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Abstract
Given a set of synchronous time series, each asso-
ciated with a sensor-point in space and character-
ized by inter-series relationships, the problem of
spatiotemporal forecasting consists of predicting
future observations for each point. Spatiotem-
poral graph neural networks achieve striking re-
sults by representing the relationships across time
series as a graph. Nonetheless, most existing
methods rely on the often unrealistic assumption
that inputs are always available and fail to cap-
ture hidden spatiotemporal dynamics when part
of the data is missing. In this work, we tackle
this problem through hierarchical spatiotemporal
downsampling. The input time series are progres-
sively coarsened over time and space, obtaining a
pool of representations that capture heterogeneous
temporal and spatial dynamics. Conditioned on
observations and missing data patterns, such rep-
resentations are combined by an interpretable at-
tention mechanism to generate the forecasts. Our
approach outperforms state-of-the-art methods on
synthetic and real-world benchmarks under differ-
ent missing data distributions, particularly in the
presence of contiguous blocks of missing values.

1. Introduction
Time-series analysis and forecasting often deal with high-
dimensional data acquired by sensor networks (SNs), a
broad term for systems that collect (multivariate) measure-
ments over time at different spatial locations. Examples
include systems monitoring air quality, where each sen-
sor records air pollutants’ concentrations, or traffic, where
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Figure 1. Overview of the proposed framework. The hierarchical
design allows us to learn a pool of multi-scale spatiotemporal
representations. Conditioned on the data and the missing value
pattern, the attention mechanism dynamically combines represen-
tation from different scales to compute the predictions.

sensors track vehicles’ flow or speed. Usually, data are
sampled regularly over time and synchronously across the
sensors, which are often characterized by strong correlations
and dependencies between each other, i.e., across the spa-
tial dimension. For this reason, a prominent deep learning
approach is to consider the time series and their relation-
ships as graphs and to process them with architectures that
combine graph neural networks (GNNs) (Battaglia et al.,
2018; Bronstein et al., 2021) with sequence-processing op-
erators (Hochreiter & Schmidhuber, 1997; Borovykh et al.,
2017). These architectures are known as spatiotemporal
graph neural networks (STGNNs) (Jin et al., 2023).

A notable limit of most existing STGNNs is the assumption
that inputs are complete and regular sequences. However,
real-world SNs are prone to failures and faults, resulting
eventually in missing values in the collected time series.
When missing data occurs randomly and sporadically, the
localized processing imposed by the inductive biases in
STGNNs acts as an effective regularization, exploiting ob-
servations close in time and space to the missing one (Cini
et al., 2022). Challenges arise when data are missing in
larger and contiguous blocks, with gaps that occur in con-
secutive time steps and are spatially proximate. In SNs,
this might be due to a sensor failure lasting for multiple
time lags or problems affecting a whole portion of the net-
work. In such scenarios, reaching valid observations that
may be significantly distant in time and space, yet relevant
for capturing the underlying dynamics, would require addi-
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tional layers of processing (Marisca et al., 2022). Nonethe-
less, deep processing may attenuate faster dynamics, im-
pairing the network's ability to rely on local information, if
present (Rusch et al., 2023). The necessity to expand the
network's receptive �eld should be, therefore, contingent on
the availability of input data. As such, it is crucial to tailor
the processing strategy according to the dynamics in the
input data and the speci�c patterns of missing information.

In this work, we propose a deep learning framework for
graph-based forecasting of time series with missing data
that computes representations at multiple spatiotemporal
scales and weighs them conditioned on the observations and
missing data pattern at hand. To this end, we rely on oper-
ators that progressively reduce the data granularity across
both temporal and spatial dimensions (see Fig. 1). In time,
we interleave downsampling within temporal processing
layers, handling varying noise levels and isolating speci�c
temporal dynamics. In space, we use graph pooling (Grat-
tarola et al., 2024) to obtain a hierarchy of coarsened graphs
that gradually distill the global information necessary for
compensating localized gaps in the data. The proposed
framework adopts atime-then-space(Gao & Ribeiro, 2022)
hierarchical design, which ef�ciently handles representa-
tions at multiple scales by increasing the receptive �eld
while limiting the number of parameters and the amount
of computation. The hierarchical representations learned
by our model are then combined by a soft attention mech-
anism (Vaswani et al., 2017), whose scores offer a natural
interpretability tool to inspect the model's behavior in func-
tion of the data.

We compare our approach against state-of-the-art methods
in both synthetic and real-world benchmark datasets, show-
ing remarkable improvements in ef�ciency and performance,
particularly with large blocks of missing values. Notably,
we introduce two new datasets and an experimental setting
speci�cally designed to re�ect typical missing data patterns
in the spatiotemporal domain. This contribution addresses
a substantial gap in the existing literature by providing a
controlled environment for testing the performance and un-
derstanding the behavior of complex spatiotemporal models.

2. Preliminaries and Problem Formulation

We represent each sensor in a SN (i.e., a point in space) as
a node in the setV, with jVj = N . We model dyadic and
possibly asymmetric relationships between sensors with a
weighted adjacency matrixA 2 RN � N

� 0 , where each non-
zero entryaij is the nonnegative weight of the directed edge
from thei -th to thej -th node. We denote byx i

t 2 Rdx ,
thedx -dimensional observation collected by thei -th node
at time stept, with X t 2 RN � dx representing all the ob-
servations collected synchronously in the SN. We use the
notationX t :t + T to indicate the sequence ofT observations

in the time interval[t; t + T). We represent node-level ex-
ogenous variable with matrixU t 2 RN � du (e.g., date/time
information, external events). To model the presence of
missing data, we associate every node observation with a
binary maskm i

t 2 f 0; 1gdx , whose elements are nonzero
whenever the corresponding channel inx i

t is valid. Notably,
we do not make any assumption on the missing data dis-
tribution and we consideru i

t always observed, regardless
of m i

t . Finally, we use the tupleGt = hX t ; M t ; U t ; A i to
denote all information available at time stept.

Given awindowGt � W :t of W past observations, the prob-
lem ofspatiotemporal forecastingconsists of predicting an
horizonof H future observations for each nodei 2 V :

x̂ i
t :t + H = f (Gt � W :t ): (1)

As observations might also be missing in the ground-
truth data, to measure forecasting accuracy we average an
element-wise loss functioǹ(e.g., absolute or squared error)
over only valid values, i.e.,

L t :t + H =
t + H � 1X

h= t

NX

i =1


 m i

h � `
�
x̂ i

h ; x i
h

� 


1
 m i

h




1

; (2)

where� is the Hadamard product.

2.1. Spatiotemporal Message Passing

The cornerstone operator of an STGNN is the spatiotem-
poral message-passing (STMP) layer (Cini et al., 2023d),
which computes nodes' features at thel-th layer as:

x i;l
t =  l

�
x i;l 91

� t ; AGGR
j 2N ( i )

� l
�

x i;l 91
� t ; x j;l 91

� t ; aji
� �

(3)

whereAGGR is a differentiable, permutation invariantag-
gregationfunction, e.g., sum or mean, and l and� l are
differentiableupdateandmessagefunctions, respectively.
Whenever l and� l are such that temporal and spatial pro-
cessing cannot be factorized in two distinguished opera-
tions, the STGNN is said to follow atime-and-space(T&S)
paradigm (Gao & Ribeiro, 2022; Cini et al., 2023c). In
thetime-then-space(TTS) approach, instead, the input se-
quences are �rst encoded in a vector by temporal message-
passing (TMP) layers before being propagated on the graph
by spatial message-passing (SMP) layers.

We use the term TMP to refer broadly to any deep learn-
ing operator enabling the exchange of information along
the temporal dimension. Most TMP operators can be cat-
egorized as recurrent or convolutional. Recurrent neural
networks (RNNs) (Elman, 1990) process sequential data
of varying lengths in a recursive fashion, by maintaining a
memory of previous inputs:

x i;l
t =  l

�
x i;l 91

t ; � l
�

x i;l 91
t ; x i;l

t � 1

��
: (4)
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In modern RNNs, gating mechanisms are used to cope with
vanishing (or exploding) gradients that hinder learning long-
range dependencies (Hochreiter & Schmidhuber, 1997; Cho
et al., 2014). Convolutional TMP operators, instead, learn
causal �lters conditioned on a sequence of previous obser-
vations:

x i;l
t =  l

�
x i;l 91

t ; AGGR
k> 0

� l
�

x i;l 91
t ; x i;l 91

t � k

� �
: (5)

Temporal convolutional networks (TCNs) (Borovykh et al.,
2017; Oord et al., 2016) and attention-based methods (Zhou
et al., 2021) follow this approach. An advantage of convolu-
tional TMP is its ability to be executed in parallel along the
temporal axis (Eq. 5), offering computational bene�ts over
recurrent TMP (Eq. 4).

Instead, the SMP operator (Gilmer et al., 2017) can be
described as

x i;l
t =  l

�
x i;l 91

t ; AGGR
j 2N ( i )

� l
�

x i;l 91
t ; x j;l 91

t ; aji
� �

: (6)

If the messages depend on the receiver node's featuresx i;l 91
t

the SMP operator is calledanisotropic(Dwivedi et al., 2023).
Conversely, if the message function depends only on the
source node's featuresx j;l 91

t and the edge weightaji , the
SMP operator is said to beisotropicor convolutional(Bron-
stein et al., 2021).

Notably, the TMP operators (Eq. 4–5) and the SMP op-
erator (Eq. 6) are speci�c instances of the STMP opera-
tor (Eq. 3), underlining the factorization of operations within
TTS models compared to the T&S approach. Since TTS
models perform SMP – an onerous operation – on a single
graph rather than a sequence of graphs, they are more ef�-
cient than T&S models. Nonetheless, their uncoupled tem-
poral and spatial processing reduces the �exibility in how
information is propagated, compared to the T&S process-
ing (Cini et al., 2023c). In the latter, indeed, it is possible
to gradually account for more information while processing
the temporal dimension and allow the receptive �eld to grow
with the sequence length.

2.2. Spatiotemporal Downsampling

Downsampling in temporal data is a common operation, of-
ten used to reduce the sample complexity or �lter out noisy
measurements (Harris, 2022). In classical signal processing,
it is implemented by applying a low-pass �lter and then
keeping only 1-every-k samples, withk being thedown-
sampling factor(Strang & Nguyen, 1996). This approach
is replicated by strided operations in TMP (Yu & Koltun,
2016; Oord et al., 2016; Chang et al., 2017), which exploit
the structural regularity of temporal data. More generally,
downsampling a sequence fromWl 91 to Wl time steps can
be conveniently expressed by atemporal downsampling

matrix Tl 2 RW l � W l 91 . For example,Tl = [ I W l 91 ]::k ,
i.e., an identity matrix without the rows associated with the
decimated time steps, can be applied to keep the samples
associated with everyk-th time step.

Being non-Euclidean structures, the concept of downsam-
pling for graphs is less straightforward and tied to the
procedure for graph coarsening. In the GNNs literature,
the latter is known asgraph pooling. Given a graph
A hk91i 2 RN k 91 � N k 91

� 0 with featuresX hk91i 2 RN k 91 � dx

on the nodes, the Select-Reduce-Connect (SRC) framework
by Grattarola et al. (2024) expresses a graph pooling op-
eratorPOOL: (A hk91i ; X hk91i ) 7! (A hk i ; X hk i ) as the
combination of three functions:

• SEL : (A hk91i ; X hk91i ) 7! Sk 2 RN k � N k 91 , de�nes
how to aggregate theNk91 nodes in the input graph into
Nk supernodes.

• RED: (X hk91i ; Sk ) 7! X hk i 2 RN k � dx , creates the
supernode features by combining the features of the
nodes assigned to the same supernode. A common way
to implementREDis X hk i = Sk X hk91i .

• CON: (A hk91i ; Sk ) 7! A hk i 2 RN k � N k
� 0 , generates the

edges (and, potentially, the edge features) by connecting
the supernodes. A typicalCONis A hk i = Sk A hk91i S>

k .

A fourth function is used tolift , i.e., upsample, supernode
features to the associated nodes in the original graph:

• LFT : (X hk i ; Sk ) 7! fX hk91i 2 RN k 91 � dx , can be
implemented asfX hk91i = S+

k X hk i , whereS+
k is the

pseudo-inverse ofSk .

As for TMP and SMP, there is a strong analogy also be-
tween downsampling in time and space. Notably, the se-
lection matrixSk , hereinafter calledspatial downsampling
matrix, plays the same role asTl . Both matrices, indeed, re-
duce the input dimensionality conditioned on the underlying
structure of the data, which in the temporal domain can be
expressed as the path graph connecting the time steps. How-
ever, irregularities in arbitrary graphs make it challenging to
de�ne concepts like “1-every-k”. An interpretation is given
by thek-MIS method (Bacciu et al., 2023), which relies on
the concept of maximalk-independent sets to keep in the
pooled graph the nodes that cover uniformly thek-th power
graph. Such a symmetry between the spatial and temporal
operators will be pivotal for the design of our architecture.

2.3. Spatiotemporal Missing Data Distributions

Following previous works (Yi et al., 2016; Cini et al., 2022),
we categorize missing data patterns according to the condi-
tional distributionp

�
m i

t j M � t
�
. We callpoint missingthe

case where the probabilityp
�
m i

t = 0
�

of a datum being
missing at a given node and time step is unconditioned and
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Figure 2.Overview of the proposed architecture. Given input dataGt � W :t , all information associated with everyi -th node and time step
t is encoded in vectorsh i h0i

t h0i , then processed node-wise along the temporal dimension by alternating TMP and downsampling. After
eachl-th layer, the sequences are combined in a single vectorz i h0i

t hl i , which is then processed along the spatial dimension by alternating
SMP and pooling. Representations at eachk-th pooling layer are then recursively un-pooled up to the initial node level, obtainingz i hk i

t h1: i .
Finally, theL (K + 1) encodingsz i h0: i

t h1: i are combined through an attention mechanism and fed to an MLP to obtain the predictions.

constant across nodes and time steps, i.e.,

p
�
m i

t

�
= B(1 � � ) 8 i; t (7)

where1 � � is the mean of the Bernoulli distribution. This
setting is also known asgeneralmissing (Rubin, 1976), as
realizations of the mask have a haphazard pattern. Very
often in SNs, instead,p

�
m i

t

�
does depend on realizations

of the missing data distribution at other nodes, time steps, or
a combination of them (e.g., due to faults or blackouts). We
refer to this setting asblock missingand decline it differently
according to the dimensions of interest. Intemporal block
missing, p

�
m i

t

�
depends on the realization of the missing

data distribution at the previous time step, i.e.,

p
�
m i

t j m i
t � 1

�
6= p

�
m i

t

�
: (8)

Similarly, in spatial block missing, p
�
m i

t

�
is conditioned

on the simultaneous realizations at neighboring nodes, i.e.,

p
�

m i
t

�
� �

m j
t

	 j 2N ( i )
�

6= p
�
m i

t

�
: (9)

Thespatiotemporal block missingcombines Eq. 8–9 as:

p
�

m i
t

�
� m i

t � 1;
�

m j
t

	 j 2N ( i )
�

6= p
�
m i

t

�
: (10)

Note that in Eq. 7–10 we considered a simpli�ed case with
a single channel in the observations, i.e.,dx = 1 . Instead,
in the multivariate casedx > 1, we assume the missing data
distribution of each channel to be independent of the others.

3. Proposed Architecture

The dynamics in spatiotemporal data are governed by rela-
tionships spanning both the temporal and spatial dimensions.

Operators that exploit the temporal or spatial structure un-
derlying the data during processing, like those in Sec. 2.1,
capture such dynamics effectively. Missing values, however,
pose a serious challenge in identifying the correct dynamics.
In addition, if the distribution of missing values is unknown,
it is crucial to adaptively focus on different spatiotemporal
scales conditioned on the input data. When a whole block
of data is missing at a node (i.e., sensor), it could be bene�-
cial to consider recent observations of the spatial neighbors.
Conversely, when data are missing at neighboring nodes,
data far back in time might be more informative.

In this section, we introduce Hierarchical Downsampling
Time-Then-Space (HD-TTS), an architecture for graph-
based forecasting of spatiotemporal data with missing val-
ues following arbitrary patterns. To learn spatiotemporal
representations at different scales, we rely on hierarchical
downsampling, which progressively reduces the size of the
input and enables ef�cient learning of long-range depen-
dencies. In time, HD-TTS learns multiple – yet limited –
representations from the input sequences, each at a different
temporal scale. Similarly, we process the spatial dimension
by propagating messages along a hierarchy of pre-computed
coarsened graphs. Notably, our approach combines the ad-
vantages of the T&S and TTS paradigms, enabling adaptive
expansion of the receptive �eld while keeping the computa-
tional and memory complexity under control.

The key components of HD-TTS are (1) aninput encoder,
(2) atemporal processingmodule, (3) aspatial processing
module, and (4) an adaptivedecoder. The �rst three blocks
extract hierarchical representations of the input at different
spatial and temporal scales, while the last block reweighs
the representations and outputs the predictions. The whole
architecture is trained end-to-end to minimize the forecast-
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