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ABSTRACT

Multimodal models have achieved remarkable progress, yet recent studies suggest
they struggle with compositional reasoning, often performing at or below random
chance on established benchmarks. We revisit this problem and show that widely
used evaluation metrics systematically underestimate model capabilities. To ad-
dress this, we introduce a group matching score that better leverages group structure
and uncovers substantial hidden competence in both contrastive vision–language
models (VLMs) and multimodal large language models (MLLMs). Moreover,
simply overfitting to the induced group matchings at test time transfers this hidden
competence into higher scores under the original evaluation metric, closing much
of the reported gap. With this adjustment, GPT-4.1 becomes the first system to
surpass estimated human performance on Winoground. Building on this insight,
we propose Test-Time Matching (TTM), an iterative self-training algorithm that
bootstraps model performance without any external supervision. TTM delivers
further non-trivial improvements: for example, SigLIP-B16 with TTM surpasses
GPT-4.1 on MMVP-VLM, establishing a new state of the art. Importantly, TTM
is broadly effective even on benchmarks without metric-induced effects or group
structures, achieving relative gains exceeding 85.7% on challenging datasets such
as Whatsup. Across 16 datasets and variants, our experiments consistently demon-
strate that TTM unlocks hidden compositional reasoning ability and advances the
frontier of multimodal evaluation.

1 INTRODUCTION

Compositional reasoning—correctly binding objects, attributes, and relations across modalities—is
a stringent test of multimodal understanding. Recent benchmarks probe this ability by organizing
examples into small groups of images and captions that differ in subtle but systematic ways (Thrush
et al., 2022; Tong et al., 2024; Burapacheep et al., 2024; Hsieh et al., 2023; Kamath et al., 2023). For
example, Winoground consists of 2× 2 groups where both captions contain the same words but in
different orders, so that each caption correctly describes only one of the two images.

Despite their impressive general utility, both contrastive vision-language models (VLMs) and
multimodal large language models (MLLMs) have been reported to perform at or below random
guessing on these tasks (Thrush et al., 2022; Diwan et al., 2022; Kamath et al., 2023; Tong et al.,
2024; Burapacheep et al., 2024; Li et al., 2024). On Winoground, for instance, widely-used models
trail far behind the estimated human performance of 85.5 (Thrush et al., 2022), with the previous
state of the art reaching only 58.75 via GPT-4V scaffolding and prompt tuning (Wu et al., 2023;
Vaishnav & Tammet, 2025).

We revisit this conclusion and show that commonly used metrics can underestimate model capability.
We introduce a group matching score (GroupMatch) that better leverages group structure by selecting
the best overall matching rather than requiring each pairwise comparison to succeed, as in the
standard group score (GroupScore) (Thrush et al., 2022; Tong et al., 2024; Burapacheep et al., 2024);
see Section 3.1 for details. This change alone reveals substantial hidden competence: with simple
test-time overfitting to GroupMatch (simple matching), GPT-4.1 improves from 69.75 to 91.38 on
Winoground and from 68.15 to 88.52 on MMVP-VLM; SigLIP-B16 jumps from 10.25 to 67 on
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Figure 1: SimpleMatch and TTM significantly boost VLMs and MLLMs performance on com-
positional reasoning benchmarks Winoground, MMVP-VLM, and ColorSwap. Left: GPT-4.1 w/
SimpleMatch surpass human performance on Winoground. Middle: SigLIP-B16 w/ TTM outper-
forms GPT-4.1 on MMVP-VLM, establishing a new state of the art.

Winoground and from 22.96 to 81.48 on MMVP-VLM. Notably, GPT-4.1 becomes the first system
to surpass the estimated human performance of 85.5 on Winoground (left plot of Fig. 1).1

Building on this insight, we introduce Test-Time Matching (TTM), an iterative self-learning algorithm
that bootstraps model performance without any external supervision. TTM converts high-confidence
model-induced matchings into pseudo-labels and progressively lowers selection thresholds to expand
coverage over the test set. This yields additional, non-trivial gains on top of GroupMatch: SigLIP-
B16 reaches 72.5 on Winoground and 89.44 on MMVP-VLM. Remarkably, TTM elevates SigLIP to
match GPT-4.1 on ColorSwap and surpass GPT-4.1 on MMVP-VLM, establishing a new state of
the art. See middle plot of Fig. 1 for details. Crucially, TTM is broadly effective even where metric
changes cannot help—on 1× k benchmarks such as SugarCrepe (Hsieh et al., 2023) and Whatsup
(Kamath et al., 2023), where GroupScore and GroupMatch coincide, TTM still delivers substantial
test-time improvements, including up to 85.7% relative gains on Whatsup (Fig. 3).

Finally, we generalize beyond group-structured datasets by casting evaluation as a single global
assignment between all images and captions. Even one-shot global matching outperforms raw
GroupScore, and applying the global variant of TTM provides further improvements, demonstrating
that the test-time matching principle extends robustly beyond local-group settings.

Contributions. We summarize our main contributions below:

1. Revisiting evaluation. We introduce a group matching score (GroupMatch) that better leverages
group structures and reveals substantial hidden capability previously masked by GroupScore.

2. Test-time self-bootstrapping. We propose TTM, an iterative, supervision-free algorithm that
converts confident model-induced matchings into pseudo-labels, yielding significant additional
gains at test time across models and datasets.

3. Broad applicability and new SOTAs. We demonstrate improvements on 16 dataset variants
spanning 2×2, 1×k, and non-grouped settings, achieving new state-of-the-art results (e.g., SigLIP
surpassing GPT-4.1 on MMVP-VLM) and the first Winoground result above human performance.

Paper organization. In Section 2, we review group-structured evaluation for compositional rea-
soning. Section 3 revisits evaluation metrics, introduces the group matching score (GroupMatch),
presents our test-time matching (TTM) algorithm, and extends it to global (non-grouped) settings.
Section 4 reports results across 2× 2, 1× k, and global variants, with ablations and analysis. We
conclude in Section 5. We defer related work, formal proofs, and additional experimental details and
results to the Appendix.

1We use GPT-4.1, the latest GPT model that still provides log probabilities, enabling more accurate computa-
tion of similarity scores (Lin et al., 2024). GPT-5 does not currently support log probability outputs.
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2 PRELIMINARIES

We study the evaluation of compositional reasoning in multimodal models. Most benchmarks for this
task are organized into groups of images and captions, typically of shape k× k or 1× k. Within each
group, the images and captions differ in subtle but systematic ways. For example, the widely used
Winoground dataset consists of groups with two images and two captions; both captions contain the
same set of words but in different orders, so that each caption correctly describes only one of the two
images (Thrush et al., 2022).

To succeed on such benchmarks, a model must simultaneously align each image with its correct
caption and each caption with its correct image. Formally, let sij := s(Ii, Cj) denote the similarity
score between image Ii and caption Cj . For contrastive vision-language models such as CLIP
(Radford et al., 2021) and SigLIP (Zhai et al., 2023), sij is typically given by the inner product of
image and text embeddings. For multimodal large language models, similarity can be derived from
metrics such as VQAScore (Lin et al., 2024). We collect all scores into a similarity matrix s, which
shares the same shape as the group.

Group Score for k × k Groups. Consider a group of k images and k captions with ground-
truth pairings {(Ii, Ci)i} hidden from the learner. The most widely used evaluation metric is the
GroupScore (Thrush et al., 2022; Tong et al., 2024; Burapacheep et al., 2024). This metric outputs 1
if the model finds a bijection that (i) assigns the correct caption to each image and (ii) assigns the
correct image to each caption, and 0 otherwise. Mathematically, we have

GroupScore(s) :=

{
1 ∀i : sii > maxj ̸=i sij and sii > maxj ̸=i sji,

0 otherwise.
(1)

Group Score for 1× k Groups. For benchmarks with group shape 1× k (Kamath et al., 2023;
Hsieh et al., 2023), the GroupScore reduces to simpler metrics. If there is a single image and
multiple captions, the GroupScore coincides with the TextScore, which equals 1 if the model selects
the correct caption. Conversely, if there is a single caption and multiple images, it reduces to the
ImageScore, which equals 1 if the model selects the correct image.

3 METHODS

Our approach begins with a re-examination of evaluation metrics for compositional reasoning. We
introduce an alternative group matching score that reveals hidden model capability and enables
improvements (Section 3.1). Building on this, we propose an iterative test-time matching (TTM)
algorithm that bootstraps model performance without external supervision (Section 3.2). We then
extend TTM beyond group-structured datasets to a global matching formulation applicable to general
settings (Section 3.2.1).

3.1 REVISITING EVALUATION METRICS: FROM RANDOM GUESSING TO MATCHING

Most multimodal compositional reasoning benchmarks adopt the evaluation metrics described in
Section 2. Despite the practical utility of multimodal models, existing results show that they perform
poorly on these benchmarks—often even worse than random guessing (Thrush et al., 2022; Diwan
et al., 2022; Kamath et al., 2023; Tong et al., 2024; Burapacheep et al., 2024; Li et al., 2024).2

Revisiting evaluation metrics. Such counter-intuitive outcomes motivate us to re-examine the
evaluation metrics themselves. To this end, we first consider the performance of a random guessing
model. Suppose we have a group of k images {Ii}ki=1 and k captions {Ci}ki=1, with ground-
truth pairings {(Ii, Ci)}ki=1 hidden from the learner (Thrush et al., 2022; Tong et al., 2024; Bura-
pacheep et al., 2024). For each pair (Ii, Cj), the random guessing model assigns a similarity score
sim(Ii, Cj) ∼ unif([0, 1]), producing a similarity matrix s ∈ Rk×k with entries sij := sim(Ii, Cj).

2These benchmarks are widely adopted; for example, Winoground (Thrush et al., 2022) and MMVP (Tong
et al., 2024) each have roughly 500 citations at the time of our paper submission.
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Under the widely used GroupScore metric, achieving a score of 1 requires the similarity matrix s to
satisfy 2k2 − 2k constraints (see Eq. (1)). Equivalently, each diagonal entry sii must be the largest
element in both its row and column—a highly restrictive condition. The probability of achieving a
perfect group score under random guessing is given below (see Appendix A.2 for proofs).

Proposition 1. For random similarity scores s, P(GroupScore(s) = 1) = (k−1)!
(2k−1)! .

Group matching score: an alternative metric. We next propose an alternative evaluation metric
that evaluates the best overall matching rather than individual pairwise comparisons. Let π denote
a matching from images to captions, where π(i) is the caption assigned to image i. We define the
GroupMatch as

GroupMatch(s) :=

{
1 if

∑k
i=1 si,π⋆(i) >

∑k
i=1 si,π(i), ∀ π ̸= π⋆,

0 otherwise,

where π⋆ : i 7→ i denotes the ground-truth matching. Intuitively, the match score is 1 if the total
similarity of the correct matching exceeds that of all other possible matchings. For k = 2, this reduces
to the simple condition s11 + s22 > s12 + s21. Since there are k! possible matchings and, under
random guessing, each is equally likely to maximize the total score, we obtain the following result.

Proposition 2. For random similarity scores s, P(GroupMatch(s) = 1) = 1
k! .

Simple test-time matching: exploiting evaluation gaps. While there is nothing wrong with
evaluating models using the popular group score GroupScore, two key observations emerge:

• P(GroupMatch(s) = 1) > P(GroupScore(s) = 1) for all integers k > 1.

• If the correct matching π⋆ is selected, overfitting to π⋆ at test time guarantees a group score of 1.

Together, these observations reveal an arbitrage opportunity: one can improve the group score by
simply overfitting to the matching induced by the GroupMatch at the test-time. We call this method
SimpleMatch with GroupMatch. In the commonly studied case with k = 2, the expected group
score of a random guessing model increases from 1/6 under GroupScore to 1/2 under GroupMatch.

Empirical validation. We further evaluate this idea on SigLIP (Zhai et al., 2023) and GPT-4.1
across widely used compositionality benchmarks, including Winoground (Thrush et al., 2022),
MMVP-VLM (Tong et al., 2024), and Colorswap (Burapacheep et al., 2024). Results are summarized
in Fig. 1. Previously, the best reported Winoground group score was 58.75, achieved by GPT-4V
with additional tuning (Wu et al., 2023; Vaishnav & Tammet, 2025). In contrast, SimpleMatch with
our proposed GroupMatch allows SigLIP-B16 to reach 67, surpassing this prior SoTA. Even more
strikingly, GPT-4.1 improves from 69.75 to 91.38 via SimpleMatch, becoming the first system to
surpass the estimated human performance of 85.5 on this benchmark.

3.2 TEST-TIME MATCHING: ITERATIVE BOOTSTRAPPING MODEL PERFORMANCE

The alternative metric in Section 3.1 reveals hidden model capability. To push performance further, we
introduce an iterative test-time matching algorithm that bootstraps model performance and achieves
new state-of-the-art results. Our method applies to groups of various shapes (including k × k and
1× k) and also extends to datasets without group structures (Section 3.2.1).

High-level idea. We present our test-time matching algorithm in Algorithm 1, which proceeds
iteratively for T iterations. At each round t ∈ [T ], the current model ft−1 induces candidate
matchings for all groups, which are treated as pseudo-labels. The algorithm then retains only those
matchings it is most confident about, and finetunes on them to obtain the next model ft. By repeating
this process, the model gradually bootstraps itself at test time without any external supervision.

The core of Algorithm 1 lies in two design choices: (1) how pseudo-labels are induced within each
group, and (2) how the confidence thresholds are scheduled across iterations. We discuss both below.
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Algorithm 1 Test-Time Matching (TTM)

Input: Pretrained f0; test set of groups D = {Gi}ni=1; number of iterations T ; thresholds {τt}Tt=1.
1: for iteration t = 1 to T do
2: Initialize pseudo-labeled set St ← ∅.
3: for each group Gi ∈ D do
4: Induce matching πft−1

(Gi)← argmaxπ s(π;Gi, ft−1).
5: Compute margin ∆(Gi; ft−1) as

∆(Gi; ft−1)← s(πft−1
(Gi);Gi, ft−1)− max

π ̸=πft−1
(Gi)

s(π;Gi, ft−1).

6: if ∆(Gi; ft−1) ≥ τt then
7: St ← St ∪ {(Gi, πft−1

(Gi))}.
8: Finetune model on St to obtain ft. // Self-training with no external supervision.

Output: Adapted model fT .
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Figure 2: Matching results on Winoground (left, with 2 × 2 groups) and SugarCrepe (middle, the
replace relation subset, with 1× 2 groups) with SigLIP-B16. TTM with different threshold schedules
on Winoground with SigLIP-B16 (right).

Group matching and pseudo-labeling. For a group G and model ft−1, we define the induced
matching

πft−1
(G) := argmax

π
s(π;G, ft−1),

where s(π;G, ft−1) :=
∑

u su,π(u)(G; ft−1) denotes the total similarity of matching π on G under
ft−1. For example, in a 2 × 2 group, πft−1(G) = (1 7→ 1, 2 7→ 2) if s11 + s22 > s12 + s21,
and (1 7→ 2, 2 7→ 1) otherwise. For a 1 × k group (one image, k captions), the induced match is
(1 7→ argmaxj∈[k] s1j). We convert πft−1(G) into a pseudo-label (G, πft−1(G)) and add it to the
training set St only when its margin

∆(G; ft−1) := s(πft−1
(G);G, ft−1)− max

π ̸=πft−1
(G)

s(π;G, ft−1)

exceeds a threshold τt. By controlling the threshold, we allow models to incorporate data based on
their confidence in the induced matching.

Iterative threshold scheduling. Lower thresholds τt yield more pseudo-labels but at lower pre-
cision, while higher thresholds produce fewer but cleaner labels. This trade-off is illustrated in the
left and middle plots of Fig. 2, which show the number of pseudo-matched groups (blue) and the
accuracy among matched groups (orange) under varying thresholds. To balance quality and coverage,
we adopt a decaying schedule τt+1 < τt, allowing the model to first learn from high-precision
pseudo-labels before gradually expanding to the full test set. The right plot of Fig. 2 confirms this
intuition: decay schedules outperform fixed thresholds overall. In practice, we find it effective to set
the initial threshold τ1 so that lower than 30% of groups are pseudo-matched, and the final threshold
τT so that more than 90% of the test set is covered. Both cosine and linear decay schedules perform
well. Further analyses and ablations are provided in Section 4.5.

Our TTM algorithm can be viewed as a form of test-time training, a paradigm that has gained
significant attention with the advent of powerful pre-trained models (Sun et al., 2020; Gandelsman
et al., 2022; Hardt & Sun, 2023; Hübotter et al., 2024; Akyürek et al., 2024). Most prior approaches,
however, treat each test instance in isolation, producing instance-specific finetuned models and
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often relying on instance-specific in-context examples (Akyürek et al., 2024). In contrast, TTM
leverages pseudo-labels across the entire test set to iteratively update a single model under an adaptive
thresholding schedule. Crucially, our pseudo-labeling scheme exploits matching, either locally
(Section 3.2) or globally (Section 3.2.1), to improve label quality and supervision.

3.2.1 TEST-TIME MATCHING WITHOUT GROUP STRUCTURES

While Algorithm 1 is designed for datasets organized into local groups, the same principle extends
naturally to settings without any predefined group structure. In this case, we treat the entire dataset as
a single global matching problem between all images and all captions.

Let SI denote the set of images and SC the set of captions. Without loss of generality, assume
|SI | ≤ |SC | so that each image can be assigned to one caption. Let s ∈ R|SI |×|SC | be the similarity
matrix produced by a model f . The induced global matching is defined as

πf := argmax
π:SI→SC

∑
i∈SI

si,π(i), (2)

which maximizes the total similarity over image-caption pairs. Eq. (2) corresponds to the classical
assignment problem, which can be efficiently solved by strongly-polynomial time algorithms such as
the Hungarian algorithm (Kuhn, 1955).

Analogous to Algorithm 1, we adopt an iterative schedule with pseudo-labeling. At iteration t, let
πft−1

be the global matching induced by model ft−1. Because the entire dataset is treated as a single
group, group-level margin thresholding loses granularity: the model would either accept all matches
or none. To address this, we apply thresholding at the level of individual pairs. Specifically, the
pseudo-label set at iteration t is

St := {(i, πft−1
(i)) : si,πft−1

(i) ≥ τt},

where τt is the similarity threshold. This threshold can be set either as an absolute value or relative
to the distribution of similarity scores (e.g., the p-th percentile). Following the same principle as in
Algorithm 1, we begin with a relatively high threshold to ensure high-precision pseudo-labels and
gradually decay it over iterations to expand coverage and bootstrap performance across the test set.

4 EXPERIMENTS

We describe the experimental setups in Section 4.1, report our main results in Sections 4.2 to 4.4,
and provide analyses and ablations in Section 4.5. Additional experimental details and results are
deferred to Appendix A.3.

4.1 EXPERIMENTAL SETUPS

Datasets. We evaluate on five challenging compositionality benchmarks for multimodal models:
Winoground (Thrush et al., 2022), MMVP-VLM (Tong et al., 2024), Colorswap (Burapacheep
et al., 2024), SugarCrepe (Hsieh et al., 2023), and Whatsup (Kamath et al., 2023). Winoground,
MMVP-VLM, and Colorswap consist of 2× 2 groups; we also construct non-grouped variants by
discarding group structure (Section 3.2.1). SugarCrepe consists of 1× 2 groups and Whatsup of 1× 4
groups; we evaluate on 4 different subsets of SugarCrepe and all 2 subsets of Whatsup. Following Li
et al. (2024), we further convert Whatsup into 4 different variants with 2× 2 groups. In total, our
evaluation spans 16 dataset variations.

Models. We test both contrastive vision–language models and multimodal large language models.
For contrastive models, we use SigLIP (Zhai et al., 2023) and CLIP (Radford et al., 2021) at multiple
scales, including SigLIP-B16, SigLIP-L16, CLIP-B16, and CLIP-B32. For multimodal large language
models, we include GPT-4.1, where image-text similarity is derived from VQAScore (Lin et al., 2024).

Evaluation metrics. For GPT-4.1, we report raw GroupScore and GroupMatch-induced perfor-
mance via SimpleMatch (Section 3.1). For contrastive models (CLIP and SigLIP), we additionally
include results with TTM (Algorithm 1). Specifically: on 2×2 datasets we report (i) raw GroupScore,

6
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Table 1: Performance on Winoground, MMVP-VLM, and ColorSwap. Raw model performance
is reported with GroupScore, SimpleMatch corresponds to GroupMatch (Section 3.1), and TTM
applies Algorithm 1. We report absolute gains (∆), relative gains, and relative error reductions of
TTM over SimpleMatch. Cells highlighted in indicate results with TTM, while cells in mark
the SOTA performance for each dataset.

Dataset / Model Raw SimpleMatch TTM ∆ Error Red.

Winoground
GPT-4.1 69.75 ± 0.56 91.38 ± 0.80 – – –
CLIP-B16 7.25 60.00 65.44 ± 1.10 + 5.4 (9.1% ↑) 13.6% ↓
SigLIP-B16 10.25 67.00 72.50 ± 0.64 + 5.5 (8.2% ↑) 16.7% ↓
SigLIP-L16 13.00 69.50 72.75 ± 0.64 + 3.3 (4.7% ↑) 10.7% ↓

MMVP-VLM
GPT-4.1 68.15 ± 0.00 88.52 ± 0.83 – – –
CLIP-B16 5.19 72.59 80.19 ± 0.81 + 7.6 (10.5% ↑) 27.7% ↓
SigLIP-B16 22.96 81.48 89.44 ± 0.96 + 8.0 (9.8% ↑) 43.0% ↓

ColorSwap
GPT-4.1 91.08 ± 0.28 97.42 ± 0.14 – – –
CLIP-B16 12.00 77.67 85.75 ± 0.64 + 8.1 (10.4% ↑) 36.2% ↓
SigLIP-B16 30.33 88.00 94.25 ± 0.43 + 6.3 (7.1% ↑) 52.1% ↓
SigLIP-L16 37.00 91.33 96.08 ± 0.43 + 4.8 (5.2% ↑) 54.8% ↓

(ii) GroupMatch-induced performance, and (iii) TTM-boosted performance; on 1× k datasets we
report (i) raw GroupScore and (ii) TTM-boosted performance, since GroupScore and GroupMatch
coincide in this case; and on datasets without group structures we report (i) raw GroupScore (with
known groups), (ii) the percentage of correctly matched pairs under Eq. (2), and (iii) TTM-boosted
performance (variants in Section 3.2.1). In all cases, we highlight performance gains from TTM—
over GroupMatch for 2× 2 datasets, over GroupScore for 1× k datasets, and over global matching
(Eq. (2)) for datasets without group structures. All results are averaged over four random runs, with
standard deviations reported.

4.2 TTM ACHIEVES NEW SOTAS

We evaluate on three popular compositionality benchmarks—Winoground, MMVP-VLM, and
ColorSwap—all consisting of 2× 2 groups and considered challenging for multimodal models. Raw
group scores are typically at or below random guessing. Previous state-of-the-art results include 58.75
on Winoground (GPT-4V with prompt tuning (Wu et al., 2023; Vaishnav & Tammet, 2025)), 70.7 on
MMVP (via a GPT-4o multi-agent system with tool use (Zhang et al., 2024c)),3 and 87.33 on Color-
Swap without training-set access (95.33 with finetuning on the training set (Burapacheep et al., 2024)).

Simple matching results. Applying SimpleMatch (Section 3.1) to CLIP, SigLIP, and GPT-4.1
already yields striking improvements (Table 1). SigLIP with SimpleMatch surpasses all prior
state-of-the-art results (without access to ColorSwap’s training set). GPT-4.1 with SimpleMatch
sets new records on all three benchmarks. Most notably, GPT-4.1 improves from 69.75 to 91.38
on Winoground, becoming the first system to surpass the estimated human performance of 85.5
(Thrush et al., 2022). These findings confirm that the GroupMatch metric can unlock substantial
hidden compositional reasoning ability.

Test-time matching results. We next apply TTM (Algorithm 1) to CLIP and SigLIP, enabling
further performance boosts at test time without external supervision. As shown in Table 1, TTM
delivers consistent gains over SimpleMatch, with relative improvements of around 10% for CLIP-
B16 and SigLIP-B16. Although the absolute boosts may appear modest, they are highly significant:

3This result is on MMVP, the variant designed for MLLMs. We instead evaluate on MMVP-VLM, a version
suited for contrastive models from the same paper. Reported performance is similar across the two variants; for
example, LLaMA-3-V-8B scores 50 on MMVP and 49.6 on MMVP-VLM (Li et al., 2024).
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Figure 3: TTM results on datasets without metric-induced boosts. Left: results on SugarCrepe with
1 × 2 groups. Middle: results on Whatsup with 1 × 4 groups. Right: average results on Whatsup
variants with 2× 2 groups. SimpleMatch is the same as raw performance on 1× k groups.

Table 2: Performance on non-grouped variants of Winoground, MMVP-VLM, and ColorSwap. Raw
model performance is reported with GroupScore, SimpleMatch corresponds to the performance of
global assignment introduced in Section 3.2.1, and TTM applies the global variant of Algorithm 1.
We show absolute gains (∆), relative gains, and relative error reduction of TTM over SimpleMatch.

Datasets SigLIP-B16 SimpleMatch +TTM ∆ Error Red.

Winoground 10.25 44.38 46.78 ± 1.05 + 2.4 (5.4% ↑) 4.3% ↓
MMVP-VLM 22.96 39.63 44.54 ± 2.02 + 4.9 (12.4% ↑) 8.1% ↓
ColorSwap 30.33 88.00 92.00 ± 1.24 + 4.0 (4.5% ↑) 33.3% ↓

by comparison, methods scaffolding GPT-4V achieve only a 1.25-point absolute gain on Winoground
(Vaishnav & Tammet, 2025; Zhang et al., 2024a). Crucially, TTM raises SigLIP to GPT-4.1’s level
on ColorSwap and allows SigLIP to surpass GPT-4.1 on MMVP-VLM, establishing a new state
of the art. These results highlight that TTM provides a powerful mechanism to further enhance
model performance directly at test time, with no external supervision.

4.3 TTM IMPROVES MODELS WITHOUT METRIC-INDUCED BOOSTS

To evaluate the effectiveness of Algorithm 1 beyond cases where performance can be inflated
by alternative metrics, we consider benchmarks with groups of shape 1 × k. In this setting, the
GroupScore and GroupMatch coincide, so no performance gain can be obtained by overfitting another
evaluation metric.

We experiment on four SugarCrepe subsets with 1 × 2 groups and both Whatsup subsets with
1× 4 groups, reporting results in Fig. 3 (left and middle plots). Even without metric-induced gains,
Algorithm 1 provides substantial test-time improvements. The gains are particularly striking on the
Whatsup datasets, where performance increases by up to 85.7%, turning these previously difficult
tasks into tractable ones. Inspired by Li et al. (2024), we further convert the Whatsup datasets into
four directional variants with 2× 2 group structure. As shown in the right plot of Fig. 3, Algorithm 1
again yields large performance boosts (54.9% relative gains on top of SimpleMatch), demonstrating
its robustness across both 1× k and 2× 2 settings. These results demonstrate that TTM is broadly
effective, even when evaluation metrics themselves cannot induce gains.

4.4 TTM IMPROVES MODELS WITHOUT GROUP STRUCTURES

To assess the generality of Algorithm 1, we evaluate its global variant introduced in Section 3.2.1 on
datasets without any predefined group structure. Specifically, we flatten Winoground, MMVP-VLM,
and ColorSwap by removing local k × k groups, resulting in a general dataset with an image set SI
and a caption set SC .

We report three metrics: (i) raw GroupScore (with known groups), (ii) SimpleMatch with global
assignment accuracy under Eq. (2), and (iii) TTM-boosted performance with the global variant
of Algorithm 1. Results show that even global assignment without groups structures substantially

8
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Figure 4: Left: Raw model performance on Winoground under different evaluation metrics. Middle:
Skyline performance of TTM with oracle matching on Winoground using SigLIP-B16. Right: TTM
performance under different initial thresholds τ1, evaluated on Winoground with SigLIP-B16.

outperforms the vanilla GroupScore, highlighting the benefit of matching-based evaluation. More
importantly, applying the iterative global TTM algorithm yields further gains over global assignment
alone, with especially large relative error reductions on ColorSwap; see Table 2. This demonstrates
that the test-time matching principle extends robustly beyond group-structured datasets.

4.5 ANALYSES AND ABLATIONS

Group structures provide stronger supervision. The key advantage of GroupMatch over
GroupScore is its ability to better exploit group structures for pseudo-labeling. To assess this
benefit, we examine raw performance of CLIP and SigLIP under different evaluation metrics (Fig. 4,
left). In addition to GroupScore and GroupMatch, we consider GlobalMatch, which allows global
matching but ignores group structure (Section 3.2.1), and individual match, which uses group struc-
ture but performs no joint matching: it individually match images to captions within the group.
Overall, GroupMatch provides the strongest supervision signal, making it most effective for guiding
pseudo-labeling.

Skyline performance with oracle matching. To study the full potential of TTM, we evaluate an
oracle variant that incorporates pseudo-labels into St only when they are correct (i.e., with oracle
access). As shown in Fig. 4 (middle), this oracle variant enables TTM to bootstrap more aggressively
and approach human-level performance on Winoground. This suggests that improving pseudo-label
quality—e.g., through limited external supervision—could further enhance TTM ’s effectiveness.

Sensitivity to thresholds. As discussed in Section 3.2, we generally recommend a decaying
threshold schedule that begins with high-quality pseudo-labels and gradually expands coverage.
In our experiments, the final threshold τT is set to either 0 (full coverage) or 0.1 (labels covering
> 90% of the data). The initial threshold τ1 is more dataset- and model-dependent: we find it
effective to set τ1 such that lower than 30% of the test set is pseudo-labeled. Fig. 4 (right) shows
results for τ1 ∈ {1.5, 2, 2.5} on Winoground with SigLIP-B16, corresponding to {30%, 21%, 18%}
coverage. Despite variations, all settings yield consistent gains, highlighting that TTM reliably
improves performance without external supervision.

5 DISCUSSION

In this paper, we revisited the puzzle of multimodal compositional reasoning, where popular models
have long appeared to perform at or below random chance. We showed that part of this gap arises from
rigid evaluation metrics that underestimate model capabilities. By introducing the group matching
score and applying simple test-time overfitting, we uncovered substantial hidden competence in
both contrastive VLMs and MLLMs—enough for GPT-4.1 to surpass estimated human performance
on Winoground. Building on this insight, we proposed TTM, an iterative self-training algorithm
that bootstraps performance without external supervision, enabling SigLIP to outperform GPT-4.1
on MMVP-VLM and establishing new state-of-the-art results across multiple benchmarks. These
findings demonstrate that revisiting evaluation and employing strategic test-time adaptation can
meaningfully advance the frontier of multimodal reasoning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.
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A APPENDIX

A.1 RELATED WORK

Multimodal models, compositional reasoning, and evaluation metrics. Contrastive vision-
language models (VLMs) such as CLIP and SigLIP (Radford et al., 2021; Zhai et al., 2023) and
multimodal LLMs (MLLMs) such as GPT (Achiam et al., 2023; Hurst et al., 2024) and Gemini (Team
et al., 2023; Comanici et al., 2025) series have achieved impressive progress across a wide range of
tasks. Yet both VLMs and MLLMs have been shown to struggle on benchmarks specifically designed
to test compositional reasoning—the ability to correctly bind objects, attributes, and relations across
modalities (Thrush et al., 2022; Tong et al., 2024; Burapacheep et al., 2024; Hsieh et al., 2023;
Kamath et al., 2023; Diwan et al., 2022; Li et al., 2024). These benchmarks are typically organized
into small groups of images and captions that differ in subtle but systematic ways (e.g., captions
with identical words but different orderings). The prevailing evaluation metric is the GroupScore,
which requires models to simultaneously assign each image to its correct caption and each caption
to its correct image. While rigorous, this metric is also unforgiving: raw model performance often
falls at or below random guessing (Diwan et al., 2022; Li et al., 2024). Despite recent efforts to
improve compositional reasoning for multimodal models (Wu et al., 2023; Zhang et al., 2024c;
Vaishnav & Tammet, 2025), progress remain modest. For instance, the previous state of the art
on Winoground was only 58.75—achieved by scaffolding GPT-4V (Wu et al., 2023; Vaishnav &
Tammet, 2025)—still well below the estimated human performance of 85.5 (Thrush et al., 2022).
Our work takes a different perspective: instead of modifying the models, we revisit the evaluation
itself. We introduce a group matching score (GroupMatch) that evaluates the best overall matching
rather than isolated pairwise comparisons, revealing substantial hidden competence in both VLMs
and MLLMs. Crucially, by simply overfitting to the induced matchings at test time, this hidden ability
transfers back into higher scores under the original group metric, closing much of the reported gap.
With this adjustment, GPT-4.1 becomes the first system to surpass estimated human performance on
Winoground. This finding echoes broader observations that measured ability can be highly sensitive
to metric design (Schaeffer et al., 2023), underscoring the need to further research into multimodal
evaluation protocols.

Test-time training, self-training, and pseudo-labeling. Test-time training adapts models at in-
ference to improve performance, with roots in early work on local learning and instance-specific
adaptation (Cleveland, 1979; Cleveland & Devlin, 1988; Bottou & Vapnik, 1992; Atkeson et al., 1997).
The idea has regained attention in the era of large pretrained models, where test-time self-supervision
can be exploited without additional labeled data (Sun et al., 2020; Gandelsman et al., 2022). Recent
studies show that finetuning on retrieved data based on test prompts can significantly improve large
language models (Hardt & Sun, 2023; Hübotter et al., 2024), and test-time training has become a
key component in tackling reasoning-heavy benchmarks such as ARC (Chollet, 2019; Chollet et al.,
2024; Akyürek et al., 2024). Our test-time matching algorithm (TTM) shares this motivation but
differs in key ways. Most prior work treats each test instance in isolation, producing instance-specific
finetuned models, sometimes relying on instance-specific in-context examples (Akyürek et al., 2024).
In contrast, we leverage GroupMatch-induced pseudo-labels across the entire test set, updating a
single model iteratively with an adaptive thresholding schedule. This connects naturally to the rich
literature on self-training (Kumar et al., 2020) and semi-supervised learning (Zhu, 2005; Chapelle
et al., 2009; Sohn et al., 2020; Zhang et al., 2021, 2024b), where pseudo-labels drive improvements.
Our contribution lies in exploiting group structure—both locally and globally—for pseudo-labeling.
Finally, our adaptive thresholding schedule resonates with classical ideas in active learning (Castro
& Nowak, 2007; Balcan et al., 2007; Dasgupta et al., 2009; Hanneke, 2014; Krishnamurthy et al.,
2019; Puchkin & Zhivotovskiy, 2021; Zhu & Nowak, 2022a,b). Whereas active learning typically
queries the most uncertain data for human annotation, our approach inverts this logic: we begin with
the most confident pseudo-labels, then gradually relax thresholds to expand coverage. This reversed
perspective is central to TTM ’s effectiveness, allowing it to reliably improve model performance
even in the absence of external supervision.

A.2 SUPPORTING RESULTS FROM SECTION 3

Suppose we have a group of k images {Ii}ki=1 and k captions {Ci}ki=1, with ground-truth pairings
{(Ii, Ci)}ki=1 hidden from the learner (Thrush et al., 2022; Tong et al., 2024; Burapacheep et al.,
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2024). For each pair (Ii, Cj), the random guessing model assigns a similarity score sim(Ii, Cj) ∼
unif([0, 1]), producing a similarity matrix s ∈ Rk×k with entries sij := sim(Ii, Cj).

Recall the GroupScore is calculated as

GroupScore(s) :=

{
1 ∀i : sii > maxj ̸=i sij and sii > maxj ̸=i sji,

0 otherwise.

We next provide the proof for Proposition 1.

Proposition 1. For random similarity scores s, P(GroupScore(s) = 1) = (k−1)!
(2k−1)! .

Proof. Because the entries of s are i.i.d. sampled from a continuous distribution (here unif([0, 1])),
ties occur with probability 0, so we may use strict inequalities throughout.

Denote di := sii and, for i ̸= j, set mij := min{di, dj}. By the definition of the GroupScore, the
event {GroupScore(s) = 1} is equivalent to requiring sij < mij and sji < mij for every i ̸= j.
Conditioning on the diagonal d = (d1, . . . , dk) and using independence of the off-diagonal entries,

P
(
GroupScore(s) = 1 | d

)
=

∏
i<j

P(sij < mij)P(sji < mij) =
∏
i<j

m 2
ij .

Let 0 ≤ x1 ≤ · · · ≤ xk ≤ 1 be the order statistics of (d1, . . . , dk). We then have mij =
xmin{r(i),r(j)}, where r(·) is the rank, hence

∏
i<j

m 2
ij =

k∏
a=1

x 2(k−a)
a .

Since (x1, . . . , xk) are the order statistics of i.i.d. unif([0, 1]) samples, their joint density is k! on the
ordered simplex {0 ≤ x1 ≤ · · · ≤ xk ≤ 1} (and 0 elsewhere). Therefore,

P
(
GroupScore(s) = 1

)
= k!

∫
0≤x1≤···≤xk≤1

k∏
a=1

x 2(k−a)
a dx1 · · · dxk.

For 1 ≤ ℓ ≤ k and y ∈ [0, 1], define

Iℓ(y) :=

∫
0<x1<···<xℓ<y

ℓ∏
a=1

x 2(k−a)
a dx1 · · · dxℓ.

We claim that, for ℓ = 1, . . . , k,

Iℓ(y) =
y ℓ(2k−ℓ)∏ℓ

r=1 r(2k − r)
.

This is proved by induction on ℓ. For ℓ = 1,

I1(y) =

∫ y

0

x2(k−1) dx =
y2k−1

2k − 1
.

Assume it holds for ℓ− 1. Then

Iℓ(y) =

∫ y

0

x
2(k−ℓ)
ℓ Iℓ−1(xℓ) dxℓ

=
1∏ℓ−1

r=1 r(2k − r)

∫ y

0

x
2(k−ℓ)+(ℓ−1)(2k−(ℓ−1))
ℓ dxℓ

=
1∏ℓ−1

r=1 r(2k − r)
· y

ℓ(2k−ℓ)

ℓ(2k − ℓ)
,
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since 2(k − ℓ) + (ℓ− 1)(2k − (ℓ− 1)) = ℓ(2k − ℓ)− 1. Thus the claim holds. Taking ℓ = k and
y = 1 gives ∫

0≤x1≤···≤xk≤1

k∏
a=1

x 2(k−a)
a dx1 · · · dxk = Ik(1) =

1∏k
r=1 r(2k − r)

.

Therefore,

P
(
GroupScore(s) = 1

)
= k!

k∏
r=1

1

r(2k − r)
=

(k − 1)!

(2k − 1)!
.

A.3 OTHER DETAILS FOR EXPERIMENTS

A.4 ADDITIONAL DETAILS AND HYPERPARAMETERS

We provide additional experimental details and hyperparameter settings below. For TTM, we set
the number of iterations to T = 10 and train the model for 20 epochs per iteration (30 epochs on
Winoground). Across all experiments, we use AdamW (Loshchilov & Hutter, 2017) with weight
decay 0.05 and (β1, β2) = (0.9, 0.999). The learning rate follows a cosine decay schedule and is
restarted at each iteration with a multiplicative factor of 0.95. We use a batch size of 50 for 2× 2
datasets and 100 for 1× k datasets; the batch size is defined at the group level (e.g., 50 groups of size
2× 2 per batch).4

Tables 3 to 5, report, for each dataset–model pair, the initial threshold τ1, the final threshold τT , the
threshold decay schedule (linear or cosine), and the learning rate (lr).

Table 3: Hyperparameters used for experiments in Section 4.2.

Dataset Model τ1 τT Schedule lr

Winoground
CLIP-B16 0.9 0 linear 2.0× 10−5

SigLIP-B16 2.0 0 linear 1.0× 10−5

SigLIP-L16 2.0 0.1 cosine 4.0× 10−5

ColorSwap
CLIP-B16 2.3 0 cosine 4.0× 10−5

SigLIP-B16 1.0 0 cosine 4.0× 10−5

SigLIP-L16 2.5 0 cosine 4.0× 10−5

MMVP-VLM CLIP-B16 2.0 0 linear 1.0× 10−5

SigLIP-B16 2.0 0.1 cosine 2.0× 10−5

A.4.1 COMPLETE RESULTS FROM SECTION 4.3

We present complete empirical results for Fig. 3 below in Tables 6 to 8.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to polish the writing of this paper.

4We slightly increase the batch size when the total number of groups is just above a multiple of the default
size. For instance, if the dataset contains 102 groups, we set the batch size to 51.
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Table 4: Hyperparameters used for experiments in Section 4.3.

Variant Model τ1 τT Schedule lr

Replace Relation SigLIP-B16 2.1 0 cosine 1.0× 10−5

Swap Attribute SigLIP-B16 1.8 0 cosine 1.0× 10−5

Swap Object SigLIP-B16 2.0 0 cosine 1.0× 10−5

Add Attribute SigLIP-B16 2.5 0 cosine 1.0× 10−5

Whatsup A (1×4) CLIP-B32 0.55 0 linear 1.0× 10−5

Whatsup B (1×4) CLIP-B32 0.80 0 linear 1.0× 10−5

A–Left–Right CLIP-B32 0.25 0 linear 1.0× 10−5

A–On–Under CLIP-B32 0.85 0 linear 1.0× 10−5

B–Left–Right CLIP-B32 0.50 0 cosine 2.0× 10−5

B–Front–Behind CLIP-B32 1.30 0 cosine 2.0× 10−5

Table 5: Hyperparameters used for experiments in Section 4.4. τ1 is selected based on the percentile
criterion described in Section 3.2.1. We find that global matching performs better with a slightly
smaller τ1 than the corresponding percentile selected from the grouped case.

Dataset Model τ1 τT Schedule lr

Winoground SigLIP-B16 0.50 0 linear 1.0× 10−5

ColorSwap SigLIP-B16 0.50 0 linear 4.0× 10−5

MMVP-VLM SigLIP-B16 0.55 0 linear 2.0× 10−5

Table 6: Performance on SugarCrepe datasets (1 × 2 groups). TTM consistently improves model
performance without metric-induced boosts. We report absolute gains (∆), relative gains, and relative
error reductions.

Datasets SigLIP-B16 +TTM ∆ Error Reduction

Replace Relation 70.48 76.23 ± 0.51 + 5.8 (8.2% ↑) 19.5% ↓
Swap Attribute 71.47 77.36 ± 0.71 + 5.9 (8.2% ↑) 20.6% ↓
Swap Object 60.41 66.12 ± 2.06 + 5.7 (9.5% ↑) 14.4% ↓
Add Attribute 83.67 88.95 ± 0.83 + 5.3 (6.3% ↑) 32.3% ↓

Table 7: Performance on Whatsup A/B datasets (1× 4 groups). TTM consistently improves model
performance without metric-induced boosts. We report absolute gains (∆), relative gains , and relative
error reductions.

Datasets CLIP-B32 +TTM ∆ Error Reduction

Whatsup A 30.58 56.8 ± 1.84 + 26.2 (85.7% ↑) 37.7% ↓
Whatsup B 30.88 49.94 ± 2.58 + 19.1 (61.7% ↑) 27.6% ↓

Table 8: Performance on Whatsup 2 × 2 directional subsets: LR: left-right, OU: on-under; FB:
front-behind. We report baseline (CLIP-B32), SimpleMatch, and TTM. ∆ and error reduction are
computed relative to SimpleMatch.

Datasets CLIP-B32 SimpleMatch +TTM ∆ Error Reduction

A-LR 0 40.78 95.87 ± 4.42 + 55.1 (135.1% ↑) 93.0% ↓
A-OU 3.88 78.64 99.03 ± 0 + 20.4 (25.9% ↑) 95.5% ↓
B-LR 0 55.88 82.84 ± 0.49 + 27.0 (48.2% ↑) 61.1% ↓
B-FB 0 47.06 66.67 ± 1.30 + 19.6 (41.7% ↑) 37.0% ↓
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