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Abstract: In biological behavioral experiments precise location and tracking of living organisms is of great importance.
In particular, reliable and accurate video/vision based detection and tracking of mobile agents (animals) in a swarm can
provide valuable information on movement responses, on interaction between individuals, and the influence of the envi-
ronment’s geometry and other factors on the emergence of collective behaviour. In this work we present a computer-vision
software tool called the LocusTracker, developed for research on the swarming behaviours of locusts. The tool enables
tracking individual locusts in a group, and was deployed in various environments for several hours, without disturbances
that would be inherent when using physical markers on the moving insects. The tool is an advanced computer-vision-
based multiple blob detection and tracking system that can serve as a useful platform for research on biological and robotic
multi-agent collective behaviours, and hence is released as an open-source software tool for the scientific community.

Keywords: Biological Swarm Tracking and Analysis, Multi-Agent Trajectory Tracking, Video-based Detection and
Tracking, Bio-Inspired Robotics Tracking, Locust Trajectory Analysis

1. INTRODUCTION

Insect tracking is a critical step in understanding and
modelling motions of natural swarms. In this work a
new computer-vision software tool, called LocusTracker
is used for locust trajectory prediction. The tool is based
on the principles of tracking by detection and association
and enables tracking of individual locusts in various lab-
oratory environments and can be used for tracking and
analysis of other insect species and bio-inspired robots as
well.

The focus of this tracker is to track locusts in dense
and cluttered environments that simulates the close prox-
imity of locusts in nature. We relied on physical models
of urban environments developed in [1] as examples of
challenging and intricate physical environments that ad-
mit locusts to cluster in very close proximity to one an-
other.

Since the locusts are small and visually indistin-
guishable, even state-of-the-art deep learning detectors
and trackers do not provide sufficiently accurate results.
Hence, the challenge in developing this tracker was in
tracking similarly appearing locusts for very long time
periods of several hours without the usage of physical
markers on individual locusts.

Using physical markers, such as QR codes, to accu-
rately track insects in controlled laboratory environments
is a standard approach in the biological community, how-
ever this method requires usage of very high resolution
cameras that observe a relatively small environment, in
order to have sufficient pixel resolution to read and de-
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cipher the markers that are attached to locusts. Further-
more, since locusts tend to form dense clusters and some-
times even climb on top of each other, these markers can
become occluded, leading to the inability to identify and
track insects. Additionally, usage of such markers does
not allow tracking of locusts and other animals in the
wild, while the developed LocusTracker software does
not have these limitations and hence can be used in other
environments to track different animals that perform col-
lective motions as well.

LocusTracker is used to detect locusts in 2 dimen-
sional environments including free-space environments
of various geometries and shapes as well as in environ-
ments which imitate models of cities, while the locusts
are still on the ground. However, the provided software
can be used to track and analyze motions locusts and
other animals in 3 dimensional space as well. Fig. 1 dis-
plays a typical locust used in the experiment, one of the
environments in which locusts are tracked and a resulting
trajectory of one of the locusts.

By analyzing the resulting trajectories which are gen-
erated without the placement of any physical markers on
the locusts we hope to gain a deeper understanding of
their behavior, based on the characteristics of the envi-
ronment in which the locusts are placed. We publish the
LocusTracker code as an open-source framework 1 for the
benefit of the community. We present the design criteria
the locust detection and tracking algorithm is based upon.

1https://github.com/RoeeFrancos1990/
LocusTracker.git

© SWARM 2024 All Rights Reserved.

SWARM2024: The 8th International Symposium on Swarm Behavior and Bio-Inspired Robotics

174



Fig. 1 Top left- typical locust used in the experiment, top
right- zoom in on locusts inside a section of the maze,
bottom left- full view of all locusts in one of the maze
environments, bottom right- an example of a locust
trajectory in the environment.

2. OVERVIEW AND COMPARISON TO
RELATED RESEARCH

The problem of analysis of collective motion of lo-
custs/ants and miniature robot-swarms in various envi-
ronments requires several capabilities: location of the in-
dividual mobile agents, tracking and recording their tra-
jectories, resolving collisions and occlusions, and reverse
engineering the local inter-agent interactions.

Previous approaches mainly use markers affixed to the
agents for location identification and tracking in conjunc-
tion with video capture based methods involving detec-
tion and tracking of markers. Marker based methods are
used since they offer an easy solution for re-identification
following occlusions and aggregations.

Their drawbacks are that they inherently cause distur-
bances to the observed animals. Additionally, markers
can become occluded in case the animals are in close
proximity to one another, or when they climb on each
other as is often seen in the locust experiments we con-
ducted. Furthermore, cameras with very high resolution
are required in order to decipher the markers readings.

The solution we propose uses video based marker-
less methods that employ standard cameras along with
sophisticated computer-vision detection, tracking and re-
identification methods. This is the approach we describe
below.

There were markerless systems deployed before, how-
ever they suffer from several drawbacks that led to the
majority of the studies to be conducted using systems that
rely on markers. Drawbacks of previous markerless sys-
tems included problems with aggregation and poor long-
time tracking performance, and none of these systems
met all our design goals which included simultaneously
tracking a large number of insects for very long time hori-
zons of several hours along with a deployment in com-
plex obstacle filled environments with significant animal
encounters, aggregations and occlusions.

The technical problems overcome by our method were
perfectly identifying moving locusts using motion-based
difference images, accurate background subtraction that
enabled detection of locusts that manifest themselves in
a very small number of pixels, and development of com-
plex logic that resolves occlusions and trajectory associ-
ation conflicts when locusts aggregate.

We describe below the works closely related to our
LocusTracker. These works may be categorized as be-
ing marker-based or markerless methods, single or multi-
ple multi-agent trackers, classical or deep-learning based
methods, simple vs. complex environments and short vs.
long time horizon tracking.

During the last decades there have been attempts to au-
tomate, measure and quantify experimental data on emer-
gent behaviour in several types of insect swarms. In con-
junction with these efforts in data gathering, the interdis-
ciplinary multi-agent community developed various lo-
cal interaction models drawing inspiration from biologi-
cal swarms.

In [2], a pursuit model that aims to explain why ant
trails starting from an anthill to a food source are straight,
even though ants do not have any sense of geometry was
developed. In [3], an early simple model was introduced
to investigate the emergence of coherent motion in sys-
tems of particles with biologically motivated interactions.
Several early reviews investigated observation-based col-
lective motion, emphasizing the basic laws that may un-
derly various factors influencing collective motion [4].
Others considered design and analysis methods in swarm
robotics that are inspired by collective motion from an
engineering perspective [5].

Towards developing an understanding of insect-swarm
emergent behaviour and dynamics in laboratory condi-
tions, studies such as [6] were performed, offering quanti-
tative data that can be used as a benchmark for comparing
the characteristics of animal aggregation models. Several
recent studies focused specifically on studying and mod-
elling of locust collective motion. The study in [7] re-
views advances in locust collective motion and its mod-
eling from both biological and statistical physics perspec-
tives towards the goal of analyzing and predicting swarm
dynamics of natural locust swarms as well as behaviours
of locust swarms in laboratory experiments. In [8], col-
lective motion and walking kinematics of locusts are in-
ferred based on the characterization and adaptations of
the behavioral state of the individual locust before, dur-
ing, and after a specimen is a part of a swarm. Authors
found that participation in collective motion induced in
the individual locust unique behavioral kinematics, im-
ply the existence of a distinct behavioral mode referred
to as a “collective-motion-state” that is long lasting and
occurs only for locusts that participate in collective mo-
tion experiments.

In [1], integration of urban design and animal science
has led to the development of methods for examining the
connections between urban layout and physical move-
ment. This approach involves the creation of a struc-
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tured process to assess mobility efficiency across differ-
ent urban environments by leveraging experimental data
on dynamic behavior of living organisms, such as locusts,
within miniature city models. By utilizing these natural-
biological agents as indicators of flow, the research of-
fers valuable insights into the complex interplay of flows
within urban landscapes. Within the context of this work,
LocusTracker was developed.

Several of these works studied interesting problems
concerned with developing proven mathematical mod-
els of locust interactions in laboratory conditions as
they were observed through visual recordings of locust
swarms. In [9], a simple model investigating collective
marching of locusts in a ring environment was devel-
oped with the goal of explaining emergence of collective
clockwise or counterclockwise movements of the locust
swarm. In [10], a locust-inspired random pairwise in-
teraction model is developed, proving that local interac-
tions that happen at encounters can account for interest-
ing emergent global phenomena.

In [11], a vision-based system for social insect track-
ing is presented. The method uses markers to track the
location of a honeybee queen inside a bee colony. The
markers are attached only to the queen bee allowing the
researchers to reason about queen and worker bee inter-
actions. The focus is on tracking a single queen bee for
long periods of time.

The authors use a special marker called WhyCode [12]
that allows them to use a camera with slightly lower res-
olution compared to usage of Aruco [13] markers. Us-
ing this marker type allows to track markers when they
occupy 25 pixels or more, compared to 50 using Aruco.
As stated earlier, marker based tracking of interacting in-
sects results in marker occlusions and detection loss at
meetings. The authors indeed experience this and pro-
pose a method to fix the detection drift once the marker
is detected again.

As in our setting, honeybee colonies present chal-
lenges for detection and tracking due to the high den-
sity of specimens that constantly move and occlude each
other. A major difference between the previous work and
LocusTracker is that we aim to simultaneously track large
numbers of similarly appearing insects rather than track-
ing a single more important insect that is indistinguish-
able from the rest of the swarm.

In [14], an early work concerning automatic marker-
less tracking and analysis of live insect colonies by us-
age of computer vision algorithms is developed. With a
similar goal as in LocusTracker, this work aims to track
hundreds of small insects simultaneously and afterwards
analyze ensuing colony behaviours. Tracking of ants is
performed using combined color-based and movement-
based tracking. Before this work was published, insect
paths were mainly recorded manually through careful ob-
servation by specialists. Although the goal of this work
was to track hundreds of animals, only experiments with
several ants in free space recorded for several minutes are
reported.

In [15], individual pause-and-go motion is shown to
be instrumental in the formation and maintenance of
swarms of marching locust nymphs. The principal in-
teractions leading to the emergence of order in the ob-
served swarms are studied both experimentally, using
small groups of marching locusts in the lab, and through
computer simulations. A custom-built markerless multi-
ple locusts tracking system is developed to analyze mo-
tions of locust nymphs in a homogenous circular arena.
The tracking system developed consists of three main
components: foreground-background analysis, connec-
tivity for cohesive region creation, and trajectory asso-
ciation using Voronoi partitioning.

While both our tracker and the one developed in [15]
share the common objective of tracking locusts, there
are several notable differences between the two meth-
ods. In LocusTracker we employ a background subtrac-
tion method tailored to the more complex environment
we use in our experiments. Additionally, the trajectory
association module uses a different set of rules, and we
have incorporated a unique locust cluster analysis mod-
ule into LocusTracker.

In [16], a multiple object tracking system is developed
for insect behavior research, enabling long-term tracking
without usage of invasive markers. The method identifies
pixels belonging to roaches by relying on different color
statistics between roaches and the background. Similar
to our approach, the system uses prior knowledge on the
number of tracked insects to maintain long trajectories.
In case tracked insects are close to each other, pixels be-
longing to the bounding boxes that surround them are dis-
carded so that each bounding box contains a single insect,
which is different than the cluster analysis we perform in
LocusTracker. An additional limitation of [16], is that
it assumes distinct insect centroids, which may not hold
for swarming animals. Furthermore, the arena analyzed
is simplistic and does not contain obstacles or occlusions
and there is no special logic for tracking large numbers of
insects as in LocusTracker. In [17], an additional mark-
erless multiple animal tracker is proposed. This software
suite enables the user to choose between several visual
trackers, provides an easy to use graphical user interface
as well as a manual tracking error correction system.

Markerless tracking of an entire colony of honeybees
is investigated in [18]. The output trajectories provide
data for quantitative studies of collective bee behaviour
such as comb-cell activities and waggle dances. As in our
setting, authors aim to track hundreds of similarly look-
ing honeybees in dense environments and achieve this by
training a deep convolutional network that performs pixel
level foreground-background segmentation.

Interestingly, the authors develop a training mecha-
nism that enables them to utilize visual features of bees
that appear identical to the human eye to improve track-
ing performance. The aim is to train a deep network to
generate a distinguishable visual signature for each bee
that manifests in a different feature vector embedding
for different bees. This embedding is used as an addi-
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tional input to the logical matching process between de-
tections of bees in subsequent frames along with position
and motion-based matching.

In [19], a computer-vision based markerless outdoor
insect counting and tracking system that performs be-
haviour analysis for pollination purposes is developed.
The goal of this work is automatically gather informa-
tion on insect distributions to predict pollination efficacy
and assist in precision pollination. The authors focus on
classifying various species of insects and on gathering in-
formation across large spatial extents.

Similarly to our setting, the authors argue that while
tagging insects with markers assists in tracking them
across large areas, placing such markers is cumbersome,
can affect insect behaviour and is not practical for gath-
ering information across large areas [20].

However, the major challenge [20] focuses on is track-
ing insects across varying illumination effects that change
foreground and background statistics. Since in our case
we were primarily interested in tracking identical ani-
mals for long time horizons with simple cameras we relax
the requirement on being adaptive to varying illumination
conditions. Despite the remarkable outdoor performance,
the authors did not need to handle crowded and congested
locations where many insects are located in close proxim-
ity to one another as with LocusTracker.

In [21], BugTracker, an open-source software suite for
tracking and measuring arthropod activity is developed.
Like our tracker, BugTracker is a markerless tracker that
aims to be less sensitive to illumination changes in the
environment where arthropods are being tracked. Bug-
Tracker relies on the well known CSRT tracker [22] (dis-
criminative correlation filter with channel and spatial re-
liability). The authors examined several computer vision
technologies suitable for tracking of insects in laboratory
environments.

Although related to our work, BugTracker solves a
simpler problem than LocusTracker since it tracks only
a single insect in a simple environment that does not con-
tain obstacles, and hence does not need to handle occlu-
sions, shadows from insects near obstacles and aggrega-
tion of insects whose individual trajectories need to be
resolved using conflict resolution algorithms and cluster
analysis methods. Furthermore, results reported consid-
ered tracking of an insect for few tens of seconds while
in LocusTracker we can track dozens of insects for hours.
Additionally, relying on the CSRT tracker will not as-
sist in tracking identically looking insects like locusts and
will result in identity switches.

In [23], a markerless multitracking algorithm that ex-
tracts a characterizing intensity and distance based de-
scriptor from each zebra fish that is observed in an ex-
periment is developed. The obtained descriptors are then
used to identify the individual fish and track their mo-
tions while attempting to preserve their identity. In [24],
a more advanced version of the tracking algorithm pro-
posed in [23] is proposed. Instead of using intensity and
distance based descriptors to identify tracked animals,

the authors train a classification network that predicts the
identity of a detected animal, and later use these descrip-
tors as a signature in order to identify the same animals
the deep network was trained upon, thus assisting with
managing ID conflicts in the assignment stage and the tra-
jectory generation stage. While these approaches provide
animal re-identification capabilities, it is not straightfor-
ward to apply them in the scenario we discuss due to
the similar appearance of tracked locusts, their proxim-
ity, and the amount of locust interactions that causes large
clusters of locusts to form.

3. CONTRIBUTIONS
The proposed LocusTracker software tool offers sev-

eral practical contributions and advantages over existing
biological and robotic multi-agent tracking methods and
is particularly suited for tracking agents in dense environ-
ments in which agents are in very close proximity to one
another, and exhibit collective and swarming behaviours.
• The tool enables tracking of individual locusts in com-
plicated and obstacle strewn environments for very long
time horizons of several hours without the usage of phys-
ical markers on the agents. This implies that agents of
all sizes can be tracked in large environments without re-
quiring strict resolution constraints and without suffering
from misdetections due to marker occlusions.
• The tool is designed to address tracking of identically
looking biological agents exhibiting collective behaviour
in laboratory environments.
• The tool allows to fully determine and control the out-
puts of the tracker that can later be used for careful sta-
tistical analysis of the parameters extracted. The con-
straints that influence the tracking algorithm can also be
controlled and new functionalities can be added based on
the particular needs of the user.
• One click open source Python software. The user only
needs to click on the corners of the environment in which
agents are to be tracked. This alleviates constraints of
carefully positioning the camera over the area of interest.

4. ALGORITHMIC OVERVIEW OF
VISUAL TRACKING OF LOCUSTS IN

LABORATORY ENVIRONMENTS
In this section we present the main algorithmic com-

ponents of LocusTracker and its operation principles. Lo-
cusTracker consists of six main modules. The first is a
background subtraction module that is used to detect the
locations of locusts based on the difference between the
current frame and a reference image of an empty environ-
ment that does not contain locusts. This process makes
LocusTracker less sensitive to illumination changes that
occur in different environments and under different light-
ing conditions.

The second module, the blob detection module, aims
to detect and identify locusts or cluster of locusts. The
input to this module is the foreground image generated by
the background subtraction module. Locusts are detected
based on various properties locusts exhibit such as their
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shape and size.
The third module is a locust trajectory association

module. This module gets as input a set of candidate
points that represent the center of mass of each detected
locust in the current frame as well as information on the
locations of locusts that were detected in previous frames.

The goal of this model is to determine how to associate
the newly detected potential locations of locusts to the
previous trajectories of other locusts. Since the locusts
are visually indistinguishable from each other, the match-
ing between candidate points and trajectories is based on
a set of logical constraints that were inferred from obser-
vations on the movement patterns of locusts in various
environment models recorded in the Ayali lab at Tel Aviv
university. These constraints will be elaborated upon in
the next sections.

The fourth module is responsible for locust cluster
analysis and aims at identifying whether detected objects
are part of a locust cluster and if so, how many are in
the detected cluster. Furthermore, this module is also re-
sponsible to manage IDs of locusts that form, enter and
exit existing clusters in order to continue their individ-
ual tracking once they leave the cluster. When locusts
are part of a locust cluster, all locusts in the cluster are
formally assumed to be located at the same point at the
cluster’s center.

The fifth module’s task is to extract meaningful param-
eters for the statistical analysis and the locomotion evalu-
ation subsequently performed. This information includes
many parameters such as locations of locusts, speed, an-
gle of movement, whether they are stationary or moving,
if they are part of a cluster, close to a detected corner in
the environment and more. A detailed description on the
extracted parameters and how they are calculated is pro-
vided in a dedicated section.

The sixth module’s goal is to visualize the extracted
results in a number of ways to better understand the
movements and behaviours of locusts in the environment.
Among the outputs of this module are a heat map showing
the magnitude of the concentration of locusts in different
parts of the environment as a function of time, visualiza-
tions of the trajectories of individual locusts during the
experiment as well a video file showing the movements
of locusts across time.

Fig. 2 shows a block diagram description of the algo-
rithmic components of LocusTracker. Fig. 3 shows track-
ing of locusts in a particular snapshot of time at several
analyzed city models.

4.1. Background Subtraction Module
The purpose of this module is obtain a difference im-

age between the current frame and a frame of an empty
city model prior to the introduction of locusts into it.
The goal is to detect potential areas in which locusts are
present in order to later track them. Since we are us-
ing a controlled laboratory environment we can guarantee
that the light properties of the scene remain almost fixed
throughout the experiment and therefore we can use an
image of the empty environment to detect changes in the

Fig. 2 Block diagram of the algorithmic components
used in LocusTracker.

images that occur only due to the presence of locusts.
It is worth noting that to ensure that locusts do not hop

outside of the arena, it is covered by an almost transparent
fiberglass cover. Since the cover must be as transparent
as possible in order to allow the obtained recorded im-
age to be of good quality, we must also handle reflections
arising from the light sources in the environment. Using
the background subtraction model allows us to control
the lightning in the arena, attempt to make all parts of it
evenly lit and still be able to remove reflections from the
recorded images.

The left image of Fig. 4 presents an environment
model before locusts are introduced into it. The mid-
dle image displays a typical frame in the analyzed videos
showing locusts inside the arena. The right image shows
the absolute difference image obtained between the mid-
dle image and the left image, mainly highlighting pixels
in which locusts are located.

4.2. Blob Locust Detection Module
The second module, the blob locust detection module,

aims to detect individual locusts or locust clusters from
the foreground image obtained from the background sub-
traction module. Since all tracked locusts are about the
same size, we can utilize this knowledge to determine the
number of locusts that belong to a detected locust blob.

In this module several filters are applied to the image
in order to obtain only blobs that have the typical size of
locusts we are looking for. These filters allow to further
remove reflections and other sources of noise from the
image. Each detected locust blob is represented using its
center of mass which is computed after the blob’s contour
is extracted. The calculated center of mass serves as the
point associated with the locust in the current frame.

In case the area of a detected blob is larger than the
typical area of a locust (this occurs when locusts are very
close to each other or one on top of the other), we can
determine the number of locusts in a cluster based on
the blob’s area. Since we are operating in a multi-agent
paradigm at which all agents are identical, all of them
have the same size. This is also true in the biological sce-
nario investigated since all the locusts have exactly the
same characteristics in terms of size.

The output of this module (in every frame) is a list of
the locusts blob’s centers, the number of locusts in each
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Fig. 3 Each picture shows the tracking of locusts in a particular snapshot of time. The left image shows locusts being
tracked in the Cairo city model, the center image shows locusts tracked in the New York city model, the left image
shows locusts tracked in the Rome city model.

Fig. 4 Background Subtraction Module. The left image displays the empty arena before locusts are introduced into it.
The middle image shows locusts inside the arena. The right image shows the resulting thresholded absolute difference
image, where high intensity pixels mainly indicate locations of locusts in the current frame.

blob, and whether a detected blob is a cluster containing
more than a single locust. Additionally, we use the min-
imal Euclidean distance between detected locusts, a dis-
tance corresponding to a locust size, as a filtering measure
to ensure that only a single candidate point is detected for
each locust. Fig. 5 displays the detected blob centers as
white circles.

Based on the distance of the camera and the arena the
average locust blob has a radius of 21 pixels. If animals
having different sizes are being observed, or the arena is
photographed at other distances than the average size of
the observed animal needs to be assessed and provided to
the model in order for it to accurately assess locations of
observed individuals and density of entities inside each
detected cluster.

Fig. 5 An obtained difference image with white circles
indicating detected locusts or locust clusters.

4.3. Locust Trajectory Association Module
The goal of this module is to associate detected points

in the current frame to previously detected points in order
to form long locust trajectories. Many experiments and
trials on the required logical conditions were performed

in order to determine the most suitable constraints neces-
sary to match locust candidate locations detected in previ-
ous frames to candidate locations detected in the current
frame.

Among the logical conditions used in the association
module are: number of detected locusts, locust orienta-
tion, distance marched, a locust’s maximal speed (includ-
ing its possibility to hop), the time (frame) at which lo-
custs are detected, whether a candidate locust point be-
longs to a cluster, the maximal number of locusts in the
environment, the current and previous locations of detect
locusts, and the maximal time a locust can remain sta-
tionary. Throughout the detection and locust trajectory
generation process there are 3 possible cases:

1. The number of existing locust trajectories is smaller
than the number of detected locusts in the current frame.
2. The number of existing locust trajectories is equal to
the number of detected locusts in the current frame.
3. The number of existing locust trajectories is greater
than the number of detected locusts in the current frame.

After each locust blob’s center is determined we must
match the newly detected locust locations to the previous
trajectories. The requirement is to match a single can-
didate point to a single trajectory. At first, we sort the
distances from each detected point in the current frame
to the last point in all previous locust trajectories. We
choose the trajectory that has the closest point in any of
the previous trajectories to the candidate point as the po-
tential trajectory we wish to add the new candidate point
into. In case the distance between the candidate point to
the previous latest point in the chosen locust trajectory is
smaller than the maximal distance a locust can travel, and
the time that passed since this last point was added to the
trajectory list is below the time limit a locust can remain
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stationary we add the new candidate point to the locust
trajectory.

If a detected locust point is at a greater distance than
allowed (based on the maximal possible locust speed and
the time that passed since the last time this locust was
detected), a new trajectory is formed starting from the
current locust point. This logic is useful since sometimes
locusts tend to cluster together and therefore we cannot
always start the tracking of locusts with an individual tra-
jectory for every locust. Only after locusts move away
from each other throughout the experiment we can assign
them an identity that is separated from the cluster they
belonged to and start aggregating their trajectory.

Once a locust departs from a cluster, the location of the
center point of the cluster is used as the particular locust’s
position at the time intervals it belonged to the cluster.
Therefore, each trajectory of a certain locust is composed
of time intervals at which it belonged to a cluster and time
intervals at which it is considered as an individual locust.
Once a locust point is matched to a certain trajectory it
is removed from the list of current points and the next
candidate points are matched to the remaining trajectories
that locusts were not matched to in the current frame.

In case a locust leaves a locust cluster and the maximal
number of locusts were already detected, its location is
added to the trajectory of the locust whose last trajectory
point is closest to the newly detected point. This logic is
used in order to allow the generated locust trajectories to
be long and extend to the duration of the recorded video.
Therefore, we use prior knowledge on the number of lo-
custs in the environment. This procedure is continued
until all new detected locusts locations are added to the
previous locust trajectories or start forming new trajecto-
ries. In order to provide the association module a param-
eter that filters motions of locusts based on their heading
angle, a maximal turning angle of 3 degrees is used to
connect current and past locations of detected locusts.

4.4. Locust Cluster Analysis
The goal of this module is to determine whether a

detected locust blob contains more than a single locust
based on the typical size of the observed locusts. If this is
indeed the case, then the number of locusts in the cluster
is determined based on its area. Furthermore, this mod-
ule is also responsible to manage IDs of locusts that form,
enter and exit existing clusters to continue their individ-
ual tracking once they leave the cluster. When locusts are
part of a cluster, all locusts in the cluster are assumed to
be located at the same point at the center of the cluster. In
order to manage the IDs of the locusts inside each cluster
we use several logical conditions. This is performed in
order to accommodate several possible scenarios:
1. Forming of a new cluster- this occurs when two or
more locusts that were previously apart from each other
move to be in close proximity to one another.
2. Exiting of a locust from a cluster- this occurs when a
certain locusts moves away from a cluster it was previ-
ously a part of.
3. Merging of clusters- this happens when two clusters

become closer to one another and form a larger merged
cluster.
4. Separation of clusters- this happens when a larger
cluster breaks up into two separate smaller clusters.
5. Breaking of a cluster- this occurs when the locusts that
comprise a cluster move away from each other and sepa-
rate into individual entities.

In the locust cluster analysis module, based on the
number of detected locusts inside each cluster, we add
the location of the cluster’s center to each of the locusts
trajectories that comprise it. It is possible that the IDs
of locusts within a cluster may be shuffled with those of
other locusts in the same cluster. However, this is not a
limitation in our study.

4.5. Extraction of Parameters for Statistical Analysis
Several parameters are extracted during the analysis to

later be used for statistical analysis. We list several of
those parameters that require explanation. The full list of
extracted parameters is provided in the section detailing
the content of the output files generated by LocusTracker.

4.5.1. Movement Tracking
Based on the centroid of each detected blob we can

determine the movement of each locust. Locusts’ speed
is calculated in units of (cm/sec). If the maximum move-
ment threshold is exceeded, then the prediction for the
candidate point corresponding to a detected locust is not
associated to it. If the prediction exceeds the threshold
for all locusts, the detected point is discarded. The cho-
sen value to discard a candidate point for associating it to
a particular trajectory in the experiments is a movement
of more than 5 cm/sec.

Additionally, to classify whether a locust is moving or
stationary in every frame, we use a predetermined move-
ment threshold in units of (cm/sec). If exceeded then the
locust is considered to be moving. The chosen value in
the conducted experiments is 0.25 cm/sec. We can cal-
culate the mentioned parameters in metric units since we
know the size of the environment and hence can convert
pixel measurements to real-world units.

4.5.2. Speed Calculation
Locusts’ speeds are calculated in each frame they are

detected by the Euclidean distance between the current
point a locust is located at and its previous position. Since
locusts are not guaranteed to be detected in every frame,
we divide the Euclidean distance by the time that passed
between two detections. In order to get the time between
two detections we use the frame numbers at which locust
were detected and the camera recording speed which is
30 frames per second (FPS).

5. POSSIBLE ADD-ON FEATURES
Since the entire software suite is open source, the com-

munity can easily add further modules to the tracking
software, depending on the desired analysis. In this sec-
tion we list several such add on analysis modules we
added to LocusTracker.
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5.0.1. Corner Detection Module
Corner detection is a classic computer vision algo-

rithm that facilitates extraction of points of interest within
an image. Within our framework, our objective is to
identify corners within the arena to assess whether the
presence of a locust near a corner influences its decision-
making process regarding movement. Corner detection
operates on the principle of identifying points where two
dominant edge directions exist within a localized area. A
point qualifies as a corner if both Eigen values of its sec-
ond moment matrix surpass a predetermined threshold.
By employing the Harris corner detector and adjusting
the selected threshold, we can effectively pinpoint the lo-
cations of corners within each urban model.

Corner information is extracted from the reference im-
age prior to introducing locusts to the environment. A
distance threshold measured from the center of the blob
representing the locust is used to determine if a locust is
near a corner. The chosen value in the experiments to be
considered near a corner is a distance less than 1 cm.

5.0.2. Active Area Calculation
The goal of this module is to compute the percentage

of the environment that is walkable for the locusts, i.e.,
the parts of the environment that do not contain obstacles
and are free space.

5.0.3. Detection of Marching Intervals
We aim to examine an additional parameter concern-

ing the marching intervals of locusts. Locusts are deemed
to be marching together if, on average, they are in close
proximity to each other and if throughout this time they
are mostly moving. To meet this criterion, locusts must
remain in proximity for a duration exceeding 5 seconds,
with proximity defined as a distance of less than 5 cm
apart. It is important to note that the marching to-
gether condition distinguishes between locusts marching
together and those forming a cluster, thereby separating
the analysis of marching intervals from cluster analysis.

5.1. Visualization of Results and Saved Parameters
The extracted results are presented through various vi-

sualizations to facilitate a deeper comprehension of the
movements and behaviors of locusts within the environ-
ment. These visual outputs comprise:
• A heatmap depicting the intensity of locust concentra-
tion across distinct areas of the environment over time.
• Visual representations illustrating the trajectories fol-
lowed by individual locusts throughout the duration of
the experiment.
• A video showing the temporal evolution of locust
movements throughout the experiment.

Fig. 6 depicts a visualization of the results from two
of the conducted experiments. Each one of the trajectory
images at the top of Fig. 6 represents a chosen trajectory
of a single locust out of the 50 locusts that participated
in each experiment. The bottom images show the aggre-
gated heat map of all locusts that participated in the cor-
responding experiment as the image above it, indicating

locations in the environment where locusts tend to aggre-
gate.

Fig. 6 Top- example trajectory of a locust in the (left)
Rome (right) Cairo maze environment, Bottom- ac-
cumulated heatmap of locust locations in a half hour
experiment inside the (left) Rome (right) Cairo maze
environment. Bright (redder) locations indicate lo-
cations where locusts tend to aggregate and darker
(bluer) areas indicate locations where locusts are less
commonly found.

6. LOCUSTRACKER TECHNICAL
DETAILS, PARAMETERS AND

OUTPUTS
The output from the LocusTracker software is pre-

sented in tabular format, and comprises the computed pa-
rameters essential for the statistical analysis. Addition-
ally, various visual outputs aid in the evaluation of the
obtained results. This section provides details on the ex-
tracted parameters utilized in the statistical analysis, ac-
companied by explanations regarding the methodologies
employed for their computation.

6.0.1. Operation of LocusTracker
By using the physical dimensions of the arena which

are 120× 120 cm, we are able to convert the pixel-based
measurements obtained from the videos to real-world
metric quantities. Hence, to use the provided software in
other settings, the only information that needs to be pro-
vided to the software are the physical dimensions of the
model. In order to allow more flexibility in the footage
step of recording the locusts movements, before the anal-
ysis starts the user is asked to click on the 4 corners of the
observed environment. This step removes from the user
the requirement to perfectly align the field of view of the
camera with the arena, prior to the recording of the video.

6.0.2. Output Files Format
The movement files for each locust are stored within a

designated folder, with each Excel file corresponding to
the movement data of an individual locust. These files
encompass information including:
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• Frame number: indicates the frame in which the locust
was detected.
• Locust ID number: a unique identifier assigned to each
locust.
• Coordinates: the position of the center of the locust’s
blob in that frame.
• Heading angle: the direction in which the locust is
moving, based on a coordinate system centered at the lo-
cust’s blob.
• Movement flag: indicates whether the locust is consid-
ered to be moving in the current frame.
• Speed: the speed of the locust in cm/sec.
• Cluster flag: a Boolean indicating if the locust is part
of a locust cluster in the current frame.
• Number of locusts: specifies the number of locusts cor-
responding to the observed locust in the current frame. If
this number is 1 than the locust is not a part of a locust
cluster; if it is more than 1 than the number of locusts in
the cluster is calculated based on the ratio between the
cluster’s area and the typical area of a locust.
• Corner flag: indicates if the locust is near a corner in
the current frame.
• Area type: the type of area in which the locust is cur-
rently located.
• Distance advanced: the distance the locust has moved
up to the current frame.
• Stationary intervals: time intervals during which the
locust is stationary.
• Moving intervals: time intervals during which the lo-
cust is moving.
• Marching partners: IDs of other locusts that the locust
is marching with in the current frame.
Furthermore, an aggregated Excel file is generated, con-
solidating the information from all locusts. This inte-
grated file simplifies the subsequent analysis process.

7. TOWARDS BIOLOGICAL SWARM
TRACKING IN THE WILD

The principals and the algorithmic pipeline of Locus-
Tracker can be utilized to track locusts, other insects
and various types of animals that exhibit swarming be-
haviours in the wild. However, there are a few modifica-
tions that should be performed in order to make Locus-
Tracker robust for tracking of insects in the wild.

Since our model was developed for behaviour analy-
sis in laboratory conditions which usually have somewhat
controlled lighting settings we did not need to handle
significant illumination changes in the environment and
could focus on other challenges such as developing log-
ical rules for association of previous and current locust
locations, investigating algorithms for forming of long
trajectories and resolving conflicts in aggregated locust
cluster situations.

To extend the performance of LocusTracker to natural
outdoor environments, the background subtraction com-
ponent’s logic must be adapted for such conditions. The
background subtraction component relies on the assump-
tion that in laboratory environments the background is al-

most stationary (up to reflections and slight illumination
variations). This assumption allows us to detect locusts
extremely fast using difference images of foreground and
background images without the need to rely on more so-
phisticated detection techniques that must attend to back-
ground and illumination changes. We believe that possi-
ble solutions can leverage recent progress in development
of deep panoptic segmentation neural networks.

The aim of panoptic segmentation techniques is to
jointly perform semantic and instance segmentation, im-
plying that each pixel is classified as belonging to a par-
ticular predefined class such as locust, background, etc.
and that different instances, i.e., different locusts have
different labels.

Using such methods may enable to segment locations
of locusts as well as locust clusters from the provided im-
ages. After obtaining locust locations we will be able to
proceed with the existing tracking pipeline using the ob-
tained locust blobs. Possible examples for such networks
are [25, 26], however careful attention should be put in
developing panoptic segmentation networks that are suit-
able for segmentation of small objects in the image such
as insects. We leave the development of such networks
for future work.

An additional potential avenue for adapting Locus-
Tracker to operation in natural environments is to draw
inspiration from a recent work that develops a recurrent
neural network for tracking of tiny insects in cluttered
natural environments [27]. This work addresses some of
the limitations of deep-learning based small object detec-
tion and detection of occluded objects. This work can
serve as a starting point for future research and can be in-
tegrated with our locust trajectory association and locust
cluster analysis modules when attempting to track locust
swarms in natural environments.

8. CONCLUSIONS & FUTURE WORK
In this work we present LocusTracker, a markerless

visual object tracking framework for moving locusts and
other insects. LocusTracker consists of 6 main modules
and relies on the principles of tracking by detection. Lo-
cusTracker puts special emphasis on long-time tracking
of large numbers of insects that are located in close prox-
imity to each other. The tracking algorithm developed is
tested in a variety of scenes that contained moving locusts
and provided promising results for tracking of locusts in
a controlled laboratory environment models. Future im-
provements of LocusTracker are mainly to extend its ca-
pabilities and allow its deployment in natural real-world
environments for tracking of locusts, insects and other
types of natural or robotic swarms.

REFERENCES
[1] Moshe Guershon, Roee Mordechai Francos, Amir

Ayali, and Tali Hatuka. Locust behavior and city
topology: A biodynamic approach for assessing ur-
ban flows. Iscience, 27(6), 2024.

[2] Alfred M Bruckstein. Why the ant trails look so

SWARM2024: The 8th International Symposium on Swarm Behavior and Bio-Inspired Robotics

182



straight and nice. The Mathematical Intelligencer,
15(2):59–62, 1993.

[3] Tamás Vicsek, András Czirók, Eshel Ben-Jacob,
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