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Abstract
It is widely held that one cause of downstream
bias in classifiers is bias present in the training
data. Rectifying such biases may involve context-
dependent interventions such as training separate
models on subgroups, removing features with bias
in the collection process, or even conducting real-
world experiments to ascertain sources of bias.
Despite the need for such data bias investigations,
few automated methods exist to assist practition-
ers in these efforts. In this paper, we present one
such method that given a dataset X consisting of
protected and unprotected features, outcomes y,
and a regressor h that predicts y given X , outputs
a tuple (fj , g), with the following property: g cor-
responds to a subset of the training dataset (X, y),
such that the jth feature fj has much larger (or
smaller) influence in the subgroup g, than on the
dataset overall, which we call feature importance
disparity (FID). We show across 4 datasets and
4 common feature importance methods of broad
interest to the machine learning community that
we can efficiently find subgroups with large FID
values even over exponentially large subgroup
classes and in practice these groups correspond to
subgroups with potentially serious bias issues as
measured by standard fairness metrics.

1. Introduction
Machine learning is rapidly becoming a more important,
yet more opaque part of our lives and decision making –
with increasingly high stakes use cases such as recidivism
analysis (Angwin et al., 2016), loan granting and terms
(Dastile et al., 2020) and child protective services (Keddell,
2019). One of the hopes of wide-scale ML deployment
has been that those algorithms might be free of our human
biases and imperfections. This hope was, unfortunately,
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naive. Over the last decade, an interdisciplinary body of
research has shown that machine learning algorithms can be
deeply biased in both subtle and direct ways (Barocas et al.,
2019), and has focused on developing countless techniques
to produce fairer models (Caton & Haas, 2023).

One of the primary causes of model bias is bias inherent in
the training data, rather than an explicitly biased training
procedure. While the majority of work on fairness seeks
to remove bias by learning a fairer representation of the
data (Zemel et al., 2013) or by explicitly constraining the
downstream classifier to conform to a specific fairness no-
tion (Hardt et al., 2016a; Agarwal et al., 2018b), fairness
notions have been shown to be brittle and often times con-
tradictory (Dwork & Ilvento, 2018; Kleinberg et al., 2016).
More importantly, these approaches elide what could be a
more important question for the practitioner: What is the
source of bias in the training data, and what subgroups in
the data are being effected?

We call the process of answering this question a data bias
investigation (DBI), and in this paper we develop a tech-
nique to aid in a DBI by allowing an analyst to (efficiently
and provably) identify structured subsets of the training data
to focus their bias investigation. Prior work has typically
focused on identifying such subsets by finding subsets of the
training data that maximally violate a specific fairness crite-
rion, which typically corresponds to the classifier having a
higher error rate on the group than on the population. We
take a very different approach; rather than optimizing for a
specific fairness notion, we find subgroups where a specific
feature in the data has out-sized impact in the subgroup,
relative to the population as a whole.

To build some intuition for why feature importance dispar-
ities, FID as we call them, might be a useful notion when
looking for dataset bias, consider the following example
from Cynthia Dwork, widely regarded as pioneer in the
field of algorithmic bias, in a 2015 in a New York Times
interview (Miller, 2015): Suppose we have a minority group
in which bright students are steered toward studying math,
and suppose that in the majority group bright students are
steered instead toward finance. An easy way to find good
students is to look for students studying finance, and if the
minority is small, this simple classification scheme could
find most of the bright students. But not only is it unfair
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to the bright students in the minority group, it is also low
utility.

Unpacking this example further, the feature
is-finance-major is predictive in finding bright
students in the population at large but not in the minority
group. Meanwhile, the feature is-math-major is highly
predictive in the minority group but not at all in the majority
group. The classifier that only selects students who study
finance is unfair to the minority group, exactly because of
the differing importance of these features in the two groups.
Once the subgroups have been identified, the actions the
analyst then takes is then entirely context-dependent. This
could include “easy” fixes like training a separate model
on the subgroup found or excluding a specific feature from
training, or more complex remedies like investigating how
the specific feature or the outcome variable was collected in
the group, and if there is bias in that collection process.

While simple models like decision trees or linear regression
come equipped with intuitive notions of feature importance,
in general there is no definitive notion of feature importance
for complex models. Approaches that have garnered sub-
stantial attention include local model agnostic methods like
LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017),
model-specific saliency maps (Simonyan et al., 2013), and
example-based counterfactual explanations (Molnar, 2022).
Concerns about the stability and robustness of the most
widely used feature importance notions, including the ones
we study, have been raised (Dai et al., 2022; Agarwal et al.,
2022a; Alvarez-Melis & Jaakkola, 2018; Bansal et al., 2020;
Dimanov et al., 2020; Slack et al., 2020) and these notions
are often at odds with each other, so none can be considered
definitive (Krishna et al., 2022). Regardless of these limita-
tions, these notions are used widely in practice today, and
are still useful as a diagnostic tool as we eventually propose.

Fixing any of these notions of feature importance, given a
small set of protected subgroups, it would be simple to iter-
ate through the subgroups and features, compute the FID
for each feature with respect to each subgroup, and then se-
lect the feature and subgroup that shows the largest disparity.
However, it is also known in the fairness literature that while
a classifier may look fair when comparing a given fairness
metric across a handful of sensitive subgroups, when the
notion of a sensitive subgroup is generalized to encompass
combinations and interactions between sensitive features
(known as rich subgroups (Kearns et al., 2019)), large dis-
parities can emerge. We verify that this phenomenon of rich
subgroups uncovering much larger disparities than marginal
subgroups alone also holds for feature importance in Sub-
section 5.4. Even for simple definitions of rich subgroup
such as conjunctions of binary features, the number of sub-
groups is exponential in the number of sensitive attributes,
and so it is infeasible to compute the metric on each sensi-

tive subgroup and find the largest value by brute force. This
raises an obvious question in light of the prior discussion,
although one that to the best of our knowledge has not been
thoroughly studied: When applied to classifiers and datasets
where bias is a concern, do these feature importance no-
tions uncover substantial differences in feature importance
across rich subgroups, and can they be efficiently detected?

1.1. Case Study: Data Bias Investigation on COMPAS

Before diving into the technical details of our method, we il-
lustrate how our technique can yield interesting potential in-
terventions when training a random forest classifier h to pre-
dict two-year-recidivism on the COMPAS dataset
(Angwin et al., 2016). Using the feature importance method
SHAP (Lundberg & Lee, 2017) and our Algorithm 1, we
find that the feature priors-count is substantially more
important when predicting two-year-recidivism on
a subgroup largely defined by Native-American and African-
American males that makes up ∼9% of the training set
(Figure 1). While we further discuss in Appendix A that
disparities in feature importance do not guarantee that a sub-
group has a fairness disparity, we show in Subsection 5.5
that empirically this is often the case. In this example, we
find that conventional fairness metrics are slightly worse on
this subgroup relative to the population, with ∼1% lower
accuracy and ∼1% higher false positive rate (FPR). One
simple solution to increase accuracy on the subgroup and
potentially reduce the disparity is to train a separate model
hg for the subgroup, which we find drops the FPR in the
subgroup by 7.5% and increases accuracy by 7%. Further-
more, the disparity between the average SHAP value for the
feature priors-count using hg , and the average SHAP
value over whole population using h is more than halved.
Another intuitive technical solution is to train a new model,
h−f , without the feature priors-count. With this so-
lution, there is a moderate decrease in fairness disparity,
but it also comes with a noticeable drop in model perfor-
mance, likely due to removing the predictive power of the
feature priors-count. On a qualitative level, identify-
ing this subgroup could also motivate further research into
how Native-American and African-American males in the
COMPAS dataset are policed differently, possibly resulting
in measurement biases in the priors-count feature or
the two-year-recidivism outcome.

1.2. Results

While the prior example clearly illustrates the utility of our
method at a high level, the devil is in the details, and in the
rest of the paper, we formalize the notions of feature impor-
tance and protected rich subgroups along with our methods
for efficiently detecting potentially biased subgroups.

Our most important contribution is introducing the notion
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Figure 1: Exploring a high FID subgroup/feature pair for
COMPAS. The first graph compares the average SHAP
feature importance for priors-count in the subgroup vs.
the dataset as a whole. The second graph shows the 5 largest
coefficients of the linear function of sensitive attributes that
define the subgroup.

of feature importance disparity in the context of recently
developed feature importance notions, and with respect to
rich subgroups (Definition 3.1). We categorize a feature
importance notion as separable or not, based on whether
it can be expressed as a sum over points in the subgroup
(Definition 3.2) and define a variant of FID, the average fea-
ture importance disparity (AVG-FID, Definition 3.3). Our
main theoretical contribution is Theorem 4.1 in Section 4,
which says informally that although the problem of finding
the maximal FID subgroup is NP-hard in the worst case
(Appendix G), given access to an oracle for cost-sensitive
classification with respect to the rich subgroup class G, (Def-
inition F.1), Algorithm 1 efficiently learns the subgroup with
maximal FID for any separable feature importance notion.

In Section 5, we conduct a thorough empirical evaluation,
auditing for large FID subgroups on the Student (Cortez &
Silva, 2008), COMPAS (Angwin et al., 2016), Bank (Moro
et al., 2014), and Folktables (Ding et al., 2021) datasets,
using LIME, SHAP, saliency maps, and linear regression
coefficient as feature importance notions. Our experiments
establish the following: (i) Across all (dataset, importance
notion) pairs, we can find subgroups defined as functions
of sensitive features that have large FID with respect to a
given feature (Table 1, Figures 2, 3). (ii) Inspecting the
coefficients of these subgroups yields interesting discussion
about potential dataset bias (Figure 1, Section 5.3). (iii)
In about half the cases, rich subgroups yield higher out of
sample FID compared to only searching subgroups defined
by a single sensitive attribute, justifying the use of rich sub-
groups (Section 5.4). (iv) These subgroups have disparities
in accepted fairness metrics such as demographic parity and
calibration (Table 2). Conversely, rich subgroups that maxi-
mally violate fairness metrics also express large FID values
(Table 3)

These results generalize out of sample, both in terms of
the FID values found, and the sizes of the corresponding
subgroups found (Appendix L). Taken together, these the-

oretical and empirical results highlight our methods as an
important addition to the diagnostic toolkit for DBI in tabu-
lar datasets with sensitive features.

2. Related Work
There is substantial work investigating bias in the context
of machine learning models and their training data (Barocas
et al., 2019; Caton & Haas, 2023). We are motivated at
a high level by existing work on dataset bias (Kamiran &
Calders, 2012; Tommasi et al., 2017; Li & Vasconcelos,
2019), however, to the best of our knowledge, this is the first
work investigating the disparity in feature importance values
in the context of rich subgroups as a fairness diagnostic. For
more related work, see Appendix C.

Anomalous Subgroup Discovery. In terms of approach,
two closely related works are (Dai et al., 2022) and (Bal-
agopalan et al., 2022) which link fairness concerns on sensi-
tive subgroups with model explanation quality, as measured
by properties like stability and fidelity. Our work differs in
that we are focused on the magnitude of explanation dis-
parities themselves rather than their “quality,” and that we
extend our results to the rich subgroup setting. Our algo-
rithm for searching an exponentially large subgroup space
is a novel and necessary addition to work in this space. An-
other area of research looks to prove that a chosen score
function satisfies the linear time subset scanning property
(Neill, 2012) which can then be leveraged to search the sub-
group space for classifier bias (Zhang & Neill, 2016; Boxer
et al., 2023) in linear time. While it is hard to say with
absolute certainty that this approach would not be useful it
is not immediately apparent how we would force a subset
scanning method to optimize over rich subgroups.

Rich Subgroups and Multicalibration. At a technical
level, the most closely related papers are (Kearns et al.,
2018; Hebert-Johnson et al., 2018) which introduce the no-
tion of the rich subgroup class G over sensitive features in
the context of learning classifiers that are with respect to
equalized odds or calibration. Our Algorithm 1 fits into
the paradigm of “oracle-efficient" algorithms for solving
constrained optimization problems introduced in (Agarwal
et al., 2018a) and developed in the context of rich subgroups
in (Kearns et al., 2018; 2019; Hebert-Johnson et al., 2018).
There has been much recent interest in learning multical-
ibrated predictors because of connections to uncertainty
estimation and omnipredictors (Hu et al., 2023; Gopalan
et al., 2022; Jung et al., 2021). None of these works consider
feature importance disparities.

Feature Importance Notions. For the field of interpretable
or explainable machine learning, we refer to the survey by
(Molnar, 2022). The most relevant works cover methods
used to investigate the importance of a feature in a given
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subset of the dataset. Local explanation methods assign a
feature importance for every point (x, y) and define a notion
of importance in a subgroup by summing or averaging over
the points in the subgroup as we do in Definitions 3.2, 3.3.

3. Preliminaries
Let Xn represent our dataset, consisting of n individuals
defined by the tuple ((x, x′), y) where x ∈ Xsense is the
vector of protected features, x′ ∈ Xsafe is the vector of
unprotected features, and y ∈ Y denotes the label. With
X = (x, x′) ∈ X = Xsense × Xsafe ⊂ Rd denoting a
joint feature, the data points (X, y) are drawn i.i.d. from
a distribution R. Let h : X → Y denote a classifier or
regressor that predicts y from X . We define a rich sub-
group class G = {gα}α∈Ω as a collection of functions
g : Xsens → [0, 1], where g(x′) denotes the membership
of point X = (x, x′) in group g. Note that this is the same
subgroup definition as in (Kearns et al., 2018), but without
the constraint that g(x′) ∈ {0, 1}, which supports varying
degrees of group membership. E.g. a biracial person may
be .5 a member of two racial groups. Let fj , j ∈ [d] de-
note the jth feature in X ⊂ Rd. Then for a classifier h
and subgroup g ∈ G, let F be a feature importance notion
where F (fj , g(X

n), h) denote the importance h attributes
to feature j in the subgroup g(Xn), and F (fj , X

n, h) be
the importance h attributes to fj on the entire dataset. We
will provide more specific instantiations of F shortly, but we
state our definition of FID in the greatest possible generality
below.
Definition 3.1. (Feature Importance Disparity). Given a
classifier h, a subgroup of Xn defined by g ∈ G, and
a feature fj ∈ [d], then given a feature importance notion
F (·), the feature importance disparity relative to g is defined
as:

FID(fj , g, h) = EX∼R|F (fj , g(X
n), h)− F (fj , X

n, h)|

We will suppress h and write FID(j, g) unless neces-
sary to clarify the classifier we are using. Now, given
h and Xn, our goal is to find the feature subgroup pair
(j∗, g∗) ∈ [d]× G that maximizes FID(j, g), or (j∗, g∗) =
argmaxg∈G,j∈[d]FID(j, g).

We now get more concrete about our feature importance
notion F (·). First, we define the class of separable feature
importance notions:
Definition 3.2. (Locally Separable). A feature importance
notion F (·) is locally separable if it can be decomposed as
a point wise sum of local model explanation values F ′:

F (fj , X
n, h) =

∑
X∈Xn

F ′(fj , X, h)

It follows that for separable notions, F (fj , g(X
n), h) =

∑
X∈Xn g(X)F ′(fj , X, h). Given a local model explana-

tion F ′, we can define a more specific form of FID, the
average feature importance disparity (AVG-FID), which
compares the average feature importance within a subgroup
to the average importance on the dataset.

Definition 3.3. (Average Case Locally Separable FID). For
a g ∈ G, let |g| =

∑
X∈Xn

g(X). Given a local model expla-

nation F ′(·), we define the corresponding:

AVG-FID(fj , g, h) =EXn∼Rn | 1
|g|

∑
X∈Xn

g(X)F ′(fj , X, h)

− 1

n

∑
X∈Xn

F ′(fj , X, h)|

Note that AVG-FID is not equivalent to a separable FID,
since we divide by |g|, impacting every term in the sum-
mation. In Section 4, we show that we can optimize for
AVG-FID by optimizing a version of the FID problem
with size constraints, which we can do efficiently via Algo-
rithm 1.

This notion of separability is crucial to understanding the
remainder of the paper. In Section 4, we show that for any
separable FID, Algorithm 1 is an (oracle) efficient way to
compute the largest FID subgroup of a specified size in
polynomial time. By “oracle efficient,” we follow (Agarwal
et al., 2018a; Kearns et al., 2018) where we mean access
to an optimization oracle that can solve (possibly NP-hard)
problems. While this sounds like a strong assumption, in
practice we can take advantage of modern optimization
algorithms that can solve hard non-convex optimization
problems (e.g. training neural networks). This framework
has led to the development of many practical algorithms
with a strong theoretical grounding (Agarwal et al., 2018a;
Kearns et al., 2018; 2019; Hebert-Johnson et al., 2018),
and as shown in Section 5 works well in practice here as
well. The type of oracle we need is called a Cost Sensitive
Classification (CSC) oracle, which we define in Appendix F.

4. Optimizing for AVG-FID
In this section, we show how to (oracle) efficiently compute
the rich subgroup that maximizes the AVG-FID. Rather
than optimize AVG-FID directly, our Algorithm 1 solves
an optimization problem that maximizes the FID subject to
a group size constraint:
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max
g∈G

|F (fj , g(X
n), h)− F (fj , X

n, h)|

s.t. ΦL(g) ≡ αL − 1

n

∑
X∈Xn

g(X) ≤ 0,

ΦU (g) ≡
1

n

∑
X∈Xn

g(X)− αU ≤ 0

(1)

where ΦL and ΦU are "size violation" functions given a
subgroup function g. We denote the optimal solution to
Equation 1 by g∗[αL,αU ]. We focus on optimizing the con-
strained FID since the following primitive also allows us to
efficiently optimize AVG-FID:

1. Discretize [0, 1] into intervals ( i−1
n , i

n ]
n
i=1. Given fea-

ture fj , compute g∗
( i−1

n , i
n ]

for i = 1...n.

2. Outputting gk∗ , where k∗ = argmaxk
k
n |F (fj , gk, h)|

approximately maximizes the AVG-FID given an ap-
propriately large number of intervals n.

Our proof for this is available in Appendix E. We now
state our main theorem, which shows that we can solve the
constrained FID problem in Equation 1 with polynomially
many calls to CSCG .

Theorem 4.1. Let F be a separable FID notion, fix a clas-
sifier h, subgroup class G, and oracle CSCG . Then choosing
accuracy constant ν and bound constant B and fixing a
feature of interest fj , we will run Algorithm 1 twice; once
with FID given by F , and once with FID given by −F .
Let p̂TG be the distribution returned after T = O( 4n

2B2

ν2 )
iterations by Algorithm 1 that achieves the larger value of
E[FID(j, g)]. Then:

FID(j, g∗j )− Eg∼p̂T
G
[FID(j, g)] ≤ ν

|ΦL(g)|, |ΦU (g)| ≤
1 + 2ν

B

(2)

We defer the proof of Theorem 4.1 to Appendix D. In sum-
mary, rather than optimizing over g ∈ G, we optimize over
distributions ∆(G). This allows us to cast the optimization
problem in Equation 1 as a linear program so we can form
the Lagrangian L, which is the sum of the feature impor-
tance values and the size constraint functions weighted by
the dual variables λ, and apply strong duality. We can then
cast the constrained optimization as computing the Nash
equilibrium of a two-player zero-sum game, and apply the
classical result of (Freund & Schapire, 1996) which says
that if both players implement no-regret strategies, then we
converge to the Nash equilibrium at a rate given by the aver-
age regret of both players converging to zero. Algorithm 1
implements the no-regret algorithm exponentiated gradient

descent (Kivinen & Warmuth, 1997) for the max player,
who optimizes λ, and best-response via a CSC solve for the
min player, who aims to maximize subgroup disparity to
optimize the rich subgroup distribution.

We note that rather than computing the group g that maxi-
mizes FID(j, g) subject to the size constraint, our algorithm
outputs a distribution over groups p̂TG that satisfies this pro-
cess on average over the groups. In theory, this seems like a
drawback for interpretability. However, in practice we sim-
ply take the groups gt found at each round and output the
ones that are in the appropriate size range, and have largest
FID values. The results in Section 5 validate that this heuris-
tic choice is able to find groups that are both feasible and
have large FID values. This method also generalizes out of
sample showing that the FID is not artificially inflated by
multiple testing (Appendix L). Moreover, our method pro-
vides a menu of potential groups (gt)Tt=1 that can be quickly
evaluated for large FID, which can be a useful feature to
find interesting biases not present in the maximal subgroup.

5. Experiments
Here we report the results of our empirical investigation
across 16 different dataset/FID-notion pairings. These re-
sults confirm that our method can find large AVG-FID val-
ues corresponding to rich subgroups defined as simple func-
tions of protected attributes (Table 1, Figures 2, 3), and are
larger than those found by optimizing over marginal sub-
groups alone (Section 5.4). Moreover, in Section 5.5 we find
that high AVG-FID subgroups tend to have significant dis-
parities in traditional fairness metrics (Table 2), and that rich
subgroups that maximize a fairness notion like FPR dispar-
ity also express high AVG-FID features, albeit smaller than
those found by Algorithm 1 (Table 3). Perhaps most signif-
icantly, for a tool designed to assist the process of DBI, is
that the high AVG-FID subgroups found correspond to sub-
groups and features that are suggestive of potential dataset
bias, one example of which we covered in the initial case
study and provide further examples of in Section 5.3. In
Appendix J, we construct two synthetic datasets, one where
the feature importance is the same across all subgroups, and
one where there is a deliberately introduced disparity in a
specific rich subgroup, in order to verify that our methods i)
avoid false discovery and ii) can effectively pick out a high-
FID subgroup. We also include results showing that the
rich subgroups found generalize out of sample both in terms
of AVG-FID and group size |g| (Appendix L), are relatively
robust to the choice of hypothesis class of h (Appendix M),
and that our algorithms converge quickly in practice (Ap-
pendix O). The code used for our experiments is available
at github.com/safr-ai-lab/xai-disparity.
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5.1. Experimental Details

Datasets: We used four popular datasets for the experiments:
Student, COMPAS, Bank, and Folktables. For each test, we
used COMPAS twice, once predicting two-year recidivism
and once predicting decile risk score (labeled COMPAS R
and COMPAS D respectively). For each dataset, we spec-
ified "sensitive" features which are features generally cov-
ered by equal protection or privacy laws (e.g. race, gender,
age, health data). Appendix I contains more details.

Computing the AVG-FID: We study 3 separable no-
tions of FID based on local model explanations Local-
Interpretable, Model-Agnostic (LIME) (Ribeiro et al.,
2016), Shapley Additive Explanations (SHAP) (Lundberg
& Lee, 2017), and saliency maps (GRAD) (Simonyan
et al., 2013). For every method and dataset, we opti-
mize the constrained FID over α ranges (αL, αU ) =
{[.01, .05], [.05, .1], [.1, .15], [.15, .2], [.2, .25]}. These
small ranges allowed us to reasonably compare the FID
values, reported in Table 1. Additionally, these ranges span
subgroup sizes that may be of particular interest in fairness
research and dataset auditing work. All values of AVG-FID
reported in the results are out of sample; i.e. the AVG-FID
values are computed on a test set that was not used to op-
timize the subgroups. Datasets were split into 80 − 20
train-test split except for Student which was split 50− 50
due to its small size. Across all datasets, when the FID was
LIME or SHAP, we set h to be a random forest, when it was
GRAD we used logistic regression as it requires a classifier
whose outputs are differentiable in the inputs. The exact
choice of classifier does not have any notable impact on the
outcomes as we discuss in Appendix M. Due to computa-
tion constraints, GRAD was only tested on the COMPAS
R dataset. We defer the details in how we implemented the
importance notions and Algorithm 1 to Appendix I.

Linear Feature Importance Disparity: In addition to the
3 separable notions of FID, we also studied an approach
for a non-separable notion of importance. Linear regression
(labeled LR in results) is a popular model that is inherently
interpretable; the coefficients of a weighted least squares
(WLS) solution represent the importance of each feature.
We can thus define another variant of FID, the linear feature
importance disparity (LIN-FID), as the difference in the
WLS coefficient of feature fj on subgroup g and on the
dataset Xn. As LIN-FID is differentiable with respect to g,
we are able to find a locally optimal g with high LIN-FID
using a non-convex optimizer; we used ADAM. For details
and proofs, see Appendix H.

5.2. Experimental Results

Table 1 summarizes the results of the experiments, which are
visualized in Figure 2 on a log-ratio scale for better cross-
notion comparison. Across each dataset and importance

notion, our methods were able to find subgroups with high
FID, often differing by orders of magnitude. For example,
on Folktables with LIME as the importance notion, there
is a subgroup on which age is on average 225 times more
important than it is for the whole population. Table 1 also
provides the defining features, listed as the sensitive features
which have the largest coefficients in g.

A natural follow up question that arises from this experiment
is what does the distribution of FIDs look like for a given
dataset? Figure 3 shows a distribution of the 10 features on
the Bank dataset with the highest FID values. As we can
see, there are a few features where large FID subgroups
can be found, but it tails off significantly. This pattern is
replicated across all datasets and feature importance notions.
This is a positive result for practical uses, as an analyst
or domain expert can focus on a handful of features that
perform drastically differently when performing a DBI.

Earlier in Section 1.1, we examined a specific case where
the FID found as a result of our method revealed a biased
subgroup where the fairness disparities could then be miti-
gated with targeted approaches. In the next section, across
every dataset and feature importance notion, we find similar
examples exposing some form of potential bias. We note
that not every single (subgroup, feature) pair discovered nec-
essarily implies a fairness concern. For example, AVG-FID
could be driven in part by correlations between fj and the
sensitive attributes that define g. Since it remains true in all
fairness work that two contexts that are statistically equiv-
alent may have very different fairness implications in the
real world, our method should be viewed as a tool to aid
practitioners in DBI rather than as definitive proof of bias.

5.3. Discussion of High FID Subgroups

In Figure 4, we highlight selections of an interesting
(feature, subgroup, method) pair for each dataset. Fig-
ure 4a shows that on the Student dataset the feature
absences which is of near zero importance on the
dataset as a whole, is very negatively correlated with
student performance on a subgroup whose top 2 features
indicate whether a student’s parents are together, and
if they live in an rural neighborhood. Figure 4b shows
that on the COMPAS dataset with method GRAD,
the feature arrested-but-with-no-charges
is typically highly important when predicting
two-year-recidivism. However, it carries sig-
nificantly less importance on a subgroup that is largely
defined as Native American males. When predicting the
decile risk score on COMPAS, LIME indicates that age
is not important on the dataset as a whole; however, for
non-Native American, female minorities, older age can be
used to explain a lower Decile Score. On the Bank
dataset using LIN-FID, we see that a linear regression
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Figure 2: Summary of the highest FIDs found for each (dataset, method). This is displayed as
∣∣log10(R)

∣∣ where R is
the ratio of average importance per data point in g∗ to the average importance on X for separable notions, or the ratio of
coefficients for LIN-FID. This scale allows comparison across different importance notions. The feature associated with
each g∗ is written above the bar.

Table 1: Summary of the subgroup with highest AVG-FID for each experiment along with the corresponding feature,
subgroup size, and defining features. Experiments were run across multiple (αL, αU ) ranges with the highest AVG-FID
found being displayed. µ(F ) is the average feature importance value on the specified group.

Dataset Notion Feature fj µ(F (fj , X)) µ(F (fj , g)) |g| Defining Features

Student LIME Failures −.006 −.011 .01 Alcohol Use, Urban Home
SHAP Absences −.15 −2.1 .02 Parent Status, Urban Home
LR Father WFH 21.7 −4.0 .03 Alcohol Use, Health

COMPAS R LIME Age .0009 −.14 .05 Native-American
SHAP Age .012 .41 .04 Asian-American
LR Native American .5 1.17 .04 Asian/Hispanic-American
GRAD Arrest, No Charge .09 .02 .05 Native-American

COMPAS D LIME Age −.0003 −.06 .02 Native/Black-American
SHAP Age .06 2.35 .07 Black/Asian-American
LR Caucasian 6.7 10.7 .04 Native-American

Bank LIME # of Employees −.003 .03 .03 Marital Status
SHAP Euribor Rate −.004 .016 .03 Marital Status
LR Illiterate −.07 −.0045 .01 Age, Marital Status

Folktables LIME Age −.0007 −.11 .21 Marital Status
SHAP Education .023 .15 .03 Asian-American
LR Self-Employed −.26 −.06 .02 White-American

Figure 3: Distribution of AVG-FID on the top features from
the BANK dataset using LIME. We see a sharp drop off in
AVG-FID. This pattern is seen in all datasets and notions.

trained on points from a subgroup defined by older, single
individuals, puts more importance on job=housemaid
when predicting likelihood in signing up for an account.
Finally on Folktables, we see that LIN-FID assigns much
lower weight to the job=military feature among a
subgroup that is mainly white and divorced people than
in the overall dataset when predicting income. These
interesting examples, in conjunction with the results
reported in Table 1, highlight the usefulness of our method
in finding subgroups where a concerned analyst or domain
expert could dig deeper to determine how biases might be
manifesting themselves in the data and how to correct for

them.

5.4. Comparison of FID Values on Rich vs. Marginal
Subgroups

To better quantify the advantage of rich subgroups, we
performed the same analysis but only searching over the
marginal subgroup space. For each dataset and importance
notion pair, we established the finite list of subgroups de-
fined by a single sensitive characteristic and computed the
FID for each of these subgroups. In Figure 5, we compare
some of the maximal AVG-FID rich subgroups shown in
Figure 2 to the maximal AVG-FID marginal subgroup for
the same feature. In about half of the cases, the AVG-FID
of the marginal subgroup was similar to the rich subgroup.
In the other cases, expanding our subgroup classes to in-
clude rich subgroups defined by linear functions of the sen-
sitive attributes enabled us to find a subgroup that had a
higher AVG-FID. For example, in Figure 5b, we can see
that on the COMPAS R dataset using GRAD as the im-
portance notion, Arrested, No Charges had a rich
subgroup with AVG-FID that was 4 times less than on the
full dataset. However, we were unable to find any sub-
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(a) Student: Predicting grade outcomes

(b) COMPAS: Predicting 2-year recidivism

(c) COMPAS: Predicting decile risk score

(d) Bank: Predicting whether bank deposit is made

(e) Folktables: Predicting income >$50k

Figure 4: Exploration of key subgroup/feature pairs found
for each dataset. The first graph shows the change in feature
importance from whole dataset to subgroup. The second
graph shows the main coefficients that define the subgroup.

group in the marginal space where the importance of the
feature was nearly as different (comparisons for all datasets
are available in Appendix K). In some cases, the marginal
subgroup performs slightly better than the rich subgroup
(Figure 6). This happens when using rich subgroups does
not offer any substantial advantage over marginal subgroups,
and the empirical error tolerance in Algorithm 1 stops the
convergence early.

Perhaps an even more important practical advantage of Al-
gorithm 1’s ability to optimize over rich subgroups, is that
it allows protected subgroups to be defined as functions of
continuous variables. For example, age is easily included
in our formulation, while capturing age with marginal sub-
groups requires first bucketing into age groups and then
one-hot encoding these groups, which comes with statisti-
cal, explanatory, and computational drawbacks. As men-
tioned in Section 3, our framework also allows individuals
to be part of multiple groups, for a example a multiracial
individual who might be better represented as a fractional
member of different racial groups, rather than a member of
a single discrete one. This kind of data would be impossible
to capture with marginal subgroups.

5.5. Fairness Metrics

While large AVG-FID values with respect to a given fea-
ture and importance notion do not guarantee disparities in
common fairness metrics, which are not typically defined
in terms of a specific reference feature, it is natural to ask
if these notions are correlated: do subgroups with large
AVG-FID have large disparities in fairness metrics, and do
subgroups that have large disparities in fairness metrics have
particularly large AVG-FID values for some feature?

We examine the first question in Table 2. We find that these
high AVG-FID subgroups tend to have significant dispar-
ities in traditional fairness metrics. Although the metrics
are not always worse on g, this reinforces the intuition that
subgroups with high AVG-FID require greater scrutiny. In
Table 3, we study the converse question, where we use the
GerryFair code of (Kearns et al., 2018) to find rich sub-
groups that maximally violate FPR disparity, and then com-
pute the AVG-FID on those subgroups. We find that they
also have features with high AVG-FID, albeit not as large
as those found by Algorithm 1, which explicitly optimizes
for AVG-FID. These two results highlight the usefulness of
our method in identifying potentially high risk subgroups.

6. Discussion
In this paper we establish feature importance disparities as
an important tool to aid in DBIs. One benefit to our work,
is that as progress is made in feature importance methods,
they can be leveraged in our Algorithm 1 (if they are sep-
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(a) Student (b) COMPAS R

Figure 5: Comparisons of some maximal FID rich subgroups to the maximal FID marginal subgroup on the same feature
using the same log-scale as in Figure 2. The feature associated with the subgroups is written above each bar.

Table 2: Fairness metrics of high AVG-FID subgroups. COMPAS D and Student were excluded since they use non-binary
y, making classification metrics less comparable. We measured the 3 fairness types outlined by (Barocas et al., 2019):
P (Ŷ = 1), true/false positive rates, and expected calibration error. <metric>∆ is the metric on g minus the metric on X .

Dataset Notion F Defining Features of g Ŷ∆ TPR∆ FPR∆ ECE∆

COMPAS R LIME Age Native-American −.16 −.2 −.07 .24
SHAP Age Asian-American .37 .26 .4 −.12
GRAD Arrest, No Charge Native-American −.24 −.35 −.12 .37

Bank LIME # of Employees Marital Status .11 .08 .07 −.15
SHAP Euribor Rate Marital Status .11 .08 .07 −.17

Folktables LIME Age Marital Status −.15 −.09 −.07 .19
SHAP Education Asian-American .17 .2 .05 −.09

Table 3: Comparing top features and respective AVG-FID of g found via our method (AVG-FIDFID) and found by (Kearns
et al., 2018) (AVG-FIDgerry). As in Table 2, COMPAS D and Student were excluded.

Dataset Notion FFID AVG-FIDFID Fgerry AVG-FIDgerry

COMPAS R LIME Age .14 Age .04
SHAP Age .4 Age .06
GRAD Arrest, No Charge .09 Male .03

Bank LIME # of Employees .03 # of Employees .008
SHAP Euribor Rate .016 Emp Var Rate .004

Folktables LIME Age .11 Age .05
SHAP Education .13 Age .05

arable). As we discuss, given observed feature/subgroup
disparities, there are many possible next steps an analyst
could take to root out dataset bias, from interventions in
the training or feature selection process, to more involved
investigations into how the data was collected. This per-
spective is complementary to recent work in the fairness
literature that focuses on understanding and documenting
data sources (Gebru et al., 2018; Fabris et al., 2022). On the
algorithms side, there has been little work to systematically
identify the sources of bias in the data, as opposed to devel-
oping methods that remove bias during model training or
representation learning. This paper represents one attempt
at developing this kind of “data-centric” fairness method
through the lens of feature importance. There is much more
work that can be done to determine what the right subset
of features to collect are, how to detect and mitigate biases
in the data collection process, and which subsets of data or
features should be retained prior to model training.
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A. Limitations
Importantly, we eschew any broader claims that large FID necessarily implies a mathematical conclusion about the fairness
of the underlying classification model in all cases. It is known that even the most popular and natural fairness metrics
are impossible to satisfy simultaneously, and so we would run up against the problem of determining what it means for
a model to be fair (Chouldechova, 2017; Kleinberg et al., 2017). By detecting anomalous subgroups with respect to
feature importance, our approach can signal to a domain expert that perhaps there are issues such as feature collection or
measurement bias. This will facilitate the next steps of testing the resulting hypotheses, and ultimately intervening to address
disparities and improve fairness outcomes. Concerns about the stability and robustness of the most widely used feature
importance notions, including the ones we study, have been raised (Dai et al., 2022; Agarwal et al., 2022a; Alvarez-Melis
& Jaakkola, 2018; Bansal et al., 2020; Dimanov et al., 2020; Slack et al., 2020) and these notions are often at odds with
each other, so none can be considered definitive (Krishna et al., 2022). Regardless of these limitations, these notions are
used widely in practice today, and are still useful as a diagnostic tool as we propose here in order to uncover potentially
interesting biases. Lastly, our methods, like nearly all prior works on fairness, require tabular datasets that have defined the
sensitive features apriori, a process more difficult in text or image datasets where bias is still a concern (Buolamwini &
Gebru, 2018; Bolukbasi et al., 2016). Overall, the methods developed here represent a part of the algorithmic toolkit that
domain experts may use in rooting out bias.

B. Reproducibility
Specific details for the experiments such as the hyperparameters used are available in Appendix I. The source code used for
these experiments is provided in the supplementary material. Specifically, run_separable.py and run_linear.py
are the scripts where the importance notion (Appendix I.2), dataset (Appendix I.3), and other parameters are specified before
running. The experiments/ directory contains scripts used for the comparison of rich and marginal subgroups as seen
in Appendix K and for the fairness comparison experiments in Subsection 5.5.

C. Additional Related Work
Fairness in Machine Learning. Much of the work in fairness in machine learning typically concerns the implementation of
a new fairness notion in a given learning setting; either an individual fairness notion (Dwork et al., 2012; Joseph et al., 2018),
one based on equalizing a statistical rate across protected subgroups (Hardt et al., 2016b; Pleiss et al., 2017), or one based
on an underlying causal model (Kusner et al., 2017). With a given notion of fairness in hand, approaches to learning fair
classifiers can be typically classified as “in-processing", or trying to simultaneously learn a classifier and satisfy a fairness
constraint, “post-processing" which takes a learned classifier and post-processes it to satisfy a fairness definition (Hardt
et al., 2016b), or most closely related to the motivation behind this paper, pre-processing the data to remove bias. Existing
work on dataset bias serve as high level motivation for our work.

Feature Importance Notions. The local explanation methods mentioned in Section 2 include model-agnostic methods
like LIME or SHAP (Ribeiro et al., 2016; Lundberg & Lee, 2017), methods like saliency maps (Simonyan et al., 2013;
Sundararajan et al., 2017; Baehrens et al., 2010) that require h to be differentiable in x, or model-specific methods that
depend on the classifier. In addition to these explanation methods, there are also global methods that attempt to explain the
entire model behavior and so can be run on the entire subgroup. Our LIN-FID method as described in Appendix H is a
global method that relies on training an inherently interpretable model (linear regression) on the subgroup and inspecting its
coefficients. Other inherently interpretable models that could be used to define a notion of subgroup importance include
decision trees (Quinlan, 1986) and generalized additive models (Liu et al., 2022).

Fairness and Interpretability. Although no existing work examines the role of feature importance notions in detecting
disparities in rich subgroups, there is a small amount of existing work examining explainability in the context of fairness.
The recent (Grabowicz et al., 2022) formalizes induced discrimination as a function of the SHAP values assigned to sensitive
features, and proposes a method to learn classifiers where the protected attributes have low influence. (Begley et al., 2020)
applies a similar approach, attributing a models overall unfairness to its individual features using the Shapley value, and
proposing an intervention to improve fairness. (Ingram et al., 2022) examines machine learning models to predict recidivism,
and empirically shows tradeoffs between model accuracy, fairness, and interpretability.

Additionally, (Lundberg, 2020) decomposes feature attribution explanations and fairness metrics into additive components
and observes the relationship between the fairness metrics and input features. Our work does not try to decompose fairness
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metrics into additive components and also focuses on non-additive feature explanations. Furthermore, our consideration of
rich subgroups is a novel addition to the space.

D. Computing the Optimal Subgroup

Algorithm 1 Iterative Constrained Optimization

1: Input: Dataset Xn, |Xn| = n, hypothesis h, feature of interest fj , separable feature importance function F , size
constraints αL and αU , size violation indicators ΦL and ΦU , size penalty bound B, CSC oracle for G, CSCG(c

0, c1),
accuracy ν.

2: Initialize:
3: Feature importance vector C = (F (fj , Xi, h))

n
i=1

4: Gradient weight parameter θ1 = (0, 0)
5: Learning rate η = ν

2n2B
6: for t = 1, 2, ... do
7: # Exponentiated gradient weights
8: λt,0 = B

exp(θt,0)
1+exp(θt,1)

, λt,1 = B
exp(θt,1)

1+exp(θt,0)
9:

10: # Costs vector
11: c1t = (Ci − λt,0 + λt,1)

n
i=1

12:
13: # Get g with max disparity computed via CSC oracle
14: gt = CSCG(0, c

1
t )

15:
16: # Compute Lagrangian
17: p̂tG = 1

t

∑t
t′=1 gt′

18: λ′
t = (BΦL(p̂

t
G), BΦU (p̂

t
G))

19: L = L(p̂tG , λ
′
t)

20:
21: p̂tλ = 1

t

∑t
t′=1(λt′,0, λt′,1)

22: g′t = CSCG(0, (Ci − p̂tλ0
+ p̂tλ1

)ni=1)
23: L = L(g′t, p̂

t
λ)

24:
25: vt = max

(
|L(p̂tG , p̂tλ)− L|, |L− L(p̂tG , p̂

t
λ)|

)
26:
27: # Check termination condition
28: if vt ≤ v then
29: Return p̂tG , p̂

t
λ

30: end if
31:
32: # Exponentiated gradient update
33: Set θt+1 = θt + η(αL − |gt|, |gt| − αU )
34: end for

We start by showing that for the unconstrained problem, computing the subgroup g∗j that maximizes FID(fj , g, h) over G
can be computed in two calls to CSCG when F is separable.
Lemma D.1. If F is separable and CSCG is a CSC oracle for G, then for any feature fj , g∗j can be computed with two
oracle calls.

Proof. By definition g∗j = argmaxg∈GFID(j, g) = argmaxg∈G |F (fj , X
n, h)−F (fj , g, h)| = argmaxg∈{g+,g−}FID(j, g),

where g+ = argmaxg∈GF (fj , g, h), g
− = argming∈GF (fj , g, h). By the definition of separability, we can write

F (fj , g(X
n), h) =

∑
X∈g(Xn)

F ′(fj , X, h) =

n∑
i=1

g(Xi)F
′(fj , Xi, h)
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Then letting c0k = 0 and c1k = −F ′(fj , Xk, h) for k = 1, . . . n, we see that g+ = CSCg((c
0
k, c

1
k)), g

− = CSCg((c
0
k,−c1k)).

This establishes the claim.

Theorem 4.1: Let F be a separable notion, fix a classifier h, subgroup class G, and oracle CSCG . Then fixing a feature of
interest fj , we will run Algorithm 1 twice; once with FID given by F , and once with FID given by −F . Let p̂TG be the
distribution returned after T = O( 4n

2B2

ν2 ) iterations by Algorithm 1 that achieves the larger value of E[FID(j, g)]. Then:

FID(j, g∗j )− Eg∼p̂T
G
[FID(j, g)] ≤ ν

|ΦL(g)|, |ΦU (g)| ≤
1 + 2ν

B

(3)

Proof. We start by transforming our constrained optimization into optimizing a min−max objective. The min player,
referred to as the subgroup player will be solving a CSC problem over the class G at each iteration, while the max player,
called the dual player, will be adjusting the dual weights λ on the two constraints using the exponentiated gradient algorithm
(Kivinen & Warmuth, 1997). By Lemma D.2 (Freund & Schapire, 1996), we know that if each player implements a no-regret
strategy, then the error of subgroup found after T rounds is sub-optimal by at most the average cumulative regret of both
players. The regret bound for the exponentiated gradient descent ensures this occurs in poly(n) rounds.

As in (Kearns et al., 2018; Agarwal et al., 2018a), we first relax Equation 1 to optimize over all distributions over subgroups,
and we enforce that our constraints hold in expectation over this distribution. Our new optimization problem becomes:

min
pg∈∆(G)

Eg∼pg
[

n∑
i=1

g(xi)F
′(fj , xi, h)]

s.t. Eg∼pg [ΦL(g)] ≤ 0

Eg∼pg [ΦU (g)] ≤ 0

(4)

We note that while |G| may be infinite, the number of distinct labelings of X by elements of G is finite; we denote the
number of these by |G(X)|. Then since Equation 4 is a finite linear program in |G(X)| variables, it satisfies strong duality,
and we can write:

(p∗g, λ
∗) = argminpg∈∆(G)argmaxλ∈ΛEg∼pg

[L(g, λ)] = argminpg∈∆(G)argmaxλ∈ΛL(pg, λ)

with L(g, λ) =
∑
x∈X

g(x)F (fj , x, h) + λLΦL + λUΦU , L(pg, λ) = Eg∼pg [L(g, λ)]

As in (Kearns et al., 2018) Λ = {λ ∈ R2 | ∥λ∥1 ≤ B} is chosen to make the domain compact, and does not change the
optimal parameters as long as B is sufficiently large, i.e. ∥λ∗∥1 ≤ B. In practice, this is a hyperparameter of Algorithm 1,
similar to (Agarwal et al., 2018a; Kearns et al., 2018). Then we follow the development in (Agarwal et al., 2018a; Kearns
et al., 2018) to show that we can compute (p∗g, λ

∗) efficiently by implementing no-regret strategies for the subgroup player
(pg) and the dual player (λ).

Formally, since Eg∼pg
[L(g,Λ)] is bi-linear in pg, λ, and Λ,∆(G) are convex and compact, by Sion’s minimax theorem

(Kindler, 2005):

min
pg∈∆(G)

max
λ∈Λ

L(pg, λ) = max
λ∈Λ

min
pg∈∆(G)

L(pg, λ) = OPT (5)

Then by Theorem 4.5 in (Kearns et al., 2018), we know that if (p∗g, λ
∗) is a ν-approximate min-max solution to Equation 5

in the sense that
if: L(p∗g, λ

∗) ≤ min
p∈∆(G)

L(p, λ∗) + ν, L(pg, λ) ≥ max
λ∈Λ

L(p∗, λ),

then: F (fj , p
∗
g, h) ≤ OPT + 2ν, |ΦL(g)|, |ΦU (g)| ≤

1 + 2ν

B

(6)
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So in order to compute an approximately optimal subgroup distribution p∗g , it suffices to compute an approximate min-max
solution of Equation 5. In order to do that we rely on the classic result of (Freund & Schapire, 1996) that states that if the
subgroup player best responds, and if the dual player achieves low regret, then as the average regret converges to zero, so
does the sub-optimality of the average strategies found so far.

Lemma D.2 ((Freund & Schapire, 1996)). Let pλ1 , . . . p
λ
T be a sequence of distributions over Λ, played by the dual player, and

let g1, . . . gT be the subgroup players best responses against these distributions respectively. Let λ̂T = 1
T

∑T
t=1 p

λ
t , p̂g =

1
T

∑T
t=1 gt. Then if

T∑
t=1

Eλ∼pλ
t
[L(gt, λ)]−min

λ∈Λ

T∑
t=1

[L(gt, λ)] ≤ νT,

Then (λ̂T , p̂g) is a ν-approximate minimax equilibrium of the game.

To establish Theorem 4.1, we need to show (i) that we can efficiently implement the subgroup players best response using
CSCG and (ii) we need to translate the regret bound for the dual players best response into a statement about optimality,
using Lemma D.2. Establishing (i) is immediate, since at each round t, if λt,0 = Epλ

t
[λL], λt,1 = Epλ

t
[λU ], then the best

response problem is:

argminpg∈∆(G)Eg∼pg
[
∑
x∈X

g(x)F (fj , x, h) + λt,0ΦL + λt,1ΦU ]

Which can further be simplified to:

argming∈G

∑
x∈X

g(x)(F (fj , x, h)− λL + λU ) (7)

This can be computed with a single call of CSCG , as desired. To establish (ii), the no-regret algorithm for the dual player’s
distributions, we note that at each round the dual player is playing online linear optimization over 2 dimensions. Algorithm 1
implements the exponentiated gradient algorithm (Kivinen & Warmuth, 1997), which has the following guarantee proven in
Theorem 1 of (Agarwal et al., 2018a), which follows easily from the regret bound of exponentiated gradient (Kivinen &
Warmuth, 1997), and Lemma D.2:

Lemma D.3 ((Agarwal et al., 2018a)). Setting η = ν
2n2B , Algorithm 1 returns p̂Tλ that is a ν-approximate min-max point in

at most O( 4n
2B2

ν2 ) iterations.

Combining this result with Equation 5 completes the proof.

E. Proof of AVG-FID Primitive
In Section 4, we presented our approach that optimizing for FID constrained across a range of subgroup sizes will allow us
to efficiently optimize for AVG-FID. We provide a more complete proof of that claim here:

Let g∗ be the subgroup that maximizes AVG-FID. Without loss of generality, g∗ = argmaxg∈G
1

n|g|
∑

g(x)F ′(fj , X, h)

(we drop the absolute value because we can also set F ′ = −F ). Then it is necessarily true, that g∗ also solves the constrained
optimization problem argmaxg∈G

1
n

∑
g(x)F ′(fj , X, h) such that |g| = |g∗|, where we have dropped the normalizing term

1
|g| in the objective function, and so we are maximizing the constrained FID.

Now consider an interval I = [|g∗| − α, |g∗|+ α], and suppose we solve g∗I = argmaxg∈G
1
n

∑
g(x)F ′(fj , X, h) such that

g ∈ I . Then since g∗ ∈ I , we know that 1
n

∑
g∗F ′(fj , X, h) ≤ 1

n

∑
g∗I (x)F

′(fj , X, h). This implies that:
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AVG-FID(g∗I ) ≥
1

|g∗I |
1

n

∑
g∗(x)F ′(fj , X, h)

= AVG-FID(g∗) + (
1

|g∗I |+ α
− 1

|g∗I |
)FID(g∗)

= AVG-FID(g∗)− α

|g∗|(|g∗|+ α)
· FID(g∗)

Given the above derivation, as α → 0, we have AVG-FID(g∗I ) → AVG-FID(g∗).

Hence we can compute a subgroup g that approximately optimizes the AVG-FID if we find an appropriately small interval
I aroudn |g∗|. Since the discretization in Section 4 covers the unit interval, we are guaranteed for sufficiently large n to find
such an interval.

F. Cost Sensitive Classifier, CSCG

Definition F.1. (Cost Sensitive Classification) A Cost Sensitive Classification (CSC) problem for a hypothesis class G is
given by a set of n tuples {(Xi, c

0
i , c

1
i )}ni=1, where c0i and c1i are the costs of assigning labels 0 and 1 to Xi respectively. A

CSC oracle finds the classifier ĝ ∈ G that minimizes the total cost across all points:

ĝ = argmin
g∈G

∑
i

(
g(Xi)c

1
i + (1− g(Xi))c

0
i

)
(8)

Algorithm 2 CSCG

Input: Dataset X ⊂ Rdsens × Rdsafe , costs (c0, c1) ∈ Rn

Let Xsens consist of the sensitive attributes x of each (x, x′) ∈ X .

# learn to predict the cost c0

Train linear regressor r0 : Rdsens → R on dataset (Xsens, c
0)

# learn to predict the cost c1

Train linear regressor r1 : Rdsens → R on dataset (Xsens, c
1)

# predict 0 if the estimated c0 < c1
Define g((x, x′)) := 1{(r0 − r1)(x) > 0}
Return g

G. NP-Completeness
We will show below that the fully general version of this problem (allowing any poly-time F ) is NP complete. First, we will
define a decision variant of the problem:

δX,F,h,A = max
g∈G,fj

(|F (fj , g, h)− F (fj , X, h)|) ≥ A

Note that a solution to the original problem trivially solves the decision variant. First, we will show the decision variant is in
NP, then we will show it is NP hard via reduction to the max-cut problem.

Lemma G.1. The decision version of this problem is in NP.

Proof. Our witness will be the subset g and feature fj such that

(|F (fj , g, h)− F (fj , X, h)|) ≥ A
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Given these 2, evaluation of the absolute value is polytime given that F is polytime, so the solution can be verified in
polytime.

Lemma G.2. The decision version of this problem is NP hard.

Proof. We will define our variables to reduce our problem to maxcut(Q, k). Given a graph defined with V, E as the vertex
and edge sets of Q (with edges defined as pairs of vertices), we will define our F , X , G, A, and h as follows:

X = V

h = constant classifier, maps every value to 1
G = P(V ) i.e. all possible subsets of vertices

F (fj , g, h) = |x ∈ E : x[0] ∈ g, x[1] ∈ gc|
–i.e. F (j, g, h) returns the number of
edges cut by a particular subset, ignoring
its first and third argument.
(this is trivially computable in polynomial
time by iterating over the set of edges).

A = k

Note that F (fj , X, h) = 0 by definition, and that F ≥ 0. Therefore, |F (fj , g, h) − F (fj , X, h)| = F (fj , g, h), and we
see that (|F (fj , g, h) − F (fj , X, h)|) ≥ A if and only if g is a subset on Q that cuts at least A = k edges. Therefore an
algorithm solving the decision variant of the feature importance problem also solves maxcut.

H. Linear Feature Importance Disparity
The non-separable FID notion considered in this paper corresponds to training a model that is inherently interpretable on
only the data in the subgroup g, and comparing the influence of feature j to the influence when trained on the dataset as a
whole. Since all of the points in the subgroup can interact to produce the interpretable model, this notions typically are not
separable. Below we formalize this in the case of linear regression, which is the non-separable notion we investigate in the
experiments.

Definition H.1. (Linear Feature Importance Disparity). Given a subgroup g, let θg = infθ∈Rd E(X,y)∼R[g(X)(θ′X − y)2],
and θR = infθ∈Rd E(X,y)∼R[(θ′X − y)2]. Then if ej is the jth basis vector in Rd, we define the linear feature importance
disparity (LIN-FID) by

LIN-FID(j, g) = |(θg − θR) · ej |

LIN-FID(j, g) is defined as the difference between the coefficient for feature j when training the model on the subgroup g,
versus training the model on points from R. Expanding Definition H.1 using the standard weighted least squares estimator
(WLS), the feature importance for a given feature fj and subgroup g(X) is:

Flin(j, g) =
(
(Xg(X)XT )−1(XT g(X)Y )

)
· ej , (9)

Where g(X) is a diagonal matrix of the output of the subgroup function. The coefficients of the linear regression model on
the dataset X can be computed using the results from ordinary least squares (OLS): (XXT )−1(XTY ) · ej .

We compute argmaxg∈GLIN-FID = argmaxg∈G|Flin(j,X
n)− Flin(j, g)| by finding the minimum and maximum values

of Flin(j, g) and choosing the one with the larger difference. For the experiments in Section 5, we use logistic regression
as the hypothesis class for g because it is non-linear enough to capture complex relationships in the data, but maintains
interpretability in the form of its coefficients, and importantly because Equation 9 is then differentiable in the parameters θ
of g(X) = σ(X · θ), σ(x) = 1

1+e−x . Since Equation 9 is differentiable in θ, we can use non-convex optimizers like SGD or
ADAM to maximize Equation 9 over θ.

While this is an appealing notion due to its simplicity, it is not relevant unless the matrix Xg(X)XT is of full rank. We ensure
this first by lower bounding the size of g via a size penalty term Psize = max(αL − |g(Xtrain)|, 0) + max(|g(Xtrain)| −
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αU , 0), which allows us to provide α constraints in the same manner as in the separable approach. We also add a small l2
regularization term ϵI to XT g(X)X . This forces the matrix to be invertible, avoiding issues with extremely small subgroups.
Incorporating these regularization terms, Equation 9 becomes:

Flin(j, g) = λs ·
(
(Xσ(X · θTL)XT + ϵI)−1(XTσ(X · θTL)Y ) · ej

)
+ λc · Psize (10)

We note that LIN-FID is a similar notion to that of LIME (Ribeiro et al., 2016), but LIME estimates a local effect around
each point which is then summed to get the effect in the subgroup, and so it is separable. It is also the case that Flin is
non-convex as shown below:

Lemma H.2. Flin as defined in Equation 9 is non-convex.

Proof. We will prove this by contradiction. Assume Flin is convex, which means the Hessian is positive semi-definite
everywhere. First we will fix (Xg(X)XT ))−1 to be the identity matrix, which we can do without loss of generality by
scaling g by a constant. This scaling will not affect the convexity of Flin.

Now, we have the simpler form of Flin = (XT g(X)Y ) · ej . We then can compute the values of the Hessian:

∂F 2

∂2g
= (XT g′′(X)Y ) · ej

Consider the case where XT is a 2× 2 matrix with rows 1, 0 and 0,−1 and Y is a vector of ones. If g weights the second
column (i.e. feature) greater than the first, then the output Hessian will be positive semi-definite. But if g weights the
first column greater than the first, then it will be negative semi-definite. Since the Hessian is not positive semi-definite
everywhere, Flin must be non-convex over the space of g.

This means the stationary point we converge to via gradient descent may only be locally optimal. In Section 5, we optimize
Equation 10 using the ADAM optimizer (Kingma & Ba, 2015). Additional details about implementation and parameter
selection are in Appendix I. Despite only locally optimal guarantees, we were still able to find (feature, subgroup) pairs with
high LIN-FID for all datasets.

I. Experimental Details
I.1. Algorithmic Details

Separable Case. In order to implement Algorithm 1 over a range of [αL, αU ] values, we need to specify our dual norm B,
learning rate η, number of iterations used T , rich subgroup class G, and the associated oracle CSCG . We note that for each
feature fj , Algorithm 1 is run twice; one corresponding to maximizing FID(fj , g, h) and the other minimizing it. Note that
in both cases our problem is a minimization, but when maximizing we simply negate all of the point wise feature importance
values F (fj , xi, h) → −F (fj , xi, h). In all experiments our subgroup class G consists of linear threshold functions over
the sensitive features: G = {θ ∈ Rdsens : θ((x, x′)) = 1{θ′x > 0}. We implement CSCG as in (Agarwal et al., 2018a;
Kearns et al., 2018) via linear regression, see Algorithm 2 in Appendix F. To ensure the dual player’s response is strong
enough to enforce desired size constraints, we empirically found that setting the hyperparameter B = 104 · µ(fj) worked
well on all datasets, where µ(fj) is the average absolute importance value for feature j over X . We set the learning rate for
exponentiated gradient descent to η = 10−5. Empirical testing showed that η ·B should be on the order of µ(fj) or smaller
to ensure proper convergence. We found that setting the error tolerance hyperparameter ν = .05 · µ(fj) · n ·αL worked well
in ensuring good results with decent convergence time across all datasets and values of α. For all datasets and methods
we ran for at most T = 5000 iterations, which we observe empirically was large enough for FID values to stabilize and
for 1

T

∑T
t=1 |gt| ∈ [αL, αU ], with the method typically converging in T = 3000 iterations or less. See Appendix N for a

sample of convergence plots.

Non-Separable Case. For the non-separable approach, datasets were once again split into train and test sets. For Student, it
was split 50-50, while COMPAS, Bank, and Folktables were split 80-20 train/test. The 50-50 split for Student was chosen so
that a linear regression model would be properly fit on a small g(Xtest). The parameter vector θ for a logistic regression
classifier was randomly initialized with a PyTorch random seed of 0 for reproducability. We used an ADAM (Kingma & Ba,
2015) optimizer with a learning rate of .05 as our heuristic solver for the loss function.

20



Feature Importance Disparities for Data Bias Investigations

To enforce subgroup size constraints, λsPsize must be on a significantly larger order than λcFlin(j, g). Empirical testing
found that values of λs = 105 and λc = 10−1 returned appropriate subgroup sizes and also ensured smooth convergence. The
optimizer ran until it converged upon a minimized linear regression coefficient, subject to the size constraints. Experimentally,
this took at most 1000 iterations, see Appendix O for a sample of convergence plots. After solving twice for the minimum
and maximum Flin(j, g) values and our subgroup function g is chosen, we fit the linear regression on both Xtest and
g(Xtest) to get the final FID.

I.2. FID Notions

LIME: A random forest model h was trained on dataset Xn. Then each data point along with the corresponding probability
outputs from the classifier were input into the LIME Tabular Explainer Python module. This returned the corresponding
LIME explanation values.

SHAP: This was done with the same method as LIME, except using the SHAP Explainer Python module.

Vanilla Gradient: Labeled as GRAD in charts, the vanilla gradient importance notion was computed using the Gradient
method from the OpenXAI library (Agarwal et al., 2022b). This notion only works on differentiable classifiers so in this
case, h is a logistic regression classifier. We found there was no substantial difference between the choice of random forest
or logistic regression for h when tested on other importance notions (Appendix L). Due to constraints on computation time,
this method was only tested on the COMPAS dataset (using Two Year Recidivism as the target variable).

Linear Regression: For the linear regression notion, the subgroup g was chosen to be in the logistic regression hypothesis
class. For a given subgroup g(X), the weighted least squares (WLS) solution is found whose linear coefficients θg then
define the feature importance value ej · θg .

For details on the consistency of these importance notions, see Appendix P.

I.3. Datasets

These four datasets were selected on the basis of three criterion: (i) they all use features which could be considered sensitive
to make predictions about individuals in a context where bias in a significant concern (ii) they are heavily used datasets in
research on interpretability and fairness, and as such issues of bias in the datasets should be of importance to the community,
and (iii) they trace out a range of number of datapoints and number of features and sensitive features, which we summarise
in Table 4. For each dataset, we specified features that were "sensitive." That is, when searching for subgroups with high
FID, we only considered rich subgroups defined by features generally covered by equal protection or privacy laws (e.g.
race, gender, age, health data).

Student: This dataset aims to predict student performance in a Portugese grade school using demographic and familial
data. For the purposes of this experiment, the target variable was math grades at the end of the academic year. Student was
by far the smallest of the four datasets with 395 data points. The sensitive features in Student are gender, parental
status, address (urban or rural), daily alcohol consumption, weekly alcohol consumption, and
health. Age typically would be considered sensitive but since in the context of school, age is primarily an indicator of
class year, this was not included as a sensitive feature. The categorical features address, Mother’s Job, Father’s
Job, and Legal Guardian were one hot encoded.

COMPAS: This dataset uses a pre-trial defendant’s personal background and past criminal record to predict risk of
committing new crimes. To improve generalizability, we removed any criminal charge features that appeared fewer than
10 times. Binary counting features (e.g. 25-45 yrs old or 5+ misdemeanors) were dropped in favor of using the
continuous feature equivalents. Additionally, the categorical variable Race was one-hot encoded. This brought the total
number of features to 95. The sensitive features in COMPAS are age, gender, and race (Caucasian, African-American,
Asian, Hispanic, Native American, and Other). For COMPAS, we ran all methodologies twice, once using the binary
variable, Two Year Recidivism, as the target variable and once using the continuous variable Decile Score. Two
Year Recidivism is what the model is intended to predict and is labeled as COMPAS R in the results. Meanwhile,
Decile Score is what the COMPAS system uses in practice to make recommendations to judges and is labeled as
COMPAS D in the results.

Bank: This dataset looks at whether a potential client signed up for a bank account after being contacted by marketing
personnel. The sensitive features in Bank are age and marital status (married, single, or divorced). The age feature
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in Bank is a binary variable representing whether the individual is above the age of 25.

Folktables: This dataset is derived from US Census Data. Folktables covers a variety of tasks, but we used the ACSIncome
task, which predicts whether an individual makes more than $50k per year. The ACSIncome task is meant to mirror the
popular Adult dataset, but with modifications to address sampling issues. For this paper, we used data from the state of
Michigan in 2018. To reduce sparseness of the dataset, the Place of Birth feature was dropped and the Occupation
features were consolidated into categories of work as specified in the official Census dictionary (Bureau, 2020), (e.g. people
who work for the US Army, Air Force, Navy, etc. were all consolidated into Occupation=Military). The sensitive
features in Folktables are age, sex, marital status (married, widowed, divorced, separated, never married/under
15 yrs old), and race (Caucasian, African-American, Asian, Native Hawaiian, Native American singular tribe, Native
American general, Other, and 2+ races).

Table 4: Summary of Datasets

Dataset Data Points # of Features # of Sensitive Features

Student 395 32 6
COMPAS 6172 95 8

Bank 30488 57 4
Folktables Income 50008 52 16

J. Synthetic Experiment
In addition to the empirical experiments on real-world datasets, we generated two synthetic datasets and used them to
validate our methods in a controlled environment. In our baseline experiment, we created a dataset where the outcome
y is independent of the sensitive features to confirm that our algorithm does not result in any false discovery. Next, we
modified the distribution of the outcome for a subset of individuals, injecting a large FID in the subgroup g for feature fj .
We then confirmed that our algorithm is able to find that feature importance disparity. We discuss the dataset generation,
experimental setup, and results from those two experiments here.

J.1. Baseline Case

Experimental Setup: We generated a synthetic dataset of size n = 4000. Each person in the dataset had randomly generated
sensitive features: age, sex, and race. sex and race were drawn based on US Census data and age ∼ N (50, 7). Three
more variables were generated for each individual: a binary variable x1 and normally distributed variables x2 ∼ N (100, 5)
and x3 ∼ N (100, 5). These three additional variables were drawn independently of the sensitive features and each other.
We then generated outcome y ∼ x1 + x2 + x3 + η, η ∼ N (0, 1); note that y is generated from the same model for any
sensitive group, so there should be no subgroups with large AVG-FID. We then trained a random forest model on this
dataset and computed feature importance values using SHAP.

Results: We summarize the (fj , g) pairs with the largest AVG-FID in Table 5. As expected, we see that Algorithm 1
does not find any significant AVG-FID for this baseline case. AVG-FID is not exactly zero, which is expected because
AVG-FID is measured as an absolute value, meaning that any difference in feature importance due to random variation will
result in a non-zero value.

J.2. Injected Case

Experimental Setup: In our second experiment, we started with the same individuals generated in the baseline case but we
injected FID for a subgroup g of older, hispanic individuals consisting of approximately 13% of the population. For this
second dataset, if an individual was in g, then we generated y ∼ x1 + 50 ∗ x2 + x3 + η, η ∼ N (0, 1). Otherwise, y was
generated as in the baseline case. Also as in the baseline scenario, we used a random forest model with SHAP as the feature
importance notion.

Results: As seen in Table 5, the three features with the highest FID subgroups found were Hispanic, age, and x2.
Finding x2 was expected, but it is not unusual for Hispanic and age to also be found since in our synthetic example, y is
dependent on these two features for points in g and completely independent for X/g. The fourth largest AVG-FID found
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Table 5: Summary of the top (fj , g) pairs found for the two synthetic dataset experiments. µ(F ) is the average feature
importance value on the specified group. We can see that in the baseline experiment, there was very little AVG-FID. In the
injected case, Algorithm 1 found very large AVG-FID subgroups on the three features which were effected by the injection.
The next largest pair in the injected case had AVG-FID comparable to the baseline case.

Experiment Feature fj |g| µ(F (fj , X)) µ(F (fj , g)) AVG-FID

Baseline x3 .13 −.61 −.48 .13
x2 .11 −1.16 −1.23 .06
x1 .12 −.05 −.01 .04

Injected Hispanic-American .15 .86 28.0 27.13
Age .17 3.57 −7.07 10.6
x2 .15 −1.56 .22 1.78
Black-American .15 .01 .04 .03

was significantly smaller than the top three and is comparable in magnitude to that of the baseline case. The subgroup found
by Algorithm 1 for the top feature captured 64% of the older Hispanic subgroup where the disparity was injected. This is
not a perfect result, but was obtained without extensive tuning and illustrates our method can detect an injected disparity in a
controlled environment.

K. Comparison of FID Values on Rich vs. Marginal Subgroups
This appendix provides expanded information from Section 5.4. Here we are justifying the use of rich subgroups by
searching for maximal AVG-FID subgroups in the marginal subgroup space. Marginal subgroups are those defined by a
single sensitive characteristic making them straightforward to search. In Figure 6, we compare the maximal AVG-FID rich
subgroups shown in Figure 2 to the maximal AVG-FID marginal subgroup for the same feature. In about half the cases,
expanding our subgroup classes to include rich subgroups defined by linear functions of the sensitive attributes enabled us to
find a subgroup that had a higher AVG-FID. In the other cases, the AVG-FID of the marginal subgroup was similar to the
rich subgroup. Sometimes, the marginal subgroup outperformed the rich subgroup; this happens when using rich subgroups
does not offer any substantial advantage over marginal subgroups, and the empirical error tolerance in Algorithm 1 stopped
the convergence early.
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(a) Student (b) COMPAS R

(c) COMPAS D (d) Bank (e) Folktables

Figure 6: Comparison of the maximal FID rich subgroups from Figure 2 to the maximal FID marginal subgroup on the
same feature. This is displayed as |log10(R)| where R is the ratio of average importance per data point for separable notions
and the ratio of coefficients for the linear coefficient notion. The feature associated with the subgroups is written above each
bar.

L. Statistical Validity of Results: Generalization of FID and |g|
When confirming the validity of our findings, there are two potential concerns: (1) Are the subgroup sizes found in-sample
approximately the same on the test set and (2) do the FID’s found on the training set generalize out of sample? Taken
together, (1) and (2) are sufficient to guarantee our maximal AVG-FID values generalize out of sample.

In Figure 7, we can see that when we take the maximal subgroup found for each feature fj , g∗j , and compute it’s size |g∗j | on
the test set, for both the separable and non-separable methods it almost always fell within the specified [αL, αU ] range; the
average difference in |g∗j (Xtrain)| and |g∗j (Xtest)| was less than .005 on all notions of feature importance and all datasets
except for Student, which was closer to .025 due to its smaller size. A few rare subgroups were significantly outside the
desired α range, which was typically due to the degenerate case of the feature importance values all being 0 for the feature
in question. Additional plots for all (dataset, notion) pairs are in Figures 9, 10.

In Figure 8, we compare AVG-FID(fj , g∗j , Xtrain) to AVG-FID(fj , g∗j , Xtest), or LIN-FID in the case of the linear
regression notion, to see how FID generalizes. The separable notions all generalized very well, producing very similar
AVG-FID values for in and out of sample tests. The non-separable method still generalized, although not nearly as robustly,
with outlier values occurring. This was due to ill-conditioned design matrices for small subgroups leading to instability in
fitting the least squares estimator. In Appendix P, we investigate the robustness of the feature importance notions, evaluated
on the entire dataset. We find that the coefficients of linear regression are not as stable, indicating the lack of generalization
in Figure 8 could be due to the feature importance notion itself lacking robustness, rather than an over-fit selection of g∗j .
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(a) (b)

(c) (d)

Figure 7: Generalizability of |g| on the Folktables dataset. (a) Size outputs from Algorithm 1 for all features and separable
notions and (b) from optimizing Equation 10 for LIN-FID show that our size constraints hold in-sample. (c) Plots the
corresponding values of |g∗j (Xtrain)| vs |g∗j (Xtest)| for separable notions and (d) for LIN-FID, showing that the subgroup
size generalizes out of sample.

(a) LIME (b) SHAP

(c) GRAD (d) Linear Regression

Figure 8: Out of sample generalization of the methods. Each dot represents a feature, plotting FID on Xtest vs on Xtrain.
All are computed on the Folktables dataset except (c) is computed on COMPAS R. The diagonal line represents perfect
generalization and the Pearson correlation coefficient is displayed in figure. The non-separable approach suffers from the
instability of the WLS method.
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Figure 9: Final subgroup sizes of g(Xtest) compared with α range. These almost always fall within the correct size range.
Student has the largest errors given the small dataset size. Some subgroups fell significantly outside the expected ranged,
mostly due to many importance values, F (fj , X, h), being zero for a given feature.
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(a) Student, LIME (b) Student, SHAP (c) Student, LR (d) COMPAS R, LIME

(e) COMPAS R, SHAP (f) COMPAS R, LR (g) COMPAS R, GRAD (h) COMPAS D, LIME

(i) COMPAS D, SHAP (j) COMPAS D, LR (k) Bank, LIME (l) Bank, SHAP

(m) Bank, LR (n) Folk, LIME (o) Folk, SHAP (p) Folk, LR

Figure 10: Comparing |g∗j (Xtrain)| and |g∗j (Xtest)|. We can see that the size of the subgroup was consistent between the
train and test set showing good generalization. The average difference was only noticeable on the Student dataset, due to its
smaller size.
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Table 6: Comparing results between using random forest and logistic regression as the hypothesis class for classifier h using
LIME as the importance notion on the COMPAS R dataset. Here we display the features with the highest AVG-FID, the
subgroup size |g|, and the AVG-FID. We can see that the choice of hypothesis class h does not substantially affect the
output. We used random forest for all of our main experiments.

h = Random Forest h = Logistic Regression

Feature Size AVG-FID Feature Size AVG-FID
Age .05− .1 .144 Age .05− .1 .21
Priors Count .01− .05 .089 Priors count .01− .05 .092
Juv Other Count .01− .05 .055 Juv Other Count .01− .05 .055
Other Features - < .025 Other Features - < .025

h = Random Forest h = Logistic Regression

Feature Size AVG-FID Feature Size AVG-FID
Age .01− .05 .4 Age .01− .05 .21
Priors Count .01− .05 .11 Priors count .01− .05 .14
Other Features - < .05 Other Features - < .05

Table 7: Same as Table 6 except using SHAP as the importance notion. With SHAP, there were fewer features with
significant AVG-FID before dropping off but in both cases, the choice of h did not significantly affect the outcome.

M. Choice of Hypothesis Class
One ablation study we explored was the choice of classification model h. While the main experiments used a random forest
model, we also explored using a logistic regression model. The logistic regression model was implemented with the default
sklearn hyperparameters. We found that the results are roughly consistent with each other no matter the choice of h. In
Table 6 and Table 7, we see that the features with the highest AVG-FID, their subgroup sizes, and the AVG-FID values are
consistent between the choice of hypothesis class. We then looked further into the features that were used to define these
subgroups. In Figure 11, we see that the subgroups with high AVG-FID for the feature Age were both defined by young,
non-Asians. Similarly consistent results were found across all feature importance notions and datasets.

(a) h = Random Forest, fj∗ = Age (b) h = Logistic Regression, fj∗ = Age

Figure 11: Comparing the choice of hypothesis class of h. Here we show the defining coefficients for the highest AVG-FID
subgroup found on the COMPAS R dataset using LIME as the feature importance notion. For the feature Age, we find that
young and non-Asian were the two most defining coefficients for g∗ no matter which choice of h.

We acknowledge that this ablation study is not the most extensive study, however given that these initial results show no
significant differences between choice of hypothesis class, we decided to proceed in the main experiments to present all
results using random forest as the hypothesis class. This is certainly an area that could be explored in future studies.
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N. Algorithm 1 Optimization Convergence
Here are additional graphs showing examples of the convergence of Algorithm 1. Data was tracked every 10 iterations,
recording the Lagrangian values (to compute the error vt = max(|L(p̂tG , p̂tλ)− L|, |L− L(p̂tG , p̂

t
λ)|)), the subgroup size,

and AVG-FID value, graphed respectively in Figure 12. We can see AVG-FID value moving upward, except when the
subgroup size is outside the α range, and the Lagrangian error converging upon the set error bound v before terminating.

While Theorem 1 states that convergence time may grow quadratically, in practice we found that computation time was
not a significant concern. The time for convergence varied slightly based on dataset but for the most part, convergence for
a given feature was achieved in a handful of iterations that took a few seconds to compute. Features which took several
thousand iterations could take around 30 minutes to compute on larger datasets.
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Figure 12: Plots detailing the convergence of Algorithm 1. The top plot shows the error convergence, i.e. the max difference
in Lagrangian values between our solution and the min/max-players’ solution. The other two plots display the subgroup size
and AVG-FID of the solution. Convergence almost always happened in fewer than 5000 iterations, allaying concerns about
theoretical run time.
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O. Non-Separable Optimization Convergence
Here are additional graphs showing the convergence in the non-separable approach. Using the loss function that rewards
minimizing the linear regression coefficient (or maximizing it) and having a size within the alpha constraints, we typically
reach convergence after a few hundred iterations. In Figure 13, we can see in the respective upper graphs that the subgroup
size converges to the specified α range and stays there. Meanwhile, in the lower graph, we see the LIN-FID attempt to
maximize but oscillates as the appropriate size is found.

Convergence using this method almost always took < 1000 iterations. Running this for all features took around 2 hours to
compute on the largest datasets. The optimization was run using GPU computing on NVIDIA Tesla V100s.

Figure 13: Plots of subgroup size and linear regression coefficient of g over the training iterations of the Adam optimizer.
For each dataset, the feature with the highest LIN-FID was displayed.
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P. Importance Notion Consistency
To see how consistent importance notion methods were, we plotted the values of F (fj , Xtest, h) against F (fj , Xtrain, h)
with each point representing a feature fj of the COMPAS dataset. The closer these points track the diagonal line, the more
consistent a method is in providing the importance values. As we can see in Figure 14, LIME and GRAD are extremely
consistent. Linear regression is less consistent, due to instability in fitting the least squares estimator on ill-conditioned
design matrices. SHAP is also inconsistent in its feature importance attribution, however the AVG-FID still generalized
well as seen in Figure 8. This could mean that while SHAP is inconsistent from dataset to dataset, it is consistent relative to
itself. i.e. if F (j,Xtrain) > F (j,Xtest) then F (j, g(Xtrain)) > F (f,Xtest) meaning the AVG-FID value would remain
the same.

These inconsistencies seem to be inherent in some of these explainability methods as noted in other research (Krishna
et al., 2022; Dai et al., 2022; Agarwal et al., 2022a; Alvarez-Melis & Jaakkola, 2018; Bansal et al., 2020). Exploring these
generalization properties would be an exciting future direction for this work.

Figure 14: Consistencies of importance notions. Each point represents a feature, the x-value is F (j,Xtest), and y-value is
F (j,Xtrain). The closer the points are to the diagonal, the more consistent the notion is.

Q. Ethical Review
There were no substantial ethical issues that came up during this research process. The datasets used are all publicly
available, de-identified, and have frequently been used in fair machine learning research. There was no component of this
research that sought to re-identify the data or use it in any fashion other than to test our methodology.
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