Advances in Large Multi-Modal Models from the Perspective of
Representation Space Extension: A Survey

Anonymous ACL submission

Abstract

The success of large language models (LLMs)
has attracted much focus on extending these
models to multi-modal domains, giving rise to
large multi-modal models (LMMs). Unlike ex-
isting reviews that focuses on specific model
frameworks or scenarios, this paper aims to pro-
vides an encyclopedic survey on LMMs from a
general perspective, i.e. representation space
extension. By systematically analyzing the
input-output representations of existing LMMs,
this paper summarizes the design of model ar-
chitectures to align the constructed multi-modal
representation space. Lastly, this paper demon-
strates the extensibility of LMMs as embodied
agents in view of proposed representation space
extension. With the insights revealed through
surveying the field, this paper discusses several
fundamental problems of constructing LMMs
and inspires future work at the end.

1 Introduction

The goal of Al research is to build versatile intelli-
gent systems capable of fulfilling tasks across di-
verse scenarios. Recently, the generalization and in-
teractivity demonstrated by large language models
(LLMs) have significantly advanced the progress to-
wards general-purpose Al (OpenAl, 2023; Touvron
et al., 2023b; Bai et al., 2023a; Al@Meta, 2024).
To adapt these capabilities to multi-modal contexts,
research on large multi-modal models (LMMs) is
emerging, aiming to extend the input and output
representation space of the language-based inter-
face to more modalities. As shown in Figure 1,
to extend the input space, existing methods intro-
duce discretely or continuously encoded modality
representations into the text input and learn cross-
modal alignment from multi-modal intertwined
data, enabling LMMs to understand multi-modal
information (Li et al., 2023b; Liu et al., 2024b; Bai
et al., 2023b; Ma et al., 2024). Similarly, the out-
put space can be divided into multiple subspaces
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Figure 1: Illustration of the general LMM framework:

expanding input and output representation space to more
modalities and aligning representations across modali-
ties through unified multi-modal modeling.

of different modalities, which are further aligned
with corresponding modality decoders to generate
multi-modal content (Koh et al., 2024; Zhang et al.,
2024a; Wu et al., 2023d; Zhan et al., 2024a).
Although there are several surveys that detail the
current progress in constructing LMMs, most of
these works are limited to specific sub-problems
in the construction of LMMs, such as applications
in specific modalities (Tang et al., 2023b; Latif
et al., 2023) and scenarios (Xiao et al., 2024; Cui
et al., 2024). Meanwhile, most existing reviews
focus on a specific type of model framework: en-
coding information from other modalities in a con-
tinuous manner and aligning them with text em-
beddings through connection modules (Wu et al.,
2023c; Caffagni et al., 2024), neglecting related
research on other architectures, such as unified
discretely represented LMMs (Team, 2024; Zhan
et al., 2024a). These limitations prevent existing re-
views from adequately covering research problems
in LMM construction and limit their applicability.
To this end, this survey aims to summarize re-
lated works from a more general perspective: the
extension of input-output representation space.
As illustrated in Figure 1, existing LMMs can be
systematically summarized from this view, encom-
passing various modalities, scenarios, and model



architectures, while also leaving room for further
exploration to more modalities and scenarios. We
omit the details about data and evaluations that have
been sufficiently reviewed by previous works (Li
and Lu, 2024; Huang and Zhang, 2024; Bai et al.,
2024), but keep a tight focus on the architectures.

To conduct a holistic survey, we follow a top-
down logic to break down the construction of
LMMs into several sub-problems, providing de-
tailed discussions to offer insights to readers. Par-
ticularly, we try to answer the following questions.
(1) How can modality signals be encoded using
discrete or continuous representations, and how to
construct multi-modal representation spaces? (§2)
(i1) How to design model architectures to align the
constructed multi-modal representation space? (§3)
(iii) How to extend the representation space to real
scenarios, i.e. embodied agents? (§4) This fur-
ther demonstrates the extensibility of LMMs from
the perspective discussed in this paper. Finally, in
§5, we summarize the discussion on the questions
raised above, providing readers with key take-home
messages and an outlook on future research.

In summary, our contributions are threefold:

* Going beyond specific scenarios and model
framework, we review the current LMMs
from a general perspective of input-output rep-
resentation space extension.

* Based on the structure of input-output spaces,
we systematically review the existing mod-
els, including mainstream models based on
discrete-continuous hybrid spaces and models
with unified multi-modal discrete representa-
tions. Furthermore, we summarize the design
of model architectures to align the constructed
multi-modal representation space.

* We elaborate on how to extend LMMs to em-
bodied scenarios to highlight the extensibility
of LMMs from the input-output extension per-
spective. To the best of our knowledge, this is
the first survey to include embodied LMMs.

2 Representation Space Extension

In this section, we introduce prevalent solutions
to construct multi-modal representation space. As
illustrated in Figure 2, existing methods can be
categorized based on different input-output space
structures, and the extension to other modalities
can be summarized in a similar manner.

2.1 Encode Input Representation

Regarding the input, the core research problems
involve how to code the representations of each
modality and how to integrate them into a multi-
modal input space (see lower part in Figure 2).

2.1.1 Textual Representation

As a discrete signal, text is a sequence composed of
characters. Following the practice of LLMs, LMMs
typically utilize tokenizers, such as BPE (Sennrich
et al., 2015; Radford et al., 2019), WordPiece (Wu,
2016), and Unigram (Kudo, 2018), to merge char-
acters into sub-word tokens. Ultimately, texts are
represented as sequences of discrete tokens.

2.1.2 Visual Representation

For visual signals with spatial-temporal informa-
tion, LMMs mainly employ pre-trained visual en-
coders for representing images (videos) into con-
tinuous features or discrete codes. Figure 5 in Ap-
pendix A shows the evolution of visual encoders.

Commonly adopted architectures of visual
encoders can be divided into two categories:
convolution-based (He et al., 2016; Liu et al.,
2022b) and vision-Transformer-based mod-
els (Dosovitskiy et al., 2020; Liu et al., 2021).
Both methods encode images into continuous
2D feature maps. These continuous features can
be further compressed into discrete visual codes
through vector quantization (VQ) by learning a
fixed-size visual codebook (Van Den Oord et al.,
2017; Esser et al., 2021). In addition, models like
Fuyu (Bavishi et al., 2023) do not rely on visual
encoders and directly use pixel values of image
patches as the visual representations.

Based on the sequence modeling framework
of current LMMs, multiple images can be intu-
itively arranged in the input sequence (Luo et al.,
2023b; Zhang et al., 2023b; Li et al., 2023a; Yu
et al., 2024b). For videos, where images (frames)
are temporally related, spatial-temporal encoders
such as TimeSformer (Bertasius et al., 2021) and
VideoSwin (Liu et al., 2022a) can be further used
for encoding (Li et al., 2023c; Xu et al., 2023).

2.1.3 Multi-Modal Representation

As illustrated in the lower part Figure 2, there exist
two mainstream types of multi-modal input space.

Type A: Hybrid Input Space Text are repre-
sented in a discrete form, while visual signals are
encoded in continuous representations, preseving
the complete visual information. However, due to
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Figure 2: Summary and illustration of different input-output space structures for extension to vision modality.

the gap in the input space, connection modules are
required to perform input-level cross-modal align-
ment, which is discussed in Section 3.

Type B: Unified Discrete Input Space Different
from Type A, further quantizing visual representa-
tions into discrete visual codes facilitates the con-
struction of a unified input space. A multi-model
vocabulary can be intuitively integrated and directly
used to support subsequent modeling.

2.1.4 Extension to More Input Modalities

Beyond the vision modality, signals from other
modalities can be encoded and introduced into the
input space following a similar paradigm. For ex-
ample, various encoders can help encode audio
into continuous (Hsu et al., 2021; Elizalde et al.,
2023; Girdhar et al., 2023) or discrete (Zhang
et al., 2023e) representations. As a step further, an
arbitrary-modality input space can be represented
in either hybrid (Wu et al., 2023d; Han et al., 2023;
Tang et al., 2023c; Lu et al., 2023a) or unified dis-
crete forms (Zhan et al., 2024a).

2.2 Decode Output Representation

Based on the input, backbones of LMMs present
continuous multi-modal output representations
which can be used to decode the output signals
of different modalities. For example, with the com-
monly used causal modeling framework, the output
representation can be leveraged to predict the sig-
nal at the next position in the sequence. Predicted
token sequence can be converted to text with the
tokenizer while different image generator can be
adopted to decode images from output in different
forms. In this section, we discuss the commonly
adopted paradigms to partition the output space

of different modalities and perform corresponding
decoding, as shown in the upper part of Figure 2.

2.2.1 Type 1: Text-Only Output Space

If only text output is required, similar to LLMs, dis-
crete tokens can be generated from the ouput repre-
sentations through a classification-based language
modeling (LM) head and specific decoding strate-
gies (Li et al., 2023b; Liu et al., 2024b). Please note
that models that first generate text descriptions and
then use external tools like Stable Diffusion and
CLIP to generate or retrieve content in other modal-
ities, such as Visual ChatGPT (Wu et al., 2023a),
InternLM-XComposer series (Zhang et al., 2023c;
Dong et al., 2024b), and Mini-Gemini (Li et al.,
20244d), are also classified as text-only output mod-
els because they are not in an end-to-end manner.

2.2.2 Type 2: Hybrid Output Space

The hybrid output space includes the discrete text
tokens and continuous visual features. Such output
space is initially proposed to support image gener-
ation. A series of methods first introduce special
tokens, such as the start and end tokens for images,
or a series of consecutive placeholder tokens to
indicate where images should be generated. The
continuous visual representations at the correspond-
ing positions are then connected to visual decoders
(mainly Diffusion models (Rombach et al., 2022))
through visual mapping modules (Koh et al., 2024;
Dong et al., 2024a; Zheng et al., 2024b; Sun et al.,
2024b). Similar to the hybrid input space, visual
mapping modules perform output-level alignment
and typically requires further training.

2.2.3 Type 3: Unified Discrete Output Space

The unified discrete output space contains discrete
text tokens and discrete visual codes. Based on the



joint vocabulary constructed within Type B input
space described in Section 2.1.3, image generation
is naturally integrated into the token decoding pro-
cess. The predicted visual codes are fed to the
corresponding codebook detokenizer to generate
the image (Ge et al., 2023b; Team, 2024).

2.2.4 Extension to More Output Modalities

Type 2 and Type 3 output spaces can be expanded
to support arbitrary-modality output. For example,
Next-GPT (Wu et al., 2023d) and Codi-2 (Tang
et al., 2023c) further extends the hybrid output
space, while AnyGPT (Zhan et al., 2024a) and
UnifiedIO-2 (Lu et al., 2023a) construct unified
discrete spaces for all modalities.

2.3 Prevalent Representation Paradigms

Considering the representation space structures in-
troduced above, most existing LMMs can be cat-
egorized to three types: (1) Multi-modal under-
standing models that rely on Type A input and
Type 1 output, these models are mainly designed
for understanding tasks that can be fully expressed
in language (Dai et al., 2023; Bai et al., 2023b; Lu
et al., 2024a; Chen et al., 2023f); (2) Multi-modal
generation models which comprise of Type A in-
put and Type 2 output, such models excel in gener-
ating multi-modal interleaved responses based on
the context (Koh et al., 2024; Wu et al., 2023d; Sun
et al., 2024a); (3) Unified multi-modal models
that represent and generate multiple modalities in a
unified discrete form (Ge et al., 2023b; Zhan et al.,
2024a; Team, 2024). Table 1 and Table 2 in ap-
pendix list the design paradigms of contemporary
LMMs, grouped according to the aforementioned
classification criteria. The alignment architectures
discussed in Section 3 are also included.

3 Multi-Modal Alignment Architecture

Based on the multi-modal representation spaces
introduced in Section 2, the design of LMMs needs
to consider how to align representations across dif-
ferent modalities. Mainstream architectures take
an LLM-centric paradigm: aligning inputs from all
modalities to a unified multi-modal backbone for
interaction and generating multi-modal responses.
To facilitate the unified modeling, additional mod-
ules are required, as summarized in Figure 3. We
detail the architecture as follows.

3.1 Multi-Modal Modeling Backbone

Typically, the backbone is based on a decoder-
only architecture composed of multiple transformer
blocks (Vaswani et al., 2017). To better understand
language, the backbone is primarily initialized with
a pre-trained LLM, such as LLaMA (Touvron et al.,
2023a,b; Dubey et al., 2024), Vicuna (Chiang et al.,
2023), Mistral (Jiang et al., 2023), Qwen (Bai et al.,
2023a; Yang et al., 2024), and so on (Bi et al.,
2024; Cai et al., 2024; Young et al., 2024). In addi-
tion, LMMs for edge devices are usually initialized
with smaller language models, such as MobileL-
LaMA (Kan et al., 2024), Phi (Abdin et al., 2024),
etc. (Team et al., 2024a; Hu et al., 2024a). The
backbone can also inherit MoE-based language
models like Mixtral 8x7B (MistralAlTeam, 2023).
Apart from the commonly used architecture men-
tioned above, some LMMs adopt encoder-decoder
backbones (Chung et al., 2024; Chen et al., 2023e;
Lu et al., 2023a; Bachmann et al., 2024; Mizrahi
et al., 2023). Additionally, native LMMs like
Chameleon (Team, 2024) are not initialized with
pre-trained LLMs and trained from scratch.

3.2 Input-level Alignment

To enable the backbone to process multi-modal in-
formation uniformly, it is necessary to align the
form and space of inputs across modalities at the
input level. Specifically, for Type B input space,
since all modalities are represented in a unified
discrete token form, input-level alignment can be
achieved by directly merging the vocabularies of
multiple modalities and learning the token represen-
tations through subsequent alignment training (Ge
et al., 2023b; Team, 2024; Zhan et al., 2024a).

Regarding Type A hybrid input space, it is re-
quired to introduce a connection module to convert
inputs from other modalities into a sequential rep-
resentation that matches the dimension of textual
token embeddings. Commonly adopted connection
modules are summarized below.

MLP Based A typical connection module is
multi-layer perceptron (MLP). This module di-
rectly aligns the dimension of representations from
other modalities with text (Liu et al., 2024b, 2023)
by flattening the 2D or 3D features into 1D in a spe-
cific order (Maaz et al., 2023; Wu et al., 2023d; Liu
et al., 2024a). The advantage of MLP-based mod-
ule lies in the simplicity and fast convergence dur-
ing alignment training. However, MLP-based mod-
ule cannot compress redundant information, which
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could result in excessively long representation se-
quences (e.g., for high-resolution images). Reduc-
ing the computational efficiency requires additional
designs to compress the information (Zhu et al.,
2023a; Chen et al., 2024c; Dong et al., 2024c).

Attention Based Another prevalent connection
modules are based on attention mechanisms. This
method introduces a fixed number of learnable
vectors as queries, which retrieve relevant infor-
mation from other-modality representations (serv-
ing as keys and values) through cross-attention.
The output representations of the queries, enriched
with information from other modalities, serve as
the modality input to the backbone. Representa-
tive module architectures include Q-Former (Li
et al., 2023b; Dai et al., 2023), abstractor (Ye et al.,
2023b,c), resampler (Zeng et al., 2023; Li et al.,
2023e), and so on (Bai et al., 2023b; Zhang et al.,
2023c). The query-level representations obtained
from attention mechanisms effectively compress
and aggregate information from other modalities.
Additionally, recent works have demonstrated fur-
ther extensibility, including integrating represen-
tations from multiple encoders (Li et al., 2024d;
Kar et al., 2024; Tong et al., 2024), incorporat-
ing local grounding information (Lu et al., 2023b),
and scaling up to an 8B Q-LLaMA (Chen et al.,
2023f). However, these modules mainly involve
many parameters and typically require additional
training (Li et al., 2023b; Lu et al., 2023b). Besides,
Yao et al. have found that attention-based modules
may result in the loss of important information.

Others In additional to the mainstream structures
mentioned above, several other connection mod-
ules have been proposed. CNN-based modules
utilize the inductive bias of convolutional opera-
tions to model local information, further combined

with pooling layers, the number of resulted tokens
can be effectively reduced (Cha et al., 2024; Chu
et al., 2024a; Hong et al., 2024). Adaptive pooling-
based modules can compress features using spatial
relationships without introducing additional param-
eters (Yao et al., 2024; Xu et al., 2024a). Further-
more, VL-Mamba explores to use vision selective
scanning as connection to integrate representations
across different modalities (Qiao et al., 2024).

3.3 Internal Alignment

Researchers have explored introducing extra para-
metric modules within the backbone to further en-
hance the alignment between modalities. We sum-
marize the commonly adopted methods as follows:

Cross-Attention Layer Flamingo (Alayrac et al.,
2022) is the first to insert cross-attention layers be-
tween the original layers of the backbone, allowing
text to perceive information from the visual context.
And a tanh gating is introduced to control the de-
gree of modality fusion. Subsequently, such design
has been widely adopted by recent LMMs (Gong
et al., 2023; Awadalla et al., 2023; IDEFICS, 2023;
Chen et al., 2024a), CogAgent (Hong et al., 2023a)
further utilizes cross-attention to supplement high-
resolution image information. Although effective,
densely inserted cross-attention layers bring a large
number of additional parameters. Ye et al. improve
this by introducing sparsely inserted hyper atten-
tion, which significantly reduce extra parameters
and facilitate model convergence through parallel
self-attention and cross-attention calculation.

Adaption Prompt LLaMA-Adapter incorpo-
rates visual representations into lightweight learn-
able adaption prompts and feed the prompts as pre-

'The illustration of the input-level and output-level align-
ment modules is inspired by (Yin et al., 2023).



fix contexts to the backbone (Zhang et al., 2023d).
LLaMA-Adapter V2 (Gao et al., 2023) improves
this method with an early knowledge fusion strat-
egy. ImageBind-LLM (Han et al., 2023) further
extends the prompts to support more modalities.

Visual Expert To distinguish between visual and
textual modeling, some LMMs introduce visual ex-
pert modules to process visual tokens. Specifically,
CogVLM (Wang et al., 2023a) adds additional at-
tention and FFN layers to process visual tokens
without compromising the original textual model-
ing capabilities of backbones. mPLUG-OwI2 (Ye
et al., 2023c¢) only introduces modality-specific pa-
rameter blocks in the normalization layers and the
K and V mapping layers of the attention modules.
InternLM-XComposer2 (Dong et al., 2024b), on
the other hand, designs a lightweight Partial LoRA
module for additional modeling of visual tokens.

3.4 Output-level Alignment

Regarding the multi-modal output space described
in Section 2.2, both Type 1 and Type 3 are repre-
sented in a unified discrete token-based form, multi-
modal content can be intuitively generated through
a next-token prediction approach with the help of
modality-specific de-tokenizer (Zhan et al., 2024a;
Lu et al., 2023a; Team, 2024; Ge et al., 2023b).

For the Type 2 hybrid output space, additional
mapping modules are required to align the output
space of LMM backbones with the input space
of corresponding modality generators. Consider-
ing image generation, commonly used modules are
built on linear projection (Dong et al., 2024a) or the
transformer architecture (Koh et al., 2024; Zheng
et al., 2024b). Similar to Q-Former, transformer-
based modules learn a fixed number of queries to re-
trieve information from the LMM outputs through
cross-attention, serving as the condition input of im-
age diffusion models (Rombach et al., 2022). Next-
GPT (Wu et al., 2023d) expands the transformer-
based mapping modules to fit the diffusion genera-
tors for image, video and audio modalities. Addi-
tionally, Emu series (Sun et al., 2024b,a) replace
the linear projection with cross-attention in diffu-
sion models to perform dimensional conversion.

In summary, we detail the architectural designs
of current large vision-language models (LVLMs)
in Table 1. Similarly, such alignment architectures
can be extended to more modalities, as presented
in Table 2. We kindly refer readers to Appendix B
for how to train the constructed models.

4 Extension to Embodied Agents

Beyond modality extension, the representation
space can be expanded to include various forms
of signals in different scenarios, such as embodied
environment. In this section, we introduce how
to expand LMMs into embodied agents with the
intelligence to interact with environments. We will
firstly introduce categories of embodied tasks, then
delve into how to adapt LMMs to embodied tasks
by extending the representation spaces.

4.1 Embodied Tasks

Tasks are referred to as “embodied” because the
agent needs to interact with a real or virtual en-
vironment. Based on the complexity of the in-
teraction actions, we categorize embodied tasks
as follows: (1) Embodied Question Answering
(EQA) (Das et al., 2018; Gordon et al., 2018):
In these tasks, the agent is required to answer
user questions based on environment exploration.
Broadly speaking, we consider such action spaces
as discrete vocabularies. (2) Vision-and-Language
Navigation (VLN) (Anderson et al., 2018; Krantz
et al., 2020): These tasks involve navigation based
on user instructions. However, these tasks do not
require interactions with objects. Therefore, the ac-
tion space is either discrete directional movements,
such as forward, backward, left, and right, or it
can involve continuous control parameters, such
as speed and direction. (3) Vision-and-Language
Manipulation (VLM) (Shridhar et al., 2020; Pad-
makumar et al., 2022; Yenamandra et al., 2023):
These tasks require the agent to not only engage in
question-answer dialogues with the user, but also
navigate the environment and interact with objects
based on user instructions. This action space builds
upon the action space of VLN tasks by adding ob-
ject manipulation actions. (4) Open-World Robot
Control (ORC) (Gupta et al., 2019; Mees et al.,
2022; Padalkar et al., 2023): In these tasks, agents
are equipped with high-degree-of-freedom robotic
arms, capable of performing precise object ma-
nipulations, such as grasping and moving objects.
The action space for ORC tasks is continuous and
determined by the complexity of the robotic arm
movements, i.e. represented by a set of continuous
values, such as the joint angles or velocities.

4.2 Input Extension: Environment

Since embodied agents interact with the environ-
ment as the subject, the egocentric observation be-
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Figure 4: Examples of the input-output space for embodied tasks. Typically, the input includes the user instruction,
the current observation (image or video), the environment and the history (optional). We omit the history here, as
for different tasks, the content of history vary from pure texts to observation sequences, action sequences and so on.

comes an essential choice (Anderson et al., 2018;
Chen et al., 2019; Qi et al., 2020; Padmakumar
et al., 2022; Du et al., 2024). Under egocentric
observations, the environment is often represented
as a local image (Fried et al., 2018; Ahn et al.,
2022; Driess et al., 2023) corresponding to the cur-
rent orientation or by rotating 360 degrees, which
could be satisfactory for EQA tasks. However,
VLN and VLM tasks require an integrated under-
standing of observed environments. To obtain a
complete picture, the agent must engage in thor-
ough and repeated exploration of the environment
(Chaplot et al., 2020a,b). Therefore, the ability to
integrate temporal local information and transform
it into a long-term global perspective is crucial for
embodied agents. Several works utilize topolog-
ical map (Cartillier et al., 2021, 2024) to record
the spatial semantics during navigation, either for
obtaining a better visual representation for the en-
vironment (Hong et al., 2023b), or for construct-
ing reasoning chains (Zhan et al., 2024b). Others
employ bird’s-eye-view grid maps to structure the
visited environment (Chen et al., 2023a; Xiong
et al., 2023; Wang et al., 2023b). For ORC tasks,
a detailed 3D modeling of the environment is es-
sential for executing precise actions with a robotic
arm. For example, VoxPoser (Huang et al., 2023b)
take the 3D value map derived from interactions
between a LLM and a vision-language model to
enable exact and efficient object manipulations.

4.3 Output Extension: Embodied Action

As stated in Section 4.1, different embodied tasks
have distinct embodied action spaces, necessitating

the extensions to model outputs to accommodate
the specific demands of each task.

Discrete Action Space For embodied tasks of
VLN and VLM with discrete action spaces, embod-
ied actions are divided into a fixed set of categories.
One line of work, i.e. LLaRP (Szot et al., 2023),
utilizes an additional action prediction module to
decode discrete actions. Another line of work lever-
ages the powerful language decoding capabilities of
LLMs. For example, NavGPT (Zhou et al., 2024b)
and NaviLLM (Zheng et al., 2024a) predict actions
as plain-text, which are then parsed into specific ac-
tion commands. This design is simple and effective,
yet limits the decoding of complex operations like
robotic arm control in ORC tasks. To mitigate this
issue, RT-2 (Brohan et al., 2023a) adds special ac-
tion tokens into the vocabulary. The discrete tokens
are then de-tokenized into continuous signals.

Continuous Action Space To better adapt to
ORC tasks, the extension to continuous actions
is necessary. Since the direct outputs of LVLMs
are discrete tokens, decoding continuous actions
typically requires an extra action decoding head.
RoboFlamingo (Li et al., 2023d) experiments with
different action decoding head architectures (e.g.,
MLP, RNN, and Transformer) to enable language-
conditioned robotic control. Octo (Team et al.,
2024b) employs a modular framework, integrating
diffusion model-based action policies to predict
continuous actions. Unlike RoboFlamingo, the ad-
vantage of Octo lies in its ability to flexibly connect
different task encoders, observation encoders, and
action decoders, making it highly adaptable.



Hierarchical Action Space This separates the
level of action control into high-level task plan-
ning and low-level control policies (could be either
discrete or continuous), each handled by separate
modules or models. Specifically, PALM-E (Driess
et al., 2023) uses high-level instructions generated
by LVLMs to guide low-level control policies in
executing specific embodied actions.

4.4 Multi-Modal Alignment

Input-level Alignment To bridge the gap be-
tween the newly introduced environment repre-
sentation and other modalities, SMNet (Cartillier
et al., 2021), GridMM (Wang et al., 2023b) and
Trans4Map (Chen et al., 2023a) employ end-to-
end imitation learning, continuously adjusting the
model parameters to optimize the updating pro-
cesses of allocentric map. However, the obtained
map representations are highly dependent on the
UNet and GRU modules nested within the model
architecture, lacking the ability to transfer between
different language backbones. To address this is-
sue, Ego?-Map (Hong et al., 2023b) takes a self-
supervised contrastive learning strategy, comparing
egocentric view features with their corresponding
semantic maps. Such representations exhibit strong
generalizable capability on various environments.

Output-level Alignment Adapting the outputs
to different action spaces is essential for agents
to understand and execute complex tasks. There
are two major strategies: (1) Direct Alignment:
This approach maps instructions directly to exe-
cutable actions in an end-to-end manner, as exem-
plified by RoboFlamingo (Li et al., 2023d) and
Octo (Team et al., 2024b). During training, both
RoboFlamingo and Octo collect sequential actions
covering various scenarios and tasks, enhancing
the model’s generalization capability during pre-
training. They also allow the policy module to
be fine-tuned with a small amount of trajectory
data so as to quickly adapt to new tasks. Besides,
LEO (Huang et al., 2023a) adopts a two-stage train-
ing process involving pre-training for 3D vision-
language alignment and fine-tuning on 3D vision-
language-action instructions, enhancing the agent’s
adaptability to different action spaces. (2) Indi-
rect Alignment: This method breaks down user
instructions into language plans that can be under-
stood by downstream models, with representative
works as PALM-E (Driess et al., 2023). PALM-E
pre-trains on large datasets of robotic manipulation

planning, visual question answering and captioning,
converting complex environmental perceptions into
multi-step task planning. It integrates the task plans
with downstream action controller SayCan (Brohan
et al., 2023b) for specific action execution.

5 Discussion and Outlook

Design of representation spaces Constructing
multi-modal representation spaces involves hybrid
and unified approaches ( Section 2 and Section 3),
each with trade-offs. Hybrid models, which en-
code continuous modality signals into discrete text
spaces, excel in comprehension but require com-
plex alignment modules and struggle with genera-
tion tasks. Unified discrete models simplify com-
prehension and generation but face challenges with
weaker encoders and training stability. Addressing
granularity mismatches between textual and other
modality tokens is key for future improvement.

We kindly refer readers to Appendix C for more
discussions in this direction.

A promising way towards world models As
demonstrated in Section 4, our perspective of rep-
resentation space extension works beyond modal-
ities, encompassing any form of information or
signals. By encoding these into input/output spaces
and aligning them via model architecture and train-
ing strategies, models can be applied for down-
stream tasks. The proposed framework highlights
the potential for models to understand the physical
world. The statement, “predicting the next token
is to understand the world", holds if the defined
token space has been expanded to cover a sufficient
amount of information and signals from the world.

6 Conclusion

In this paper, we summarize the current methods of
LMM construction from the perspective of repre-
sentation space extension. We further break down
and provide detailed discussion of the key research
problems in the construction process, including the
structure of multi-modal input and output repre-
sentation spaces and multi-modal representation
alignment frameworks. Our summarization frame-
work is not only straightforward but also effectively
encapsulates the mainstream approaches while of-
fering potential for future extensions. This paper
will continue to be updated, and we hope it can
provide an intuitive and comprehensive overview
for related researchers and inspire future work.



7 Limitations

Although our analysis from the perspective of rep-
resentation space extension is general, this paper
does not delve deeply into the evaluation of exist-
ing LMMs. Notably, evaluation tasks and datasets
can be systematically categorized based on the in-
put and output representation spaces. For exam-
ple, VQA tasks that only require Type 1 outputs
(see Figure 2) could be considered “understanding"
tasks, while image editing tasks that require Type
2 or Type 3 outputs could be categorised as “gener-
ation" tasks. This aspect remains an open question
and we reserve it for future investigation.
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A More about Visual Encoder

In Section 2.1.2, we illustrate the visual represen-
tations obtained via different visual encoders. As
shown in Figure 5, the training strategies of these
encoders vary. Most visual encoders are pre-trained
in supervised or self-supervised manner. For super-
vised learning, early exploration utilize image cate-
gories as supervision signals (Dosovitskiy et al.,
2021), while CLIP-like models (Radford et al.,
2021; Sun et al., 2023; Zhai et al., 2023) use lan-
guage supervision to learn generalized represen-
tations. Additionally, SAM (Kirillov et al., 2023)
leverages segmentation tasks as training objectives.
In contrast, self-supervised learning only requires
images for training. One line of works employ
contrastive self-supervised methods to distinguish
representations between different images (He et al.,
2020; Caron et al., 2021; Zhou et al., 2021; Oquab
et al., 2023). Another line of approaches construct
auto-encoders, where models are demanded to re-
construct images from the encoded visual represen-
tations, which is often used to support downstream
image generation (Van Den Oord et al., 2017; Esser
etal., 2021; Ge et al., 2023a; Sun et al., 2024a).

Since most visual encoders are limited to fixed
resolutions and capture certain aspect ratios of vi-
sual features, existing LMMs proposes to enhance
the input visual representations on two aspects: res-
olution enhancement and feature enhancement.

To support high-resolutional image processing,
the direct method is to increase the resolution ac-
cepted by the visual encoder, including interpo-
lating position embeddings in vision Transform-
ers (Zhu et al., 2023a; Bai et al., 2023b) and using
CNN-based models to enhance the encoding effi-
ciency of high-resolution images while compress-
ing the size of encoded feature maps (Yuan et al.,
2024; Ge et al., 2024). Other works propose to crop
high-resolution images into multiple sub-images
and input them into the low-resolution encoder
along with the down-sampled full image (Ye et al.,
2023a; Li et al., 2023e; Gao et al., 2024; Xu et al.,
2024b; Liu et al., 2024a). Different sub-image par-
titioning templates also help address issues caused
by varying aspect ratios of images.

Regarding feature enhancement, common prac-
tices consider to ensemble visual representations
encoded by different encoders, such as combin-
ing encoders trained with different strategies (Lu
et al., 2024a; Zhao et al., 2024a), or integrating
high-resolution and low-resolution encoders to-
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Figure 5: The evolution of commonly adopted visual encoder architectures and training strategies.

gether (Hong et al., 2023a; Li et al., 2024d). Spe-
cialized modules have been introduced to better
fuse features from different encoders (Li et al.,
2024d; Tong et al., 2024; Fan et al., 2024)

B Multi-Modal Alignment Training

Here, we provide additional details about modality
alignment training that could not be fully discussed
in the main text due to page limits. In Section 3,
we have demonstrated the alignment architectures
of contemporary LMMs, as summarized in Table 1
and Table 2. In this section, we will further illus-
trate the alignment training of LMMs.

The training of current LMMs typically involve
multiple stages, with each stage using different
data to train specific parameters, gradually learn-
ing cross-modal alignment as well as multi-modal
understanding and generation capabilities. Most
LMMs undergo two main stages: pre-training and
instruction fine-tuning. Some models also have
additional training stages for specific capabilities.

Pre-training The primary goal of pre-training
is to align and associate the input representations
of various modalities within the multi-modal input
space, enabling the backbone to uniformly model
and understand inputs across modalities. Figure 6
illustrates the commonly applied settings in the pre-
training phase which is described below. At this
stage, commonly used data include X-text pairs
(“X" means modality X) and multi-modal inter-
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Figure 6: Illustration of common settings during the pre-
training stage, including data and trainable parameters.
“<x>" represents inputs of modalities other than text.

leaved documents. Besides the multi-modal data,
text-only data can be adopted to maintain the lan-
guage modeling capabilities of backbones (Zhang
et al., 2023c; Lin et al., 2023; Lu et al., 2024a).

Instruction Fine-tuning The instruction fine-
tuning stage enables the model to understand
and follow instructions to generate appropriate re-
sponses, thereby enhancing the interactivity. Fig-
ure 7 provides a straightforward illustration for
this stage. At this stage, to obtain better gener-
alization under unseen scenarios and tasks, the
training data must contains various instructions.
Therefore, most LMMs adopt different strategies
to construct a mixed dataset based on different re-
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quirements, such as mixing task-oriented data with
self-instructed data (Liu et al., 2023; Laurencon
et al., 2024b), combining general data with data
from specific scenarios (Chen et al., 2023c; Cai
et al., 2024), unifying data from various modali-
ties (Wu et al., 2023d; Zhan et al., 2024a; Li et al.,
2024b), integrating understanding and generation
data (Dong et al., 2024a; Sun et al., 2024a), and
blending multi-modal data and text-only data (Lin
et al., 2024b; McKinzie et al., 2024).

Additional Alignment Training In addition to
the regular pre-training and instruction fine-tuning
stages, some specialized models require additional
training stages to achieve alignment for specific
objectives. To enable LMMs to generate multi-
modal response, output-level alignment is required.
Benefiting from unified multi-modal discrete rep-
resentation and the pre-trained tokenizer and deto-
kenizer for each modality, models with Type 3
output space can achieve output-level alignment
directly through conventional pre-training and in-
struction fine-tuning (Jin et al., 2023; Ge et al.,
2023b; Team, 2024; Zhan et al., 2024a). For mod-
els with Type 2 hybrid output space, an additional
alignment stage may be required. By rearranging
the order of text and other-modality information
in “text + X pairs and interleaved sequences, the
text-to-other-modalities generation ability can be
learned in the autoregressive setting. A line of ap-
proaches keeps modality decoders frozen and train
the output mapping modules through gradients
passed from the decoder for alignment (Tang et al.,
2023c; Dong et al., 2024a; Zheng et al., 2024b).
Since most modality decoders are originally con-
ditioned on text for generation, the representations
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from the decoders’ corresponding text encoder can
be utilized as supervision signal (Wu et al., 2023d;
Koh et al., 2024). Another line of methods, repre-
sented by Emu series (Sun et al., 2024b,a), propose
to construct an autoencoder between modality en-
coders and decoders. These methods first train
LMMs to align the visual input and output spaces,
then align the modality decoders to this space.

C Further Discussions

How to construct multi-modal representation
spaces with discretely or continuously encoded
modality signal? Currently, mainstream LMMs
follow the hybrid structure, where modality sig-
nals are continuously encoded and integrated into
the text space. This method is simple yet effec-
tive, leveraging encoders like CLIP (Radford et al.,
2021) and CLAP (Elizalde et al., 2023), which are
aligned with text through large-scale pre-training,
to achieve impressive performance in comprehen-
sion tasks. However, this approach introduce ad-
ditional design costs for corresponding alignment
modules for the input and output ends.

Meanwhile, hybrid input spaces cannot directly
support multi-modal content generation. This ne-
cessitates the design of more complex output lay-
ers and decoding strategies for LMMs with multi-
modal generation capabilities, leading to a signifi-
cant gap between the input and output spaces.

On the other hand, the unified discrete space
structure is more straightforward, supporting both
comprehension and generation tasks through a uni-
fied approach (e.g., next-token prediction). How-
ever, they are currently limited by the absence of
strong discrete encoders across various modalities,
akin to CLIP, resulting in slightly weaker perfor-
mance on comprehension tasks compared to hy-
brid models. Ovis (Lu et al., 2024b), however, has
shown that by carefully designing and expanding
the visual vocabulary, discrete models can also per-
form well on comprehension tasks. Additionally,
due to the competitive relationship between modali-
ties, improving training stability is also a challenge
that needs to be addressed for unified discrete rep-
resentation models.

In conclusion, both approaches have their
strengths and weaknesses, with significant room
for optimization. At the same time, we believe that
the current training strategies of discrete and con-
tinuous encoders are not mutually exclusive, the
development and approaches of both methods can
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é';“ﬁﬁ’“dapm Text, Vision A Text 1 LLaMA CLIP-ViT-L/14 MLP Adaption Prompt 24 | 2023/03
MiniGPT-4 (2023b) Text, Vision A ‘ Text 1 Vicuna Eva-CLIP ViT-G/14 Q-Former - 224 2023/04
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InterLM-XC2 (2024b) Text, Vision A Text 1 InternLM-2 CLIP ViT-L/14 MLP Partial LoORA 490 2024/01
CLIP ViT-L/14 + MAE
Mousi (2024) Text, Vision A Text 1 Vicuna-1.5 + LayoutLMv3 + ConvNeXt Poly-Expert Fusion - 1024 2024/01
+ SAM + DINOV2 ViT-G
LLaVA-MOoLE (2024b) | Text, Vision A Text 1 Vicunal.5 CLIP ViT-L/14 MLP LoRA MoE 336 2024/01
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Cobra (2024b) Text, Vision A Text 1 Mamba-Zephyr DINOV2 + SigLIP MLP - 384 2024/03
InternVL 1.5 (2024c¢) Text, Vision A ‘ Text 1 InternLM2 InternViT-6B MLP - 448+40 | 2024/04
Phi-3-Vision (2024) Text, Vision A Text 1 Phi-3 CLIP ViT-L/14 MLP - 336*16 | 2024/04
PLLaVA (2024a) Text,Vision A | Text 1 Vicuna / Mistral CLIP VIT-L/14 MLP + Adaptive Pooling - 336 | 2024104
/ Hermes-2-Yi
TextHawk (2024a) Text, Vision A Text 1 InternLM-1 SigLIP-SO400M/14 Resampler + MLP - unlimited | 2024/04
Imp (2024) Text, Vision A ‘ Text 1 Phi-2 SigLIP MLP - 384 2024/05
IDEFICS?2 (2024b) Text, Vision A Text 1 Mistral-v0.1 SigLIP-SO400M/14 Perceiver + MLP - 384%4 2024/05
ConvLLaVA (2024) Text, Vision A ‘ Text 1 Vicuna- CLIP-ConvNeXt-L* MLP - 1536 2024/05
Ovis (2024b) Text, Vision B Text 1 /Lé‘;i?i Vlg;lll;\;:g; d-;-ng - - 336 2024/05
Deco (2024) Text, Vision A ‘ Text 1 Vicuna-1.5 CLIP ViT-L/14 MLP + Adaptive Pooling - 336 2024/05
CuMo (2024c) Text, Vision A Text 1 Mistral / Mixtral CLIP ViT-L/14 MLP FFN + MLP MoE 336 2024/05
Vicuna-1.5 / CLIP VIT-L/14 Vi
Cambrian-1 (2024) Text, Vision A Text 1 LLaMA-3 / + DINOv2 VIT-L/14 Spatial Vision - 1024 | 2024/06
Hermes-2-Yi + SigLIP ViT-SO400M Aggregator
+ OpenCLIP ConvNeXt-XXL
GLM-4v (2024) Text, Vision A Text 1 GLM4 EVA-CLIP-E Conv + SwiGLU - 1120 2024/06
InterLM-XC2.5 (2024b) | Text, Vision A ‘ Text 1 InternLM-2 CLIP ViT-L/14 MLP Partial LoORA 560%24 | 2024/07
IDEFICS3 (2024a) Text, Vision A Text 1 LLaMA 3.1 SigLIP-SO400M/14 Perceiver + MLP - 1820 2024/08
mPLUG-Ow13 (2024) Text, Vision A ‘ Text 1 Qwen2 SigLIP-SO400M/14 Linear Hyper Attention 384*%6 2024/08
CogVLM2 (2024) Text, Vision A Text 1 LLaMA3 EVA-CLIP-E Conv + SwiGLU Visual Expert 1344 2024/08
CogVLM2-video (2024) | Text, Vision A ‘ Text 1 LLaMA3 EVA-CLIP-E Conv + SwiGLU - 224 2024/08
LLaVA-OV (2024a) Text, Vision A Text 1 Qwen-2 SigLIP-SO400M/14 MLP - 384*36 | 2024/09
Qwen2-VL (2024) Text, Vision A ‘ Text 1 Qwen-2 ViT-675M MLP - unlimited | 2024/09

Table 1: Summary of various frameworks of LVLMs that focus on understanding tasks with only text output (Output
Type 1). If there are multiple components in a column, ‘+’ represents a combination while ‘/* indicates an either-or
choice. Max Res. represents the maximum resolution, the “X*Y” pattern indicates methods based on sub-image
tiling, X is the base resolution while Y is the maximum number of tiles.
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Model ‘ Input Space ‘ Output Space ‘ Architecture ‘ Date
‘ Modality Type ‘ Modality Type ‘ Backbone Modality Encoder Connection  Internal Module Mapping Modality Decoder ‘
Any-Modality LMMs
PandaGPT (2023) T,V,A.. A T 1 | Vicuna ImageBind Linear - | 2023/05
i . T.V, A, Chinese ImageBind + . Adaption
ImageBind-LLM (2023) 3D A T 1 LLaMA Point-Bind Bind Network - 2023/09
Next-GPT (2023d) TV,A A | TV,A 2 ‘ Vicuna TmageBind Linear Transformer S0+ AUdioLDM 505309
+ Zeriscope
Codi-2 (2023¢) TV.A A | TV.A 2  LLaMA2 ImageBind MLP MLP SD+ AudioLDM2 =55
+ zeroscope v2
e o OpenCLIP ViT-B Linear + VQ-GAN +
2
UnifiedIO2 (2023a) T,V,A A T,V,A 3 ‘ UnifiedlO2 + AST Perceiver VIT-VQGAN ‘ 2023/12
SEED + Encodec SEED + Encodec
AnyGPT (2024a) T,V,A B T,V,A 3 LLaMA-2 + SpeechTokenizer + SpeechTokenizer 2024/02
CLIP ViT-L/14 .
Uni-MoE (2024¢) TV,A A T 1 LLaMA + Whisper-small MLP + Modality Aware 2024/05
Q-former FFN MoE
+ BEATs
Large Audio-Language Models
SpeechGPT (2023a) T, A B T, A 3 ‘ LLaMA HuBERT - Unit Vocoder ‘ 2023/05
Speech-LLaMA (2023b) T, A A 1 LLaMA CTC compressor Transformer - 2023/07
i N Whisper-Large-v2 Window-level
SALMONN(2023a) T, A A 1 ‘ Vicuna + BEATs Q-Former 2023/10
Qwen-Audio(2023b) T, A A T Qwen Whisper-Large-v2 - - - 2023/11
SpeechGPT-Gen (2024a) T, A B T, A 3 ‘ LLaMA-2 SpeechTokenizer - Flow Matching ~ SpeechTokenizer ‘ 2024/01
SLAM-ASR (2024) T, A A T 1 LLaMA-2 HuBERT WAL 2024/02
DownSample
’ i Whisper-Large-v2 Adapter
WavLLM (2024b) T, A A T 1 ‘ LLaMA-2 + WavLM-Base + Linear 2024/04
WavLM-Large .
SpeechVerse (2024) T, A A 1 Flan-T5-XL / Best-RQ Convolution 2024/05
Qwen2-Audio (2024b) T, A A T 1 ‘ Qwen Whisper-Large-v3 - ‘ 2024/07
LLaMA-Omni (2024) T, A A T.A 2 LLaMA-3.1 Whisper-Large-v3 WALD< Transformer Unit Vocoder 2024/09
DownSample
Large Vision-Language Models for Multi-Modal Generation
GILL (2024) T,V A T.V 2 ‘ OPT CLIP ViT-L Linear Transformer SD ‘ 2023/05
Emu (2024b) T.V A T,V 2 LLaMA EVA-02-CLIP-1B Transformer Linear SD 2023/07
Eva-CLIP ViT-G/14 . LaVIT
LaVIT (2023) T,V A T.V 3 ‘ LLaMA + LaVIT Tokenizer Linear De-Tokenizer 2023/09
CM3Leon (2023) T,V B T,V 3 CM3Leon Make-A-Scene - - Make-A-Scene 2023/09
DreamLLM (2024a) T,V A T.V 2 ‘ Vicuna CLIP ViT-L/14 Linear Linear SD ‘ 2023/09
Kosmos-G (2024) T.V A T,V 2 MAGNETO CLIP ViT-L/14 Resampler AlignerNet SD 2023/10
Vicuna / . SEED
SEED-LLaMA (2023b) T,V B T.V 3 ‘ LLaMA-2 SEED Tokenizer De-Tokenizer 2023/10
MiniGPT-5 (2024b) T,V A T.V 2 Vicuna Eva-CLIP ViT-G/14 Q-Former Transformer SD 2023/10
Emu-2 (2024a) T,V A T.V 2 ‘ LLaMA EVA-02-CLIP-E-plus Linear Linear SDXL ‘ 2023/12
Chameleon (2024) T.V B T,V 3 Chameleon Make-A-Scene - Make-A-Scene 2024/05
Modality Aware
MoMA (2024c) T.V B T.V 3 ‘ Chamelon Make-A-Scene FEN MoE Make-A-Scene 2024/07
Vila-U (2024b) T,V B T,V 3 LLaMA-2 SigLIP + RQ-VAE - RQ-VAE 2024/09

Table 2: Supplement to Table 1. In the “Modality” column, T, V, A and 3D are abbreviations for text, vision, audio,

and 3D point cloud, respectively.

learn from each other. The research community
eagerly anticipates an effective modality encoding
method that unifies understanding and generation.

Furthermore, there is a noticeable granularity
gap between textual and modal representations,
whether the modality signals are encoded contin-
uously or discretely. Text tokens carry explicit
semantics, while individual modality tokens might
only contain limited information. A single text to-
ken may correspond to multiple tokens in an image,
leading to excessively long token sequences for
modality signals in current LMMs. In the future,
can we build modality representations that carry
semantics at specific levels?

How to design model architectures to align the
constructed multi-modal space? The architec-
tures should to be designed based on the input and
output space. Most LMMs are built on a backbone,
usually initialized from a pre-trained LLM to gain
better text understanding capabilities and initial rep-
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resentations. For hybrid spaces, additional design
is required for input and output alignment modules.
Although the LLM backbone can perform unified
multi-modal modeling through training, relatively
complex internal alignment modules can be intro-
duced to model complex cross-modal interactions.

As introduced in Section 3, there is a variety of
designs for each module, with different structures
having trade-offs across various dimensions. No
structure consistently performs better across differ-
ent scenarios and requirements. Finding ways to
quickly validate the effectiveness of an optimiza-
tion direction is essential. Luckily, there have al-
ready been relevant explorations to provide some
general conclusions (Laurengon et al., 2024b; McK-
inzie et al., 2024), offering heuristic approaches to
narrow down the model design space.
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