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Abstract

In the financial world, a transaction graph is commonly used for modeling the
ever-changing payee-payor relationships. Every online transaction corresponds to
a directed edge from the paying party to the receiving party in this graph. Even
though the superior learning capability of Graph Neural Networks (GNNs) has
led to several successful financial applications like fraud detection and anti-money
laundering, most of these existing works do not have fairness considerations.
Apparently, the lack of fairness guarantees during the GNN-based decision-making
process would cause increasingly serious societal concerns from both buyers and
sellers. Furthermore, the time-varying property of the financial networks makes
the fairness requirements more challenging, since current fairness measures on
graph learning tasks and fairness-aware GNN models are all designed for static
graphs only. In this work, we present a new generic definition of individual fairness
for dynamic graphs and propose a regularization-based method to debias the
GNN model in the temporal setting. We perform some preliminary experimental
evaluations on two real-world datasets and demonstrate the potential efficacy of
the proposed methods.

1 Introduction

The financial system is one of the most complex systems with massive interacting parties, which
are also constantly updated. Therefore, graphs are commonly constructed in order to model the
dynamic relational data in the financial domain, such as dynamic loan networks [1], Bitcoin trust
graphs [8] and supply chain graphs [14]. Almost all of these financial networks can be abstracted
into a dynamic directed graph where the nodes represent financial institutions or clients, and the
edges represent the directional relations from one node to the other, like the buyer-seller relationship,
the borrower-lender relationship, and the trustor-trustee relationship. The dynamic or temporal
nature of this financial network makes the downstream learning tasks more challenging, as it is
continuously evolving with transactions (edges) being created or canceled every second, merchants
(nodes) appearing or disappearing every day, and clients’ information (node features) updating any
time. To gain interesting insights from these graphs, Graph Neural Networks (GNNs) are currently
the mainstream learning paradigms for various tasks [7]. Among them, the family of temporal
GNNs [10, 11, 15], a time-dependent variant of GNN models, is the natural fit for the ever-changing
financial networks with myriad promising applications [13], including fraudster detection at the node
level, future transactions at the edge level, and money laundering detection at the sub-graph level.

However, high-stakes decisions under strict laws and regulations are often involved in the financial
system, and thus, fairness concerns beyond the utility of temporal GNNs are in urgent demand. For
instance, if a bank makes loan approval predictions based on the transaction record network among
applicants, the decision must be independent of the sensitive attribute of the applicant, like gender and
race. Unfortunately, for one thing, current popular temporal GNNs fail to satisfy reasonable notions
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of fairness due to the inherent algorithmic bias in GNNs. For another, most fairness-enhanced static
GNNs cannot be directly generalized in the dynamic setting due to the overwhelming computational
cost and the time-varying fairness-related information loss. Consequently, how to measure fairness
for temporal graph learning tasks and how to equip dynamic GNNs with fairness considerations are
still open research questions [3].

In this work, we aim to present a principled study of individual fairness for temporal GNNs on
financial transaction graphs. Compared with group fairness, individual fairness quantifies potential
bias or discrimination at a finer granularity and follows the general principle that any two similar
individuals should be treated with similar outcomes. Two fundamental research questions would be
raised naturally when we extend individual fairness notions to temporal GNNs. First, how can we
quantitatively measure the overall bias of the predictions for temporal graph learning tasks? Second,
how can we alleviate such bias by developing the fairness-aware temporal GNNs model accordingly?
For the first question, we introduce a new definition of fairness in retrospect, which requires the
predictions to be individually fair relative to the past at the time of the decision based on the Lipschitz
property. This proposed fairness measure can easily enable us to quantify the overall algorithmic
bias in the predicted results for the graph-based learning tasks under the temporal setting. For the
second question, we propose a novel individual fairness regularization term that can be integrated
into almost all temporal GNNs without much effort. As far as we are concerned, we are the first to
investigate the individual fairness measures and methods for dynamic GNNs. We also present some
preliminary experiments to demonstrate the potential applications in real-world financial networks.

2 Methodology

2.1 Problem Formulation

A static graph can be denoted as G = (V,E) with the node set V = {v1, . . . , vn} and the edge
set E ⊆ V × V . The nodes could be associated with features X = {xv | v ∈ V } and the edges
could also have features F = {fuv | (u, v) ∈ E}. The dynamic or temporal graph under the discrete
setting can be viewed as a sequence of static graphs G = {Gt}Tt=1, where each graph has a unique
timestamp t. In each snapshot Gt = (Vt, Et), the note set Vt (|Vt| = nt), the edge set Et and their
characteristics could vary with t. This way of modeling can handle the dynamics of financial networks
in the real world. Current dynamic graph representation learning aims to learn latent representations
ht
v ∈ Rd for each node at time step t ∈ {1, . . . , T}, such that ht

v can encode both the neighborhood
information centered at v and its temporal evolutionary behaviors of the graph [11].

In this work, we push this goal further and restrict the representation ht
v to be individually fair with

respect to the ground-truth results. For example, if the learning task is the node classification, we
want to predict the label of a node u at time t based on the previous snapshots {Gτ}t−1

τ=1. We use
Yt ∈ {0, 1}nt×c and Ŷt ∈ Rnt×c to denote the ground truth and the predicted class membership
matrix, respectively. Then we hope that Ŷt[u] ∈ Rc (the u-th row of Ŷt) and Ŷt[v] are similar as
long as node u and node v are similar on the temporal graph.

2.2 Individual Fairness Measures for Dynamic Graphs

In this section, we propose a novel metric to quantitatively measure the level of overall bias in the
predicted results on the dynamic graphs. This new metric can motivate the design of our proposed
method, which potentially enhances the individual fairness of dynamic GNNs.

First, let us revisit the definition of the individual fairness measure for static graphs, following the
Lipschitz condition [4].
Definition 2.1 ((D1, D2)-Lipschitz property). Given a learning model f , denote f(v) as the predicted
outcome of node v on a static graph G. Then f satisfies (D1, D2)-Lipschitz property if

D1(f(u), f(v)) ≤ LD2(u, v), ∀u, v ∈ V.

It is also worth noting that we assume there is an oracle similarity matrix S ∈ Rn×n to measure
the pairwise node similarity according to domain knowledge or human judgment [12]. Existing
works promote individual fairness on static graphs through the defined (D1, D2)-Lipschitz property.
The basic intuition is that individual nodes with higher similarity should be constrained to have a
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shorter distance in the embedding space. Therefore, if we set D1(f(u), f(v)) = ∥Ŷ[u]− Ŷ[v]∥2,
D2(u, v) = 1

S[u,v] and L = ϵ > 0 (as a fairness tolerance constant), we immediately obtain the
following condition Eq. (1)

∥Ŷ[u]− Ŷ[v]∥22 ≤ ϵ

S[u, v]
∀u, v ∈ V. (1)

The difference between the predicted results of a node pair (u, v) is upper bounded by the RHS of
Eq. (1). The more similar the node u and the node v are, the tighter the upper bound in Eq. (2) is,
and the smaller the difference between Ŷ[u] and Ŷ[v] will be, achieving the individual fairness goal
from the perspective of Lipschitz constraint in Definition 2.1. By summing the LHS of Eq. (1) over
all node pairs, we can get the overall bias for the static graph in terms of individual fairness (IF-S) as
Definition 2.2 that is widely employed in the current literature [6, 2, 12]. The smaller the IF-S, the
more individually fair the predicted results.
Definition 2.2 (Individual fairness on static graphs). Given a static graph G = (V,E) with |V | = n,
the predicted membership matrix Ŷ ∈ Rn×c and the oracle pairwise similarity matrix S ∈ Rn×n,
Eq. (2) measures the overall bias regarding the individual fairness.

IF-S =
1

2

∑
u∈V

∑
v∈V

∥Ŷ[u]− Ŷ[v]∥22S[u, v] = Tr(Ŷ⊺LSŶ). (2)

Here, LS is the Laplacian matrix of S.

For dynamic graphs, the most straightforward extension of IF-S is to sum all IF-S over all the
timestamps as

∑T
t=1 IF-St, where each IF-St follows Definition 2.2 at t-th snapshot. However,

this metric views each snapshot independently, and thus fails to take the variation of the fairness
constraint across time into account. Nodes with different timestamps but with similar contexts
should also share similar outcomes. Therefore, in order to incorporate the temporal property into the
fairness measurement, we first present a novel Lipschitz condition under the dynamic setting and
then construct a new individual fairness metric on dynamic graphs accordingly.
Definition 2.3 ((K,D1, D2)-Lipschitz in retrospect property). Given a learning model f , denote
f(vt) as the predicted outcome of node v on a dynamic graph at time step t. Then f satisfies
(K,D1, D2)-Lipschitz in retrospect property with respect to a monotonically non-decreasing function
L(·) : R+ → R+ and a non-negative integer K ∈ Z∗ if

D1(f(u), f(v)) ≤ L(t− t′)D2(u, v), ∀u ∈ Vt′ , v ∈ Vt, t− t′ ≤ K.

Note that in Definition 2.3, by setting L(·) to be a monotonically non-decreasing function, we can
model the scenario where the past predictions have a diminishing impact on the future predictions
depending on the amount of time passed. This insight is motivated by the assumption that nodes
with similar features should achieve similar predictions compared with their counterparts in recent
history, but could obtain dissimilar treatments compared with those in the distant past. For example,
in the transaction network for load approval, both Alice and Bob earn almost the same amount of
money annually, but Alice applies for the loan several years before Bob does, appearing in the earlier
snapshots of the network. It would still be considered individually fair if the bank approves Alice’s
applications but rejects Bob’s since the average personal income could grow over the years. Another
interpretation of Definition 2.3 is that it can be considered as a generalized version of Definition 2.1.
If we set K = 0 (t′ = t) in Definition 2.3, then the degenerate definition becomes the same as
Definition 2.1 with L = L(0). Therefore, Definition 2.3 is a more strict constraint by restricting the
current treatment to be individually fair relative to the recent past within the interval of K snapshots.

Similar to Eq. (1), if we still set D1(f(u), f(v)) = ∥Ŷt′ [u]− Ŷt[v]∥22, D2(u, v) =
1

St′,t[u,v]
and set

L(t− t′) = ϵ exp(t− t′) with ϵ > 0, we can get the individual fairness requirement for the temporal
graphs as Eq. (3).

∥Ŷt′ [u]− Ŷt[v]∥22 ≤ ϵ exp(t− t′)

St′,t[u, v]
∀u ∈ Vt′ , v ∈ Vt, t− t′ ≤ K. (3)

Intuitively, Eq. (3) leads to a tighter upper bound on the inconsistency of the treatments for a pair
of nodes if their similarity St′,t[u, v] is greater and their existence falls into a shorter time interval
(t− t′). We then propose a new Individual Fairness metric for Dynamic graphs (IF-D) accordingly
by summing all node pairs as Definition 2.4.
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Table 1: Summary of dataset statistics.
# Edges # Nodes Temporal Range Snapshot Frequency # Snapshots

Bitcoin-OTC 35,592 5,811 Nov 8, 2010 - Jan 24, 2016 weekly 279
Bitcoin-Alpha 24,186 3,783 Nov 7, 2010 - Jan 21, 2016 weekly 274

Definition 2.4 (Individual fairness on dynamic graphs). Given a dynamic graph G = {Gt}Tt=1, where
Gt = (Vt, Et) with |Vt| = nt, the predicted membership matrix Ŷt ∈ Rnt×c at time step t and
the oracle pairwise similarity matrices St′,t ∈ Rnt′×nt denoting the similarity distance between the
nodes at the t-th snapshot with nodes from any previous K snapshots with max(0, t−K) ≤ t′ ≤ t.
We define the bias regarding the individual fairness on dynamic graphs at the t-th snapshot IF-Dt as

IF-Dt =
1

2

t∑
t′=[t−K]+

exp(t′ − t)
∑
u∈Vt′

∑
v∈Vt

∥Ŷt′ [u]− Ŷt[v]∥22St′,t[u, v]. (4)

2.3 Individual Fairness Regularization for Dynamic Graphs

To achieve the individual fairness goal on dynamic graphs, we naturally propose a simple yet effective
regularization-based method that could be plugged into almost all current state-of-the-art dynamic
GNN models [5, 11, 10]. Based on the proposed Definition 2.4, we can make the assumption that
|Vt′ | = |Vt| (nt′ = nt) when K is small. This corresponds to the fact that the number of clients in
a transaction network will barely change in a sufficiently short time interval. Even if the number
of nodes changes, we can still add some “pseudo-nodes" with random features and links during the
training process to make up for the difference in terms of the number of nodes. Thus, we can construct
a simplified individual fairness regularization loss for dynamic graphs based on Definition 2.4 as
Eq. (5).

LIF-Dt =

t∑
t′=[t−K]+

exp(t′ − t) Tr(Ŷ⊺
t′LSt′,tŶt) (5)

Note that now St′,t ∈ Rnt×nt and LSt′,t ∈ Rnt×nt (the Laplacian matrix of St′,t) are square
matrices. For the sake of training efficiency, we can set K = 3. Then, suppose that the utility
loss in the backbone dynamic GNN model is Lutil, then the total training loss can be obtained as
L = Lutil + α

∑k
t=1 LIF-Dt . Here, k is the total number of snapshots for training, and α is the

balancing factor.

3 Preliminary Experiments

In this section, we present some preliminary experiments on two real-world datasets from the
financial domain to validate the efficacy of the proposed method. This is ongoing work, and we are
still conducting more experiments on more temporal graph datasets with more baseline models as
well.

Datasets The datasets we use are Bitcoin-OTC and Bitcoin-Alpha datasets. They contain who-
trusts-whom transaction networks of people who trade on the OTC and Alpha platforms [8, 9]. The
statistics of the datasets are summarized in Table 1.

Task We evaluate the proposed method over the future link prediction task (edge classification).
We concatenate the embeddings of two linked nodes from the last layer and apply an MLP to obtain
the class membership probability matrix. At each time step t, we can utilize the history information
accumulated up time t to predict the edge in the snapshot t+1. For other tasks like node classification
or graph classification, we plan to add them in the future to further verify the capability of the model.

Evaluation metrics We choose the mean reciprocal rank (MRR) to assess the models in terms of
utility and choose the proposed IF-D to evaluate the models in terms of individual fairness. MRR
score is the mean of reciprocal ranks over all nodes u. We use the last 10% of snapshots for testing.
For each node u with positive edge (u, v) at t+ 1, we randomly sample 1,000 negative edges starting
from node u and identify the rank of edge (u, v)’s prediction score among all other negative edges.
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Table 2: Performance of the link prediction task on two financial datasets. IF-D metrics are reported
in a relative manner. The minimum IF-D in each column is set to 1.

Bitcoin-OTC Bitcoin-Alpha
MRR↑ IF-D↓ MRR↑ IF-D↓

EvolveGCN-H 0.0690 1.325 0.1104 1.201
EvolveGCN-H + Ours 0.0712 1.087 0.1093 1.126

EvolveGCN-O 0.0968 1.264 0.1185 1.198
EvolveGCN-O+Ours 0.0953 1.000 0.1179 1.000

Baselines For the backbone dynamic GNN models, we choose the most popular EvolveGCN [10].
Both EvolveGCN-H and EvolveGCN-O use an RNN to dynamically update the training parameters
of GNNs. The former can be implemented by using a standard GRU, while the latter requires a
straightforward extension of the standard LSTM from the vector version to the matrix version.

From Table 2, we can conclude that our proposed method can greatly improve individual fairness
for temporal financial networks without sacrificing the utility of the backbone model too much.
Surprisingly, in some datasets, our method can even improve the utility when combined with some
backbone models. We can further conduct more experiments to verify the potential of our method in
terms of fairness awareness on more temporal graph datasets.

4 Conclusion

In this work, we extend the investigation of individual fairness from static graphs to temporal graphs.
We first revisit the current individual fairness metric for static graphs based on the (D1, D2)-Lipschitz
property and then generalize it under the temporal setting by taking the time-aware fairness constraint
into account. A new fairness requirement termed (K,D1, D2)-Lipschitz is presented accordingly
based on the principle of individual fairness in retrospect. We also propose a novel bias measure
with regard to individual fairness on dynamic graphs, together with a regularization-based fairness-
aware method for dynamic GNNs. Some preliminary experimental results on two financial networks
are shown to validate the promising efficacy of the proposed method. As an ongoing work, we
will try to deal with the challenge of the varying number of nodes in the different snapshots, the
training efficiency for large-scale real-world datasets, and the theoretical guarantee of the proposed
method. We will also conduct more experiments on more temporal datasets, try other designs of the
monotonically non-decreasing function L(·), and evaluate performance in the live-update training
paradigm [15].
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