
PAC-Bayesian Generalization Bounds for Knowledge Graph
Representation Learning

Jaejun Lee 1 Minsung Hwang 1 Joyce Jiyoung Whang 1

Abstract
While a number of knowledge graph represen-
tation learning (KGRL) methods have been pro-
posed over the past decade, very few theoreti-
cal analyses have been conducted on them. In
this paper, we present the first PAC-Bayesian
generalization bounds for KGRL methods. To
analyze a broad class of KGRL models, we pro-
pose a generic framework named ReED (Relation-
aware Encoder-Decoder), which consists of a
relation-aware message passing encoder and a
triplet classification decoder. Our ReED frame-
work can express at least 15 different existing
KGRL models, including not only graph neu-
ral network-based models such as R-GCN and
CompGCN but also shallow-architecture models
such as RotatE and ANALOGY. Our generaliza-
tion bounds for the ReED framework provide the-
oretical grounds for the commonly used tricks in
KGRL, e.g., parameter-sharing and weight nor-
malization schemes, and guide desirable design
choices for practical KGRL methods. We empiri-
cally show that the critical factors in our general-
ization bounds can explain actual generalization
errors on three real-world knowledge graphs.

1. Introduction
Knowledge graphs consist of entities and relations where
a known fact is represented as a triplet of a head en-
tity, a relation, and a tail entity, e.g., (Washington DC,
Capital Of, USA). Since real-world knowledge graphs
do not exhaustively represent all known facts, knowledge
graph completion aims to predict missing facts in knowledge
graphs. That is, given an incomplete knowledge graph, the
goal is to add missing triplets by finding plausible combina-
tions of the entities and relations. This task can be cast into
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a triplet classification problem where a model determines
whether a given triplet is plausible or not [55].

Knowledge graph representation learning (KGRL) has been
considered one of the most effective approaches for knowl-
edge graph completion [8; 25; 60; 61; 11; 22]. By learn-
ing representations of entities and relations in a knowledge
graph, KGRL methods compute a score for each triplet and
determine whether the given triplet is likely true or false
based on the score [56]. While shallow-architecture models
such as RotatE [45] and ANALOGY [26] also work well in
practice, many recently proposed methods [42; 52; 43; 23]
utilize graph neural networks (GNNs) [58] or message pass-
ing neural networks (MPNNs) [15] to improve the perfor-
mance by adding a neural message passing encoder.

While KGRL techniques are widely used in many real-life
applications [55], very few theoretical analyses have been
conducted on them. Recently, Barcelo et al. [2] and Huang
et al. [17] have extended the Weisfeiler-Lehman (WL)
test [57] to multi-relational graphs to investigate the expres-
sive power of GNNs for knowledge graphs; the expressive
power indicates how well a model can distinguish graphs
with different structures [59]. On the other hand, the gener-
alization bound indicates how successfully a model solves a
given task on the entire dataset compared to its performance
on a training set [14; 34]. Though a number of KGRL
methods have been proposed over the past decade, the gen-
eralization bounds of KGRL have rarely been studied.

PAC (Probably Approximately Correct) learning theory
provides fundamental tools for analyzing the generaliza-
tion bounds [50]; the generalization bounds have been
explored using different PAC-based approaches, such as
the VC dimension-based [51], the Rademacher complexity-
based [3], and the PAC-Bayesian approaches [31; 30]. There
have been some studies about the generalization bounds
for deep neural networks [5; 4; 35] or for GNNs on stan-
dard graphs [18; 28; 13; 38; 62] but not for knowledge
graphs. Regarding the generalization bounds of GNNs, Liao
et al. [24] have shown that the PAC-Bayesian approach can
make a tighter bound than the other approaches [41; 14].

In this paper, we present the first PAC-Bayesian general-
ization bounds for KGRL methods. To comprehensively

1



PAC-Bayesian Generalization Bounds for Knowledge Graph Representation Learning

represent and analyze various KGRL models and their
possible variants, we design the Relation-aware Encoder-
Decoder (ReED) framework consisting of the Relation-
Aware Message-Passing (RAMP) encoder and a triplet
classification decoder; ReED is a generic framework rep-
resenting at least 15 different KGRL methods, including
both GNN-based and shallow-architecture models. We de-
rive concrete generalization bounds for ReED by proposing
a transductive PAC-Bayesian approach for a determinis-
tic triplet classifier, which extends the analyses of Bégin
et al. [6] and Neyshabur et al. [35]. We also empirically
show the increasing and decreasing trends of the actual
generalization errors regarding the critical factors in the gen-
eralization bounds using three real-world knowledge graphs.
Our theoretical generalization bounds and the empirical ob-
servations provide useful guidelines for designing practical
KGRL methods. Our contributions can be summarized as:

• We propose a novel ReED framework representing var-
ious KGRL methods. Our RAMP encoder in ReED is
a comprehensive neural encoder for KGRL that can ex-
press models such as CompGCN [52] and R-GCN [42].

• We formulate two types of triplet classification de-
coders in ReED to cover a wide range of KGRL meth-
ods; ReED can represent TransR [25], RotatE [45],
DistMult [60], ANALOGY [26], and so forth.

• We prove the generalization bounds for the ReED
framework by unrolling two-step recursions for ad-
equately modeling the interactions between relation
and entity representations. Our work is the first study
about PAC-Bayesian generalization bounds for KGRL.

• We analyze our theoretical findings from a practical
model design perspective and empirically show the
relationships between the critical factors in the theoret-
ical bounds and the actual generalization errors.1

2. Knowledge Graph Completion via Triplet
Classification

Given a knowledge graph, the goal of knowledge graph
completion is to add plausible triplets by finding appropri-
ate combinations of the entities and relations. We con-
sider a standard transductive knowledge graph comple-
tion [8; 45] where it is assumed that all entities and re-
lations are observed during training, and a model predicts
the plausibility of new combinations of the entities and rela-
tions. This can be viewed as a triplet classification problem,
where a model determines whether a given triplet is true
or false [55]. For example, assume a knowledge graph
contains entities, Washington DC, USA, and Vienna,
and relations Capital Of and Contains. Consider
two triplets (USA, Contains, Washington DC) and

1Our code and data are available at https://github.
com/bdi-lab/ReED

(Vienna, Capital Of, USA) that are missing in the
given knowledge graph; the former triplet is true and the
latter triplet is false. Like this, for new combinations of
entities and relations, a triplet classification method predicts
whether a given triplet is true or false and then adds only
ones considered to be true for knowledge graph completion.

Let us consider a fully observed knowledge graph where
the labels of all triplets are known and represent it as G =
(V,Xent,R,X rel, E) where V is a set of entities, Xent ∈
R|V|×d0 is a matrix of entity features, d0 is the dimension
of an entity feature vector, R is a set of relations, X rel ∈
R|R|×d′0 is a matrix of relation features, d′0 is the dimension
of a relation feature vector, E ⊆ V × R × V such that
E := E+ ∪ E− where E+ is a set of true triplets and E− is
a set of false triplets. In practice, if the entity and relation
features are unavailable, we can use one-hot encoding for
Xent and X rel. Each triplet (h, r, t) ∈ E is associated with
its label yhrt ∈ {0, 1} such that yhrt = 1 if (h, r, t) ∈
E+ and yhrt = 0 if (h, r, t) ∈ E−. By sampling triplets
from E without replacement, we create a set of training
triplets denoted by Ê . As a result, we create a training
knowledge graph Ĝ = (V,Xent,R,X rel, Ê). Note that E is
the full triplet set and Ê is the training triplet set. A triplet
classification method is trained with Ĝ at training time and
predicts yhrt of a triplet (h, r, t) ∈ E at inference time.

Notation For an entity v and a matrix M , let M [v, :]
denote the row of M corresponding to v. Also, for a relation
r, M [r, :] indicates the row of M corresponding to r. Given
a triplet (h, r, t), M [t, h] indicates the element of M at the
row corresponding to t and the column corresponding to h.
Let a matrix with a superscript (l) indicate the matrix at the
l-th layer and L be the total number of layers in the RAMP
encoder. Let dl and d′l denote the dimension of entity and
relation representations at the l-th layer, respectively. Given
a vector x, diag(x) is a diagonal matrix whose diagonal is
x. Also, 0n1×n2

is an all-zero matrix of size n1 × n2. All
vectors are row vectors. More details are in Appendix A.

3. ReED Framework for Knowledge Graph
Representation Learning

Our ReED framework consists of the RAMP encoder and a
triplet classification decoder, where we introduce two dif-
ferent types of decoders: the translational distance decoder
and the semantic matching decoder.

3.1. Relation-Aware Message-Passing (RAMP) Encoder

Many recently proposed KGRL methods employ GNNs [52]
or MPNNs [42] to learn representations of entities by aggre-
gating representations of the neighboring entities and rela-
tions. We formulate our RAMP encoder in Definition 3.1 to
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Table 1: Our RAMP encoder can represent R-GCN [42], WGCN [43], and CompGCN [52] by appropriately setting the
functions and matrices in Definition 3.1.

ϕ ρ, ψ W (l)
r U (l)

r S(l)
r [v, :]

R-GCN [42] ReLU identity W (l)
r 0d′l−1×dl

1
cv,r

Ar[v, :]

WGCN [43] Tanh identity α
(l)
r W

(l)
0 0d′l−1×dl Ar[v, :]

CompGCN (Sub) [52] Tanh identity W
(l)
λ(r) −W

(l)
λ(r) Ar[v, :]

CompGCN (Mult) [52] Tanh identity diag
(
R(l−1)[r, :]

)
W

(l)
λ(r) 0d′l−1×dl Ar[v, :]

represent the aggregation process in a general form that can
subsume many existing KGRL encoders.
Definition 3.1 (RAMP Encoder for KGRL). Given a train-
ing knowledge graph Ĝ = (V,Xent,R,X rel, Ê), for l ∈
{1, 2, . . . , L}, the RAMP encoder is defined by

H(0) = Xent,R
(0) = X rel

M (l)
r [v, :] =

[
H(l−1)[v, :] R(l−1)[r, :]

]
, v ∈ V, r ∈ R

H(l) = ϕ

(
H(l−1)W

(l)
0 + ρ

(∑
r∈R

S(l)
r ψ(M

(l)
r )

[
W

(l)
r

U
(l)
r

]))
R(l) = R(l−1)U

(l)
0

where H(l) ∈ R|V|×dl is a matrix of entity representa-
tions, R(l) ∈ R|R|×d′l is a matrix of relation representa-
tions, M (l)

r ∈ R|V|×(dl−1+d
′
l−1) is a matrix for concatenat-

ing the entity and relation representations for each relation
r, W (l)

0 ∈ Rdl−1×dl , W (l)
r ∈ Rdl−1×dl ,U (l)

r ∈ Rd
′
l−1×dl ,

and U
(l)
0 ∈ Rd

′
l−1×d

′
l are learnable projection matrices,

ϕ, ρ, ψ are Lipschitz-continuous activation functions with
Lipschitz constants Cϕ, Cρ, Cψ ≥ 0 and ϕ(0) = 0, ρ(0) =

0, ψ(0) = 0 where 0 is a zero vector, and S(l)
r ∈ R|V|×|V|

is a graph diffusion matrix of Ĝ for relation r ∈ R.

In Definition 3.1, an entity’s representation is updated based
on the entity and relation representations of its neighbors
which are defined per relation using a relation-specific graph
diffusion matrix S(l)

r for r ∈ R. The graph diffusion matri-
ces are constructed by decoupling the training triplets based
on the relations so that S(l)

r represents the connections be-
tween entities with relation r. A simple way to define S(l)

r

is to consider an adjacency matrix Ar ∈ {0, 1}|V|×|V| for
each relation r such that Ar[t, h] = 1 if (h, r, t) ∈ Ê+,
Ar[t, h] = 0 otherwise. When S(l)

r [v, :] := Ar[v, :], it im-
plies that a model uses a sum aggregator in aggregating
neighbors’ representations. On the other hand, S(l)

r can
also be set to a degree-normalized adjacency matrix, i.e.,
S(l)
r [v, :] := Ar[v, :]/deg(v) where deg(v) is the degree

of v; this implies a model uses a mean aggregator.

Several well-known GNN-based KGRL encoders can be
considered as special cases of the RAMP encoder. For

example, Table 1 shows that our RAMP encoder can repre-
sent R-GCN [42], WGCN [43], and CompGCN [52] with
two different composition operators, subtraction (Sub) and
multiplication (Mult). The key is to appropriately set the
activation functions ϕ, ρ, ψ, the projection matrices W (l)

r

and U (l)
r , and the graph diffusion matrices S(l)

r . In Table 1,
cv,r for R-GCN is a problem-specific normalization con-
stant defined in [42] and cv,r is usually set to be the number
of neighbors of v connected by r. Also, for WGCN, α(l)

r

is a relation-specific parameter [43]. For CompGCN, λ(r)
is a function that categorizes the relation r into one of the
normal, inverse, and self connections defined in [52]. Also,
in CompGCN, the dimensions of the entity and relation rep-
resentations should be the same for all layers. The RAMP
encoder can also represent CompGCN with a circular cor-
relation operator, which is omitted for brevity in Table 1.
More details are described in Appendix B.1.

3.2. Triplet Classification Decoder

Using the entity and relation representations returned by
our RAMP encoder (i.e., H(L) and R(L)), we design a
triplet classification decoder to compute the scores of each
triplet for determining whether a given triplet is true or
false. While H(L) and R(L) are assumed to come from our
RAMP encoder in general, i.e., L > 0, we can also skip the
RAMP encoder and directly apply our triplet classification
decoder. When the RAMP encoder is bypassed, i.e., L = 0,
we assume H(0) := Xent,R

(0) := X rel.

Let fw : V×R×V → R2 denote a triplet classifier with the
parameters w. Given a triplet (h, r, t), the classifier assigns
two different scores, each of which is stored in fw(h, r, t)[0]
and fw(h, r, t)[1], where the former is proportional to the
likelihood of (h, r, t) being false, and the latter is propor-
tional to the likelihood of (h, r, t) being true.

Depending on how the interactions between entity and rela-
tion representations are modeled for computing the scores,
we design two decoders: the translational distance (TD)
decoder and the semantic matching (SM) decoder. The
terms, ‘translational distance’ and ‘semantic matching’,
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Table 2: Translational Distance Decoder in Definition 3.2 can represent TransR [25] and RotatE [45] and Semantic Matching
Decoder in Definition 3.3 can represent DistMult [60] and ANALOGY [26] by appropriately setting the projection matrices.

Decoder Model Projection Matrices Setup

Translational
Distance

TransR [25] W
⟨j⟩
r := T

⟨j⟩
ent F

⟨j⟩
r V ⟨j⟩

r := T
⟨j⟩
ent F

⟨j⟩
r U

⟨j⟩
r := T

⟨j⟩
rel

RotatE [45] W
⟨j⟩
r := T

⟨j⟩
ent

[
P ⟨j⟩
r Q⟨j⟩

r

−Q⟨j⟩
r P ⟨j⟩

r

]
V ⟨j⟩
r := T

⟨j⟩
ent U

⟨j⟩
r := 0d′L×dL+1

Semantic
Matching

DistMult [60] U
⟨j⟩
r := T

⟨j⟩
ent

(
diag

(
R(L)[r, :]T

⟨j⟩
rel

))
T

⟨j⟩
ent

⊤

ANALOGY [26] U
⟨j⟩
r := T

⟨j⟩
ent B

⟨j⟩
r T

⟨j⟩
ent

⊤
where B⟨j⟩

r1 B⟨j⟩
r2 = B⟨j⟩

r2 B⟨j⟩
r1 ,∀r1, r2 ∈ R

have been also used in [55]. In the TD decoder, the scores of
(h, r, t) are computed by the distance between h and t after
a relation-specific translation is carried out. On the other
hand, in the SM decoder, the score of (h, r, t) is computed
by the similarity between the individual components of the
triplet. Definition 3.2 defines the TD decoder.

Definition 3.2 (Translational Distance Decoder). For a
triplet (h, r, t), the TD decoder computes fw(h, r, t)[j] for
j ∈ {0, 1} using the following formulation:

fw(h, r, t)[j] =

− ∥H(L)[h, :]W
⟨j⟩
r +R(L)[r, :]U

⟨j⟩
r −H(L)[t, :]V ⟨j⟩

r ∥2

where W
⟨j⟩
r ,V ⟨j⟩

r ∈ RdL×dL+1 and U
⟨j⟩
r ∈ Rd′L×dL+1 are

learnable projection matrices and dL+1 is the dimension of
the final entity and relation representations.

Note that W
⟨j⟩
r and V ⟨j⟩

r carry out the relation-specific
translation for the head and tail entity, respectively, whereas
U

⟨j⟩
r is a projection matrix for relations. When L = 0, H(0)

and R(0) are fixed to non-learnable matrices, Xent and X rel,
respectively. By appropriately setting W

⟨j⟩
r , V ⟨j⟩

r , and

U
⟨j⟩
r in Definition 3.2, we can represent existing knowledge

graph embedding methods as special cases of our TD de-
coder. Table 2 shows how we should set the three projection
matrices in Definition 3.2 to present TransR [25] and Ro-
tatE [45]. To allow our decoder to express existing simple
knowledge graph embedding methods having no encoder,
we introduce two learnable matrices T

⟨j⟩
ent ∈ RdL×d̄ and

T
⟨j⟩
rel ∈ Rd′L×d̄′ which are only used for specializing our de-

coder to a particular existing model. When we do not need
to simulate an existing model, we can simply drop T

⟨j⟩
ent and

T
⟨j⟩
rel . For TransR, the entity projection matrices are set to

T
⟨j⟩
ent F

⟨j⟩
r where F ⟨j⟩

r ∈ Rd̄×dL+1 , and we set d̄′ = dL+1.
Also, the relation projection matrix is not defined per rela-
tion but shared across all relations. In RotatE, the embed-
ding vectors are originally defined in a complex space [45].

To represent RotatE in our framework, we separately han-
dle the real part and the imaginary part of an embedding
vector and concatenate them to represent the whole embed-
ding vector. Let us define R(L)[r, :]T

⟨j⟩
rel :=

[
p
⟨j⟩
r q

⟨j⟩
r

]
where p

⟨j⟩
r indicates the real part and q

⟨j⟩
r indicates the

imaginary part. Note that (p⟨j⟩
r [i])2 + (q

⟨j⟩
r [i])2 = 1 for

i ∈ {0, 1, · · · , d̄′2 −1}. Also, we define P ⟨j⟩
r := diag

(
p
⟨j⟩
r

)
and Q⟨j⟩

r := diag
(
q
⟨j⟩
r

)
, and set d̄ = d̄′ = dL+1 to rep-

resent RotatE as a special case of our TD decoder. Defi-
nition 3.2 can also represent TransE [8], TransH [56], and
PairRE [10], which are described in Appendix B.2.

We also define the SM decoder in Definition 3.3.
Definition 3.3 (Semantic Matching Decoder). For a triplet
(h, r, t), the SM decoder computes fw(h, r, t)[j] for j ∈
{0, 1} using the following formulation:

fw(h, r, t)[j] = H(L)[h, :]U
⟨j⟩
r (H(L)[t, :])

⊤

where U
⟨j⟩
r ∈ RdL×dL is a relation-specific learnable pro-

jection matrix.

When L > 0, the entity representation matrix H(L) is
the output of our RAMP encoder and is multiplied to the
relation-specific learnable projection matrix to score a triplet.
Table 2 shows that DistMult [60] and ANALOGY [26] are
special cases of Definition 3.3. For DistMult, we set d̄ = d̄′

in T
⟨j⟩
ent and T

⟨j⟩
rel . For ANALOGY, we define B⟨j⟩

r ∈ Rd̄×d̄
which is a normal matrix. Definition 3.3 can also represent
RESCAL [36], HolE [37], ComplEx [49], SimplE [19], and
QuatE [61], which are described in Appendix B.3.

3.3. Expressing Existing KGRL Methods Using ReED

ReED can represent many existing KGRL methods ranging
from simple shallow-architecture models [26; 45] to neural
encoder-based models [42; 52]. In ReED, a triplet classi-
fication decoder can be either combined with the RAMP
encoder (i.e., L > 0) or used standalone (i.e., L = 0). Also,
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RAMP
Encoder

Triplet Classification 
Decoder

CompGCN + TransE [52]
RotatE [45]

R-GCN + DistMult [42]
ANALOGY [26]

𝐿 > 0

𝐿 = 0

Translational Distance

Semantic Matching

ReED

Figure 1: Using different instantiations and combinations
of the RAMP encoder and the triplet classification decoder,
ReED can express many existing KGRL methods.

the triplet classification decoder can be either the TD or
SM decoder. Using different combinations of the RAMP
encoder and the decoder, ReED can express various KGRL
models, as illustrated in Figure 1. While only four examples
are presented in Figure 1, ReED can express more diverse
KGRL methods using different instantiations and configu-
rations of the RAMP encoder (Section 3.1) and the triplet
classification decoder (Section 3.2).

4. Generalization Bounds for ReED
By proposing a PAC-Bayesian approach for determinis-
tic triplet classifiers for knowledge graph completion, we
present PAC-Bayesian generalization bounds of ReED.

4.1. Transductive PAC-Bayesian Approach for
Deterministic Triplet Classifiers

The PAC-Bayesian generalization bound relies on the KL
divergence of a posterior distribution Q on a hypothesis
space from a prior distribution P independent of the train-
ing set, where P indicates prior knowledge about a given
problem and Q is learned by a learning algorithm [31; 30].
While the PAC-Bayesian approach was originally designed
for analyzing stochastic models [30], our triplet classifiers
are deterministic models, i.e., the model parameters are
fixed after training. Let us consider a deterministic triplet
classifier fw(h, r, t) which assigns scores of the labels 0
and 1 for (h, r, t) ∈ Z , where Z is a finite set of triplets. To
gauge the risk of the classifier, a γ-margin loss is defined in
Definition 4.1, where the loss is taken into account when the
score of the ground-truth label yhrt of a triplet (h, r, t) is
less than or equal to that of the other label with the margin
of γ. Note that the margin loss is one of the most commonly
used loss functions in KGRL [55].

Definition 4.1 (γ-Margin Loss of Triplet Classifier). Given
a finite triplet set Z ⊆ V × R × V , for any γ > 0 and a
triplet classifier fw : V × R × V → R2 with parameters
w that assigns scores for the label 0 and 1 for (h, r, t) ∈ Z ,

a γ-margin loss is defined as

Lγ,Z(fw) =

1

|Z|
∑

(h,r,t)∈Z

1[fw(h, r, t)[yhrt] ≤ γ + fw(h, r, t)[1− yhrt]]

where fw(h, r, t)[0] is the score for label 0, fw(h, r, t)[1]
is the score for label 1, yhrt is the ground-truth label of
(h, r, t), and 1[·] is an indicator function.

When Z is set to the training triplet set Ê , then Lγ,Ê(fw) is
referred to as an empirical loss. On the other hand, a classifi-
cation loss of a triplet classifier is defined as Definition 4.2.
Definition 4.2 (Classification Loss of Triplet Classifier).
Given a finite triplet set Z ⊆ V × R × V , for a triplet
classifier fw : V × R × V → R2 with parameters w that
assigns scores for the label 0 and 1 for (h, r, t) ∈ Z , the
classification loss is defined as

L0,Z(fw) =

1

|Z|
∑

(h,r,t)∈Z

1[fw(h, r, t)[yhrt] ≤ fw(h, r, t)[1− yhrt]]

When Z is set to the full triplet set E , then L0,E(fw) is
referred to as an expected loss. The generalization bound
is defined as the upper bound of the difference between the
expected loss L0,E(fw) and the empirical loss Lγ,Ê(fw).
The generalization bound hints at the level of discrepancy
in the model performance between the full and training sets.

As described in Section 2, the full triplet set E is finite, and
the training triplets in Ê are sampled from E without replace-
ment; thus, we need a transductive PAC-Bayesian analysis,
which assumes the full set is finite. We derive Theorem 4.3
from Corollary 7 in Bégin et al. [6] by extending it to a
deterministic triplet classifier. A main idea of the proof of
Theorem 4.3 is to add random perturbations [35] to the fixed
parameters w. The proof is available in Appendix C.
Theorem 4.3 (Transductive PAC-Bayesian Generalization
Bound for a Deterministic Triplet Classifier). Let fw :
V × R × V → R2 be a deterministic triplet classifier
with parameters w, and P be any prior distribution on
w. Let us consider the finite full triplet set E ⊆ V ×
R × V . We construct a posterior distribution Qw+ẅ
by adding any random perturbation ẅ to w such that
P(max(h,r,t)∈E ∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ < γ

4 ) >
1
2 .

Then, for any γ, δ > 0, with probability 1 − δ over the
choice of a training triplet set Ê drawn from the full triplet
set E (such that 20 ≤ |Ê| ≤ |E| − 20 and |E| ≥ 40) without
replacement, for any w, we have

L0,E(fw) ≤

Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

2|Ê |

[
2DKL(Qw+ẅ∥P) + ln

4θ(|Ê |, |E|)
δ

]

where Lγ,Ê(fw) is defined in Definition 4.1, L0,E(fw)

is defined in Definition 4.2, DKL(Qw+ẅ∥P) is the
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KL-divergence of Qw+ẅ from P , and θ(|Ê |, |E|) =

3
√
|Ê |(1− |Ê|

|E| ) ln |Ê |.

4.2. PAC-Bayesian Generalization Bounds for ReED

To present the PAC-Bayesian generalization bounds for
ReED, we make the following assumptions:

A.1 All activation functions ϕ, ρ, ψ in Definition 3.1 are
Lipschitz-continuous with respect to the Euclidean
norm of their input and output vectors, i.e., there exists
a Lipschitz constant Cg such that ∥g(x1)− g(x2)∥2 ≤
Cg∥x1 − x2∥2 for an activation function g(·) and any
vectors x1 and x2. For example, ReLU, LeakyReLU,
Tanh, SoftPlus, Sigmoid, ArcTan, and Softsign are Lip-
schitz continuous functions with Lipschitz constant 1;
these are 1-Lipschitz activation functions [54].

A.2 The training triplets in Ê are sampled from the finite
full triplet set E without replacement.

A.3 Regarding the sizes of E and Ê , we assume |E| ≥ 40

and 20 ≤ |Ê| ≤ |E| − 20.

Let us consider a triplet classification model that uses the
RAMP encoder in Definition 3.1 and the TD decoder in
Definition 3.2. Using Theorem 4.3, we compute the gener-
alization bound of this model in Theorem 4.4. Recall the
graph diffusion matrix S(l)

r in Definition 3.1. Given a fully
observed knowledge graph G, the full triplet set E is finite.
Therefore, for every possible training knowledge graph Ĝ
and the corresponding training triplet set Ê sampled from
E , the infinity norms of the graph diffusion matrices for
Ĝ exist per relation. Let kr denote the maximum value of
the infinity norms for all possible graph diffusion matrices
among all layers for relation r. Note that kr is independent
of the choice of the training triplet set and dependent on the
full triplet set.
Theorem 4.4 (Generalization Bound for ReED with Trans-
lational Distance Decoder). For any L ≥ 0, let fw :
V × R × V → R2 be a triplet classifier designed by the
combination of the RAMP encoder with L-layers in Defi-
nition 3.1 and the TD decoder in Definition 3.2. Let kr be
the maximum of the infinity norms for all possible S(l)

r in
the RAMP encoder. Then, for any δ, γ > 0, with proba-
bility at least 1− δ over a training triplet set Ê (such that
20 ≤ |Ê| ≤ |E| − 20) sampled without replacement from
the full triplet set E , for any w, we have

L0,E(fw) ≤ Lγ,Ê(fw)

+O


√√√√1− |Ê|

|E|

|Ê |

[
NwL2ζ2Ls

2Ld ln (Nwd)

γ2
+ ln

θ(|Ê |, |E|)
δ

]
where θ(|Ê |, |E|) = 3

√
|Ê |(1− |Ê|

|E| ) ln |Ê |, Nw = 2|R|L+

6|R|+2L, ζL = 2τL∥Xent∥2+2κ∥X rel∥2
(∑L−1

i=0 τ
i
)
+

∥X rel∥2, τ = Cϕ + κ, κ = CϕCρCψ
∑
r∈R kr, d =

max (max0≤l≤L+1(dl),max0≤l≤L+1(d
′
l)) , sL+1 =

maxr,j(max(∥W ⟨j⟩
r ∥F , ∥U

⟨j⟩
r ∥F , ∥V ⟨j⟩

r ∥F )), sl =
max(∥W (l)

0 ∥F , ∥U (l)
0 ∥F ,maxr ∥W (l)

r ∥F ,maxr ∥U (l)
r ∥F )

for l ∈ {1, 2, . . . , L}, and s = max1≤l≤L+1(sl).

In Theorem 4.5, we also compute the generalization bound
of a model that uses the RAMP encoder in Definition 3.1
and the SM decoder in Definition 3.3.
Theorem 4.5 (Generalization Bound for ReED with Se-
mantic Matching Decoder). For any L ≥ 0, let fw :
V × R × V → R2 be a triplet classifier designed by the
combination of the RAMP encoder with L-layers in Defi-
nition 3.1 and the SM decoder in Definition 3.3. Let kr be
the maximum of the infinity norms for all possible S(l)

r in
the RAMP encoder. Then, for any δ, γ > 0, with proba-
bility at least 1− δ over a training triplet set Ê (such that
20 ≤ |Ê| ≤ |E| − 20) sampled without replacement from
the full triplet set E , for any w, we have

L0,E(fw) ≤ Lγ,Ê(fw)

+O


√√√√1− |Ê|

|E|

|Ê |

[
NwL2η4Ls

4Ld ln (Nwd)

γ2
+ ln

θ(|Ê |, |E|)
δ

]
where θ(|Ê |, |E|) = 3

√
|Ê |(1− |Ê|

|E| ) ln |Ê |, Nw = 2|R|L+
2|R|+ 2L, ηL = τL∥Xent∥2 + κ∥X rel∥2

∑L−1
i=0 τ

i, d =
max(max0≤l≤L(dl),max0≤l≤L(d

′
l)), τ = Cϕ + κ,

κ = CϕCρCψ
∑
r∈R kr, sL+1 = maxr,j ∥U

⟨j⟩
r ∥F , sl =

max(∥W (l)
0 ∥F , ∥U (l)

0 ∥F ,maxr ∥W (l)
r ∥F ,maxr ∥U (l)

r ∥F )
for l ∈ {1, 2, . . . , L}, and s = max1≤l≤L+1(sl).

When we derive Theorem 4.4 and Theorem 4.5 from The-
orem 4.3, we assume the prior distribution to be the Gaus-
sian distribution with the zero mean and the standard devi-
ation σ. We also assume that the perturbation follows the
same Gaussian distribution as the prior distribution since
the perturbation can follow any distribution, as indicated
in Theorem 4.3. To derive the generalization bounds of
ReED using Theorem 4.3, we need to find σ such that
P(max(h,r,t)∈E ∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ < γ

4 ) >
1
2

is satisfied, where ẅ follows the Gaussian distribution with
the zero mean and the standard deviation of σ. In this
process, we express ∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ using
our encoder (Definition 3.1) and decoder (Definition 3.2
or Definition 3.3). Note that σ should be independent of
the learned parameters w since σ is the standard deviation
of the prior distribution that should be independent of the
training data. Thus, we use an approximation of the norm of
w instead of its actual norm when computing σ; the actual
norm of w is considered to be within a certain range from
our approximation. Finally, we express the generalization
bound in terms of the actual norm of w using the covering
number arguments [4]. The full proofs of Theorem 4.4 and
Theorem 4.5 are in Appendix D.
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To prove Theorem 4.4 and Theorem 4.5, we follow some
proof techniques of Liao et al. [24] considering standard
graphs with a single relation. However, our proofs require
more complex derivations than Liao et al. [24] because
knowledge graphs have multiple relations. In our proofs,
the interactions between the entities and the relations should
be considered in the recurrence relation of an entity repre-
sentation, leading to two-step unrolling of each recursion
step. As a result, the generalization bounds are computed
by considering (i) the norm of the difference between an
unperturbed entity representation and a perturbed entity
representation, (ii) the norm of the difference between an
unperturbed relation representation and a perturbed relation
representation, (iii) the norm of an entity representation, and
(iv) the norm of a relation representation.

When we use one-hot encoding for Xent and X rel, the spec-
tral norms of Xent and X rel are one, and the maximum
dimension becomes d = |V|. Let us assume that ϕ, ρ, ψ
are 1-Lipschitz activation functions. In this case, we can
simplify ζL = 4τL−1 in Theorem 4.4 and ηL = 2τL−1 in
Theorem 4.5. In Corollary 4.6, we present a simplified form
of our generalization bounds by leaving model-dependent
terms and regarding the rest as a constant.

Corollary 4.6 (Simplified Form of the Generalization
Bounds for ReED). For any L ≥ 0, let fw : V ×R×V →
R2 be a triplet classifier with the combination of the RAMP
encoder with L-layers in Definition 3.1 and a decoder de-
fined in Definition 3.2 or Definition 3.3. Let kr be the
maximum of the infinity norms for all possible S(l)

r in the
RAMP encoder. Then for any δ, γ > 0, with probabil-
ity at least 1 − δ over a training triplet set Ê (such that
20 ≤ |Ê| ≤ |E| − 20) drawn without replacement from the
full triplet set E , for any w, we have

L0,E(fw) ≤ Lγ,Ê(fw)+
O
(
LτLsL

√
Nw lnNw

)
(Translational Distance)

O
(
Lτ2Ls2L

√
Nw lnNw

)
(Semantic Matching)

where s is the maximum of the Frobenius norms of all learn-
able matrices and τ = 1 +

∑
r∈R kr, and Nw is the total

number of learnable matrices.

In Corollary 4.6, the bounds are largely affected by kr which
is the maximum infinity norm of all possible graph diffusion
matrices across all layers for relation r. Recall two different
ways of defining a graph diffusion matrix S(l)

r discussed in
Section 3.1: an adjacency matrix (corresponding to a sum
aggregator) or a degree-normalized adjacency matrix (cor-
responding to a mean aggregator). Note that kr becomes
the maximum degree of an entity per relation when the sum
aggregator is used, whereas kr becomes at most one when
the mean aggregator is used since each row is normalized.

Thus, a mean aggregator can be a better option than a sum
aggregator in reducing the generalization bounds. The total
number of learnable matrices Nw is another critical factor:
the generalization bounds decrease when the number of
parameters is reduced. This can explain the effectiveness
of the parameter-sharing strategies in Vashishth et al. [52]
and the basis or block decomposition ideas in Schlichtkrull
et al. [42]. On the other hand, the maximum of the Frobe-
nius norms of learnable matrices s also critically affects the
generalization bounds. Therefore, the generalization bounds
decrease when the weight matrices or the entity/relation rep-
resentations are normalized. This observation can provide
theoretical justification for weight normalization adapted
in Oono & Suzuki [39] and normalization of entity repre-
sentations used in Bordes et al. [8]. In Corollary 4.6, τs is
usually greater than one because s is typically not less than
one [18]. Thus, the generalization bounds sharply increase
when the number of encoder layers L increases.

5. Experiments
We conduct experiments on three real-world knowledge
graphs: FB15K237 [47], CoDEx-M [40], and UMLS-
43 [7; 27]. Note that FB15K237 and CoDEx-M are well-
known knowledge graph benchmarks extracted from com-
monly used knowledge bases, Freebase and Wikidata, re-
spectively, and UMLS-43 is another benchmark extracted
from a popular biomedical knowledge base, UMLS. On all
datasets, we create Ê randomly sampled from E without
replacement with the sampling probability of 0.8. In the
ReED framework, we use the RAMP encoder in Defini-
tion 3.1 with L layers and use either the TD or SM decoder
(Definition 3.2 and Definition 3.3). In the RAMP encoder,
we use ρ = ψ = identity and ϕ = LeakyReLU. We use
one-hot encoding for Xent and X rel. More details about the
datasets and the settings are in Appendix E.

We measure the generalization errors on real-world datasets,
where a generalization error is the actual difference between
the expected and empirical losses empirically observed in
a particular experiment; the generalization bound is the
theoretical upper bound of these generalization errors. In
Corollary 4.6, among the factors that affect the general-
ization bounds, we empirically measure the effects of the
following three factors: (i) whether a model uses a mean
aggregator or a sum aggregator, which affects kr, (ii) the
Frobenius norms of the learnable matrices s, and (iii) the
number of layers L in the RAMP encoder2. We compare the
generalization errors by varying one of these three factors
while the other two factors are controlled. Note that s is
defined as the maximum of Frobenius norms of all learnable
matrices. Indeed, to control the effect of the norms of these

2Note that Nw is proportional to L since Nw = O(|R|L) as
indicated in Theorem 4.4 and Theorem 4.5.
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Varying the Aggregator
(Mean or Sum)

Varying the Norms of 
Weight Matrices

Varying the Number of 
Layers

FB15K237 CoDEx-M UMLS-43

Figure 2: Generalization Errors of ReED according to different aggregators, norms of the weight matrices, and numbers of
layers in the RAMP encoder. In ReED, two different triplet classification decoders, TD or SM, are used. The changing
trends in generalization errors according to the three different factors align with the theoretical findings in Corollary 4.6.

matrices more precisely, the Frobenius norm of each weight
matrix should be fixed to be s as described in the proof of
our generalization bounds in Appendix D. Thus, we normal-
ize each weight matrix after each backpropagation step. We
use s ∈ {10.0, 15.0, 20.0} and L ∈ {1, 2, 3} for all datasets.
Figure 2 shows the generalization errors of ReED depending
on the decoder: RAMP+TD and RAMP+SM. We repeat all
experiments 10 times and visualize the mean and the stan-
dard deviation. Across all datasets and all models, the mean
aggregator shows lower generalization errors than the sum
aggregator. Also, the generalization errors increase as s and
L increase. These empirical observations are aligned with
our theoretical findings in Corollary 4.6. Even though the
theoretical generalization bound indicates the upper limit
of the possible generalization errors, Figure 2 shows that
the critical factors explaining the generalization bounds also
affect an actual generalization error.

We conduct additional experiments using the initial features
of entities and relations instead of using one-hot encoding
for Xent and X rel on FB15K237 to observe the general-
ization errors by varying d. We extract the initial features
by feeding the textual descriptions of entities and relations
to BERT [12] and reduce the dimension of the extracted
features to 32 using PCA; we use the resulting features as
Xent and Xrel. Then, we calculate the generalization er-

RAMP+TD RAMP+SM
0.0110

0.0165

0.0220

0.0275

Ge
ne

ra
liz

at
io

n 
Er

ro
r

d=64
d=96
d=128

Figure 3: Generalization Errors of ReED on FB15K237
according to different maximum dimensions d.

rors of ReED according to different maximum dimensions
d while fixing the other factors (e.g., the aggregator, the
norms of weight matrices, and the number of layers). Fig-
ure 3 shows the generalization errors of ReED with different
d(= d1 = d2 = · · · = dL = dL+1 = d′1 = d′2 = · · · =
d′L = d′L+1) ∈ {64, 96, 128}. We observe that the general-
ization errors increase as d increases, which aligns with the
expected tendency.
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6. Related Work and Discussion
Regarding the generalization ability of knowledge graph
embedding, Kuželka & Wang [21] have computed the ex-
pected number of incorrect predictions made by knowledge
graph embedding methods, which differs from a standard
generalization bound defined by the difference between the
expected and the empirical errors; their work is neither ap-
plicable to GNN-based models nor a margin loss.

While there have been some studies about the generaliza-
tion bounds for GNNs [24; 18; 29], they have considered
graph classification tasks on standard graphs with a single
relation. For example, Liao et al. [24] assume that graphs
are i.i.d. samples drawn from some unknown infinite distri-
bution. Also, Ju et al. [18] consider a twice-differentiable
loss function to compute Hessian-based bounds, and Maskey
et al. [29] apply MPNNs on the underlying continuous space
from which graphs are sampled. Our work and these previ-
ous works [24; 18; 29] are significantly distinct in that (i)
we deal with knowledge graphs having multiple relations,
(ii) our target task is a triplet classification, (iii) we assume a
finite full set since the triplets are finite given a fixed knowl-
edge graph while the previous studies [24; 18; 29] assume
that graphs are sampled from an infinite space.

Different PAC-Bayes approaches have been explored in vari-
ous perspectives. For example, Guedj [16] provides a survey
about the PAC-Bayes framework, including the extention of
the KL divergence to f -divergence for expressing a more
general divergence class in computing PAC-Bayes bounds.
Also, Alquier [1] provides a recent survey about various
tight PAC-Bayes bounds in varied settings. Though our
study focuses on the traditional KL divergence and consid-
ers the transductive PAC-Bayesian approach, we expect our
work to be extended to a broader class of divergences or
information-theoretic approaches.

7. Conclusion and Future Work
To comprehensively analyze the generalization bounds for
KGRL, we propose a generic framework, ReED, that can
subsume many existing KGRL methods. We prove the PAC-
Bayesian generalization bounds for ReED having two dif-
ferent triplet classification decoders. Our analysis provides
theoretical evidence for the benefits of the parameter-sharing
and weight normalization schemes and the advantage of a
mean aggregator over a sum aggregator within a neural
encoder in reducing the generalization bounds in KGRL.

We note that the ReED framework cannot exhaustively cover
all existing KGRL methods. Specifically, the graph attention
networks [33; 53; 9] are hard to consider in ReED with the
current form. Extending ReED to the attention mechanisms
is one of our future works. Also, we plan to investigate
the relationships between the generalization ability and the

expressivity [32] in KGRL based on our findings in the
generalization bounds of KGRL.

Impact Statement
Most of our contributions in this paper are theoretical, and
our work aims to advance the field of Machine Learning at
a fundamental level. Considering that knowledge graphs
are widely utilized in information retrieval (e.g., Google
Knowledge Graph), a societal consequence of our work is to
improve the retrieval performance by providing theoretical
insights for KGRL methods. Our findings and their practical
implications can guide the desirable designs of future KGRL
methods. Generally speaking, our generalization bounds in-
dicate that reducing the number of learnable parameters, the
norms of weight matrices, and the maximum infinity norm
of the graph diffusion matrices is beneficial to decreasing
the generalization bounds.
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A. Basic Notation
In Table 3, we provide a concise overview of the notation used throughout the paper. Any other notation not listed in Table 3
is clarified and detailed within the context.

Table 3: Overview of basic notation

Symbol Meaning

[· ·],
[
·
·

]
a horizontal/vertical concatenation

| · | the size of a set or the absolute value of a scalar value
∥ · ∥2, ∥ · ∥∞, ∥ · ∥F the spectral(Euclidean)/infinity/Frobenius norm of a matrix(vector)

diag(x) a diagonal matrix whose diagonal is defined by the vector x
In×n an identity matrix of size n× n
0m×n an all-zero matrix of size m× n
0n an all-zero vector of size n
1[·] an indicator function

P[·],E[·] the probability/expectation
ϕ(·), ρ(·), ψ(·) Lipschitz-continuous activation functions
Cϕ, Cρ, Cψ Lipschitz constants of ϕ, ρ, ψ

M⊤ the transpose of a matrix M

G, Ĝ a fully observed/training knowledge graph
V,R a set of entities/relations
E , Ê a full triplet set/training triplet set

Xent,X rel a matrix of entity/relation features
d0, d

′
0 the dimension of the initial feature vector of an entity/relation

dl, d
′
l the dimension of an entity/relation representation at the l-th layer

L the total number of layers in the RAMP encoder
yhrt the ground-truth label of a triplet (h, r, t) ∈ E
H,R a matrix of entity/relation representations

W , U , V the learnable projection matrices
Sr the graph diffusion matrix of Ĝ for relation r ∈ R

DKL(Q∥P) KL-divergence of Q from P
P,Q a prior/posterior distribution on a hypothesis space H
ln(·) the natural logarithm

B. Interpreting ReED as a Generalization of Existing KGRL Methods
Our ReED framework consists of the RAMP encoder and a triplet classification decoder as described in Section 3. We
provide the details about how our RAMP encoder and two types of triplet classification decoders (i.e., translational distance
decoder and semantic matching decoder) can express diverse KGRL methods.

B.1. Representing Existing KGRL Encoders Using RAMP Encoder

In Section 3.1, we define the RAMP encoder in Definition 3.1 and show that several well-known GNN-based KGRL encoders
can be considered as special cases of our RAMP encoder. For example, R-GCN [42], WGCN [43], and CompGCN [52] can
be represented using the RAMP encoder by appropriately setting the activation functions ϕ, ρ, ψ, the projection matrices
W (l)

r and U (l)
r , and the graph diffusion matrices S(l)

r in Definition 3.1, as shown in Table 1.

Note that CompGCN has three different variations depending on the composition operator: subtraction (Sub), multiplication
(Mult), and circular correlation (Corr). We detail how CompGCN (Corr) can be represented using the RAMP encoder
here; the others are all described in the main paper. Give an entity representation H(l)[v, :] and a relation representa-
tion R(l)[r, :] where both have the dimension of d, the circular correlation ⋆ is defined by (H(l)[v, :] ⋆R(l)[r, :])[k] :=
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i=0 H(l)[v, i]R(l)[r, (k+i) mod d] where k ∈ {0, 1, ..., d−1}. Let us define C(l)

r as

C(l)
r :=


R(l)[r, 0] R(l)[r, 1] · · · R(l)[r, d′l−1]

R(l)[r, 1] R(l)[r, 2] · · · R(l)[r, 0]
...

...
. . .

...
R(l)[r, d′l−1] R(l)[r, 0] · · · R(l)[r, d′l−2]

 .

By setting ϕ to Tanh, ρ, ψ to the identity functions, W (l)
r := C(l−1)

r W
(l)
λ(r), U

(l)
r := 0d′l−1×dl , and S(l)

r [v, :] := Ar[v, :], we
can represent CompGCN (Corr) using our RAMP encoder. Note that the dimensions of the entity and relation representations
should be the same for all layers in CompGCN.

B.2. Translational Distance Decoder and Existing KGRL Methods

We define our translational distance (TD) decoder in Definition 3.2, which includes three learnable projection matrices:
W

⟨j⟩
r ,V ⟨j⟩

r and U
⟨j⟩
r . By appropriately defining these matrices, our TD decoder can express five different knowledge graph

embedding methods: TransE [8], TransH [56], TransR [25], RotatE [45], and PairRE [10]. Since we already described
TransR and RotatE in the main paper, we describe the other three methods here. Recall that we introduce two learnable
matrices, T ⟨j⟩

ent ∈ RdL×d̄ and T
⟨j⟩
rel ∈ Rd′L×d̄′ , which are only needed for specializing our decoder to simulate an existing

shallow-architecture knowledge graph embedding model, as described in Section 3.2.

TransE [8] For each triplet, TransE assumes that the heady entity representation is translated by the relation representation,
and the resulting vector should be placed close to the tail entity representation. Our Definition 3.2 can trivially express
TransE by setting

W
⟨j⟩
r := T

⟨j⟩
ent V ⟨j⟩

r := T
⟨j⟩
ent U

⟨j⟩
r := T

⟨j⟩
rel

where d̄ = d̄′ = dL+1. Note that TransE has a constraint that ∥H(L)[v, :]T
⟨j⟩
ent ∥2 = 1, ∀v ∈ V for j ∈ {0, 1}.

TransH [56] In TransH, each entity representation vector is projected onto a relation-specific hyperplane, where a projected
head entity is translated by the relation representation, and the resulting vector is assumed to be placed close to the projected
tail entity representation. For relation r, let f ⟨j⟩r ∈ Rd̄ denote the unit normal vector of the hyperplane for r. Note that
∥f ⟨j⟩r ∥2 = 1 for j ∈ {0, 1} and d̄ = d̄′ = dL+1. By Setting

W
⟨j⟩
r := T

⟨j⟩
ent (I d̄×d̄ − f ⟨j⟩r

⊤
f ⟨j⟩r ) V ⟨j⟩

r := T
⟨j⟩
ent (I d̄×d̄ − f ⟨j⟩r

⊤
f ⟨j⟩r ) U

⟨j⟩
r := T

⟨j⟩
rel ,

our TD decoder can represent TransH.

PairRE [10] In PairRE, a relation representation comprises two parts: representations for the head and the tail. The
head and tail entity representations are translated by the relation representation corresponding to the head and tail part,
respectively. The translated entity representations are assumed to be close to each other. Let f⟨j⟩r ∈ Rd̄′ denote the
representation of r for translating head entities and f̊

⟨j⟩
r ∈ Rd̄′ denote the representation of r for translating tail entities. Let

us define F⟨j⟩
r = diag

(
f
⟨j⟩
r

)
and F̊

⟨j⟩
r = diag

(̊
f
⟨j⟩
r

)
. It is assumed that the entity representations are on the unit circle, i.e.,

∥H(L)[v, :]T
⟨j⟩
ent ∥2 = 1, ∀v ∈ V for j ∈ {0, 1}. Given d̄ = d̄′ = dL+1, we can represent PairRE by setting

W
⟨j⟩
r := T

⟨j⟩
ent F

⟨j⟩
r V ⟨j⟩

r := T
⟨j⟩
ent F̊

⟨j⟩
r U

⟨j⟩
r := 0d′L×dL+1

.

B.3. Semantic Matching Decoder and Existing KGRL Methods

Our semantic matching (SM) decoder in Definition 3.3 can represent seven different knowledge graph embedding methods:
RESCAL [36], DistMult [60], HolE [37], ComplEx [49], ANALOGY [26], SimplE [19], and QuatE [61]. To show our SM
decoder can be specialized to express these existing methods, we introduce two learnable matrices, T ⟨j⟩

ent ∈ RdL×d̄ and
T

⟨j⟩
rel ∈ Rd′L×d̄′ . Note that we need to only define U

⟨j⟩
r in Definition 3.3 to simulate the existing methods. We omit DistMult

and ANALOGY here since they are described in the main paper.
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RESCAL [36] By defining a relation-specific projection matrix B⟨j⟩
r ∈ Rd̄×d̄, we can easily represent RESCAL by

setting

U
⟨j⟩
r := T

⟨j⟩
ent B

⟨j⟩
r T

⟨j⟩
ent

⊤
.

HolE [37] and ComplEx [49] It has been known that HolE and ComplEx are special cases of ANALOGY [26]. Since our
SM decoder can represent ANALOGY as described in Section 3.2, our decoder can also represent HolE and ComplEx.

SimplE [19] In SimplE, an entity representation is divided into two parts: the first part is the representation when the
entity appears as a head entity, and the second part is the representation when the entity appears as a tail entity. For each
relation r, its inverse relation r−1 is also considered. As a result, a relation representation is also divided into two parts:
representations for r and r−1. Given a triplet (h, r, t), SimplE calculates its score by averaging the scores of (h, r, t) and
(t, r−1, h). Given d̄ = d̄′, we can formulate SimplE by setting

U
⟨j⟩
r :=

1

2
T

⟨j⟩
ent

(
diag

((
R(L)T

⟨j⟩
rel

)
[r, :]

)[0d̄′/2,d̄′/2 I d̄′/2,d̄′/2
I d̄′/2,d̄′/2 0d̄′/2,d̄′/2

])
T

⟨j⟩
ent

⊤
.

QuatE [61] In QuatE, each representation vector is represented in the quaternion space. Let us denote a representation
vector of r for ⟨j⟩ in the quaternion space as a quaternion of real numbers such that

[
a
⟨j⟩
r b

⟨j⟩
r c

⟨j⟩
r d

⟨j⟩
r

]
where a

⟨j⟩
r

is the real part and b
⟨j⟩
r , c

⟨j⟩
r , and d

⟨j⟩
r correspond to the imaginary coefficients. It is assumed that (a⟨j⟩r [i])2 + (b

⟨j⟩
r [i])2 +

(c
⟨j⟩
r [i])2 + (d

⟨j⟩
r [i])2 = 1 for i ∈ {0, 1, · · · , d̄′4 −1} and j ∈ {0, 1}. Let us define

A⟨j⟩
r := diag

(
a⟨j⟩r

)
∈ Rd̄′/4×d̄′/4,B⟨j⟩

r := diag
(
b⟨j⟩r

)
∈ Rd̄′/4×d̄′/4

C⟨j⟩
r := diag

(
c⟨j⟩r

)
∈ Rd̄′/4×d̄′/4,D⟨j⟩

r := diag
(
d⟨j⟩r

)
∈ Rd̄′/4×d̄′/4.

Given d̄ = d̄′, we can express QuatE using our SM decoder by setting

U
⟨j⟩
r := T

⟨j⟩
ent


A⟨j⟩
r B⟨j⟩

r C⟨j⟩
r D⟨j⟩

r

−B⟨j⟩
r A⟨j⟩

r −D⟨j⟩
r C⟨j⟩

r

−C⟨j⟩
r D⟨j⟩

r A⟨j⟩
r −B⟨j⟩

r

−D⟨j⟩
r −C⟨j⟩

r B⟨j⟩
r A⟨j⟩

r

T
⟨j⟩
ent

⊤
.

C. Proof of Theorem 4.3
In Section 4.1, we present our Theorem 4.3 which states the transductive PAC-Bayesian generalization bound for a
deterministic triplet classifier. We derive Theorem 4.3 from the following Lemma C.1 which is originally presented as
Corollary 7 in Bégin et al. [6] where a transductive PAC-Bayesian generalization bound is presented for a stochastic model.
We paraphrase the original version to customize it to our problem setting.

Lemma C.1 (Bégin et al. [6], Corollary 7). For any full triplet set E having size |E| ≥ 40, for any stochastic triplet classifier
f̃ following a posterior distribution Q on a hypothesis space H, for any prior distribution P on H, for any γ, δ > 0,
with probability at least 1− δ, over the choice of a training triplet set Ê (such that 20 ≤ |Ê| ≤ |E| − 20) drawn without
replacement from the full triplet set E , we have

Lγ,E
(
f̃
)
≤ Lγ,Ê

(
f̃
)
+

√√√√1− |Ê|
|E|

2|Ê |

[
DKL(Q∥P) + ln

θ(|Ê |, |E|)
δ

]

where Lγ,Z
(
f̃
)
:= Ew̃∼Q

[
Lγ,Z(fw̃)

]
, fw̃ is a deterministic triplet classifier with parameters w̃, Lγ,Z(fw̃) is defined in

Definition 4.1, DKL(Q∥P) is the KL-divergence of Q from P , and θ(|Ê |, |E|) = 3
√
|Ê |(1− |Ê|

|E| ) ln |Ê |.
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Note that the prior distribution P is independent of the training triplets. While Lemma C.1 considers a stochastic model, we
need to consider a deterministic model because the ReED framework results in a deterministic triplet classifier. Given a
deterministic triplet classifier fw with the fixed parameters w, we add random perturbations ẅ to w to simulate a stochastic
triplet classifier so that Lemma C.1 can be extended to Theorem 4.3.

Theorem 4.3 (Transductive PAC-Bayesian Generalization Bound for a Deterministic Triplet Classifier). Let fw : V ×R×
V → R2 be a deterministic triplet classifier with parameters w, and P be any prior distribution on w. Let us consider the
finite full triplet set E ⊆ V ×R× V . We construct a posterior distribution Qw+ẅ by adding any random perturbation ẅ to
w such that P(max(h,r,t)∈E ∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ < γ

4 ) >
1
2 . Then, for any γ, δ > 0, with probability 1− δ over

the choice of a training triplet set Ê drawn from the full triplet set E (such that 20 ≤ |Ê| ≤ |E| − 20 and |E| ≥ 40) without
replacement, for any w, we have

L0,E(fw) ≤ Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

2|Ê |

[
2DKL(Qw+ẅ∥P) + ln

4θ(|Ê |, |E|)
δ

]

where Lγ,Ê(fw) is defined in Definition 4.1, L0,E(fw) is defined in Definition 4.2, DKL(Qw+ẅ∥P) is the KL-divergence

of Qw+ẅ from P , and θ(|Ê |, |E|) = 3
√
|Ê |(1− |Ê|

|E| ) ln |Ê |.

Proof. Let H denote the hypothesis space of a triplet classifier fw. Note that the posterior distribution Qw+ẅ is a distribution
over H. Let Qw+ẅ (w̃) be the probability density function indicating the probability of w̃ being drawn from Qw+ẅ. Also,
let C be a set of perturbed parameters w̃ such that C :=

{
w̃ ∈ H

∣∣∣max(h,r,t)∈E ∥fw̃(h, r, t)− fw(h, r, t)∥∞ < γ
4

}
⊂ H.

If we define p := Pw̃∼Qw+ẅ
(w̃ ∈ C), then p > 1

2 by our assumption.

We divide Qw+ẅ into two distributions Q̀ and Q́ where the former has a non-zero value for w̃ ∈ C and the latter has a
non-zero value for w̃ ∈ H \ C. Specifically, Q̀ (w̃) and Q́ (w̃) are defined as

Q̀(w̃) =


1

p
Qw+ẅ(w̃) w̃ ∈ C

0 w̃ ∈ H \ C
, Q́(w̃) =

0 w̃ ∈ C
1

1− p
Qw+ẅ(w̃) w̃ ∈ H \ C

For any (h, r, t) ∈ E and w̃ ∼ Q̀, we have

|(fw̃(h, r, t)[yhrt]− fw̃(h, r, t)[1− yhrt])− (fw(h, r, t)[yhrt]− fw(h, r, t)[1− yhrt])|
=|(fw̃(h, r, t)[yhrt]− fw(h, r, t)[yhrt])− (fw̃(h, r, t)[1− yhrt]− fw(h, r, t)[1− yhrt])|
≤|fw̃(h, r, t)[yhrt]− fw(h, r, t)[yhrt]|+ |fw̃(h, r, t)[1− yhrt]− fw(h, r, t)[1− yhrt]|
≤ max

(h,r,t)∈E
(|fw̃(h, r, t)[yhrt]− fw(h, r, t)[yhrt]|+ |fw̃(h, r, t)[1− yhrt]− fw(h, r, t)[1− yhrt]|)

<
γ

4
+
γ

4
=
γ

2
(sub-additivity, w̃ ∈ C)

Then, we have

fw(h, r, t)[yhrt]− fw(h, r, t)[1− yhrt] ≤ 0 ⇒ fw̃(h, r, t)[yhrt]− fw̃(h, r, t)[1− yhrt] ≤
γ

2

fw(h, r, t)[yhrt] ≤ fw(h, r, t)[1− yhrt] ⇒ fw̃(h, r, t)[yhrt] ≤
γ

2
+ fw̃(h, r, t)[1− yhrt]

which indicates that

1
[
fw(h, r, t)[yhrt] ≤ fw(h, r, t)[1− yhrt]

]
≤ 1

[
fw̃(h, r, t)[yhrt] ≤

γ

2
+ fw̃(h, r, t)[1− yhrt]

]
This leads to L0,E(fw) ≤ L γ

2 ,E(fw̃) for any w̃ ∼ Q̀, meaning that

L0,E(fw) ≤ Ew̃∼Q̀
[
L γ

2 ,E(fw̃)
]

(1)
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Also, for any (h, r, t) ∈ E and w̃ ∼ Q̀, we have

fw̃(h, r, t)[yhrt]− fw̃(h, r, t)[1− yhrt] ≤
γ

2
⇒ fw(h, r, t)[yhrt]− fw(h, r, t)[1− yhrt] ≤ γ

fw̃(h, r, t)[yhrt] ≤
γ

2
+ fw̃(h, r, t)[1− yhrt] ⇒ fw(h, r, t)[yhrt] ≤ γ + fw(h, r, t)[1− yhrt]

which indicates that

1
[
fw̃(h, r, t)[yhrt] ≤

γ

2
+ fw̃(h, r, t)[1− yhrt]

]
≤ 1

[
fw(h, r, t)[yhrt] ≤ γ + fw(h, r, t)[1− yhrt]

]
This leads to L γ

2 ,Ê
(fw̃) ≤ Lγ,Ê(fw) for any w̃ ∼ Q̀. Then, we can end up with

Ew̃∼Q̀
[
L γ

2 ,Ê
(fw̃)

]
≤ Lγ,Ê(fw) (2)

Given 20 ≤ |Ê| ≤ |E| − 20 and |E| ≥ 40, with probability 1− δ, we have

L0,E(fw) ≤Ew̃∼Q̀
[
L γ

2 ,E(fw̃)
]

(Eq. (1))

≤Ew̃∼Q̀
[
L γ

2 ,Ê
(fw̃)

]
+

√√√√1− |Ê|
|E|

2|Ê |

[
DKL(Q̀∥P) + ln

θ(|Ê |, |E|)
δ

]
(Lemma C.1)

≤Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

2|Ê |

[
DKL(Q̀∥P) + ln

θ(|Ê |, |E|)
δ

]
(Eq. (2))

Also, we can derive the following.

DKL(Qw+ẅ∥P) =

∫
w̃∈C

Qw+ẅ ln
Qw+ẅ

P
dw̃ +

∫
w̃∈H\C

Qw+ẅ ln
Qw+ẅ

P
dw̃

=p

∫
w̃∈C

Qw+ẅ

p
ln

Qw+ẅ

pP
dw̃ + (1− p)

∫
w̃∈H\C

Qw+ẅ

1− p
ln

Qw+ẅ

(1− p)P
dw̃

+

∫
w̃∈C

Qw+ẅ ln p dw̃ +

∫
w̃∈H\C

Qw+ẅ ln(1− p) dw̃

=pDKL(Q̀∥P) + (1− p)DKL(Q́∥P) + p ln p+ (1− p) ln(1− p)

Since we know 1
2 < p < 1 from the assumption, we have (− ln 2) < p ln p + (1 − p) ln(1 − p) < 0. Also, DKL is

non-negative. Therefore, we have

DKL(Q̀∥P) =
1

p
(DKL(Qw+ẅ∥P)− (1− p)DKL(Q́∥P)− p ln p− (1− p) ln(1− p))

≤1

p
(DKL(Qw+ẅ∥P) + ln 2) ≤ 2DKL(Qw+ẅ∥P) + 2 ln 2

Finally, we show

L0,E(fw) ≤Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

2|Ê |

[
DKL(Q̀∥P) + ln

θ(|Ê |, |E|)
δ

]

≤Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

2|Ê |

[
2DKL(Qw+ẅ∥P) + ln

4θ(|Ê |, |E|)
δ

]
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D. Proofs of Theorem 4.4 and Theorem 4.5
We provide the complete proofs of Theorem 4.4 and Theorem 4.5.

Theorem 4.4 (Generalization Bound for ReED with Translational Distance Decoder). For any L ≥ 0, let fw : V×R×V →
R2 be a triplet classifier designed by the combination of the RAMP encoder with L-layers in Definition 3.1 and the TD
decoder in Definition 3.2. Let kr be the maximum of the infinity norms for all possible S(l)

r in the RAMP encoder. Then, for
any δ, γ > 0, with probability at least 1− δ over a training triplet set Ê (such that 20 ≤ |Ê| ≤ |E| − 20) sampled without
replacement from the full triplet set E , for any w, we have

L0,E(fw) ≤ Lγ,Ê(fw) +O


√√√√1− |Ê|

|E|

|Ê |

[
NwL2ζ2Ls

2Ld ln (Nwd)

γ2
+ ln

θ(|Ê |, |E|)
δ

]

where θ(|Ê |, |E|) = 3
√
|Ê |(1− |Ê|

|E| ) ln |Ê |, Nw = 2|R|L+ 6|R| + 2L, ζL = 2τL∥Xent∥2 + 2κ∥X rel∥2
(∑L−1

i=0 τ
i
)
+

∥X rel∥2, τ = Cϕ + κ, κ = CϕCρCψ
∑
r∈R kr, d = max (max0≤l≤L+1(dl),max0≤l≤L+1(d

′
l)) , sL+1 =

maxr,j(max(∥W ⟨j⟩
r ∥F , ∥U

⟨j⟩
r ∥F , ∥V ⟨j⟩

r ∥F )), sl = max(∥W (l)
0 ∥F , ∥U (l)

0 ∥F ,maxr ∥W (l)
r ∥F ,maxr ∥U (l)

r ∥F ) for l ∈
{1, 2, . . . , L}, and s = max1≤l≤L+1(sl).

Proof. We derive Theorem 4.4 from Theorem 4.3 where we construct a posterior distribution Qw+ẅ by adding random
perturbations ẅ to w. Following [24; 35], we set the prior distribution P as N

(
0nw , σ

2Inw×nw

)
and the posterior

distribution Qw+ẅ as N
(
w, σ2Inw×nw

)
where nw is the size of w. We first compute max(h,r,t)∈E ∥fw+ẅ(h, r, t) −

fw(h, r, t)∥∞, which we call the perturbation bound, so that we can calculate the standard deviation σ of the prior distribution
that satisfies P

(
max(h,r,t)∈E ∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ < γ

4

)
> 1

2 . Afterwards, we calculate the KL divergence of
Qw+ẅ from P using σ and substitute the KL divergence term in Theorem 4.3 with our data and model-related terms, which
finishes the proof.

Perturbation bound of ReED with translational distance decoder First, we compute the perturbation bound,
max(h,r,t)∈E ∥fw+ẅ(h, r, t) − fw(h, r, t)∥∞, and find σ that makes P(max(h,r,t)∈E ∥fw+ẅ(h, r, t) −fw(h, r, t)∥∞ <
γ
4 ) >

1
2 true. Let Ẅ denote a perturbation (also called noise) matrix added to the original weight matrix W . As a result, we

have W̃ = W + Ẅ where W̃ is a perturbed weight matrix. Also, let H̃
(l)

and R̃
(l)

denote the outputs of the perturbed
model at the l-th layer. Each element of Ẅ is an i.i.d. element drawn from N

(
0, σ2

)
. Assume that the maximum of the

Frobenius norms of the noise matrices is s̈. That is,

s̈ = max

(
max
l

(∥∥∥Ẅ (l)

0

∥∥∥
F
,
∥∥∥Ü (l)

0

∥∥∥
F
,max

r

∥∥∥Ẅ (l)

r

∥∥∥
F
,max

r

∥∥∥Ü (l)

r

∥∥∥
F

)
, max

r,j

(∥∥∥Ẅ ⟨j⟩
r

∥∥∥
F
,
∥∥∥Ü ⟨j⟩

r

∥∥∥
F
,
∥∥∥V̈ ⟨j⟩

r

∥∥∥
F

))

Now, let us calculate the perturbation bound:

max
(h,r,t)∈E

∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ = max
(h,r,t)∈E

max
j∈{0,1}

∣∣∣∣− ∥H̃
(L)

[h, :]W̃
⟨j⟩

r + R̃
(L)

[r, :]Ũ
⟨j⟩
r − H̃

(L)
[t, :]Ṽ

⟨j⟩
r ∥2

+ ∥H(L)[h, :]W
⟨j⟩
r +R(L)[r, :]U

⟨j⟩
r −H(L)[t, :]V ⟨j⟩

r ∥2
∣∣∣∣

18



PAC-Bayesian Generalization Bounds for Knowledge Graph Representation Learning

Let us define Φl = maxv ∥H(l)[v, :]∥2, Ψl = maxv ∥H̃
(l)
[v, :] − H(l)[v, :]∥2, Λl = maxr ∥R(l)[r, :]∥2, and Γl =

maxr ∥R̃
(l)
[r, :]−R(l)[r, :]∥2. Then, for any (h, r, t) ∈ E ,

∣∣∣∣∥∥∥∥H̃(L)
[h, :]W̃

⟨j⟩
r + R̃

(L)
[r, :]Ũ

⟨j⟩
r − H̃

(L)
[t, :]Ṽ

⟨j⟩
r

∥∥∥∥
2

−
∥∥∥∥H(L)[h, :]W

⟨j⟩
r +R(L)[r, :]U

⟨j⟩
r −H(L)[t, :]V ⟨j⟩

r

∥∥∥∥
2

∣∣∣∣
≤
∥∥∥∥H̃(L)

[h, :]W̃
⟨j⟩
r + R̃

(L)
[r, :]Ũ

⟨j⟩
r − H̃

(L)
[t, :]Ṽ

⟨j⟩
r (reverse triangle inequality)

−
(
H(L)[h, :]W

⟨j⟩
r +R(L)[r, :]U

⟨j⟩
r −H(L)[t, :]V ⟨j⟩

r

)∥∥∥∥
2

=

∥∥∥∥(H̃(L)
−H(L)

)
[h, :]W̃

⟨j⟩
r +

(
R̃

(L)
−R(L)

)
[r, :]Ũ

⟨j⟩
r

−
(
H̃

(L)
−H(L)

)
[t, :]Ṽ

⟨j⟩
r +H(L)[h, :]Ẅ

⟨1⟩
r +R(L)[r, :]Ü

⟨j⟩
r −H(L)[t, :]V̈

⟨j⟩
r

∥∥∥∥
2

≤∥
(
H̃

(L)
−H(L)

)
[h, :]∥2∥W̃

⟨j⟩
r ∥2 + ∥

(
R̃

(L)
−R(L)

)
[r, :]∥2∥Ũ

⟨j⟩
r ∥2

+ ∥
(
H̃

(L)
−H(L)

)
[t, :]∥2∥Ṽ

⟨j⟩
r ∥2 + ∥H(L)[h, :]∥2∥Ẅ

⟨j⟩
r ∥2 + ∥R(L)[r, :]∥2∥Ü

⟨j⟩
r ∥2

+ ∥H(L)[t, :]∥2∥V̈
⟨j⟩
r ∥2 (sub-additivity, sub-multiplicativity)

≤(2ΨL + ΓL)(sL+1 + s̈) + (2ΦL + ΛL)s̈ (definitions of ΨL,ΓL, sL+1,ΦL,ΛL, and s̈) (3)

To satisfy the condition of Theorem 4.3, we need the bound of ΦL, ΨL, ΛL, and ΓL. Since we need ΛL and ΓL to calculate
ΦL and ΨL, we first calculate the bound of ΛL and ΓL. In general, we need to compute 1⃝ bound of Λl and Γl, 2⃝ bound of
Φl, and 3⃝ bound of Ψl.

1⃝ Bound of Λl and Γl

First, we calculate the upper bound of ∥R(l)[r, :]∥2 and ∥R̃
(l)
[r, :]−R(l)[r, :]∥2.

∥R(l)[r, :]∥2 =∥R(0)[r, :]

l∏
i=1

U
(i)
0 ∥2 ≤ ∥X rel∥2

l∏
i=1

si (4)

∥R̃
(l)
[r, :]−R(l)[r, :]∥2 =∥R̃

(l−1)
[r, :]Ũ

(l)

0 −R(l−1)[r, :]U
(l)
0 ∥2

=∥R̃
(l−1)

[r, :]Ũ
(l)

0 −R(l−1)[r, :]Ũ
(l)

0 +R(l−1)[r, :]Ü
(l)

0 ∥2

≤∥R̃
(l−1)

[r, :]−R(l−1)[r, :]∥2∥Ũ
(l)

0 ∥2

+ ∥R(l−1)[r, :]∥2∥Ü
(l)

0 ∥2 (sub-additivity, sub-multiplicativity)

≤∥R̃
(l−1)

[r, :]−R(l−1)[r, :]∥2(sl + s̈) + ∥R(l−1)[r, :]∥2s̈ (definitions of sl and s̈)

≤∥R̃
(l−1)

[r, :]−R(l−1)[r, :]∥2(sl + s̈) + s̈∥X rel∥2
l−1∏
i=1

si (Eq.(4))

Note that

∥R̃
(1)

[r, :]−R(1)[r, :]∥2 =∥X rel[r, :]Ũ
(1)

0 −X rel[r, :]U
(1)
0 ∥2

=∥X rel[r, :]Ü
(1)

0 ∥2

≤∥X rel[r, :]∥2∥Ü
(1)

0 ∥2
≤∥X rel∥2s̈ (definitions of the spectral norm and s̈) (5)
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Then, we get

∥R̃
(l)
[r, :]−R(l)[r, :]∥2 + ∥X rel∥2

l∏
i=1

si ≤

(
∥R̃

(l−1)
[r, :]−R(l−1)[r, :]∥2 + ∥X rel∥2

l−1∏
i=1

si

)
(sl + s̈)

≤
(
∥R̃

(1)
[r, :]−R(1)[r, :]∥2 + ∥X rel∥2s1

) l∏
i=2

(si + s̈) (recursion)

≤ (∥X rel∥2s̈+ ∥X rel∥2s1)
l∏
i=2

(si + s̈) (Eq. (5))

=∥X rel∥2
l∏
i=1

(si + s̈)

Putting all this together, we have

Λl = max
r

∥R(l)[r, :]∥2 ≤ ∥X rel∥2
l∏
i=1

si (6)

Γl = max
r

∥R̃
(l)
[r, :]−R(l)[r, :]∥2 ≤ ∥X rel∥2

(
l∏
i=1

(si + s̈)−
l∏
i=1

si

)
(7)

Note that the bound of ΛL and ΓL can be obtained by setting l = L.

2⃝ Bound of Φl
We can calculate the upper bound of Φl using sub-additivity, sub-multiplicativity, and the definitions of matrix norms. Note
that the bound of ΦL can be obtained by setting l = L.

Let v∗ = argmaxv ∥H
(l)[v, :]∥2. Then,

Φl =∥ϕ

(
H(l−1)W

(l)
0 + ρ

(∑
r∈R

S(l)
r ψ

(
M (l)

r

)[
W

(l)
r

U
(l)
r

]))
[v∗, :]∥2

≤Cϕ∥
(
H(l−1)W

(l)
0

)
[v∗, :] + ρ

(∑
r∈R

S(l)
r ψ

(
M (l)

r

)[
W

(l)
r

U
(l)
r

])
[v∗, :]∥2 (Lipschitzness of ϕ, ϕ(0) = 0)

≤Cϕ∥H(l−1)[v∗, :]∥2∥W (l)
0 ∥2 + Cϕ∥ρ

(∑
r∈R

S(l)
r ψ

(
M (l)

r

)[
W

(l)
r

U
(l)
r

])
[v∗, :]∥2 (sub-additivity, sub-multiplicativity)

≤Cϕ∥H(l−1)[v∗, :]∥2∥W (l)
0 ∥2 + CϕCρ∥

(∑
r∈R

S(l)
r ψ

(
M (l)

r

)[
W

(l)
r

U
(l)
r

])
[v∗, :]∥2 (Lipschitzness of ρ, ρ(0) = 0)

=Cϕ∥H(l−1)[v∗, :]∥2∥W (l)
0 ∥2 + CϕCρ∥

∑
r∈R

(∑
v∈V

S(l)
r [v∗, v]

(
ψ
(
M (l)

r

)
[v, :]

)[
W

(l)
r

U
(l)
r

])
∥2

=Cϕ∥H(l−1)[v∗, :]∥2∥W (l)
0 ∥2 (definition of M (l)

r )

+ CϕCρ∥
∑
r∈R

(∑
v∈V

S(l)
r [v∗, v]

(
ψ
([
H(l−1)[v, :] R(l−1)[r, :]

])) [W (l)
r

U
(l)
r

])
∥2

≤Cϕ∥H(l−1)[v∗, :]∥2∥W (l)
0 ∥2 (sub-additivity, absolute homogeneity)

+ CϕCρ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗, v]

∣∣∣∥(ψ (H(l−1)[v, :]
)
W (l)

r + ψ
(
R(l−1)[r, :]

)
U (l)
r

)
∥2

≤Cϕ∥H(l−1)[v∗, :]∥2∥W (l)
0 ∥2 (sub-additivity, sub-multiplicativity)

+ CϕCρ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗, v]

∣∣∣ (∥ψ (H(l−1)[v, :]
)
∥2∥W (l)

r ∥2 + ∥ψ
(
R(l−1)[r, :]

)
∥2∥U (l)

r ∥2
)

≤Cϕ∥H(l−1)[v∗, :]∥2∥W (l)
0 ∥2 (Lipschitzness of ψ, ψ(0) = 0)
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+ CϕCρCψ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗, v]

∣∣∣ (∥H(l−1)[v, :]∥2∥W (l)
r ∥2 + ∥R(l−1)[r, :]∥2∥U (l)

r ∥2
)

≤CϕΦl−1∥W (l)
0 ∥2 + CϕCρCψ

∑
r∈R

((
Φl−1∥W (l)

r ∥2 + Λl−1∥U (l)
r ∥2

)∑
v∈V

∣∣∣S(l)
r [v∗, v]

∣∣∣) (definitions of Φl and Λl)

≤CϕΦl−1∥W (l)
0 ∥2 + CϕCρCψ

∑
r∈R

(
Φl−1∥W (l)

r ∥2 + Λl−1∥U (l)
r ∥2

)
∥S(l)

r ∥∞ (definition of the infinity norm of a matrix)

≤CϕΦl−1∥W (l)
0 ∥2 + CϕCρCψ

∑
r∈R

(
Φl−1∥W (l)

r ∥2 + Λl−1∥U (l)
r ∥2

)
kr (definition of kr)

≤CϕslΦl−1 + CϕCρCψsl(Φl−1 + Λl−1)
∑
r∈R

kr (definition of sl)

≤CϕslΦl−1 + CϕCρCψsl

(
Φl−1 + ∥X rel∥2

l−1∏
i=1

si

)∑
r∈R

kr (Eq.(6))

≤τslΦl−1 + κ∥X rel∥2
l∏
i=1

si (definitions of τ and κ) (8)

Note that Φ1 ≤ τs1Φ0 + κ∥X rel∥2s1 ≤ τs1∥Xent∥2 + κ∥X rel∥2s1 by Eq. (8) and the definition of the spectral norm.
Then,

(
Φl − κ∥X rel∥2

l∏
i=1

si

)
− κ∥X rel∥2

(
l−1∑
i=1

τ i
)(

l∏
i=1

si

)
≤τslΦl−1 − κ∥X rel∥2

(
l−1∑
i=1

τ i
)(

l∏
i=1

si

)

which leads to

Φl − κ∥X rel∥2

(
l−1∑
i=0

τ i
)(

l∏
i=1

si

)
≤τsl

(
Φl−1 − κ∥X rel∥2

(
l−2∑
i=0

τ i
)(

l−1∏
i=1

si

))

≤τ l−1

(
l∏
i=2

si

)(
Φ1 − κ∥X rel∥2

(
0∑
i=0

τ i
)(

1∏
i=1

si

))
(recursion)

≤τ l−1

(
l∏
i=2

si

)
(τs1∥Xent∥2 + κ∥X rel∥2s1 − κ∥X rel∥2s1)

≤τ l∥Xent∥2
l∏
i=1

si

Finally, we get

Φl ≤τ l∥Xent∥2
l∏
i=1

si + κ∥X rel∥2

(
l−1∑
i=0

τ i

)(
l∏
i=1

si

)
=

(
τ l∥Xent∥2 + κ∥X rel∥2

l−1∑
i=0

τ i

)
l∏
i=1

si = ηl

l∏
i=1

si (9)

where ηl = τ l∥Xent∥2 + κ∥X rel∥2
∑l−1
i=0 τ

i.

3⃝ Bound of Ψl
We can calculate the upper bound of Ψl using sub-additivity, sub-multiplicativity, and the definitions of matrix norms. Note
that the bound of ΨL can be obtained by setting l = L.

Let v∗∗ = argmaxv ∥H̃
(l)
[v, :]−H(l)[v, :]∥2. Then,

Ψl =

∥∥∥∥∥ϕ
(
H̃

(l−1)
W̃

(l)

0 + ρ

(∑
r∈R

S(l)
r ψ

(
M̃

(l)

r

)[
W̃

(l)

r

Ũ
(l)

r

]))
[v∗∗, :]
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−ϕ

(
H(l−1)W

(l)
0 + ρ

(∑
r∈R

S(l)
r ψ

(
M (l)

r

)[
W

(l)
r

U
(l)
r

]))
[v∗∗, :]

∥∥∥∥∥
2

≤Cϕ

∥∥∥∥∥
((

H̃
(l−1)

W̃
(l)

0

)
[v∗∗, :] + ρ

(∑
r∈R

S(l)
r ψ

(
M̃

(l)

r

)[
W̃

(l)

r

Ũ
(l)

r

])
[v∗∗, :]

)
(Lipschitzness of ϕ)

−

((
H(l−1)W

(l)
0

)
[v∗∗, :] + ρ

(∑
r∈R

S(l)
r ψ

(
M (l)

r

)[
W

(l)
r

U
(l)
r

])
[v∗∗, :]

)∥∥∥∥∥
2

≤Cϕ∥
(
H̃

(l−1)
W̃

(l)

0

)
[v∗∗, :]−

(
H(l−1)W

(l)
0

)
[v∗∗, :]∥2 (sub-additivity)

+ Cϕ∥ρ

(∑
r∈R

S(l)
r ψ

(
M̃

(l)

r

)[
W̃

(l)

r

Ũ
(l)

r

])
[v∗∗, :]− ρ

(∑
r∈R

S(l)
r ψ

(
M (l)

r

)[
W

(l)
r

U
(l)
r

])
[v∗∗, :]∥2

≤Cϕ∥
(
H̃

(l−1)
W̃

(l)

0

)
[v∗∗, :]−

(
H(l−1)W

(l)
0

)
[v∗∗, :]∥2 (Lipschitzness of ρ)

+ CϕCρ∥

(∑
r∈R

S(l)
r ψ

(
M̃

(l)

r

)[
W̃

(l)

r

Ũ
(l)

r

])
[v∗∗, :]−

(∑
r∈R

S(l)
r ψ

(
M (l)

r

)[
W

(l)
r

U
(l)
r

])
[v∗∗, :]∥2

=Cϕ∥
(
H̃

(l−1)
W̃

(l)

0

)
[v∗∗, :]−

(
H(l−1)W

(l)
0

)
[v∗∗, :]∥2

+ CϕCρ

∥∥∥∥∥
(∑
r∈R

∑
v∈V

S(l)
r [v∗∗, v]

(
ψ
(
M̃

(l)

r

)
[v, :]

)[
W̃

(l)

r

Ũ
(l)

r

])
−

(∑
r∈R

∑
v∈V

S(l)
r [v∗∗, v]

(
ψ
(
M (l)

r

)
[v, :]

)[
W

(l)
r

U
(l)
r

])∥∥∥∥∥
2

=Cϕ∥
(
H̃

(l−1)
W̃

(l)

0

)
[v∗∗, :]−

(
H(l−1)W

(l)
0

)
[v∗∗, :]∥2

+ CϕCρ∥
∑
r∈R

∑
v∈V

S(l)
r [v∗∗, v]

((
ψ
(
M̃

(l)

r

)
[v, :]

)[
W̃

(l)

r

Ũ
(l)

r

]
−
(
ψ
(
M (l)

r

)
[v, :]

)[
W

(l)
r

U
(l)
r

])
∥2

≤Cϕ∥
(
H̃

(l−1)
W̃

(l)

0

)
[v∗∗, :]−

(
H(l−1)W

(l)
0

)
[v∗∗, :]∥2 (definition of M (l)

r and sub-additivity)

+ CϕCρ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗∗, v]

∣∣∣ ∥∥∥∥∥ψ ([H̃(l−1)
[v, :] R̃

(l−1)
[r, :]

])[
W̃

(l)

r

Ũ
(l)

r

]

−ψ
([
H(l−1)[v, :] R(l−1)[r, :]

]) [W (l)
r

U
(l)
r

]∥∥∥∥∥
2

(absolute homogeneity)

=Cϕ∥
(
H̃

(l−1)
W̃

(l)

0

)
[v∗∗, :]−

(
H(l−1)W

(l)
0

)
[v∗∗, :]∥2

+ CϕCρ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗∗, v]

∣∣∣ ∥∥∥ψ (H̃(l−1)
[v, :]

)
W̃

(l)

r + ψ
(
R̃

(l−1)
[r, :]

)
Ũ

(l)

r

−ψ
(
H(l−1)[v, :]

)
W (l)

r − ψ
(
R(l−1)[r, :]

)
U (l)
r

∥∥∥
2

=Cϕ∥
((

H̃
(l−1)

−H(l−1)
)
W̃

(l)

0

)
[v∗∗, :] +

(
H(l−1)Ẅ

(l)

0

)
[v∗∗, :]∥2 (definition of W̃ )

+ CϕCρ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗∗, v]

∣∣∣ ∥∥∥(ψ (H̃(l−1)
[v, :]

)
− ψ

(
H(l−1)[v, :]

))
W̃

(l)

r

+
(
ψ
(
R̃

(l−1)
[r, :]

)
− ψ

(
R(l−1)[r, :]

))
Ũ

(l)

r

+ψ
(
H(l−1)[v, :]

)
Ẅ

(l)

r + ψ
(
R(l−1)[r, :]

)
Ü

(l)

r

∥∥∥
2

≤Cϕ∥
(
H̃

(l−1)
−H(l−1)

)
[v∗∗, :]∥2∥W̃

(l)

0 ∥2 + Cϕ∥H(l−1)[v∗∗, :]∥2∥Ẅ
(l)

0 ∥2 (sub-additivity, sub-multiplicativity)

+ CϕCρ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗∗, v]

∣∣∣ (∥ψ (H̃(l−1)
[v, :]

)
− ψ

(
H(l−1)[v, :]

)
∥2∥W̃

(l)

r ∥2

+ ∥ψ
(
R̃

(l−1)
[r, :]

)
− ψ

(
R(l−1)[r, :]

)
∥2∥Ũ

(l)

r ∥2

+ ∥ψ
(
H(l−1)[v, :]

)
∥2∥Ẅ

(l)

r ∥2 + ∥ψ
(
R(l−1)[r, :]

)
∥2∥Ü

(l)

r ∥2
)
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≤Cϕ∥
(
H̃

(l−1)
−H(l−1)

)
[v∗∗, :]∥2∥W̃

(l)

0 ∥2 + Cϕ∥H(l−1)[v∗∗, :]∥2∥Ẅ
(l)

0 ∥2 (Lipschitzness of ψ,ψ(0) = 0)

+ CϕCρCψ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗∗, v]

∣∣∣ (∥H̃(l−1)
[v, :]−H(l−1)[v, :]∥2∥W̃

(l)

r ∥2

+ ∥R̃
(l−1)

[r, :]−R(l−1)[r, :]∥2∥Ũ
(l)

r ∥2

+∥H(l−1)[v, :]∥2∥Ẅ
(l)

r ∥2 + ∥R(l−1)[r, :]∥2∥Ü
(l)

r ∥2
)

≤Cϕ(sl + s̈)Ψl−1 + CϕΦl−1s̈ (definitions of Φl,Ψl,Λl,Γl, sl, and s̈)

+ CϕCρCψ
∑
r∈R

∑
v∈V

∣∣∣S(l)
r [v∗∗, v]

∣∣∣(Ψl−1(sl + s̈) + Γl−1(sl + s̈) + Φl−1s̈+ Λl−1s̈
)

≤Cϕ(sl + s̈)Ψl−1 + CϕΦl−1s̈ (definition of the infinity norm of a matrix)

+ CϕCρCψ
(
Ψl−1(sl + s̈) + Γl−1(sl + s̈) + Φl−1s̈+ Λl−1s̈

)∑
r∈R

∥S(l)
r ∥∞

=Cϕ(sl + s̈)Ψl−1 + CϕΦl−1s̈

+ CϕCρCψ(Ψl−1 + Γl−1)(sl + s̈)
∑
r∈R

∥Sr∥∞ + CϕCρCψ(Φl−1 + Λl−1)s̈
∑
r∈R

∥S(l)
r ∥∞

≤Cϕ(sl + s̈)Ψl−1 + CϕΦl−1s̈ (definition of kr)

+ CϕCρCψ(Ψl−1 + Γl−1)(sl + s̈)
∑
r∈R

kr + CϕCρCψ(Φl−1 + Λl−1)s̈
∑
r∈R

kr

≤τ(sl + s̈)Ψl−1 + τΦl−1s̈+ κ(sl + s̈)Γl−1 + κs̈Λl−1 (definitions of τ and κ) (10)

≤τ(sl + s̈)Ψl−1 + τ s̈ηl−1

l−1∏
i=1

si + κ(sl + s̈)∥X rel∥2

(
l−1∏
i=1

(si + s̈)−
l−1∏
i=1

si

)
+ κs̈∥X rel∥2

l−1∏
i=1

si (Eq. (6), (7), (9))

=τ(sl + s̈)Ψl−1 + τ s̈ηl−1

l−1∏
i=1

si + κ(sl + s̈)∥X rel∥2
l−1∏
i=1

(si + s̈)− κsl∥X rel∥2
l−1∏
i=1

si

=τ(sl + s̈)Ψl−1 + τ s̈ηl−1

l−1∏
i=1

si + κ∥X rel∥2
l∏
i=1

(si + s̈)− κ∥X rel∥2
l∏
i=1

si

=τ(sl + s̈)Ψl−1 + τ s̈ηl−1

l−1∏
i=1

si + κ∥X rel∥2

(
l∏
i=1

(si + s̈)−
l∏
i=1

si

)

From the above inequality, we can induce

Ψl + τηl−1

l∏
i=1

si + κ∥X rel∥2
l∏
i=1

si ≤τ(sl + s̈)Ψl−1 + τ(sl + s̈)ηl−1

l−1∏
i=1

si + κ∥X rel∥2
l∏
i=1

(si + s̈)

where

Ψl + τηl−1

l∏
i=1

si + κ∥X rel∥2
l∏
i=1

si = Ψl + (τηl−1 + κ∥X rel∥2)
l∏
i=1

si = Ψl + ηl

l∏
i=1

si

Putting all this together, we have

Ψl + ηl

l∏
i=1

si − κ∥X rel∥2
l∏
i=1

(si + s̈)− κ∥X rel∥2

(
l−1∑
i=1

τ i
)(

l∏
i=1

(si + s̈)

)

≤ τ(sl + s̈)Ψl−1 + τ(sl + s̈)ηl−1

l−1∏
i=1

si − κ∥X rel∥2

(
l−1∑
i=1

τ i
)(

l∏
i=1

(si + s̈)

)

Note that Ψ1 ≤ τ(s1 + s̈)Ψ0 + τ s̈Φ0 + κ(s1 + s̈)Γ0 + κs̈Λ0 ≤ τ s̈∥Xent∥2 + κs̈∥X rel∥2 by Eq. (10) and the definitions
of Ψ0,Φ0,Λ0 and Γ0.
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Gathering up,

Ψl + ηl

l∏
i=1

si − κ∥X rel∥2

(
l−1∑
i=0

τ i
)(

l∏
i=1

(si + s̈)

)

≤ τ(sl + s̈)

(
Ψl−1 + ηl−1

l−1∏
i=1

si − κ∥X rel∥2

(
l−2∑
i=0

τ i
)(

l−1∏
i=1

(si + s̈)

))

≤ τ l−1

(
l∏
i=2

(si + s̈)

)(
Ψ1 + η1

1∏
i=1

si − κ∥X rel∥2

(
0∑
i=0

τ i
)(

1∏
i=1

(si + s̈)

))
(recursion)

≤ τ l−1

(
l∏
i=2

(si + s̈)

)
(s̈(τ∥Xent∥2 + κ∥X rel∥2) + (τ∥Xent∥2 + κ∥X rel∥2)s1 − κ∥X rel∥2(s1 + s̈))

= τ l
(

l∏
i=1

(si + s̈)

)
∥Xent∥2

We end up with

Ψl ≤τ l
(

l∏
i=1

(si + s̈)

)
∥Xent∥2 + κ∥X rel∥2

(
l−1∑
i=0

τ i

)(
l∏
i=1

(si + s̈)

)
− ηl

l∏
i=1

si

=ηl

(
l∏
i=1

(si + s̈)−
l∏
i=1

si

)
(definition of ηl) (11)

Then,

max
(h,r,t)∈E

∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ ≤(2ΨL + ΓL)(sL+1 + s̈) + (2ΦL + ΛL)s̈ (Eq. (3))

≤

(
L∏
i=1

(si + s̈)−
L∏
i=1

si

)
(2ηL + ∥X rel∥2)(sL+1 + s̈) (Eq. (6), (7), (9), (11))

+

(
L∏
i=1

si

)
(2ηL + ∥X rel∥2)s̈

=

(
L+1∏
i=1

(si + s̈)−
L+1∏
i=1

si

)
(2ηL + ∥X rel∥2)

≤
(
(s+ s̈)L+1 − sL+1

)
ζL (definition of s)

≤s̈(L+ 1)(s+ s̈)
L
ζL (0 ≤ s ≤ s+ s̈) (12)

where ζl = 2ηl + ∥X rel∥2.

Generalization bound of ReED with translational distance decoder Recall that we set the prior distribution P as
N
(
0nw , σ

2Inw×nw

)
. Since the distribution of the perturbed parameters Qw+ẅ is N

(
w, σ2Inw×nw

)
, the distribution of

the perturbation is N
(
0nw , σ

2Inw×nw

)
. For the perturbation matrices that follow the normal distribution, we can derive

the following by replacing the standard normal variable in Corollary 4.2. in Tropp [48] with a random variable following the
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normal distribution having the mean of 0 and the variance of σ2.

P
(∥∥∥Ẅ (l)

0

∥∥∥
2
≥ s̈
)
≤ (dl−1 + dl) e

−s̈2/(2max(dl−1,dl)σ
2) ≤ 2de−s̈

2/(2dσ2)

P
(∥∥∥Ü (l)

0

∥∥∥
2
≥ s̈
)
≤ (d′l−1 + d′l)e

−s̈2/(2max(d′l−1,d
′
l)σ

2) ≤ 2de−s̈
2/(2dσ2)

P
(∥∥∥Ẅ (l)

r

∥∥∥
2
≥ s̈
)
≤ (dl−1 + dl)e

−s̈2/(2max(dl−1,dl)σ
2) ≤ 2de−s̈

2/(2dσ2)

P
(∥∥∥Ü (l)

r

∥∥∥
2
≥ s̈
)
≤ (d′l−1 + dl)e

−s̈2/(2max(d′l−1,dl)σ
2) ≤ 2de−s̈

2/(2dσ2)

P
(∥∥∥Ẅ ⟨j⟩

r

∥∥∥
2
≥ s̈

)
≤ (dL + dL+1)e

−s̈2/(2max(dL,dL+1)σ
2) ≤ 2de−s̈

2/(2dσ2)

P
(∥∥∥Ü ⟨j⟩

r

∥∥∥
2
≥ s̈

)
≤ (d′L + dL+1)e

−s̈2/(2max(d′L,dL+1)σ
2) ≤ 2de−s̈

2/(2dσ2)

P
(∥∥∥V̈ ⟨j⟩

r

∥∥∥
2
≥ s̈
)
≤ (dL + dL+1)e

−s̈2/(2max(dL,dL+1)σ
2) ≤ 2de−s̈

2/(2dσ2)

Using Bernoulli’s inequality, we can derive that the probability of all perturbation matrices having the spectral norm less
than s̈ is greater than or equal to 1− 2Nwde

−s̈2/(2dσ2), where Nw = 2 · L+ 2 · |R|L+ 3 · 2|R| = 2|R|L+ 6|R|+ 2L is
the number of perturbation matrices.

To satisfy the condition of Theorem 4.3, we set 2Nwde
−s̈2/(2dσ2) = 1/2. Then, we get s̈ = σ

√
2d ln (4Nwd). Since the

prior is independent of the learned parameters w, we cannot directly use s to formulate σ. Therefore, we approximate s
with s̊ in the following range.

|s− s̊| ≤ 1

L+ 2
s =⇒ L+ 1

L+ 2
s ≤ s̊ ≤ L+ 3

L+ 2
s

Additionally, we assume that s̈ ≤ 1
L+2s. Then, if

max
(h,r,t)∈E

∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ ≤s̈(L+ 1)(s+ s̈)LζL (Eq. (12))

≤s̈(L+ 1)sL
(
1 +

1

L+ 2

)L
ζL

(
s̈ ≤ 1

L+ 2
s

)
≤s̈(L+ 1)

(
L+ 2

L+ 1

)L
s̊L
(
1 +

1

L+ 2

)L
ζL (range of s̊)

=s̈(L+ 1)̊sL
(
1 +

2

L+ 1

)L
ζL

≤s̈(L+ 1)̊sLe2ζL ≤ γ

4

((
1 +

1

x

)x
≤ e,∀x ≥ 0

)

is satisfied, we meet the condition of Theorem 4.3. With s̈ = σ
√

2d ln (4Nwd), we have

s̈ = σ
√
2d ln (4Nwd) ≤

γ

4e2(L+ 1)̊sLζL

→σ ≤ 1√
2d ln (4Nwd)

(
γ

4e2(L+ 1)̊sLζL

)
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By setting σ = 1√
2d ln (4Nwd)

(
γ

4e2(L+1)̊sLζL

)
, we can calculate DKL(Qw+ẅ∥P).

DKL(Qw+ẅ∥P) =
∥w∥22
2σ2

(KL divergence between two normal distributions)

=
2d ln (4Nwd)

2
(

γ
4e2(L+1)̊sLζL

)2 (∑ ∥W ∥2F
)

≤ (4e2(L+ 1)̊sLζL)
2
d ln (4Nwd)

γ2
(
Nws

2
)

=
16e4Nw(L+ 1)

2
s̊2Ls2ζ2Ld ln (4Nwd)

γ2

≤
16e4Nw(L+ 1)

2
s2
(
L+3
L+2s

)2L
ζ2Ld ln (4Nwd)

γ2
(range of s̊)

≤ 16e6Nw(L+ 1)
2
s2L+2ζ2Ld ln (4Nwd)

γ2

((
1 +

1

x

)x
≤ e, ∀x ≥ 0

)
From Theorem 4.3, we get

L0,E(fw) ≤Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

2|Ê |

[
2DKL(Qw+ẅ∥P) + ln

4θ(|Ê |, |E|)
δ

]

L0,E(fw) ≤Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

|Ê |

[
16e6Nw(L+ 1)

2
s2L+2ζ2Ld ln (4Nwd)

γ2
+

1

2
ln

4θ(|Ê |, |E|)
δ

]
(13)

Now, let us find some range of s such that Theorem 4.4 trivially holds.

First, if

∥fw(h, r, t)∥∞ = max
(h,r,t)∈E

max
j∈{0,1}

∣∣∣− ∥H(L)[h, :]W
⟨j⟩
r +R(L)[r, :]U

⟨j⟩
r −H(L)[t, :]V ⟨j⟩

r ∥2
∣∣∣

≤ max
(h,r,t)∈E

max
j∈{0,1}

(
∥H(L)[h, :]∥2∥W

⟨j⟩
r ∥2 (sub-additivity, sub-multiplicativity)

+∥R(L)[r, :]∥2∥U
⟨j⟩
r ∥2 + ∥H(L)[t, :]∥2∥V ⟨j⟩

r ∥2
)

≤ (2ΦL + ΛL) sL+1 (definitions of Φl,ΛL, and sL+1)

≤ (2ηL + ∥X rel∥2) sL+1

L∏
i=1

si ≤ ζLs
L+1 <

γ

2

→s <

(
γ

2ζL

) 1
L+1

then Theorem 4.4 trivially holds since L0,E(fw) = Lγ,Ê(fw) = 1 when ∥fw(h, r, t)∥∞ < γ
2 holds for all (h, r, t) ∈ E .

Also, if√√√√1− |Ê|
|E|

|Ê |

[
16e6Nw(L+ 1)

2
s2L+2ζ2Ld ln (4Nwd)

γ2
+

1

2
ln

4θ(|Ê |, |E|)
δ

]
≥

√√√√√
1− |Ê|

|E|

|Ê |

(4s2L+2ζ2L
γ2

)
> 1

→ s >

 γ

2ζL

√√√√ |Ê |

1− |Ê|
|E|

 1
L+1
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then Theorem 4.4 holds regardless of the value of L0,E(fw) and Lγ,Ê(fw) because the value of the loss function cannot
exceed 1.

Therefore, we only need to consider s in range

(
γ

2ζL

) 1
L+1

≤ s ≤

 γ

2ζL

√√√√ |Ê |

1− |Ê|
|E|

 1
L+1

(14)

We also need to check whether the assumption s̈ ≤ 1
L+2s holds in this range. Note that if γ

4e2(L+1)ζL(L+1
L+2 s)

L ≤ 1
L+2s

holds, then the assumption also holds since s̈ = γ
4e2(L+1)̊sLζL

≤ γ

4e2(L+1)ζL(L+1
L+2 s)

L . With a simple calculation, we get

sL+1 ≥ (L+ 2)γ

4e2(L+ 1)ζL

(
L+1
L+2

)L
The above inequality holds if s is in the range of Eq. (14), since

(L+ 2)γ

4e2(L+ 1)ζL

(
L+1
L+2

)L =
γ

4e2ζL

(
1 +

1

L+ 1

)L+1

≤ γ

4eζL
≤ γ

2ζL
≤ sL+1

((
1 +

1

x

)x
≤ e, ∀x ≥ 0

)

Therefore, we only need to consider Eq. (14) because otherwise Theorem 4.4 holds regardless of the choice of σ. While
Eq. (13) holds with probability 1 − δ, it only holds for s such that L+1

L+2s ≤ s̊ ≤ L+3
L+2s. To make Eq.(13) hold for all

s in range Eq. (14), we need to select multiple s̊ so that any s in range Eq. (14) can be covered. By assuming that

|s− s̊| ≤ 1
L+2

(
γ

2ζL

) 1
L+1 ≤ 1

L+2s, we can calculate the number of s̊ we need to consider, i.e., the size of covering C, by

dividing the length of the range of s in Eq. (14) by the length of each cover, i.e., 2
L+2

(
γ

2ζL

) 1
L+1

. Let |C| denote the size of

covering C. By simple division, we get |C| = (L+2)
2

((√
1

|Ê|
− 1

|E|

)− 1
L+1

− 1

)
. Using Bernoulli’s inequality, we can

conclude that the probability of Eq. (13) holding simultaneously for |C| choices of s̊ is 1− |C|δ. Therefore,

L0,E(fw) ≤Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

|Ê |

[
16e6Nw(L+ 1)2s2L+2ζ2Ld ln (4Nwd)

γ2
+

1

2
ln

4θ(|Ê |, |E|)|C|
δ

]

≤Lγ,Ê(fw) +O


√√√√1− |Ê|

|E|

|Ê |

[
NwL2ζ2Ls

2Ld ln (Nwd)

γ2
+ ln

θ(|Ê |, |E|)
δ

]
holds with probability of 1− |C| · δ

|C| = 1− δ regardless of s.

Theorem 4.5 (Generalization Bound for ReED with Semantic Matching Decoder). For any L ≥ 0, let fw : V×R×V → R2

be a triplet classifier designed by the combination of the RAMP encoder with L-layers in Definition 3.1 and the SM decoder
in Definition 3.3. Let kr be the maximum of the infinity norms for all possible S(l)

r in the RAMP encoder. Then, for any
δ, γ > 0, with probability at least 1 − δ over a training triplet set Ê (such that 20 ≤ |Ê| ≤ |E| − 20) sampled without
replacement from the full triplet set E , for any w, we have

L0,E(fw) ≤ Lγ,Ê(fw) +O


√√√√1− |Ê|

|E|

|Ê |

[
NwL2η4Ls

4Ld ln (Nwd)

γ2
+ ln

θ(|Ê |, |E|)
δ

]
where θ(|Ê |, |E|) = 3

√
|Ê |(1− |Ê|

|E| ) ln |Ê |, Nw = 2|R|L+ 2|R| + 2L, ηL = τL∥Xent∥2 + κ∥X rel∥2
∑L−1
i=0 τ

i, d =

max(max0≤l≤L(dl),max0≤l≤L(d
′
l)), τ = Cϕ + κ, κ = CϕCρCψ

∑
r∈R kr, sL+1 = maxr,j ∥U

⟨j⟩
r ∥F , sl =

max(∥W (l)
0 ∥F , ∥U (l)

0 ∥F ,maxr ∥W (l)
r ∥F ,maxr ∥U (l)

r ∥F ) for l ∈ {1, 2, . . . , L}, and s = max1≤l≤L+1(sl).
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Proof. We derive Theorem 4.5 from Theorem 4.3 where we construct a posterior distribution Qw+ẅ by adding random
perturbations ẅ to w. Following [24; 35], we set the prior distribution P as N

(
0nw , σ

2Inw×nw

)
and the posterior

distribution Qw+ẅ as N
(
w, σ2Inw×nw

)
where nw is the size of w. We first compute max(h,r,t)∈E ∥fw+ẅ(h, r, t) −

fw(h, r, t)∥∞, which we call the perturbation bound, so that we can calculate the standard deviation σ of the prior distribution
that satisfies P

(
max(h,r,t)∈E ∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ < γ

4

)
> 1

2 . Afterwards, we calculate the KL divergence of
Qw+ẅ from P using σ and substitute the KL divergence term in Theorem 4.3 with our data and model-related terms, which
finishes the proof.

Perturbation bound of ReED with semantic matching decoder First, we compute the perturbation bound,
max(h,r,t)∈E ∥fw+ẅ(h, r, t)−fw(h, r, t)∥∞, and find σ that makes P(max(h,r,t)∈E ∥fw+ẅ(h, r, t)-fw(h, r, t)∥∞ < γ

4 ) >
1
2 true. Let Ẅ denote a perturbation (also called noise) matrix added to the original weight matrix W . As a result, we have

W̃ = W + Ẅ where W̃ is a perturbed weight matrix. Also, let H̃
(l)

and R̃
(l)

denote the outputs of the perturbed model
at the l-th layer. Each element of Ẅ is an i.i.d. element drawn from N

(
0, σ2

)
. Assume that the maximum of the Frobenius

norms of the noise matrices is s̈. That is,

s̈ = max
l

(∥∥∥Ẅ (l)

0

∥∥∥
F
,
∥∥∥Ü (l)

0

∥∥∥
F
,max

r

∥∥∥Ẅ (l)

r

∥∥∥
F
,max

r

∥∥∥Ü (l)

r

∥∥∥
F
,max
r,j

∥∥∥Ü ⟨j⟩
r

∥∥∥
F

)

Now, let us calculate the perturbation bound.

max
(h,r,t)∈E

∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞

= max
(h,r,t)∈E

max
j∈{0,1}

|H̃
(L)

[h, :]Ũ
⟨j⟩
r

(
H̃

(L)
[t, :]

)⊤

−H(L)[h, :]U
⟨j⟩
r

(
H(L)[t, :]

)⊤
|

Recall that Φl = maxv ∥H(l)[v, :]∥2 and Ψl = maxv ∥H̃
(l)
[v, :]−H(l)[v, :]∥2.

For any (h, r, t) ∈ E ,

∣∣∣∣H̃(L)
[h, :]Ũ

⟨j⟩
r

(
H̃

(L)
[t, :]

)⊤
−H(L)[h, :]U

⟨j⟩
r

(
H(L)[t, :]

)⊤∣∣∣∣
=

∣∣∣∣(H̃(L)
[h, :]−H(L)[h, :] +H(L)[h, :]

)(
U

⟨j⟩
r + Ü

⟨j⟩
r

)(
H̃

(L)
[t, :]−H(L)[t, :] +H(L)[t, :]

)⊤
−H(L)[h, :]U

⟨j⟩
r

(
H(L)[t, :]

)⊤∣∣∣∣ (definition of Ũ
⟨j⟩
r )

=

∣∣∣∣(H̃(L)
[h, :]−H(L)[h, :]

)
U

⟨j⟩
r

(
H̃

(L)
[t, :]−H(L)[t, :] +H(L)[t, :]

)⊤
+H(L)[h, :]U

⟨j⟩
r

(
H̃

(L)
[t, :]−H(L)[t, :]

)⊤
+
(
H̃

(L)
[h, :]−H(L)[h, :] +H(L)[h, :]

)
Ü

⟨j⟩
r

(
H̃

(L)
[t, :]−H(L)[t, :] +H(L)[t, :]

)⊤∣∣∣∣
≤∥H̃

(L)
[h, :]−H(L)[h, :]∥2∥U

⟨j⟩
r ∥2

(
∥H̃

(L)
[t, :]−H(L)[t, :]∥2 + ∥H(L)[t, :]∥2

)
+ ∥H(L)[h, :]∥2∥U

⟨j⟩
r ∥2∥H̃

(L)
[t, :]−H(L)[t, :]∥2 (sub-additivity, sub-multiplicativity)

+
(
∥H̃

(L)
[h, :]−H(L)[h, :]∥2+ ∥H(L)[h, :]∥2

)∥∥∥Ü ⟨j⟩
r

∥∥∥
2

(
∥H̃

(L)
[t, :]−H(L)[t, :]∥2+ ∥H(L)[t, :]∥2

)
≤ΨL (ΨL + 2ΦL) sL+1 + (ΨL +ΦL)

2 s̈ (definitions of ΨL,ΦL, and sL+1)

Therefore,

max
(h,r,t)∈E

∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ ≤ ΨL(ΨL + 2ΦL)sL+1 + (ΨL +ΦL)
2s̈
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Note that we can calculate the upper bounds of ΦL and ΨL using Eq. (9) and Eq. (11), respectively. Then,

max
(h,r,t)∈E

∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞

≤ΨL(ΨL + 2ΦL)sL+1 + (ΨL +ΦL)
2s̈

≤ηL

(
L∏
i=1

(si + s̈)−
L∏
i=1

si

)(
ηL

(
L∏
i=1

(si + s̈)−
L∏
i=1

si

)
+ 2ηL

L∏
i=1

si

)
sL+1

+

(
ηL

(
L∏
i=1

(si + s̈)−
L∏
i=1

si

)
+ ηL

L∏
i=1

si

)2

s̈

=η2L

( L∏
i=1

(si + s̈)

)2

−

(
L∏
i=1

si

)2
 sL+1 + η2L

(
L∏
i=1

(si + s̈)

)2

s̈

=η2L

( L∏
i=1

(si + s̈)

)2

−

(
L∏
i=1

si

)2
sL+1 +

(
L∏
i=1

(si + s̈)

)2

s̈


≤η2L

((
(s+ s̈)

2L − s2L
)
s+ (s+ s̈)

2L
s̈
)

(definition of s)

=η2L

(
(s+ s̈)

2L+1 − s2L+1
)

(15)

Generalization bound of ReED with semantic matching decoder Recall that we set the prior distribution P as
N
(
0nw , σ

2Inw×nw

)
. Since the distribution of the perturbed parameters Qw+ẅ is N

(
w, σ2Inw×nw

)
, the distribution of

the perturbation is N
(
0nw , σ

2Inw×nw

)
. For the perturbation matrices that follow the normal distribution, we can derive

the following by replacing the standard normal variable in Corollary 4.2. in Tropp [48] with a random variable following the
normal distribution having the mean of 0 and the variance of σ2.

P
(
∥Ẅ

(l)

0 ∥2 ≥ s̈
)
≤ (dl−1 + dl)e

−s̈2/(2max(dl−1,dl)σ
2) ≤ 2de−s̈

2/(2dσ2)

P
(
∥Ü

(l)

0 ∥2 ≥ s̈
)
≤ (d′l−1 + d′l)e

−s̈2/(2max(d′l−1,d
′
l)σ

2) ≤ 2de−s̈
2/(2dσ2)

P
(
∥Ẅ

(l)

r ∥2 ≥ s̈
)
≤ (dl−1 + dl)e

−s̈2/(2max(dl−1,dl)σ
2) ≤ 2de−s̈

2/(2dσ2)

P
(
∥Ü

(l)

r ∥2 ≥ s̈
)
≤ (d′l−1 + dl)e

−s̈2/(2max(d′l−1,dl)σ
2) ≤ 2de−s̈

2/(2dσ2)

P
(
∥Ü

⟨j⟩
r ∥2 ≥ s̈

)
≤ 2dLe

−s̈2/(2dLσ2) ≤ 2de−s̈
2/(2dσ2)

Using Bernoulli’s inequality, we can derive that the probability of all perturbation matrices having the spectral norm less
than s̈ is greater than or equal to 1− 2Nwde

−s̈2/(2dσ2), where Nw = 2 · L+ 2 · |R|L+ 2|R| = 2 · |R|L+ 2|R|+ 2L is
the number of perturbation matrices.

To satisfy the condition of Theorem 4.3, we set 2Nwde
−s̈2/(2dσ2) = 1/2. Then, we get s̈ = σ

√
2d ln (4Nwd). Since the

prior is independent of the learned parameters w, we cannot directly use s to formulate σ. Therefore, we approximate s
with s̊ in the following range.

|s− s̊| ≤ 1

2L+ 2
s =⇒ 2L+ 1

2L+ 2
s ≤ s̊ ≤ 2L+ 3

2L+ 2
s
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Additionally, we assume s̈ ≤ 1
2L+2s. Then, if

max
(h,r,t)

∥fw+ẅ(h, r, t)− fw(h, r, t)∥∞ ≤ η2L
(
(s+ s̈)2L+1 − s2L+1

)
(Eq.(15))

≤ η2Ls̈(2L+ 1)(s+ s̈)2L (0 ≤ s ≤ s+ s̈)

≤ η2Ls̈(2L+ 1)s2L
(
1 +

1

2L+ 2

)2L (
s̈ ≤ 1

2L+ 2
s

)
≤ η2Ls̈(2L+ 1)

(
2L+ 2

2L+ 1
s̊

)2L(
1 +

1

2L+ 2

)2L

(range of s̊)

= η2Ls̈(2L+ 1)̊s2L
(
1 +

2

2L+ 1

)2L

≤ η2Ls̈(2L+ 1)̊s2Le2 ≤ γ

4

((
1 +

1

x

)x
≤ e, ∀x ≥ 0

)

is satisfied, we meet the condition of Theorem 4.3. With s̈ = σ
√

2d ln (4Nwd), we have

s̈ = σ
√
2d ln (4Nwd) ≤

γ

4e2(2L+ 1)η2Ls̊
2L

→σ ≤ 1√
2d ln (4Nwd)

(
γ

4e2(2L+ 1)η2Ls̊
2L

)

By setting σ = 1√
2d ln (4Nwd)

(
γ

4e2(2L+1)η2Ls̊
2L

)
, we can calculate DKL(Qw+ẅ∥P).

DKL(Qw+ẅ∥P) =
∥w∥22
2σ2

(KL divergence between two normal distributions)

=
2d ln (4Nwd)

2
(

γ
4e2(2L+1)η2Ls̊

2L

)2 (∑ ∥W ∥2F
)

≤ (4e2(2L+ 1)η2Ls̊
2L)2d ln (4Nwd)

γ2
Nws

2

≤
Nws

2

(
4e2(2L+ 1)η2L

(
2L+3
2L+2s

)2L)2

d ln (4Nwd)

γ2
(range of s̊)

≤ Nws
2(4e3(2L+ 1)η2Ls

2L)2d ln (4Nwd)

γ2

((
1 +

1

x

)x
≤ e, ∀x ≥ 0

)
=

16e6Nw(2L+ 1)
2
η4Ls

4L+2d ln (4Nwd)

γ2

From Theorem 4.3, we get

L0,E(fw) ≤ Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

2|Ê |

[
2DKL(Qw+ẅ∥P) + ln

4θ(|Ê |, |E|)
δ

]

≤Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

|Ê |

[
16e6Nw(2L+ 1)2η4Ls

4L+2d ln (4Nwd)

γ2
+

1

2
ln

4θ(|Ê |, |E|)
δ

]
(16)
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Now, let us find some range of s such that Theorem 4.5 trivially holds. First, if

∥fw(h, r, t)∥∞ ≤ max

(∣∣∣∣H(L)[h, :]U
⟨1⟩
r

(
H(L)[t, :]

)⊤∣∣∣∣ , ∣∣∣∣H(L)[h, :]U
⟨2⟩
r

(
H(L)[t, :]

)⊤∣∣∣∣)

≤ Φ2
LsL+1 ≤ sη2L

(
L∏
i=1

si

)2

≤ η2Ls
2L+1 <

γ

2

→ s <

(
γ

2η2L

) 1
2L+1

then Theorem 4.5 trivially holds since L0,E(fw) = Lγ,Ê(fw) = 1 when ∥fw(h, r, t)∥∞ < γ
2 holds for all (h, r, t) ∈ E .

Also, if

√√√√1− |Ê|
|E|

|Ê |

[
16e6Nw(2L+ 1)

2
η4Ls

4L+2d ln (4Nwd)

γ2
+

1

2
ln

4θ(|Ê |, |E|)
δ

]
≥

√√√√1− |Ê|
|E|

|Ê |
4s4L+2η4L

γ2
> 1

→ s >

 γ

2η2L

√√√√ |Ê |

1− |Ê|
|E|

 1
2L+1

then Theorem 4.5 holds regardless of the value of L0,E(fw) and Lγ,Ê(fw) because the value of the loss cannot exceed 1.
Therefore, we only need to consider s in range

(
γ

2η2L

) 1
2L+1

≤ s ≤

 γ

2η2L

√√√√ |Ê |

1− |Ê|
|E|

 1
2L+1

(17)

We also need to check whether the assumption s̈ ≤ 1
2L+2s holds in this range. Note that if γ

4e2(2L+1)η2L(
2L+1
2L+2 s)

2L ≤ 1
2L+2s

holds, then the assumption also holds since s̈ = γ
4e2(2L+1)η2Ls̊

2L ≤ γ

4e2(2L+1)η2L(
2L+1
2L+2 s)

2L . With a simple calculation, we get

s2L+1 ≥ (2L+ 2)γ

4e2(2L+ 1)η2L

(
2L+1
2L+2

)2L
The above inequality holds if s is in the range of Eq. (17) since

(2L+ 2)γ

4e2(2L+ 1)η2L

(
2L+1
2L+2

)2L =
γ

4e2η2L

(
1 +

1

2L+ 1

)2L+1

≤ γ

4eη2L
≤ γ

2η2L
≤ s2L+1

((
1 +

1

x

)x
≤ e,∀x ≥ 0

)

Therefore, we only need to consider Eq. (17) because otherwise Theorem 4.5 holds regardless of the choice of σ. While
Eq. (16) holds with probability 1 − δ, it only holds for s such that 2L+1

2L+2s ≤ s̊ ≤ 2L+3
2L+2s. To make Eq. (16) hold for

all s in range Eq. (17), we need to select multiple s̊ so that any s in range Eq. (17) can be covered. By assuming that

|s− s̊| ≤ 1
2L+2

(
γ

2η2L

) 1
2L+1 ≤ 1

2L+2s, we can calculate the number of s̊ we need to consider, i.e., the size of covering C, by

dividing the length of the range of s in Eq. (17) by the length of each cover, i.e., 2
2L+2

(
γ

2η2L

) 1
2L+1

. Let |C| denote the size of

covering C. By simple division, we get |C| = (2L+2)
2

((√
1

|Ê|
− 1

|E|

)− 1
2L+1

− 1

)
. Using Bernoulli’s inequality, we can
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Table 4: Dataset Statistic

|V| |R| |Ê | |E|
FB15K237 1,496 179 41,873 52,318
CoDEx-M 2,684 42 17,951 22,224
UMLS-43 133 43 10,174 12,732

conclude that the probability of Eq. (16) holding simultaneously for |C| choices of s̊ is 1− |C|δ. Therefore,

L0,E(fw) ≤Lγ,Ê(fw) +

√√√√1− |Ê|
|E|

|Ê |

[
16e6Nw(2L+ 1)

2
η4Ls

4L+2d ln (4Nwd)

γ2
+

1

2
ln

4θ(|Ê |, |E|)|C|
δ

]

≤Lγ,Ê(fw) +O


√√√√1− |Ê|

|E|

|Ê |

[
NwL2η4Ls

4Ld ln (Nwd)

γ2
+ ln

θ(|Ê |, |E|)
δ

]
holds with probability of 1− |C| · δ

|C| = 1− δ.

E. Experimental Details
We conduct experiments on three real-world knowledge graphs: FB15K237 [47], CoDEx-M [40], and UMLS-43 [7; 27],
shown in Table 4. We generate smaller versions of FB15K237 and CoDEx-M via graph sampling [46] for ease of analysis.
We create smaller versions of FB15K237 [47] and CoDEx-M [40] using a standard graph sampling [46] and consider them
as fully observed knowledge graphs G for easier analysis. Specifically, we randomly sample five seed entities for FB15K237
and ten seed entities for CoDEx-M. From the seed entities, we randomly sample 30 neighboring entities per hop for two
hops. Then, we take all sampled entities and the triplets between them. While CoDEx-M contains negative triplets (i.e., false
triplets needed for training a triplet classifier), FB15K237 and UMLS-43 do not include negative triplets. For these datasets,
we create negative triplets by corrupting either a head or a tail entity of each positive triplet, following Socher et al. [44].

We set d1 = d2 = · · · = dL = dL+1 for all datasets. We use d1 = 96 for FB15K237, d1 = 64 for CoDEx-M, and d1 = 48
for UMLS-43. For RAMP+TD, we set the learning rate to be 0.0003 on FB15K237, 0.0005 for CoDEx-M, and 0.0002 for
UMLS-43. For RAMP+SM, we set the learning rate to be 0.0005 for all datasets. We set the margin of the margin loss for
FB15K237 and CoDEx-M to be 0.5, and 0.75 for UMLS-43 and run all models for 2,000 epochs.

In our implementation of ReED, we use the Adam optimizer [20]. When implementing ReED, we used python 3.8 and
PyTorch 1.12.1 with cudatoolkit 11.3. We run all our experiments using NVIDIA GeForce RTX 2080 Ti. We repeat each
experiment ten times with the random seeds: 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90. Our code and data are available at
https://github.com/bdi-lab/ReED where more details about the experiments are explained in the README
file.
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