of content or quality filters, deduplication,193

and mixing data from multiple sources. We keep194

documents from each source separate, both during195

curation as well as in the final release. We open-196

sourced our high-performance data curation tools;197

this toolkit can be used to further experiment on198

Dolma, reproduce our work, and enable fast and199

easy curation of pretraining corpora. Finally, we200

also open-sourced our WIMBD tool (Anonymous,201

2023c) to help with dataset analysis.202

2.3 Adaptation203

Pretrained models are not always used as-is, but204

rather further fine-tuned to improve their perfor-205

mance, safety, and usability. Often models are first206

Source Type
UTF-8
bytes
(GB)

Docs
(millions)

Tokens
(billions)

Common Crawl web pages 9,022 3,370 2,006
The Stack code 1,043 210 342
C4 web pages 790 364 174
Reddit social media 339 377 80
peS2o papers 268 38.8 57
Project Gutenberg books 20.4 0.056 5.2
Wikipedia and
Wikibooks

encyclopedic 16.2 6.2 3.7

Total 11,519 4,367 2,668

Table 2: Composition of Dolma. Tokens counts are
based on the GPT-NeoX tokenizer

trained to follow instructions (Mishra et al., 2022; 207

Wei et al., 2022; Sanh et al., 2022), and then fur- 208

ther trained on human preferences (Ouyang et al., 209

2022) to improve the quality of their generations. 210

We showcase the efficacy of using OLMo as a base 211

model for further fine-tuning by training OLMo to 212

be a general chat assistant following the TÜLU data 213

and training setup (Ivison et al., 2023). This in- 214

volves first performing instruction fine-tuning with 215

a mixture of distilled and human-written instruc- 216

tion data and then further aligning the model with 217

distilled preference data using Direct Preference 218

Optimization (DPO) (Rafailov et al., 2023). 219

2.4 Evaluation 220

We perform base model evaluation at two stages: 221

online evaluation to make decisions for model de- 222

sign and offline evaluation to evaluate model check- 223

points. For the offline stage, we use the Catwalk 224

framework (Anonymous, 2023a), a publicly avail- 225

able evaluation tool with access to a wide range 226

of datasets and task formats. Using Catwalk, we 227

perform downstream evaluation as well as intrinsic 228

language modeling evaluation on the new perplex- 229

ity benchmark, Paloma (Anonymous, 2023b). 230

For both downstream and perplexity evaluation, 231

we use our fixed evaluation pipeline to compare 232

results against publicly available models. We also 233

report a separate evaluation of our adapted model. 234

In-Loop Training Ablations Throughout model 235

training, we perform downstream evaluations to 236

make decisions around model architecture, initial- 237

ization, optimizers, learning rate schedule, and data 238

mixtures. We call this our online evaluation as it 239

runs in-loop every 1000 training steps (or ∼4B 240

training tokens) and provides an early and continu- 241

ous signal on the quality of the model being trained. 242
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These evaluations rely on many of the core tasks243

and experiment settings used for our offline eval-244

uation detailed in Section 4.1, which also mirrors245

the task and evaluation structure of the EleutherAI246

eval harness (Gao et al., 2023).247

Downstream Evaluation Following much previ-248

ous work (Brown et al., 2020; Black et al., 2022;249

Touvron et al., 2023a,b, inter alia), we report zero-250

shot performance on a set of downstream tasks.251

Our evaluation suite consists of 8 core tasks cor-252

responding closely to the commonsense reasoning253

task set reported by Touvron et al. (2023a) and Tou-254

vron et al. (2023b) (see Table 3 for a list of tasks).255

Given the scale of the models being evaluated, such256

tasks were selected at the beginning of model de-257

velopment due to their naturalness (e.g., all can258

formulated as text completion scoring tasks) and259

ability to provide meaningful signals throughout260

training (see Figure 1).261

Intrinsic Language Modeling Evaluation To262

measure how OLMo-7B fits distributions of lan-263

guage beyond held-out training data, we use264

Paloma (Anonymous, 2023b), a new perplexity265

benchmark that includes 585 different domains266

of text. Domains range from nytimes.com to267

r/depression on Reddit and are drawn from 18 sep-268

arate data sources, such as C4 (Raffel et al., 2020),269

in stratified samples. This allows for more equal in-270

clusion of text domains that are under-represented271

in their source corpora.272

We aim not just to compare OLMo-7B against273

other models for best performance, but also to274

demonstrate how it enables fuller and more con-275

trolled scientific evaluations. OLMo-7B is the276

largest LM with explicit decontamination for per-277

plexity evaluation. Following the approach de-278

scribed in Paloma, we remove any pretraining doc-279

ument with paragraphs leaked from Paloma evalua-280

tion data. Without decontamination, other models281

risk underestimating perplexity (i.e., overestimat-282

ing the model’s out-of-sample fit). We also release283

intermediate checkpoints, allowing richer compar-284

isons with two other models that release check-285

points, Pythia-6.9B (Biderman et al., 2023) and286

RPJ-INCITE-7B (Together Computer, 2023) (see287

Figure 2).288

Adaptation Evaluation We also evaluate OLMo289

after instruction fine-tuning and DPO training us-290

ing the TÜLU evaluation suite proposed in Wang291

et al. (2023); Ivison et al. (2023). We focus on eval-292

uations around model chat capabilities and safety 293

in order to showcase the efficacy of using OLMo 294

as a base for further fine-tuning. 295

3 Training OLMo 296

This section describes our pretraining setup, in- 297

cluding our distributed training framework (Sec- 298

tion 3.1), optimizer settings (Section 3.2), data 299

preparation (Section 3.3), and hardware (Sec- 300

tion 3.4). 301

3.1 Distributed Training Framework 302

We train our models using the ZeRO optimizer 303

strategy (Rajbhandari et al., 2019) via PyTorch’s 304

FSDP framework (Zhao et al., 2023), which re- 305

duces memory consumption by sharding the model 306

weights and their corresponding optimizer state 307

across GPUs. At the 7B scale, this enables training 308

with a micro-batch size of 4096 tokens per GPU 309

on our hardware (see Section 3.4). For OLMo-1B 310

and -7B models, we use a constant global batch 311

size of approximately 4M tokens (2048 instances, 312

each with a sequence length of 2048 tokens). For 313

OLMo-65B model (currently training), we use a 314

batch size warmup that starts at approximately 2M 315

tokens (1024 instances), then doubles every 100B 316

tokens until reaching approximately 16M tokens 317

(8192 instances). 318

To improve throughput, we employ mixed- 319

precision training (Micikevicius et al., 2017) 320

through FSDP’s built-in settings and PyTorch’s amp 321

module. The latter ensures that certain operations 322

like the softmax always run in full precision to im- 323

prove stability, while all other operations run in 324

half-precision with the bfloat16 format. Under 325

our specific settings, the sharded model weights 326

and optimizer state local to each GPU are kept in 327

full precision. The weights within each transformer 328

block are only cast to bfloat16 when the full-sized 329

parameters are materialized on each GPU during 330

the forward and backward passes. Gradients are 331

reduced across GPUs in full precision. 332

3.2 Optimizer 333

We use the AdamW optimizer (Loshchilov and Hut- 334

ter, 2019) with the hyperparameters shown in Table 335

1. For all model sizes, we warm up the learning 336

rate over 5000 steps (∼21B tokens) and then decay 337

it linearly from there down to a tenth of the peak 338

learning rate over the remainder of training. After 339

the warm-up period, we clip gradients such that 340
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the total l2-norm of the parameter gradients2 does341

not exceed 1.0. Table 5 gives a comparison of our342

optimizer settings at the 7B scale to those of other343

recent LMs that also used AdamW.344

3.3 Data345

We built our training dataset out of a 2T-token sam-346

ple from our open dataset, Dolma (Anonymous,347

2024), which we describe in Section 2.2. The to-348

kens from every document are concatenated to-349

gether after appending a special EOS token to the350

end of each document, and then we group con-351

secutive chunks of 2048 tokens to form training352

instances. The training instances are shuffled in353

the exact same way for each training run. The data354

order and exact composition of each training batch355

can be reconstructed from the artifacts we release.356

All of our released models have been trained to357

at least 2T tokens (a single epoch over our training358

data), and some have been trained beyond that by359

starting a second epoch over the data with a differ-360

ent shuffling order. The impact of repeating this361

small amount of data should be negligible accord-362

ing to prior work (Muennighoff et al., 2023).363

3.4 Hardware364

In order to verify that our codebase could be used365

on both NVIDIA and AMD GPUs without any loss366

in performance, we trained models on two different367

clusters:368

• LUMI: Provided by the LUMI supercomputer,3369

we used up to 256 nodes on this cluster, where370

each node consists of 4x AMD MI250X GPUs371

with 128GB of memory4 and 800Gbps of inter-372

connect.373

• MosaicML: Provided by MosaicML5
374

(Databricks), we used 27 nodes on this cluster,375

where each node consists of 8x NVIDIA A100376

GPUs with 40GB of memory and 800Gbps377

interconnect.378

Despite minor differences in batch size to optimize379

for training throughput, both runs resulted in nearly380

2During gradient clipping all of the model’s parameters
are treated as a single big vector (as if all parameters were
flattened and concatenated together), and we take the ℓ2-norm
over the corresponding single gradient vector. This is the
standard way to clip gradients in PyTorch.

3
https://www.lumi-supercomputer.eu

4The MI250X is a dual-chip module, meaning in practice
that each physical device consists of two logical devices, so
each node has 8 logical GPU devices with 64GB of memory
each.

5
https://www.mosaicml.com

identical performance on our evaluation suite by 381

2T tokens. 382

4 Results 383

The checkpoint used for evaluating OLMo-7B is 384

trained until 2.46T tokens on the Dolma (Anony- 385

mous, 2024) dataset with a linear learning rate de- 386

cay schedule mentioned in Section 3.2. In our 387

experiments, we find that tuning this checkpoint 388

further on the Dolma dataset for 1000 steps with the 389

learning rate linearly decayed to 0 boosts model 390

performance on perplexity and end-task evalua- 391

tion suites described in Section 2.4. We compare 392

OLMo with other publicly available models includ- 393

ing LLaMA-7B (Touvron et al., 2023a), Llama-2- 394

7B (Touvron et al., 2023b), MPT-7B (MosaicML 395

NLP Team, 2023), Pythia-6.9B (Biderman et al., 396

2023), Falcon-7B (Almazrouei et al., 2023) and 397

RPJ-INCITE-7B (Together Computer, 2023). 398

4.1 Downstream evaluation 399

Setup Our core downstream evaluation suite 400

(see Table 3) consists of: arc (both arc_easy and 401

arc_challenge) (Clark et al., 2018), boolq (Clark 402

et al., 2019), openbookqa (Mihaylov et al., 2018), 403

sciq (Welbl et al., 2017), hellaswag (Zellers et al., 404

2019), piqa (Bisk et al., 2020), and winogrande 405

(Sakaguchi et al., 2021). In Appendix C, we also 406

report results on an additional set of auxiliary tasks 407

outside of our core evaluation set that we found to 408

have less stable performance trends (see Figure 4). 409

In all cases, we perform zero-shot evaluation 410

using the rank classification approach popularized 411

by Brown et al. (2020). Under this approach, can- 412

didate text completions (e.g., different multiple- 413

choice options) are ranked by likelihood (usually 414

normalized by some normalization factor), and pre- 415

diction accuracy is reported. While Catwalk im- 416

plements several common likelihood normaliza- 417

tion strategies, including normalizing by number 418

of tokens (per-token normalization) (Brown et al., 419

2020; Liang et al., 2022), by number of characters 420

(per-character normalization) (Gao et al., 2023), as 421

well as incorporating an answer’s unconditional 422

likelihood (Brown et al., 2020), we selected the 423

normalization strategies for each dataset separately. 424

Specifically, we used unconditional normalization 425

for arc and openbookqa, per-token normalization 426

for hellaswag, piqa, and winogrande and no nor- 427

malization for boolq, and sciq (i.e., tasks formu- 428

lated as single token prediction tasks). 429
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7B Models arc
challenge

arc
easy boolq

hella-
swag

open
bookqa piqa sciq

wino-
grande avg.

Falcon 47.5 70.4 74.6 75.9 53.0 78.5 93.9 68.9 70.3
LLaMA 44.5 67.9 75.4 76.2 51.2 77.2 93.9 70.5 69.6
Llama 2 48.5 69.5 80.2 76.8 48.4 76.7 94.5 69.4 70.5
MPT 46.5 70.5 74.2 77.6 48.6 77.3 93.7 69.9 69.8
Pythia 44.1 61.9 61.1 63.8 45.0 75.1 91.1 62.0 63.0
RPJ-INCITE 42.8 68.4 68.6 70.3 49.4 76.0 92.9 64.7 66.6
OLMo-7B 48.5 65.4 73.4 76.4 50.4 78.4 93.8 67.9 69.3

Table 3: Zero-shot evaluation of OLMo-7B and 6 other publicly available comparable model checkpoints on 8 core
tasks from the downstream evaluation suite described in Section 2.4. For OLMo-7B, we report results for the 2.46T
token checkpoint.

Results Table 3 summarizes the result of zero-430

shot evaluation of OLMo-7B and compares it431

against 6 other publicly available models of com-432

parable size. We report results on 8 core tasks from433

our evaluation suite described in Section 2.4. On434

aggregate, OLMo-7B is competitive against all 6435

publicly available model checkpoints in our com-436

parison table.437

In Figure 1 we plot the accuracy score progres-438

sion of 8 core end-tasks. All tasks, except OBQA,439

show an upward trend in accuracy numbers as440

OLMo-7B is trained on more tokens. A sharp up-441

ward tick in accuracy of many tasks between the442

last and the second to last step shows us the ben-443

efit of linearly reducing the LR to 0 over the final444

1000 training steps. See Table 7 in Appendix C for445

additional evaluation results and discussion.446

4.2 Intrinsic language modeling evaluation447

Setup For intrinsic evaluations, Paloma proposes448

a range of analyses, from inspection of perfor-449

mance in each domain separately to more sum-450

marized results over combinations of domains. We451

report results at two levels of granularity: the ag-452

gregate performance over 11 of the 18 sources in453

Paloma as in (Anonymous, 2023b), as well as more454

fine-grained results over each of these sources in-455

dividually. This particular subset of 11 sources456

from Paloma excludes sources that are not publicly457

available, involve fringe or toxic text, or consist of458

code data not supported by Paloma’s decontamina-459

tion approach. This leaves C4 (Raffel et al., 2020),460

mC4-en (Chung et al., 2023), Wikitext 103 (Merity461

et al., 2016), Penn Treebank (Marcus et al., 1999;462

Nunes, 2020), RedPajama (Together Computer,463

2023), Falcon-RefinedWeb (Penedo et al., 2023),464

Dolma (Anonymous, 2024), M2D2 S2ORC (Reid465

et al., 2022), M2D2 Wikipedia (Reid et al., 2022), 466

C4 100 domains (Chronopoulou et al., 2022), and 467

Dolma 100 Subreddits (Anonymous, 2024). To 468

allow for a fair comparison between models with 469

different vocabularies, we report bits per byte as 470

defined by Gao et al. (2020) over the test sets of 471

these sources. 472

Results In the Sources Combined subplot of Fig- 473

ure 2, we show the performance of OLMo-7B 474

against 6 comparably-sized language models on 475

the combination of 11 data sources from Paloma. 476

Overall we find OLMo to have a competitive fit, 477

especially given its training data was explicitly de- 478

contaminated against Paloma. As seen through 479

the comparison of final models (see shapes) as 480

well intermediate checkpoints (see dashed lines), 481

the OLMo results follow similar scaling trends of 482

other models. Note that the performance of inter- 483

mediate checkpoints is influenced by where that 484

checkpoint occurs in the learning rate schedule. So 485

models trained for fewer steps will tend to have 486

steeper training curves without necessarily being 487

more sample efficient if training duration were 488

fixed across all models. MPT-7B, nevertheless, 489

stands out as improving ahead of the other mod- 490

els in this subplot. This could be due to a number 491

of factors, including pretraining data composition 492

and its match to the domains in Paloma (e.g., MPT 493

trains on 27% non-Common Crawl data rather than 494

18% for LLaMA, 12.2% for RedPajama, and 11.2% 495

for OLMo) as well as various data preprocessing 496

decisions (e.g., MPT’s use of semantic deduplica- 497

tion by Abbas et al., 2023, on C4). 498

The remaining subplots in Figure 2 provide more 499

fine-grained analysis by reporting bits per byte sep- 500

arately for each of the 11 data sources that are 501

combined in the aggregated Paloma metric. From 502
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Figure 1: Accuracy score progression of OLMo-7B on 8 core end-tasks score from Catwalk evaluation suite
described in Section 2.4. We can see the benefit of decaying LR to 0 in the final 1000 steps of training on most tasks.

this we see greater variation in sample efficiency,503

largely driven by the similarity of training and eval-504

uation distributions. Notably, OLMo-7B fares well505

on evaluations predominated by Common Crawl,506

such as C4, though different ways of postprocess-507

ing Common Crawl are best fit by models trained508

with that specific data, such as Falcon-7B on Falcon509

RefinedWeb. Meanwhile, OLMo-7B is less sample510

efficient compared to other models on sources less511

related to scraped web text, such as WikiText-103,512

M2D2 S2ORC, and M2D2 Wikipedia. The RedPa-513

jama evaluation shows a similar pattern, perhaps as514

only 2 of its 7 domains are from Common Crawl,515

and Paloma weights domains within each source516

equally. Since heterogeneous data from curated517

sources like Wikipedia and ArXiv papers is much518

less abundant than scraped web text, maintaining519

sample efficiency for fit to these distributions of520

language will be challenging as pretraining corpora521

are scaled.522

4.3 Adaptation Evaluation523

Setup We evaluate OLMo before adaptation, and524

after both the supervised fine-tuning and DPO train-525

ing stage, focusing on the safety and chat evalu-526

ations used by Wang et al. (2023). We addition-527

ally compare to officially released instruction-tuned528

variants of the models from Table 3. We finally also529

compare to TÜLU 2 models to compare against530

models trained using the same post-training data531

Model MMLU AlpacaEval ToxiGen TruthfulQA
0-shot ↑ %win ↑ % Toxic ↓%Info+True ↑

OLMo (base) 28.3 - 81.4 31.6
MPT Chat 33.8 46.8 0.1 42.7
Falcon Instruct 25.2 14.0 70.7 27.2
RPJ-INCITE Chat 27.0 38.0 46.4 53.0
Llama-2-Chat 46.8 87.3 0.0 26.3
TÜLU 2 50.4 73.9 7.0 51.7
TÜLU 2+DPO 50.7 85.1 0.5 -6

OLMo +SFT 47.3 57.0 14.4 41.2
OLMo +SFT+DPO 46.2 69.3 1.7 52.0

Table 4: Evaluation of various instruction-tuned 7B
models, including OLMo-7B and before and after adap-
tation training. Lower is better for ToxiGen and higher
is better for other metrics. We provide a detailed de-
scription of models and metrics in Appendix. E.

mixes and procedures. 532

Results We find that instruction tuning consid- 533

erably improves the performance and safety of 534

OLMo, increasing MMLU performance by a wide 535

margin and improving ToxiGen and TruthfulQA 536

scores - especially after DPO training. Addition- 537

ally, we find that OLMo outperforms most other 538

chat variants after both initial instruction tuning 539

(OLMo +SFT) and additional preference align- 540

ment (OLMo +SFT+DPO), highlighting both the 541

strength of OLMo as a base model and the strength 542

of the TÜLU mix used to perform adaptation train- 543

ing. However, we find there is still a gap with 544

TÜLU 2, which is trained by applying the TÜLU 545

6Following Ivison et al. (2023), we do not report TÜLU 2
TruthfulQA scores due to test set contamination.
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Figure 2: Bits per byte on 11 evaluation data sources from Paloma and their combination (Anonymous, 2023b),
decontaminated from OLMo’s pretraining data. While models follow a general data scaling trend, sample efficiency
is most favorable on in-distribution data. For example, OLMo-7B overtakes all other models on C4, perhaps from
having 88.8% Common Crawl pretraining data.

mix on Llama 2. This gap may be due to test set546

contamination in Llama 27 and because the TÜLU547

mix was primarily designed for Llama models - we548

will investigate the cause of this gap in future work.549

Overall, we see that OLMo greatly benefits from550

additional tuning and serves as a strong base model551

for downstream applications.552

5 Artifacts Released553

By sharing artifacts from all pipeline stages, we aim554

to encourage open research and reduce duplicated,555

often costly efforts, by academics and practitioners.556

We release the following:557

1. The training and modeling code.558

2. The trained model weights for the 7B model,7B-559

twin-2T,and the 1B model.For all the models,560

we release not only the final model weights but561

also 500+ intermediate checkpoints at intervals562

of 1000 steps.563

3. The evaluation code and framework.564

4. The complete set of metrics logged to Weights565

& Biases during training.566

7Touvron et al. (2023b) report that Llama 2 was pretrained
on data contaminated with MMLU test data.

5. Training logs, ablations, and findings. 567

6. Adapted OLMo including its training and evalu- 568

ation code and data. 569

6 Conclusion and Future Work 570

This paper presents our first release of OLMo, a 571

state-of-the-art, truly open language model and its 572

framework to build and study the science of lan- 573

guage modeling. Unlike most prior efforts that 574

have only released model weights and inference 575

code, we release OLMo and the whole framework, 576

including training data and training and evaluation 577

code. Soon, we will also release training logs, abla- 578

tions, findings and Weights & Biases logs. We will 579

additionally release the adapted models as well as 580

all of our model adaptation code and data. 581

We intend to continuously support and extend 582

OLMo and its framework, and continue to push the 583

boundaries of open LMs to empower the open re- 584

search community. To that end, we look forward to 585

bringing different model sizes, modalities, datasets, 586

safety measures, and evaluations into the OLMo 587

family. We hope this and future releases will em- 588

power and strengthen the open research community 589

and inspire a new wave of innovation. 590
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Limitations591

We recognize building a large language model has592

many limitations. In fact, each step of the process593

of creating a language model, from the data to train-594

ing to adaptation to evaluation each have their own595

limitations, and so we’ve added sections for each596

below. Of course we recognize that AI systems597

today can have broad societal reach, and therefore598

there are significant limitations beyond what we599

are able to fit into this section.600

Data Our work focuses on pretraining data in601

English. We hope that our open framework en-602

ables the development of future models in more603

languages as well as multi-lingual models. The604

data that models are trained on is what gives mod-605

els their capabilities, and at the scale of training a606

large language model we recognize that the data607

likely contains problematic content like toxic lan-608

guage, personal information, and copyrighted text.609

We mitigated this to the best of our ability but rec-610

ognize there are no perfect approaches today that611

can completely remove such content.612

Training Training a large language model is cur-613

rently a challenging endeavor which is missing614

significant support from the open source commu-615

nity, and with our limited page count we did not616

provide extensive training logs documenting, for617

example, training runs that diverged or failed to618

learn. In addition, we plan to release documenta-619

tion of our ablations and hyperparameter tuning620

upon publication.621

Adaptation Our pretrained models face the same622

issues as existing pretrained LLMs, such as bias,623

toxicity and, hallucinations. Our adapted models624

are better at avoiding these generations but they625

are still not perfect. Additionally, we note that we626

largely adopt an existing data mixture designed627

for a different model family (TÜLU, designed for628

Llama models), and OLMo may require different629

data mixing to adjust for its unique strengths and630

weaknesses. The TÜLU mix itself also relies on631

data distilled from a variety of models, and we hope632

to reduce our reliance on such data in the future.633

Evaluation While we’ve included comparisons634

on a variety of datasets to other current language635

models, many of the dowstream tasks are not actu-636

ally representative of how users interact with lan-637

guage models (i.e., as a chatbot). In addition, lan-638

guage model evaluations are currently very noisy;639

we aimed to include only evaluations on datasets 640

that provided some signal as to which model per- 641

forms best, but recognize that there is no perfect 642

automatic evaluation, and thus comparisons should 643

be taken with a grain of salt. 644

Ethics Statement 645

Through this work, we take the position that in- 646

creased openness of language models is essential 647

for scientific understanding of their abilities and 648

limitations and for broad participation in the contin- 649

ued development of such models. Training on open 650

data further enhances these benefits. In addition, 651

our open release enables practitioners to take our 652

models and build on them instead of having to train 653

their own from scratch, in which case they would 654

be repeating our work while consuming more re- 655

sources and leading to an increased environmental 656

impact. Of course, openness is not without risk; the 657

possibility remains that these models will be used 658

in unintended ways that cause harm. We believe 659

that research and development efforts to understand 660

and mitigate those potential harms will also be ac- 661

celerated by the openness of the models, allowing 662

a diversity of approaches and analyses. Over the 663

past year there have been a number of comparable 664

models released with very permissive licenses, so 665

using a more strict license for our work will not 666

remove the overall risk in the field. We believe this 667

tradeoff on the side of being more open is the best 668

option. 669
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A Training Settings1209

Table 5 summarizes the model architecture and1210

the optimizer parameters of OLMo-7B as well as1211

recent similar-sized models.1212

B Power Consumption and Carbon1213

Footprint1214

Following previous literature (Strubell et al., 2019;1215

Patterson et al., 2021; Wu et al., 2022; Dodge et al.,1216

2022), we estimate the total energy consumed and1217

carbon released while pretraining our models by1218

calculating the total power consumption required1219

for training, and then multiplying it by the car-1220

bon emission intensity of the power grid where1221

the model was trained. While reporting these op-1222

erational emissions is standard practice, it does1223

not account for other sources of emissions such1224

as the embodied emissions due to the manufactur-1225

ing, transportation and disposal of hardware and1226

datacenter infrastructure, lifetime operational emis-1227

sions due to use, rebound effects, or other envi-1228

ronmental impacts such as water consumption or1229

mining. Thus our estimates should be viewed as1230

lower bounds.1231

We calculate the total power consumption for1232

our models by measuring the power consumption1233

of a single node every 25ms, calculating an average1234

across the entire training run, and multiplying by1235

the total number of nodes. We then account for the1236

energy efficiency of the data center by multiplying1237

the previous total by a power usage effectiveness1238

(PUE) factor, which we set to 1.1, representing a1239

conservative 10% energy consumption overhead1240

typical of energy efficient datacenters.89 We esti-1241

mate that pretraining our 7B models consumed 2391242

MWh of energy.1243

To calculate carbon emissions, we multiply the1244

total power consumption by a carbon intensity fac-1245

tor, measured in kg CO2 emitted per KWh, based1246

on the physical location of the data center where1247

each model was trained. The model trained on1248

A100-40GB GPUs was trained in Australia, so we1249

assume a carbon intensity factor of 0.610, the na-1250

tional average for Australia in 2022.10 The model1251

trained on MI250X GPUs was trained in the LUMI1252

8
https://www.nrel.gov/computational-science/

measuring-efficiency-pue.html
9
https://www.google.com/about/datacenters/

efficiency/
10
https://www.cleanenergyregulator.

gov.au/Infohub/Markets/Pages/qcmr/
december-quarter-2022/Emissions-Reduction.aspx

supercomputer, which runs on 100% renewable, 1253

carbon-neutral energy, so we assume a carbon in- 1254

tensity factor of 0. LUMI is powered entirely by 1255

hydroelectric power and some sources (Ubierna 1256

et al., 2022) measure the carbon intensity factor 1257

of hydroelectric power to be 0.024, which would 1258

imply total carbon emissions of 3.54 tCO2eq.11
1259

However, we rely on the official LUMI data for our 1260

calculations, and thus we estimate total pretrain- 1261

ing emissions of 69.78 tCO2eq.12 In Table 6 we 1262

compare our models with other previously released 1263

models based on publicly available information. 1264

We hope that openly releasing our models can 1265

reduce future emissions by allowing others to avoid 1266

the need to pretrain models from scratch, and give 1267

insights into the true cost of developing state of the 1268

art models. We also highlight that our estimates are 1269

lower bounds, because they do not include other 1270

critical pieces of development such as debugging, 1271

hyperparameter tuning, and downtime. 1272

C Additional Evaluation 1273

Additional perplexity results In Figure 3 we 1274

provide results for each of the 7 data sources in 1275

Paloma (Anonymous, 2023b) that are excluded 1276

from the combined metric in Figure 2. Some of 1277

these sources such as Pile (Gao et al., 2020) and 1278

ICE (Greenbaum and Nelson, 1996) are not pub- 1279

licly available at this time. Dolma 100 Program- 1280

ming Languages (Anonymous, 2024) consists of 1281

code data that is not supported by the decontamina- 1282

tion approach used in Paloma. TwitterAAE (Blod- 1283

gett et al., 2016), along with ICE, are datasets for 1284

targeted analyses of disparities in performance be- 1285

tween different dialects and as such should be eval- 1286

uated separately. And finally, the Manosphere, Gab, 1287

and 4chan corpora (Ribeiro et al., 2021; Zannettou 1288

et al., 2018; Papasavva et al., 2020) are intended 1289

to examine model fit to language from fringe on- 1290

line communities that are studied for prevalent hate 1291

speech and toxicity. Thus minimizing perplexity 1292

on these fringe corpora is not always desirable. 1293

One notable result here is that OLMo-7B is much 1294

farther ahead of the other models on Dolma 100 1295

Programming Languages (100 PLs). Note that this 1296

effect may be due in part to underestimation from 1297

contamination, as decontaminating code data is be- 1298

yond the scope of the method in Paloma. At the 1299

11
https://www.lumi-supercomputer.eu

12These metrics were in part collected using Carbonara’s
AI agent and monitoring platform. Learn more at: https:
//trycarbonara.com
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OLMo-7B LLaMA2-7B OpenLM-7B Falcon-7B PaLM-8B
Dimension 4096 4096 4096 4544 4096
Num heads 32 32 32 71 16
Num layers 32 32 32 32 32
MLP ratio ∼8/3 ∼8/3 ∼8/3 4 4
Layer norm type non-parametric RMSNorm parametric parametric parametric
Positional embeddings RoPE RoPE RoPE RoPE RoPE
Attention variant full GQA full MQA MQA
Biases none none in LN only in LN only none
Block type sequential sequential sequential parallel parallel
Activation SwiGLU SwiGLU SwiGLU GeLU SwiGLU
Sequence length 2048 4096 2048 2048 2048
Batch size (instances) 2160 1024 2048 2304 512
Batch size (tokens) ∼4M ∼4M ∼4M ∼4M ∼1M
Weight tying no no no no yes
Warmup steps 5000 2000 2000 1000
Peak LR 3.0E-04 3.0E-04 3.0E-04 6.0E-04
Minimum LR 3.0E-05 3.0E-05 3.0E-05 1.2E-05
Weight decay 0.1 0.1 0.1 0.1
Beta1 0.9 0.9 0.9 0.99
Beta2 0.95 0.95 0.95 0.999
Epsilon 1.0E-05 1.0E-05 1.0E-05 1.0E-05
LR schedule linear cosine cosine cosine
Gradient clipping global 1.0 global 1.0 global 1.0 global 1.0
Gradient reduce dtype FP32 FP32 FP32 BF16
Optimizer state dtype FP32 most likely FP32 FP32 FP32

Table 5: LM architecture and optimizer comparison at the 7–8B scale. In the “layer norm type" row, “parametric" and
“non-parametric" refer to the usual layer norm implementation with and without adaptive gain and bias, respectively.
All models are trained using AdamW.

same time other models that are trained on code1300

data from GitHub such as RPJ-INCITE-7B, that1301

are just as likely to have contamination, fair much1302

worse. Another factor then is that OLMo-7B trains1303

on code data with exactly the same post-processing1304

as that in 100 PLs while the code data in other mod-1305

els will have been processed differently. Similarly,1306

Pile evaluation demonstrates these in-distribution1307

and potential contamination effects as Pythia-6.9B1308

achieves top performance despite being trained on1309

almost an order of magnitude fewer tokens than1310

OLMo-7B.1311

The results on the remaining 5 targeted sources1312

should be interpreted with care, as Paloma often1313

finds that perplexity on these sources is dominated1314

by superficial features such as low average doc-1315

ument length rather than fit to that which would1316

actually be salient to members of these speech com-1317

munities. TwitterAAE and Gab have among the1318

shortest documents in Paloma contributing to un-1319

usually high bits per byte in this figure. Other1320

than these two, the models are notably very closely1321

grouped in a data scaling trend in ICE, Manosphere,1322

and 4chan.1323

Additional end-task results Next, in Table 7,1324

we provide results from zero-shot evaluation of1325

OLMo-7B on 6 additional end-tasks apart from 1326

the 8 in our core evaluation suite. These tasks are 1327

headqa_en (Vilares and Gómez-Rodríguez, 2019), 1328

logiqa (Liu et al., 2020), mrpc (Dolan and Brock- 1329

ett, 2005), qnli (Wang et al., 2018), wic (Pilehvar 1330

and Camacho-Collados, 2018), and wnli (Wang 1331

et al., 2018). 1332

We note, however, that in contrast to our core 1333

evaluation set described in Section 4.1, we found 1334

these additional end-tasks to have less stable perfor- 1335

mance during model development, and to provide a 1336

limited signal. This is illustrated in Figure 4, where 1337

we see the progress of task performance throughout 1338

training to be more random (compare with the more 1339

stable upward trends in Figure 1). While tasks such 1340

as mrpc and wic appear more stable, they offered 1341

additional difficulties related to performance being 1342

tied to random chance (e.g., wic) or the tendency of 1343

models to make spurious predictions (e.g., always 1344

predicting a single label) that either inflate or de- 1345

flate performance due to dataset class imbalances 1346

(e.g., mrpc). We therefore caution against relying 1347

too heavily on these tasks when measuring model 1348

performance throughout training and comparing 1349

models. 1350
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GPU Type
GPU Power

Consumption
(MWh)

Power
Usage

Effectiveness

Carbon
Intensity

(kg CO2e/KWh)

Carbon
Emissions
(tCO2eq)

Gopher-280B TPU v3 1,066 1.08 0.330 380
BLOOM-176B A100-80GB 433 1.2 0.057 30
OPT-175B A100-80GB 324 1.1 0.231 82
T5-11B TPU v3 77 1.12 0.545 47
LLaMA-7B A100-80GB 33 1.1 0.385 14
LLaMA2-7B A100-80GB 74 1.1 0.385 31
OLMo-7B MI250X 135 1.1 0.000* 0*
OLMo-7B A100-40GB 104 1.1 0.610 70

Table 6: CO2 emissions during pretraining. We estimate the total carbon emissions for various models using
publicly available data on PUE, carbon intensity of local power grid, and reported power consumption. Numbers for
Gopher-280B (Rae et al., 2022), BLOOM-176B (Luccioni et al., 2022), OPT-175B (Zhang et al., 2022), T5-11B
(Patterson et al., 2021), LLaMA (Touvron et al., 2023a), and LLaMA2 (Touvron et al., 2023b) are taken from their
respective papers. See Section B for details on how tCO2eq was calculated.
* LUMI runs entirely on hydroelectric power11and some estimates (Ubierna et al., 2022) measure the intensity factor
of hydroelectric power to be 0.024, implying total emissions of 3.54 tCO2eq.

headqa_en logiqa mrpc qnli wic wnli avg.
Falcon-7B 38.6 23.7 62.8 49.8 49.5 47.9 45.4

LLaMA-7B 38.7 19.5 68.6 50.1 49.1 52.1 46.4
LLaMA2-7B 39.5 26.1 69.1 49.4 49.8 45.1 46.5

MPT-7B 37.4 22.9 67.7 52.1 48.1 47.9 46.0
Pythia-6.9B 40.1 21.5 65.4 53.8 55.0 38.0 45.6

RPJ-INCITE-7B 36.9 27.8 58.8 53.8 48.9 57.8 47.3
OLMo-7B 37.3 23.4 68.4 49.1 50.2 56.3 47.5

Table 7: Zero-shot evaluation of OLMo-7B on 6 additional end-tasks apart from the 8 present in our core evaluation
suite. Once again, we compare OLMo-7B to 6 other model checkpoints which are publicly available. We find that
OLMo-7B outperforms the other models on aggregate taken over 6 additional end-tasks from this table, however
these tasks were also found to provide limited signal during training (see Figure 4).

D Adaptation Training Details1351

We use the following hyperparameters when in-1352

struction tuning OLMo. These were chosen1353

through small pilot experiments.1354

• Learning Rate: 2 × 10
−6

1355

• Epochs: 31356

• Warmup: Linear warmup for the first 3% of1357

total training time, and then linear cooldown1358

to a learning rate of 0 over the remaining steps.1359

• Weight Decay: 01360

• Gradient clipping: 01361

• Maximum sequence length: 20481362

After instruction finetuning, we then use the fol-1363

lowing hyperparameters for DPO training, follow-1364

ing Ivison et al. (2023):1365

• Learning Rate: 5 × 10
−7

1366

• β: 0.1 1367

• Epochs: 3 1368

• Warmup: Linear warmup for the first 10% of 1369

total training time, and then linear cooldown 1370

to a learning rate of 0 over the remaining steps. 1371

• Weight Decay: 0 1372

• Gradient clipping: 0 1373

• Maximum sequence length: 2048 1374

E Adaptation Evaluation and Model 1375

details 1376

We choose the models in Table 4 by choosing 1377

the ‘canonical’ best versions (that is, the best 1378

instruction-tuned or otherwise adapted models re- 1379

leased by the same organisation) of the base models 1380
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Figure 3: Bits per byte for each of the 7 remaining Paloma data sources not aggregated in Figure 2.
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Figure 4: Accuracy score progression of OLMo-7B on 6 additional end-tasks. The performance of these additional
end-tasks was unstable and provided limited signal during model development.

we compare against in Table 3. We additionally1381

compare to TÜLU 2 to show the current best mod-1382

els trained using the TÜLU mix used to finetune1383

OLMo. We display evaluations on MMLU, Al-1384

pacaEval, ToxiGen, and Truthfulness to focus on1385

displaying how instruction tuning can generally1386

help capabilities (MMLU), how the models per- 1387

form in an open-ended chat setting (AlpacaEval), 1388

and to test how instruction tuning aids in model 1389

safety and truthfulness (AlpacaEval, ToxiGen). We 1390

additionally report OLMo’s performance over the 1391

entire TÜLU evaluation suite in Table 8. 1392
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Model MMLU GSM8k BBH TydiQA Codex-Eval AlpacaEval ToxiGen TruthfulQA
0-shot 8-shot CoT 3-shot CoT 1-shot Pass@10 %win % Toxic % Info + True

OLMo-7B 28.3 8.5 31.7 32.3 21.4 - 81.4 31.6
+SFT 47.3 15.5 36.9 35.2 28.6 57.0 14.4 41.2
+SFT+DPO 46.1 11.0 35.8 21.7 27.8 69.3 1.7 52.0

Table 8: Evaluation of OLMo-7B models before and after instruction finetuning and DPO training on the full TÜLU
evaluation suite. Lower is better for ToxiGen and higher is better for other metrics.

We provide a brief description of each model1393

evaluated in Table 4 below. For all models, we use1394

the provided chat template for prompt formatting1395

when available.1396

• MPT Chat: A version of MPT 7B fine-1397

tuned on the ShareGPT-Vicuna (Chiang1398

et al., 2023), HC3 (Guo et al., 2023), Al-1399

paca (Taori et al., 2023), HH-RLHF (Bai1400

et al., 2022), and Evol-Instruct (Xu et al.,1401

2024) datasets. Retrieved from https:1402

//huggingface.co/mosaicml/mpt-7b-chat.1403

• Falcon Instruct: A version of Falcon1404

7B finetuned on the Baize (Xu et al.,1405

2023), GPT4All (Anand et al., 2023),1406

GPTeacher (Teknium1, 2023), and Refined-Web1407

English (Penedo et al., 2023) datasets. Retrieved1408

from https://huggingface.co/tiiuae/1409

falcon-7b-instruct.1410

• RPJ-INCITE Chat: A version of RPJ-INCITE1411

7B finetuned on the OASST1 (Köpf et al.,1412

2023) and Dolly V2 (Conover et al.,1413

2023) datasets. Retrieved from https:1414

//huggingface.co/togethercomputer/1415

RedPajama-INCITE-7B-Chat.1416

• Llama-2 Chat: A version of Llama 2 7B fine-1417

tuned on a mixture of instruction datasets and1418

further trained with RLHF. We refer the reader1419

to Touvron et al. (2023b) for further details.1420

• TÜLU 2: A version of Llama 2 7B finetuned on a1421

mixture of instruction datasets (the TÜLU 2 mix).1422

We refer the reader to Ivison et al. (2023) for1423

further details.1424

• TÜLU 2+DPO: TÜLU 2 further trained with DPO1425

on the UltraFeedback dataset (Cui et al., 2023).1426

We refer the reader to Ivison et al. (2023) for1427

further details.1428

• OLMo +SFT: A version of OLMo 7B fintuned1429

on the same data as TÜLU 2.1430

• OLMo +SFT+DPO: OLMo +SFT further trained 1431

with DPO on the UltraFeedback dataset (Cui 1432

et al., 2023). 1433

We additionally provide a brief description of 1434

each evaluation setting from Table 4: 1435

• MMLU: We use the official MMLU (Hendrycks 1436

et al., 2021) evaluation script and prompts 1437

available at https://github.com/hendrycks/ 1438

test, with modifications to allow for batch pro- 1439

cessing. We evaluate using 0 few-shot examples, 1440

following the original setup of MMLU. We report 1441

average accuracy across test examples. 1442

• ToxiGen: We follow the setup in Touvron et al. 1443

(2023b), but use the original set of prompts from 1444

Hartvigsen et al. (2022), which are designed 1445

to elicit toxic generations for certain groups. 1446

We take only the prompts designed to produce 1447

toxic language (‘hateful’ prompts) and use 500 1448

prompts per group to reduce evaluation costs. 1449

For base language models, we pass in the orig- 1450

inal ToxiGen prompts unchanged and greedily 1451

decode up to the first new line (or a maximum 1452

of 512 tokens). For instruction-tuned models, 1453

we place the prompt in the corresponding tem- 1454

plate, and ask the model to complete the prompt, 1455

until the model generates a stop token (or a max- 1456

imum of 512 tokens). We pass the generated 1457

text into a roberta-large model trained to detect 1458

toxic content finetuned as part of Hartvigsen et al. 1459

(2022)12. We then report the percentage of gen- 1460

erations deemed toxic by the classifier. 1461

• TruthfulQA: Following Touvron et al. (2023b), 1462

we mainly use the generation setting of Truth- 1463

fulQA (Lin et al., 2022). The TruthfulQA dataset 1464

contains 818 questions, which are used to prompt 1465

the tested model to generate answers. We use the 1466

default QA prompt format with 6 in-context QA 1467

examples. We follow the official script in their of- 1468

12
https://huggingface.co/tomh/toxigen_roberta
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ficial implemention13 to do greedy decoding and1469

answer postprocessing. We train two LLaMA 2-1470

based classifiers for judging the truthfulness and1471

informativeness of the model response, due to the1472

deprecation of GPT-3 making exact replication1473

of the original TruthfulQA evaluation infeasible.1474

We find that the LLaMA 2 judges are generally1475

able to match the performance of the original1476

GPT-3-based judges used by Lin et al. (2022).1477

We report the rate of the responses being truth-1478

ful and informative (% Informative and Truthful)1479

following Touvron et al. (2023b). We only report1480

the % Informative and Truthful as our primary1481

metric.1482

• AlpacaEval: We use the package provided by Li1483

et al. (2023), following the default setup which1484

asks the evaluated model to generate responses1485

for 805 prompts and employ GPT-4 to compare1486

the response with Davinci-003. We employ the1487

“alpaca_eval_gpt4” annotator. We allow the eval-1488

uated model to generate up to 2048 tokens, with-1489

out specifying special stop sequences. The re-1490

ported win-rate is the percentage of model gener-1491

ations that GPT-4 reports as being preferred over1492

the generations from Davinci-003.1493

13
https://github.com/sylinrl/TruthfulQA/

20

https://github.com/sylinrl/TruthfulQA/

