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Abstract
The current state of machine learning scholar-
ship in Timeseries Anomaly Detection (TAD) is
plagued by the persistent use of flawed evaluation
metrics, inconsistent benchmarking practices,
and a lack of proper justification for the choices
made in novel deep learning-based model de-
signs. Our paper presents a critical analysis of the
status quo in TAD, revealing the misleading track
of current research and highlighting problematic
methods, and evaluation practices. Our posi-
tion advocates for a shift in focus from solely
pursuing novel model designs to improving
benchmarking practices, creating non-trivial
datasets, and critically evaluating the utility
of complex methods against simpler baselines.
Our findings demonstrate the need for rigorous
evaluation protocols, the creation of simple base-
lines, and the revelation that state-of-the-art deep
anomaly detection models effectively learn lin-
ear mappings. These findings suggest the need
for more exploration and development of simple
and interpretable TAD methods. The increment
of model complexity in the state-of-the-art deep-
learning based models unfortunately offers very
little improvement. We offer insights and sug-
gestions for the field to move forward.

1. Introduction
Time series anomaly detection (TAD) is an active field of
machine learning with applications across multiple indus-
tries. For instance, many real-world systems such as ve-
hicles, manufacturing plants, robots, and patient monitor-
ing systems, involve a large number of interconnected sen-
sors producing a great amount of data over time that can
be used to detect anomalous behaviour. The anomalies
can manifest as single irregular points or groups of such
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points whose interpretation as anomalous might depend on
the system’s operational history or on the inter-connectivity
among sub-modules.

Given the complexity of the problem and inspired from the
successes in other areas, such as natural language or au-
dio processing, many state-of-the-art deep-learning archi-
tectures have been adjusted and applied to it. Such ap-
proaches aim to learn a latent representation of the normal
time-series data, e.g. LSTM (Park et al., 2017), Trans-
former (Tuli et al., 2022; Xu et al., 2022), and some-
times explicitly model the inter-dependency among the
sub-components in the system, e.g. graph neural networks
(Deng & Hooi, 2021; Chen et al., 2021). Based on the
assumption that the anomalies constitute unseen patterns
which will not be modelled during reconstruction of the
series from the model, the difference between the original
and reconstructed series is used to detect them.

Although it is well intended, this line of research has never
provided evidence of the necessity of deep-learning, which
has been challenged namely in Audibert et al. (2022).
The state-of-the-art (SOTA) deep-learning approaches pro-
ceeded to introduce models of increased complexity using
questionable validation processes. Those processes involve
unsuitable benchmark datasets (Wu & Keogh, 2022) and,
most harmful to this field, the use of flawed evaluation pro-
tocols (Kim et al., 2022). The protocol which introduced
the most pitfalls is the point adjustment (PA) applied on the
point-wise F1 score which practically favors noisy predic-
tions. It was gradually introduced in a series of papers (Xu
et al., 2018; Audibert et al., 2020; Shen et al., 2020; Su
et al., 2019c) with the original intention of calibrating the
anomaly detection threshold on a hold-out dataset, but it
was subsequently demonstrated in Kim et al. (2022) that
uniformly random predictions outperform SOTA methods
and their performance tends to one as the average length
of the anomalies increases. Although using the standard
F1 score without point-adjust avoids those pitfalls, it still
leaves a gap by only focusing on point-wise time-stamp
level detection versus anomaly instance level detection,
which led to the introduction of new complementary range-
based metrics such as the ones in Tatbul et al. (2018), Wag-
ner et al. (2023).

The goal of this paper is to guide the TAD community to-
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wards more meaningful progress through rigorous bench-
marking practices and a focus on studying the utility of
their models by drawing useful but simple baselines. We
achieve this with the following contributions: 1.) We intro-
duce simple and effective baselines and demonstrate that
they perform on par or better than the SOTA methods, thus
challenging the efficiency and effectiveness of increasing
model complexity to solve TAD problems. 2.) We rein-
force this position by reducing trained SOTA models to lin-
ear models which are distillations of them but still perform
on par. Thus from the point of view of the TAD task on
the current datasets, those models perform roughly a linear
separation of the anomalies from the nominal data.

Our code1 is available on GitHub to easily run the baselines
and benchmarks.

2. Related Work
Anomaly detection in time series data has been extensively
studied, with methods ranging from univariate to multivari-
ate and including complex deep-learning models (Li et al.,
2019; Zhang et al., 2019; Zhao et al., 2020; Su et al., 2019a;
Zong et al., 2018; Hundman et al., 2018a; Deng & Hooi,
2021; Chen et al., 2021). These models are trained to fore-
cast or reconstruct presumed normal system states and then
deployed to detect anomalies in unseen test datasets. The
anomaly score defined as the magnitude of prediction or
reconstruction errors serves as an indicator of abnormality
at each time stamp. Model performance is often evaluated
as a binary classification problem, with the anomaly scores
thresholded into binary labels. A comprehensive review of
anomaly detection methods can be found in (Schmidl et al.,
2022; Blázquez-Garcı́a et al., 2021).

Classical machine learning methods: A basic approach
to anomaly detection in time-series data involves treating
sample points of each sensor as independent and using
classical statistical methods on the individual univariate
series. For instance, regression models are used for the
prediction from other sensor measurements (Salem et al.,
2014). Principal Component Analysis (PCA) is utilized for
dimensionality reduction and reconstruction (Shyu et al.,
2006). Other methods for anomaly detection on time series
data take temporal dependency or correlation among sen-
sors into account. These include modeling families of hid-
den Markov chains (Patcha & Park, 2007) or graph theory
(Boniol et al., 2020). Signal transformation (Kanarachos
et al., 2017), isolation forest (Bandaragoda et al., 2018; Liu
et al., 2008), Auto-Regressive Integrated Moving Average
(ARIMA) (Yaacob et al., 2010) and clustering (Angiulli
& Pizzuti, 2002; Boniol et al., 2021; Tran et al., 2020).
Time-series discord discovery has recently emerged as a fa-

1Code: https://github.com/ssarfraz/QuoVadisTAD

vored choice for univariate data analysis. A recent method
MERLIN (Nakamura et al., 2020) is considered to be the
state-of-the-art for univariate anomaly detection, as it iter-
atively varies the length of a subsequence and searches for
those that are greatly different from their nearest neighbors
as candidates of abnormality. Also see (Paparrizos et al.,
2022) for a comprehensive performance comparison of dif-
ferent classical TAD methods on univariate data.

Deep learning methods: Anomaly in time series might
be hidden in peculiar dependencies among sub-modules
in a system or over its operation history that are hard to
detect with manual feature engineering. Modern deep-
learning models that can learn temporal dependency via
recursive networks (e.g. LSTM) or attention mechanisms
(e.g. Transformer) or by explicitly representing the corre-
lation among sensors (e.g. Graph Neural Networks) have
been proposed as the cutting-edge methods for TAD. For
instance, LSTM-VAE (Park et al., 2017) used a variational
autoencoder that is based on LSTM and reconstructs the
test data with variational inferences. DAGMM (Zong et al.,
2018) utilized deep autoencoders and Gaussian mixture
model to jointly model a low-dimensional representation
which is then used to reconstruct each time stamp. It
computes the reconstruction error for anomaly detection.
OmniAnomaly(Su et al., 2019a) modeled the time series
data as stochastic random process with variational autoen-
coders (VAE) and established reconstruction likelihood as
an anomaly score. Another approach, USAD (Audibert
et al., 2020), introduced a two-phase training paradigm in
which two autoencoders and two decoders are trained un-
der the adversarial game-style. Among the more recent
methods that currently represent the state-of-the-art deep
models on anomaly detection are GDN (Deng & Hooi,
2021) and TranAD (Tuli et al., 2022). GDN (Deng &
Hooi, 2021) models the inter-connectivity among sensors
as a graph and used graph attention network to forecast the
sensor measurement. The deviation between true observa-
tion and model predictions is then used to quantify anoma-
lies. TranAD (Tuli et al., 2022) is a transformer based
approach that proposed a new transformer architecture for
anomaly detection. It introduced several components with
a two transformer-based encoder and decoders using multi-
head attention blocks. The approach then proposed a two-
phase training scheme utilizing adversarial and meta learn-
ing procedures. Another recent transformer based approach
Anomaly Transformer (Xu et al., 2022) introduced a new
attention block and a min-max loss which helps learn two
separate series associations, one prior which aims to cap-
ture local associations which in cases of anomaly would be
caused by the continuity around it and series associations
which should encode deeper information about the tempo-
ral context. Overall both methods results in complicated
schemes. A similar approach in designing a transformer
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based model along with meta learning objectives and opti-
mal transport has been presented in (Li et al., 2023).

Aside from the anomaly detection approaches, many ef-
forts has been put in creating useful anomaly detection
benchmarks. Some recent studies, for instance (Wu &
Keogh, 2022) have shown how some of these datasets suf-
fer from potential flaws, such as triviality, unrealistic den-
sity of anomaly, or mislabeling.

3. Methods
Among the numerous anomaly detection approaches pre-
sented in the past, there is often something consistent - they
tend to overlook simpler baselines in pursuit of novelty.
This leads to overly complex engineered solutions with-
out much utility and a good rationale. Towards this end,
we propose simple methods that exceed the performance of
current best-published anomaly detection approaches. As a
result, these baselines help us to understand the complexity
of the underlying problem and provide a solid foundation
for further investigation. Of note, our contribution is prop-
erly setting up these known methods and creating a set of
strong baselines.

3.1. Preliminaries

We introduce some notations which are used to formally
define the task of unsupervised TAD and describe the meth-
ods used. The training data consist of a time series X =
[x1, . . .xT ] ∈ RT ·F which only contains non-anomalous
timestamps. Here T is the number of timestamps and F
the number of features. The test set, X̂ = [x̂1, . . . x̂T̂ ] ∈
RT̂ ·F contains both normal and anomalous timestamps and
ŷ = [ŷ1, . . . , ŷT̂ ] ∈ {0, 1}T̂ represents their labels, where
ŷt = 0 denotes a normal and ŷt = 1 an anomalous times-
tamp t. Then the task of anomaly detection is to select
a function fθ : X → R such that fθ(xt) = ỹt esti-
mates the anomaly value ŷt

2. The (potentially empty) set
of parameters θ is estimated using the training data X. In
most methods, usually an intermediate error vector func-
tion errθ : X → RF is estimated which computes vectors
representing an error along all sensors, we also denote by
E = errθ(X̂) the predicted test error vectors.

The error vectors E estimated from any of the methods pro-
vide a measure of the deviation of the test features from
normality. Normalization of error vectors sometimes is
necessary before detecting anomalies due to variations in
error behavior across sensors. Two normalization meth-
ods are often used: scaling using robust statistics such as
median and inter-quartile range (Deng & Hooi, 2021) and

2The range of ỹt values may differ from ŷt ∈ 0, 1, necessitating thresholding
before obtaining actual predictions. Typically, the threshold which yields the best
score on the training or validation data is selected.

scaling using mean and standard deviation. The choice of
normalization approach can impact anomaly detection ac-
curacy, and careful consideration should be given to the se-
lected method. The impact of error vector normalization
on datasets is demonstrated through an ablation study in
section 4.4. Once the error vectors are normalized, the fi-
nal output is a measure of the vector sizes. Given that we
are working on the anomaly detection scenario, the most
fitting metric is L∞ which computes the largest absolute
error between the different sensors, ∥et∥∞ = max

i≤F
{|eit|}.

3.2. Proposed simple and effective baselines

Sensor range deviation: The range of sensor values ob-
served during normal operation can be useful in identify-
ing out-of-distribution (OOD) samples. Anomalies in time
series data can occur when the sensor values deviate from
their usual range. Therefore, if the sensor values in a test
data point fall outside the observed range, it may indicate
the presence of an anomaly. Formally this is defined as:

f(x̂t) =

{
0 if x̂t ∈ [min(X),max(X)]
1 otherwise

}

This represents a minimum level of detection performance
that any advanced method should be able to surpass.

L2-norm: Magnitude of the observed time stamp: In
the case of multivariate time series data, the magnitude of
the vector at a particular timestamp may serve as a rele-
vant statistic for detecting OOD samples. This can be eas-
ily computed by taking the L2-norm of the vector, thus
f(x̂t) = ∥x̂t∥2. By using the magnitude as an anomaly
score, we have discovered that it can be an effective and
robust baseline for identifying anomalies in multivariate
datasets.

NN-distance: Nearest neighbor distance to the normal
training data: A sample that deviates from normal data
should have a greater distance from it. Therefore, using
the nearest-neighbor distance between each test time-stamp
and the train data as an anomaly score can serve as a reli-
able baseline. In fact, in many cases, this method outper-
forms several state-of-the-art techniques.

PCA reconstruction error: Our simplest reconstruction
method can be seen as an outlier detection on a lower di-
mensional linear approximation of the train dataset single
timestamp features.

After centering the training set X on its mean, using PCA,
we compute the principal components of its features. This
defines an affine approximation of X centered on the ori-
gin which can be expressed by the eigenvector matrix U ∈
RF ·F ′

, where F ′ < F is a fixed number of the first prin-
ciple components. Then the test set X̂ is transformed to
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Figure 1. Proposed simple neural-network baselines

X̃ = X̂UTU ∈ RT̂ ·F and we consider the reconstruction
error vectors E = errU(X̂) = X̂− X̃.

There are two ways to interpret this transform. The first
one is as a linear reconstruction of the test data, which is
equivalent to using a linear autoencoder trained with the
mean squared error loss on the training set, see (Bourlard
& Kamp, 1988) and (Baldi & Hornik, 1989). The second
way is to interpret it as the projection of each vector of X̂ to
the linear subspace S = span(cols(U)) ⊂ RF formed by
the principal components in U. This interpretation high-
lights the linearity and simplicity of the method as each
error vector et connects xt with S and is perpendicular to
S, thus expresses the distance between xt and S.

3.3. Proposed neural network blocks baselines

Contemporary anomaly detection techniques based on deep
learning utilize modern neural networks to create solu-
tions with varying levels of sophistication. Among the
commonly employed architectures are auto-encoders (AE),
long short-term memory (LSTM) networks, multi-layer
perceptrons (MLPs), graph convolution networks (GCN),
and Transformers. These neural network structures serve as
the foundational components for designing intricate models
intended for anomaly detection. In order to provide context
for the usefulness of the more elaborate solutions, we uti-
lize these architectures in their most basic form as a set of
baselines. It is reasonable to expect that any solution which
employs these as foundational components should perform
better, provided they are trained on rich enough datasets
of normal examples. Our experiments demonstrate that, in
most cases, these basic baselines perform better than mod-
els that incorporate a combination of these structures for
the purpose of anomaly detection. Therefore, establishing
such baselines may help understand the rationale behind
the development of more complex models.

1-layer linear MLP as auto-encoder: As the first simplest

neural baseline we use a single hidden-layer MLP without
any activation as an auto-encoder.

Single block MLP-Mixer: Among the more modern vari-
ants of MLPs, the MLPMixer (Tolstikhin et al., 2021) has
been shown to perform quite well on many vision prob-
lems. The architecture includes several MLP layers, called
MLP-Mixer blocks. Each MLP-Mixer block consists of
two sub-layers: a token-mixing sub-layer and a channel-
mixing sub-layer. These operate on the spatial dimension
and the channel dimension of the input feature maps. The
entire architecture consists of stacking several MLP-Mixer
blocks, allowing the network to capture increasingly com-
plex spatial and cross-channel dependencies in the input.
We include a single standard block of MLPMixer as our
baseline.

Single Transformer block: Since transformers are in-
creasingly used in several recent anomaly detection meth-
ods, we use a basic transformer block with one single-head
attention and one fully connected layer as a feed-forward
output. This serves as the simplest and basic single trans-
former block baseline.

1-layer GCN-LSTM block: Using a single GCN layer
feeding into a LSTM layer is a simple yet effective base-
line for learning graph structure on multivariate time series
data. The GCN layer is used to model the relationships
between different time series variables, while the LSTM
layer is used to capture temporal dependencies within each
time series variable. The output of the LSTM layer is then
forwarded to the output regression layer directly. Overall,
this baseline provides a basic framework for jointly model-
ing the graph structure and temporal dependencies in multi-
variate time series data. Many recently published methods
extend and improve upon this by incorporating additional
GCN or LSTM layers, using attention mechanisms, or in-
corporating other types of graph neural networks.

Figure 1 illustrates the proposed baseline neural network
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blocks. These baseline models are trained and compared in
both reconstruction and forecasting modes.

3.4. Univariate time series representation

Univariate time series data consist of a single observation at
each timestamp, and most deep-learning methods designed
for multivariate data are not directly applicable. Conse-
quently, the most effective approaches for analyzing uni-
variate data are typically focused on identifying unusual
subsequences, or discords, within the time series. State-of-
the-art discord discovery methods, for instance (Nakamura
et al., 2020), focus on optimizing the complexity and pa-
rameters of such methods that typically involve comparing
windowed distances between timestamps. In this work, we
use a similar yet effective representation for univariate time
series data that allows the discovery of anomalies. Specif-
ically, we represent each timestamp as a vector in Rw+1,
where w denotes the number of preceding time stamps.
This representation can be efficiently computed in a sliding
window fashion and has linear time complexity, making it
efficient for practical use. In section A.2.1, we demonstrate
that the impact of the window size on performance is rela-
tively low and a small fixed window of w = 4 suffice for
the considered univariate datasets.

3.5. Evaluation metrics

A lot of papers introduced and criticised different metrics.
In our view, anomaly detection shares a lot with object
detection and semantic segmentation in computer vision,
therefore it would need two metrics to fully capture model
performance. The point-wise which captures the quality
of the detection of individual anomalies and range-wise
which expresses the quality of the anomaly segmentation.
For the point-wise anomaly detection, we use the standard
F1 score, which actually equals to the 1-dimensional Dice
coefficient. For completeness, we also include the flawed
and commonly used F1 score with point adjustment de-
noted as F1PA. For the range-wise metrics, we followed
the work in this direction starting with the Time-series pre-
cision and recall metrics defined in (Tatbul et al., 2018)
and then corrected for bias in (Wagner et al., 2023) and we
use the latter to compute an F1 score denoted as F1T.

Below are the definitions of the three scores we use together
with the corresponding testing protocols:

F1: Let [ŷ1, . . . , ŷT̂ ] be the ground truth per time-stamp on
the test set and [ỹthr1 , . . . , ỹthr

T̂
] the corresponding predic-

tions set to 1 when ỹi > thr else to 0. The hits are defined
as TP thr = |{i ≤ T̂ | ỹthri = ŷi}|, FP thr = |{i ≤
T̂ | ỹthri = 1 and ŷi = 0}| and FN thr = |{i ≤ T̂ | ỹthri =
0 and ŷi = 1}|. Then the precision Precthr, recall Recthr

and F1-score F1thr are defined as usual based on those

values. The final score is then F1 = max
thr∈R

F1thr.

F1PA: The final F1 score is computed exactly as before.
This metric is different in its evaluation protocol which ad-
justs the predictions using the ground truth. Namely, for
every contiguous anomaly interval A = [t1, . . . , t2] in the
ground truth, if there is at least one i ∈ A such that ỹi = 1,
then for every j ∈ A, ỹj is set to 1. In other words, if
an anomaly interval is hit once by the predictions, then all
predictions in the interval are corrected to match the ground
truth.

F1T: Let A,P be respectively the set of all ground truth
and prediction anomaly intervals. Also let PA = {P ∈
P | |A ∩ P | > 0} be the prediction intervals intersected by
A. Then precision and recall are defined as follows:

PrecT (A,P) =
1

|P|
∑
P∈P

γ(|AP |, P )
|
⋃
A ∩ P |
|P |

RecT (A,P) =
1

|A|
∑
A∈A

γ(|PA|, A)
|
⋃

P ∩A|
|A|

The above definition is consistent with both (Tatbul et al.,
2018) and (Wagner et al., 2023). The full formula in the
latter paper for recall is

RecT (A,P) =
1

|A|
∑
A∈A

[α1(|PA| > 0)

+(1− α)γ(|PA|, A)
∑
P∈P

∑
t∈P∩A

δ(t−minA, |A|)∑
t∈A

δ(t−minA, |A|)
],

where 0 ≤ α ≤ 1, δ ≥ 1 and PrecT (A,P) =
RecT (P,A). (Wagner et al., 2023) proposed to fix the pa-
rameters α, δ to 0 and a constant function, in order to derive
their formula for γ.

Under this assumption, we simplified those formulas to
make them more comprehensible. Here we use the cor-
rected γ(n,A) = ( |A|−1

|A| )n−1 which guarantees that recall
is increasing relative to the threshold of the anomaly detec-
tor. To provide some intuition, e.g. the recall computes an
average of the fraction of ground truth intervals overlapped
by the prediction which expresses the amount of discov-
ery success. Every term is weighted though by γ which
decreases in value as multiple predictions hit the same
ground truth interval, thus penalizing duplicates. Note that
PrecT (A,P) = RecT (P,A), i.e. precision measures the
recall of prediction intervals by the ground truth. Finally,
the F1-score denoted by F1T is defined as usual using
PrecT and RecT .
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Dataset Sensors (traces) Train Test #Anomalies (%)
UCR/IB-16 1 1200 6301 12 (0.19%)
UCR/IB-17 1 1600 5900 111 (1.88%)
UCR/IB-18 1 2300 5200 102 (1.96%)
UCR/IB-19 1 3000 4500 10 (0 .22%)
SWaT 51 47520 44991 4589 (12.20%)
WADI-127 127 118750 17280 1633 (9.45%)
WADI-112 112 118750 17280 918 (5.31%)
SMD 38 (28) 25300 25300 1050 (4.21%)

Table 1. The statistical profile of the datasets in the experiment.

The F1 scores are calculated using the best threshold com-
puted on the test dataset and this threshold is also used to
compute the corresponding precision and recall. Though
we are not content with the threshold tuning, we choose this
in order to follow the same protocol used in the published
methods we have included for comparison. Here, it is im-
portant to also include the Area Under the Precision Recall
Curve (AUPRC) metric instead of only the F1 score ob-
tained with an optimal threshold. AUPRC provides a more
realistic estimation of how well a method would perform in
practical settings, where an estimated threshold based on a
hold-out set would be used. In our appendix, we include
tables ( 9, 10, 11, 12) with the separate precision, recall,
and AUPRC values.

4. Analysis
Time series datasets: Overall, we used six commonly
used benchmark datasets in our study. Here, we report the
details (Table 1) and results from three multivariate datasets
(SWaT, WADI, and SMD) and four univariate datasets
(UCR/Internal Bleeding). The other two commonly used
multivariate datasets (SMAP and MSL) have been identi-
fied in (Wu & Keogh, 2022) as potentially flawed contain-
ing trivial and unrealistic density of anomalies. For com-
pleteness, the descriptions and results of these two datasets
are included in the appendix section A.3.

Univariate HexagonML (UCR) datasets - InternalBleeding
(IB) (Guillame-Bert & Dubrawski, 2017): contains four
univariate traces as the vital signs (arterial blood pressure).
The anomalies are synthetic by adding a series of sine
waves to one cycle or by injecting random numbers to a
certain segment (Figure 2). The unique and well-controlled
anomalies in each trace allow a clean and sound evaluation
among different approaches (Wu & Keogh, 2022).

Secure Water Treatment (SWaT) (Mathur & Tippenhauer,
2016) and Water Distribution (WADI) (Ahmed et al., 2017)
datasets: contain sensor measurements of a water treat-
ment test-bed. Although SWaT is commonly used as a
benchmark in recent publications, it should be noted that its
use as a benchmark should be discontinued as it is flawed
and unreliable Eamonn Keogh (personal communication,
7 May, 2024), see also (Wagner et al., 2023). The WADI

dataset demonstrates the inconsistency in reporting perfor-
mance comparisons in the TAD literature. The complete
set of WADI contains 127 sensors (denoted as WADI-127
in our study). However, some recent methods (Tuli et al.,
2022; Deng & Hooi, 2021; Kim et al., 2022; Chen et al.,
2021; Feng & Tian, 2021) use a specific subset of sen-
sors when making comparisons without specifying the ex-
act used sensors nor the reasons for such selection. Fur-
thermore, in many cases, the selected subsets are incon-
sistent among competing methods. In order to provide a
fair overview of this impact on performance, we conducted
our experiments on all the 127 WADI sensors (denoted as
WADI-127) and on the subset of 112 sensors used in some
recent studies (Deng & Hooi, 2021) (denoted as WADI-
112), separately.

Server Machine Dataset (SMD) (Su et al., 2019c): contains
38 sensors from 28 machines for 10 days. Table 1 reports
the average length of each trace. Following the protocol,
all models are trained on each machine separately and the
results are averaged from 28 different models.

Evaluation: We evaluate several state of the art representa-
tive deep learning based methods on commonly used time-
series benchmarks. To clearly show their utility, we eval-
uate these 1). under point-adjust F1PA which is the com-
mon metric increasingly used in recent proposals. 2.) stan-
dard point-wise F1 and 3.) Time-series range-wise metric
F1T. See section 3.5 for the definitions. To highlight the
prevalent use of flawed point-adjust F1PA, similar to (Kim
et al., 2022), we also evaluate a random prediction:
Random: The F1PA protocol considers the whole interval
of an anomaly as correctly predicted, as soon as the predic-
tion considers a single point of the interval as anomalous.
The random prediction directly shows that, under the point-
adjust evaluation, methods might achieve high scores just
because they have very noisy outputs. In the random base-
line setting, each timestamp is predicted anomalous with
probability 0.5 and we report the score achieved over five
independent runs.

4.1. Model setup

In this section we summarize our data preprocessing steps
and the hyperparameters used to train the models. The fea-
tures were scaled to the interval [0, 1] in the training dataset
and the learned scaling parameters were used to scale the
testing dataset. For all of our NN baselines, when trained
in forecasting mode, we used a time window of size 5.
We used a 90/10 split to make the train and the valida-
tion set. The validation set is only used for early stopping
to avoid over-fitting and the Adam optimizer with learning
rate 0.001 and a batch size of 512 were used.

PCA reconstruction error: For multivariate data, this
method uses the first 30 principal components when data
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SWaT WADI 127 WADI 112 SMD
F1PA F1 F1T F1PA F1 F1T F1PA F1 F1T F1PA F1 F1T

SO
TA

m
et

ho
ds

MERLIN (Nakamura et al., 2020) 0.934 0.217 0.286 0.560 0.335 0.354 0.699 0.473 0.503 0.886 0.384 0.473
DAGMM (Zong et al., 2018) 0.830 0.770 0.402 0.363 0.279 0.406 0.829 0.520 0.609 0.840 0.435 0.379
OmniAnomaly (Su et al., 2019b) 0.831 0.773 0.367 0.387 0.281 0.410 0.742 0.441 0.496 0.804 0.415 0.353
USAD (Audibert et al., 2020) 0.827 0.772 0.413 0.375 0.279 0.406 0.778 0.535 0.573 0.841 0.426 0.364
GDN (Deng & Hooi, 2021) 0.866 0.810 0.385 0.767 0.347 0.434 0.833 0.571 0.588 0.929 0.526 0.570
TranAD (Tuli et al., 2022) 0.865 0.799 0.425 0.671 0.340 0.353 0.680 0.511 0.589 0.827 0.457 0.390
AnomalyTransformer (Xu et al., 2022) 0.941 0.765 0.331 0.560 0.209 0.219 0.817 0.503 0.555 0.923 0.426 0.351

Si
m

pl
e

ba
se

lin
es

Random 0.963 0.218 0.217 0.783 0.101 0.106 0.907 0.101 0.106 0.894 0.080 0.080
Sensor range deviation 0.234 0.231 0.230 0.129 0.101 0.098 0.632 0.465 0.526 0.297 0.132 0.116
L2-norm 0.847 0.782 0.366 0.353 0.281 0.410 0.749 0.513 0.607 0.799 0.404 0.338
1-NN distance 0.847 0.782 0.372 0.372 0.281 0.410 0.751 0.568 0.618 0.833 0.463 0.384
PCA Error 0.895 0.833 0.574 0.621 0.501 0.557 0.783 0.655 0.699 0.921 0.572 0.580

N
N

ba
se

-
lin

es

1-Layer MLP 0.856 0.771 0.519 0.295 0.267 0.384 0.601 0.502 0.558 0.829 0.514 0.487
Single block MLPMixer 0.865 0.780 0.549 0.335 0.275 0.396 0.597 0.497 0.552 0.819 0.512 0.472
Single Transformer block 0.854 0.787 0.526 0.471 0.289 0.416 0.646 0.534 0.575 0.781 0.489 0.420
1-Layer GCN-LSTM 0.905 0.829 0.532 0.593 0.439 0.540 0.748 0.596 0.645 0.847 0.550 0.535

Table 2. Experimental results for SWaT, WADI, and SMD datasets. The bold and underline marks the best and second-best value.
F1PA: F1 score with point-adjust; F1: the standard point-wise F1 score; F1T : time-series range-wise F1 score

has more than 50 sensors and 10 otherwise. On univariate
datasets, the first 2 principal components with a window
size of 5 are used.

1-layer Linear MLP: A hidden layer of size 32 is used.

Single block MLP-Mixer and Single Transformer block
both use an embedding of 128 for the hidden layer.

1-layer GCN-LSTM block: The dimension for the GCN
output nodes is set to 10 and for LSTM layer to 64 units.

Our neural network baselines are trained in the forecast-
ing mode, similar to most other methods we are comparing
with. We also provide their performance for the reconstruc-
tion mode in the appendix section A.2.2.

Hyperparameter sensitivity: Most of the simple baselines
don’t have tunable hyperparameters. The only exceptions
are the projection dimension of the PCA method and the
sliding window for univariate series. We have included
their ablations in sections 4.5 and A.2.1. We trained our
neural network baseline models using the same hyperpa-
rameters as stated above on all multivariate datasets. The
purpose of this analysis was to demonstrate that even with
basic hyperparameters, these simple neural networks can
achieve comparable performance to SOTA deep learning
models. The fact that the hyperparameters of the SOTA
models were optimized for each respective datasets, while
the simple NN baseline models used the same set of hy-
perparameters, highlights less reliance on dataset-specific
tuning.

Published SOTA methods: All methods were trained with
the hyper-parameters recommended in their respective pa-
pers, where possible, with their official implementations
or the implementations provided in (Tuli et al., 2022).
GDN (Deng & Hooi, 2021) on WADI-112 is not re-trained
since the authors provided the trained checkpoint of their

official model.

4.2. Model performance overview

Table 2 outlines the model performance on the three multi-
variate benchmark datasets, SWaT, WADI, and SMD.

First, it is evident that all methods have higher scores on the
predominantly used point-adjusted F1PA metric including
the random prediction which performs better in almost all
comparisons. This artificial advantage created by point-
adjust is not present on the pure F1 score protocols which
do not favour noisy random predictions. On both standard
point-wise F1 and range-wise F1T metrics, the simple
baselines such as PCA reconstruction error performs bet-
ter on all datasets while other baselines such as 1-NN dis-
tance and L2-norm are often very close to the best perform-
ing methods. Furthermore, the NN-baselines in most cases
outperform the more complex SOTA deep models which
are build using these as basic building blocks. This is a
strong evidence that the complicated solutions introduced
to solve the TAD task do not provide a benefit compared
to such simple baselines. Finally, one can notice the in-
terplay between the point-wise and range-wise metrics. In
datasets like SWAT, where there is a small number of long
anomaly intervals, the F1 score is much higher than the
F1T score, on noisy datasets with more consistent anomaly
lengths, like WADI 127, F1T is tendentially higher, while
on cleaner datasets with frequent short anomalies, like uni-
variate UCR datasets, the two scores are comparable.

Table 3 provides a comparison on univariate UCR datasets
with our simple baselines. Here we include two represen-
tative univariate TAD methods, a highly effective classic
method Local Outlier Factor (LOF) (Breunig et al., 2000)
and a more recent SOTA method Merlin (Nakamura et al.,
2020). As shown in Figure 2 the normal periodical phase-
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UCR/IB-16 UCR/IB-17 UCR/IB-18 UCR/IB-19
F1PA F1 F1T F1PA F1 F1T F1PA F1 F1T F1PA F1 F1T

LOF (Breunig et al., 2000) 0.878 0.476 0.476 1.000 0.959 0.955 1.000 0.915 0.911 1.000 0.857 0.857
MERLIN (Nakamura et al., 2020) 1.000 0.846 0.846 1.000 0.987 0.987 1.000 0.795 0.795 1.000 0.870 0.870

Si
m

pl
e

ba
se

lin
es

Random 0.151 0.005 0.030 0.941 0.041 0.116 0.887 0.039 0.039 0.488 0.030 0.030
Sensor range deviation 0.000 0.003 0.000 0.902 0.085 0.094 0.000 0.038 0.038 0.000 0.004 0.004

L2-norm 0.014 0.011 0.021 0.276 0.058 0.164 0.241 0.061 0.061 0.028 0.017 0.017
1-NN distance 0.828 0.786 0.786 1.000 0.973 0.969 1.000 0.889 0.889 1.000 0.870 0.870

PCA Error 0.889 0.750 0.750 1.000 0.974 0.974 1.000 0.990 0.990 1.000 1.000 1.000

Table 3. Comparison of simple baselines on four univariate UCR/InternalBleeding datasets.

Figure 2. Visual comparison: The gray shaded areas denote the
ground truth anomalies. (a) UCR/IB-18 dataset with a series of
sine waves added as anomaly. (b) UCR/IB-19 dataset with ran-
dom numbers added as anomaly.

shift and magnitude changes, which are considered normal
in the light of physiology, are misclassified as anomalies by
such methods in contrast to the simple PCA-Error baseline.

4.3. Analysis of the deep models learned function

The consistently better results of the simple methods raises
the question of what type of functions are learned by the
more complicated deep learning models. To investigate
this, we try to approximate the behavior of the most promi-
nent of the deep learning models by linear functions. We
achieve this by performing a simple form of distillation.
Given a deep learning model Mθ trained on the training
data X, we compute its predictions M(X) ⊂ RF and then
train a linear model L on the data/target tuple (X,M(X))
using a mean squared error (MSE) loss. The linear model
in this case is simply a 1-layer perceptron. Upon evaluating
both M and L on the test set on the anomaly detection task,
we observed that their scores are very close and they exhib-
ited high agreement on their predictions. Table 4 depicts

Methods SWaT WADI 112
Orig Line Orig Line

Single block MLPMixer 0.780 0.770 0.497 0.500
Single Transformer block 0.787 0.772 0.534 0.521
1-Layer GCN-LSTM 0.829 0.794 0.596 0.587
TranAD (Tuli et al., 2022) 0.799 0.800 0.511 0.572
GDN (Deng & Hooi, 2021) 0.810 0.808 0.571 0.543

Table 4. Linear approximation of complex models on two
datasets. Orig: original model Line: linear approximated mode.
Performance is reported on the standard point-wise F1 score.

this with the linear model L marked as ‘Line’ and the cor-
responding deep learning model M marked as ‘Orig’. The
performance of distilled linear version of the complex mod-
els suggests that even though the learned functions may be
complex and may improve forecasting, their ability to dis-
tinguish anomalies can still be effectively captured by lin-
earizing them.

4.4. Ablation: Impact of normalization

Anomaly detection methods for multivariate datasets often
employ normalization and smoothing techniques to address
abrupt changes in prediction scores that are not accurately
predicted. However, the choice of normalization method
before thresholding can impact performance on different
datasets. In Table 5, we compared the performance with
and without normalization. We consider two normaliza-
tion methods, mean-standard deviation and median-IQR,
on two datasets. Our analysis shows that median-IQR
normalization, which is also utilized in the GDN (Deng
& Hooi, 2021) method, improves performance on noisier
datasets such as WADI. In Table 2, we have presented the
best performance achieved by each method, including our
baselines and considered state-of-the-art models, using ei-
ther none or one of these normalisation, whichever is ap-
plicable.

4.5. Ablation: PCA Error projection dimension

On all the multivariate datasets with more than 50 sensors
(i.e., SWaT and WADI) our PCA Error baseline approach
utilized the first 30 eigenvectors for the PCA projection. In
Figure 3, we present the performance as a function of vary-
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SWAT WADI-112

None Mean-STD Median-IQR None Mean-STD Median-IQR
F1 AUPRC F1 AUPRC F1 AUPRC F1 AUPRC F1 AUPRC F1 AUPRC

GDN (Deng & Hooi, 2021) 0.767 0.724 0.685 0.473 0.810 0.762 0.549 0.492 0.456 0.353 0.571 0.519
TranAD (Tuli et al., 2022) 0.769 0.708 0.742 0.638 0.799 0.764 0.511 0.529 0.448 0.312 0.509 0.554

PCA Error 0.802 0.725 0.833 0.744 0.756 0.721 0.600 0.591 0.513 0.351 0.654 0.570
1-Layer GCN-LSTM 0.770 0.715 0.775 0.660 0.829 0.792 0.592 0.520 0.520 0.411 0.596 0.535

Table 5. Impact of normalization on scores. Normalisation of prediction scores before thresholding impacts performance. Performance
is reported on the point-wise F1 and AUPRC score.

Figure 3. Point-wise F1 score as a function of the PCA dimen-
sion for the PCA Error method, evaluated on the SWAT and
WADI 127 datasets.

ing PCA projection dimensions. It is observed that higher
projection dimensions may be more beneficial for WADI
(127-dimensional) compared to SWaT (51-dimensional).
However, the optimal projection dimension should be de-
termined using a validation set as it may impact perfor-
mance. Unlike more sophisticated techniques with several
hyperparameters specifically configured for each dataset,
the baseline approach of using PCA with a fixed number of
eigenvectors is relatively simple and easily tunable.

5. Quo vadis
As we have demonstrated, a plethora of deep learning ap-
proaches introduced to solve the task of TAD were out-
performed by simple neural networks and linear baselines.
Furthermore, when distilling some of those methods to lin-
ear models, their performance remained almost unchanged.
There could be several causes for this issue for example the
over-fitting on the normal data or the existence of too high
aleatoric uncertainty which makes it hard to separate the
difficult anomalies from normal sections. In any case, the
main takeaway is that those methods, though potentially
useful for other time-series tasks such as forecasting, do
not bring much additional value for the task of TAD and
their complexity is definitely not justified. What is even
more worrisome, is that they managed to create up to now
an illusion of progress due to the use of a flawed evaluation
protocol, inadequate metrics and the lack or low quality of
benchmarking with simpler methods.

We cannot stress enough the fact that almost all the recent
deep-learning based methods use the point-adjust post-
processing step often without clearly stating this. Under
this evaluation these models implicitly optimize for near
random predictions where their high performance is used
as evidence of their proposed model’s utility. An example
of this trend presented at recent leading Machine Learn-
ing venues is (Xu et al., 2022; Li et al., 2023; Zhou et al.,
2023). Another common malpractice, is the use of mis-
matched evaluation metrics in tables i.e., applying point-
adjust and directly comparing their results to other methods
which were scored without it. Similar issues are observed
in dataset discrepancies like the introduction of new ver-
sions of a dataset which use a subset of the sensors and
result in higher scores.

Aside from exposing the limitations of these methods, we
provide a comprehensive set of simple benchmarks which
can help re-start investigations in TAD starting on a solid
baseline. We think that those methods will pinpoint which
anomalies are easy to detect and which ones are the chal-
lenging ones that should be detected if any progress is to be
made. This is further reinforced by the fact that there seem
to be a high agreement between detected and undetected
anomalies between all methods investigated. We provide
an analysis of this agreement in the appendix section A.1.
This agreement leads us to believe that the current datasets
used in TAD are, in some sense, simultaneously too hard
and too easy. The fact that so many complex deep learn-
ing architectures have been developed to tackle the hard
anomalies in those datasets, but failed, is unsatisfactory, but
maybe not unexpected. More comprehensive datasets with
a spread spectrum of difficulty in anomalies could provide
an incremental improvement path and means of properly
comparing methods.

Furthermore, we believe that evaluation using both point-
wise and range-wise methods will help better compare
methods and identify their strengths and weaknesses.

We hope our work will help improve the research efforts
on TAD by triggering focus on the introduction of new and
richer datasets, increasing awareness of limitations of cur-
rent evaluation protocols, and encouraging caution in the
premature adoption of complex tools for the task.
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Impact Statement
”This paper presents work whose goal is to advance the
field of Machine Learning. There are many potential soci-
etal consequences of our work, none which we feel must be
specifically highlighted here.”
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A. Appendix
In the following appendix, we present several analyses and ablation studies related to the results discussed in the main
paper. It is structured as follows:

1. Analysis: We analyze the agreement on the detected anomalies between the different models (Figures 4a and 4b).

2. Additional evaluations/ablations: Several studies are presented related to the evaluation of the model performances:

• Ablation window size for Univariate data: We show the impact of the sliding window size on the performance
of our simple baselines on univariate data (Figure 5).

• NN-baselines: reconstruction vs forecasting mode: We show the performance of our neural network baselines
when trained in reconstruction and forecasting mode (Table 6).

• Detailed performance comparison: At the end, we include detailed tables (Table 9, Table 10, Table 11, Table 12)
with performance comparison of all methods reporting their F1, precision, recall and AUPRC under both standard
point-wise and time-series range-wise metrics.

3. Performance of our simple baselines on SMAP and MSL datsets: We include a comparison of our simple baseline
methods and various SOTA methods on the additional multivariate SMAP and MSL datasets (Table 8).

A.1. Analysis of model agreement on the detected anomalies

We have noticed a very high agreement on the anomalies detected by the different methods. Those agreements are espe-
cially pronounced between the SOTA deep learning methods. In order to quantify them, we compute a score similar to
mAP in object detection which measures the agreement between two different predictions restricted to the ground truth
anomaly intervals. The score is defined as follows:

(a) SWAT agreement matrix between methods expressed as
the IOU of the sets of interval indices averaged over the hit
ratio thresholds in [0.2 : 0.95 : 0.05].

(b) WADI 112 agreement matrix between methods expressed
as the IOU of the sets of interval indices averaged over the hit
ratio thresholds in [0.2 : 0.95 : 0.05].

Figure 4. Analysis of model agreement on the detected anomalies

Assume A = {[a1, b1], . . . [aK , bK ]} are the K ground truth anomaly intervals, defined by their start and end timestamp
indices as integer intervals. Thus for the interval on index s, ŷi = 1 for all t ∈ [as, bs]. For an interval [as, bs] and a
prediction ỹ, the hit ratio is the ratio |{t∈[as,bs]:ỹt=1}|

|[as,bs]| of the timestamps with a positive prediction in [as, bs] to the total
number of timestamps in [as, bs]. For a given prediction ỹ and a hit ratio threshold r, the detected anomaly intervals is
the index list Hỹ = {i1, . . . iL} ⊆ [1, L] of intervals for which the prediction has hit ratio above r. For two different
predictions ỹ1 and ỹ2, the agreement between them on a given hit ratio threshold r is defined as the intersection over union

13



Quo Vadis, Time Series Anomaly Detection?

Figure 5. Impact of sliding window size to generate univariate data representation on the two UCR dataset traces UCR/IB-17 and
UCR/IB-18.

Method
Reconstruction Forecasting

SWAT WADI 127 WADI 112 SWAT WADI 127 WADI 112
F1 AUPRC F1 AUPRC F1 AUPRC F1 AUPRC F1 AUPRC F1 AUPRC

1-Layer MLP 0.771 0.707 0.161 0.139 0.580 0.517 0.771 0.797 0.267 0.193 0.501 0.437
Single block MLPmixer 0.770 0.706 0.289 0.210 0.530 0.475 0.779 0.791 0.274 0.217 0.496 0.426
Single Transformer Block 0.770 0.702 0.448 0.410 0.527 0.798 0.795 0.874 0.319 0.662 0.538 0.756
1-Layer GCN-LSTM 0.770 0.714 0.498 0.451 0.577 0.486 0.829 0.792 0.439 0.367 0.596 0.535

Table 6. NN-Baselines: Reconstruction vs Forecasting.

(IOU) of the index sets Hỹ1 , Hỹ2 for r. Finally, the average agreement between two predictions ỹ1 and ỹ2 is the mean of
their agreements over all the thresholds from 0.2 to 0.95 with step 0.05.

In Figures 4a and 4b the matrices of the agreements between all models and the ground truth are displayed for the SWAT
and WADI-112 datasets. In both cases, the agreement between different models is much higher compared to the agreement
to the ground truth, indicating that the models learn to recognize similar anomalies. Only the GDN model and even more
the PCA Error baseline seem to have a comparably higher agreement with the ground truth.

A.2. Additional evaluations/ablations

A.2.1. ABLATION WINDOW SIZE FOR UNIVARIATE DATA

As outlined in section 3.2 of the main paper, we created an effective univariate data representation by concatenating past
observations with the current timestamp using a sliding window approach. We discovered that this basic representation
yielded effective results with a window size of w = 4 leading to a 5-dimensional representation space. Figure 5 displays
the performance impact based on the window size. This plot illustrates that a smaller window over 4-5 past observations is
a reasonable choice for the UCR datasets, while larger window dimensions do not add any further advantage. We opted to
use our simple 1-NN distance approach and varied the window sizes to avoid manipulating any other parameters.

A.2.2. NN-BASELINES: RECONSTRUCTION VS FORECASTING MODE

In our main paper, we demonstrated the effectiveness of our simple neural network baselines when trained in forecasting
mode, which is in line with most state-of-the-art deep learning models we compared with. During training, the output
before the final target dense regression layer has a shape of (batch-size, sequence, embedding-dim). In forecasting mode,
we use a 1-D global average pooling to project it to (batch-size, 1, embedding-dim). However, we can skip the average-
pooling operation and train these models in a reconstruction (auto-encoding) fashion. For completeness, we present their
performance in reconstruction mode in Table 6. Our results show that the performance of these models in reconstruction
mode is comparable to that in forecasting mode, particularly considering the impact of random seed between training runs.
Therefore, there does not appear to be any significant advantage in training these models in forecasting mode, at least for
the datasets we considered.
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A.2.3. DETAILED PERFORMANCE COMPARISON

Finally, we provide tables which contain the detailed scores of all models in terms of precision, recall, F1-score and area
under the precision-recall curve (AUPRC). For the multivariate time series datasets, Table 9 shows the evaluation under
point-wise metrics; Table 10 shows the evaluation under time series range-wise metrics (Wagner et al., 2023). Similarly,
for the univariate datasets, Table 11 evaluates under point-wise and Table 12 provides the performance under range-wise
metrics.

A.3. Performance of our simple baselines on SMAP and MSL datasets

Soil Moisture Active Passive (SMAP) and Mars Science Laboratory (MSL) datasets, collected from a spacecraft of
NASA (Hundman et al., 2018b), are another two widely utilized benchmark datasets in the literature. The SMAP dataset
contains information on soil samples and telemetry of the Mars rover; the MSL dataset comes from the actuator and sensor
data for the Mars rover itself. Although these benchmark datasets are widely used in the literature, their quality and validity
suffer from several pitfalls, such as triviality, mislabeling, and unrealistic density of anomaly (see Wu & Keogh (2022) for
details). The statistics profile of each dataset is listed in Table 7. Since each dataset contains traces with various lengths in
both the training and test sets, we report the average length of traces and the average number of anomalies among all traces
per dataset. We also report the total number of data points and anomalies per dataset for the clarity of comparison in the
literature.

Dataset No. Sensors (Traces) Avg. Train (Total) Avg. Test (Total) Avg. Anomalies (%) Total Anomalies (%)
MSL 55 (27) 2159 (58317) 2730 (73729) 286 (11.97%) 7730 (10.48%)
SMAP 25 (54 ) 2555 (138004) 8070 (435826) 1034 (12.40%) 55854 (12.82%)

Table 7. The statistical profile of the datasets: MSL and SMAP.

Table 8 summarizes the point-adjust F1 and standard F1 scores of simple baseline models and the published performance
of the SOTA models. The performance of each proposed simple baseline model is averaged over all traces per dataset.
The results of SOTA methods are taken from Kim et al.2022 in which only the best F1 scores are reported per method.
The simple baselines, namely PCA-error and 1-NN distance, yield the best and second-best performance on both datasets,
respectively.

Method

Datasets
MSL SMAP

F1PA F1 F1PA F1

Si
m

pl
e

ba
se

-
lin

es

Random 0.931 0.190 0.961 0.227
Sensor range deviation 0.441 0.328 0.389 0.273
L2-norm 0.854 0.395 0.745 0.351
1-NN distance 0.912 0.404 0.818 0.352
PCA Error 0.843 0.426 0.811 0.387

SO
TA

M
et

h-
od

s

DAGMM (Zong et al., 2018) 0.701 0.199 0.712 0.333
OmniAnomaly (Su et al., 2019a) 0.899 0.207 0.805 0.227
USAD (Audibert et al., 2020) 0.927 0.211 0.818 0.228
GDN (Deng & Hooi, 2021) 0.903 0.217 0.708 0.252

Table 8. Simple baselines outperform the SOTA deep-learning models on MSL and SMAP datasets. SOTA model performance is taken
from Kim et al. (2022). Bold: the best performance; underline: the second-best performance.
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Method Datasets
SWAT WADI 127 WADI 112 SMD

F1 P R AUPRC F1 P R AUPRC F1 P R AUPRC F1 P R AUPRC
MERLIN (Nakamura et al., 2020) 0.217 0.122 1.000 0.116 0.335 0.305 0.371 0.217 0.473 0.710 0.355 0.412 0.384 0.474 0.374 0.338
DAGMM (Zong et al., 2018) 0.770 0.991 0.630 0.727 0.279 0.993 0.162 0.207 0.520 0.932 0.361 0.469 0.435 0.564 0.497 0.370
OmniAnomaly (Su et al., 2019b) 0.773 0.990 0.634 0.736 0.281 1.000 0.163 0.212 0.441 0.607 0.346 0.441 0.415 0.566 0.464 0.360
USAD (Audibert et al., 2020) 0.772 0.988 0.634 0.730 0.279 0.993 0.162 0.207 0.535 0.744 0.417 0.483 0.426 0.546 0.474 0.364
GDN (Deng & Hooi, 2021) 0.810 0.987 0.686 0.762 0.347 0.643 0.237 0.304 0.571 0.727 0.470 0.519 0.526 0.597 0.565 0.457
TranAD (Tuli et al., 2022) 0.800 0.990 0.671 0.759 0.340 0.293 0.404 0.215 0.511 0.795 0.377 0.529 0.457 0.579 0.481 0.387
AnomalyTransformer (Xu et al., 2022) 0.765 0.943 0.643 0.712 0.209 0.122 0.743 0.188 0.543 0.576 0.513 0.427 0.426 0.419 0.528 0.313
Random 0.218 0.122 0.997 0.121 0.101 0.053 0.958 0.054 0.101 0.053 0.992 0.053 0.080 0.044 0.696 0.043
Sensor Range Deviation 0.231 0.131 0.979 0.556 0.101 0.053 1.000 0.317 0.465 0.567 0.394 0.497 0.132 0.110 0.682 0.321
L2-norm 0.782 0.985 0.648 0.715 0.281 1.000 0.163 0.210 0.513 0.887 0.361 0.474 0.404 0.569 0.455 0.343
1-NN distance 0.782 0.984 0.649 0.726 0.281 1.000 0.163 0.211 0.568 0.779 0.447 0.501 0.463 0.626 0.458 0.389
PCA Error 0.833 0.965 0.733 0.744 0.501 0.884 0.350 0.476 0.655 0.752 0.580 0.570 0.572 0.611 0.584 0.515
1-Layer MLP 0.771 0.981 0.635 0.797 0.267 0.834 0.159 0.193 0.502 0.880 0.351 0.437 0.514 0.598 0.574 0.458
Single block MLPMixer 0.780 0.854 0.718 0.791 0.275 0.862 0.163 0.218 0.497 0.822 0.356 0.426 0.512 0.608 0.554 0.458
Single Transformer block 0.787 0.868 0.720 0.821 0.289 0.908 0.172 0.255 0.534 0.735 0.419 0.453 0.489 0.589 0.536 0.422
1-Layer GCN-LSTM 0.829 0.982 0.718 0.793 0.439 0.744 0.311 0.367 0.596 0.742 0.498 0.535 0.550 0.627 0.599 0.478

Table 9. Experimental results for SWaT, WADI, and SMD datasets evaluated under the standard point-wise metric.

Method Datasets
SWAT WADI 127 WADI 112 SMD

F1 P R AUPRC F1 P R AUPRC F1 P R AUPRC F1 P R AUPRC
MERLIN (Nakamura et al., 2020) 0.286 0.521 0.197 0.180 0.354 0.308 0.416 0.247 0.503 0.748 0.379 0.466 0.473 0.641 0.407 0.406
DAGMM (Zong et al., 2018) 0.402 0.646 0.292 0.403 0.406 0.993 0.255 0.295 0.609 0.938 0.451 0.538 0.379 0.552 0.405 0.316
OmniAnomaly (Su et al., 2019b) 0.367 0.403 0.337 0.394 0.410 1.000 0.258 0.303 0.496 0.671 0.393 0.492 0.353 0.490 0.410 0.300
USAD (Audibert et al., 2020) 0.413 0.674 0.298 0.408 0.406 0.993 0.255 0.295 0.573 0.754 0.462 0.524 0.364 0.539 0.375 0.303
GDN (Deng & Hooi, 2021) 0.385 0.418 0.357 0.423 0.434 0.799 0.298 0.348 0.588 0.812 0.461 0.543 0.570 0.673 0.550 0.500
TranAD (Tuli et al., 2022) 0.425 0.388 0.471 0.464 0.353 0.301 0.425 0.239 0.589 0.795 0.468 0.604 0.390 0.544 0.399 0.322
AnomalyTransformer (Xu et al., 2022) 0.331 0.885 0.204 0.348 0.219 0.128 0.738 0.189 0.555 0.589 0.524 0.451 0.351 0.350 0.460 0.247
Random 0.217 0.123 0.951 0.124 0.106 0.056 0.919 0.057 0.106 0.056 0.952 0.055 0.080 0.046 0.707 0.045
Sensor Range Deviation 0.230 0.131 0.928 0.534 0.098 0.053 0.678 0.374 0.526 0.569 0.489 0.543 0.116 0.121 0.508 0.325
L2-norm 0.366 0.898 0.230 0.367 0.410 1.000 0.258 0.300 0.607 0.908 0.456 0.582 0.338 0.461 0.411 0.281
1-NN distance 0.372 0.937 0.232 0.391 0.410 1.000 0.258 0.301 0.618 0.915 0.467 0.564 0.384 0.517 0.389 0.327
PCA Error 0.574 0.918 0.417 0.504 0.557 0.884 0.406 0.543 0.699 0.752 0.652 0.640 0.580 0.641 0.597 0.516
1-Layer MLP 0.519 0.740 0.400 0.532 0.384 0.834 0.250 0.280 0.558 0.880 0.408 0.493 0.487 0.536 0.513 0.424
Single block MLPMixer 0.549 0.762 0.430 0.549 0.396 0.862 0.257 0.307 0.552 0.865 0.405 0.484 0.472 0.525 0.556 0.426
Single Transformer block 0.526 0.556 0.500 0.573 0.416 0.908 0.270 0.354 0.575 0.735 0.472 0.506 0.420 0.531 0.439 0.370
1-Layer GCN-LSTM 0.532 0.914 0.375 0.532 0.540 0.745 0.424 0.468 0.645 0.742 0.570 0.599 0.535 0.591 0.566 0.462

Table 10. Experimental results for SWaT, WADI, and SMD datasets evaluated under the time-series range-wise metric.

Method Datasets
UCR/IB-16 UCR/IB-17 UCR/IB-18 UCR/IB-19

F1 P R AUPRC F1 P R AUPRC F1 P R AUPRC F1 P R AUPRC
LOF (Breunig et al., 2000) 0.476 0.555 0.416 0.196 0.959 0.955 0.963 0.944 0.916 0.920 0.911 0.832 0.857 0.818 0.900 0.939
MERLIN (Nakamura et al., 2020) 0.846 0.786 0.917 0.871 0.987 0.982 0.991 0.979 0.795 0.986 0.667 0.724 0.870 0.769 1.000 0.945
Random 0.005 0.002 0.500 0.002 0.041 0.024 0.144 0.018 0.039 0.020 0.725 0.017 0.030 0.016 0.200 0.006
Sensor range deviation 0.004 0.002 1.000 0.001 0.085 0.200 0.054 0.136 0.038 0.020 1.000 0.010 0.004 0.002 1.000 0.001
L2-norm 0.011 0.005 1.000 0.003 0.058 0.030 0.748 0.024 0.061 0.032 0.794 0.026 0.017 0.008 1.000 0.005
1-NN distance 0.786 0.688 0.917 0.471 0.973 0.965 0.982 0.992 0.889 0.876 0.902 0.961 0.870 0.769 1.000 0.788
PCA Error 0.750 0.600 1.000 0.737 0.974 0.949 1.000 0.997 0.990 0.981 1.000 1.000 1.000 1.000 1.000 1.000

Table 11. Experimental results for four univariate UCR/InternalBleeding datasets evaluated under the standard point-wise metric.

Method Datasets
UCR/IB-16 UCR/IB-17 UCR/IB-18 UCR/IB-19

F1 P R AUPRC F1 P R AUPRC F1 P R AUPRC F1 P R AUPRC
LOF (Breunig et al., 2000) 0.476 0.555 0.416 0.223 0.955 0.947 0.964 0.946 0.911 0.920 0.902 0.837 0.857 0.818 0.900 0.939
MERLIN (Nakamura et al., 2020) 0.846 0.786 0.917 0.872 0.987 0.982 0.991 0.981 0.791 0.986 0.660 0.763 0.870 0.769 1.000 0.941
Random 0.030 0.016 0.229 0.005 0.116 0.062 0.947 0.062 0.091 0.050 0.469 0.043 0.048 0.031 0.100 0.008
Sensor range deviation 0.000 0.000 1.000 0.001 0.094 0.353 0.054 0.212 0.000 0.000 1.000 0.010 0.000 0.000 1.000 0.001
L2-norm 0.021 0.010 1.000 0.006 0.164 0.092 0.734 0.076 0.123 0.067 0.794 0.054 0.050 0.026 1.000 0.016
1-NN distance 0.786 0.688 0.917 0.480 0.969 0.957 0.982 0.992 0.902 0.828 0.990 0.961 0.870 0.769 1.000 0.791
PCA Error 0.750 0.600 1.000 0.708 0.974 0.949 1.000 0.997 0.990 0.981 1.000 0.999 1.000 1.000 1.000 1.000

Table 12. Experimental results for four univariate UCR/InternalBleeding datasets evaluated under the time-series range-wise metric.
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