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Abstract

Knowledge editing technology is crucial for001
maintaining the accuracy and timeliness of002
large language models (LLMs) . However, the003
setting of this task overlooks a significant por-004
tion of commonsense knowledge based on free-005
text in the real world, characterized by broad006
knowledge scope, long content and non instan-007
tiation. The editing objects of previous meth-008
ods (e.g., MEMIT) were single token or en-009
tity, which were not suitable for commonsense010
knowledge in free-text form. To address the011
aforementioned challenges, we conducted ex-012
periments from two perspectives: knowledge013
localization and knowledge editing. Firstly, we014
introduced Knowledge Localization for Free-015
Text(KLFT) method, revealing the challenges016
associated with the distribution of common-017
sense knowledge in MLP and Attention lay-018
ers, as well as in decentralized distribution.019
Next, we propose a Dynamics-aware Editing020
Method(DEM), which utilizes a Dynamics-021
aware Module to locate the parameter posi-022
tions corresponding to commonsense knowl-023
edge, and uses Knowledge Editing Module to024
update knowledge. The DEM method fully ex-025
plores the potential of the MLP and Attention026
layers, and successfully edits commonsense027
knowledge based on free-text. The experimen-028
tal results indicate that the DEM can achieve029
excellent editing performance.030

1 Introduction031

Large-scale Language Models (LLMs) have032

demonstrated remarkable performance in various033

natural language processing tasks. Nevertheless, er-034

rors or outdated knowledge are inevitable in LLMs035

(Meng et al., 2022a). Directly fine-tuning a large036

language model demands significant computational037

resources (Gupta et al., 2023), making it econom-038

ically prohibitive and limiting its popularity as a039

preferred approach (Ding et al., 2023).040

Knowledge editing serves as an effective ap-041

proach to update LLMs. Existing knowledge edit-042

Fig. 1: An example with factual knowledge and com-
monsense knowledge, and obtaining the correct answer
by editing the model.

ing methods predominantly concentrate on edit- 043

ing triple-based facts such as entity-relation pairs 044

(Meng et al., 2022b), events (multiple triplets) 045

(Peng et al., 2024; Liu et al., 2024). These 046

approaches commonly utilize strategies involv- 047

ing neuron localization and editing (Meng et al., 048

2022a), assuming that entities and phrases within 049

factual triplets are stored in a limited set of neurons. 050

By manipulating these select neurons, knowledge 051

editing can be accomplished. As shown in Figure 1, 052

factual knowledge editing involves rectifying out- 053

dated triplets like <America, President, Trump> to 054

accurate ones like <America, President, Biden>. 055

However, in real-world scenarios, structured 056

entity-relation triplets often fall short in ade- 057

quately describing many knowledge pieces, es- 058

pecially when it comes to commonsense knowl- 059

edge (Hwang et al., 2021). The data characteristics 060

of commonsense knowledge are broad knowledge 061

scope, long content and non instantiation, which 062

limits the effectiveness of traditional knowledge 063

editing methods. In addition, when using LLMs, 064

users often need to obtain commonsense knowl- 065

1



edge in the form of free-text, rather than structured066

entity level information. This user preference indi-067

cates that commonsense knowledge editing based068

on triplet forms does not meet their needs. There-069

fore, we propose a more challenging commonsense070

knowledge editing task based on free-text, which071

has wider practicality.072

Compared to previous methods, commonsense073

knowledge editing based on free-text presents some074

new challenges, as shown below: (1) The previous075

knowledge localization methods (e.g. Causal Trac-076

ing (Meng et al., 2022a)) typically used the prob-077

ability value of the editing target as the response078

value of the knowledge storage location. The suc-079

cess of this method is based on the fact that the edit-080

ing target is a single token or entity. However, the081

editing target of commonsense knowledge based on082

free-text editing has multiple tokens, which limits083

the effectiveness of previous methods. (2) Previ-084

ous knowledge editing methods typically assumed085

that factual knowledge was stored on a single or086

small number of neurons, and knowledge editing087

could be achieved through operations on a small088

number of neurons. However, the experiments con-089

ducted in Section 3 indicate that commonsense090

knowledge based on free-text does not conform to091

this assumption. Commonsense knowledge based092

on free-text has a wide range of storage locations,093

is more dispersed, and is less prone to localization.094

Therefore, previous knowledge editing methods are095

insufficient for handling commonsense knowledge096

editing based on free-text.097

To address the aforementioned challenges, we098

conducted experiments from two perspectives:099

knowledge localization and knowledge editing.100

Firstly, we introduce a Knowledge Localization for101

Free-Text(KLFT) method that include knowledge102

location and recall. Specifically, knowledge loca-103

tion experiments are utilized to determine whether104

commonsense knowledge is stored in the local hid-105

den states of transformers, as well as to explore the106

form of storage. The knowledge recall experiment107

is used to verify whether specific hidden states stor-108

ing commonsense knowledge have a significant109

contribution to that knowledge. Two experiments110

together indicate that, in comparison to triple facts,111

commonsense knowledge predominantly resides in112

the MLP layers and Attention (Attn) layers, the stor-113

age of knowledge is not local but rather dispersed114

throughout. This means that the previous editing115

methods (e.g., editing local layers in ROME(Meng116

et al., 2022a) and PMET (Li et al., 2024)) were 117

unreasonable. 118

Secondly, we propose a Dynamics-aware Edit- 119

ing Method(DEM). Specifically, we introduce a 120

Dynamic-aware module for real-time detection of 121

the storage location of each commonsense knowl- 122

edge, and selected the layer with the highest con- 123

tribution to knowledge as the editing layer. Subse- 124

quently, we employ a Knowledge Editing module 125

to perform targeted knowledge editing on specific 126

MLP and Attn layers. The experimental results 127

validated the effectiveness of the method. 128

To address the issue of insufficient commonsense 129

knowledge datasets for editing based on free-text, 130

we have developed Commonsense Knowledge Edit- 131

ing Benchmark (CKEBench) . This dataset has 132

15600 samples and six evaluation indicators, which 133

is more challenging than the existing dataset. To 134

the best of our knowledge, we are the first to intro- 135

duce an Commonsense Knowledge Editing Bench- 136

mark. Additionally, we investigate the storage and 137

recall of commonsense knowledge and propose an 138

effective editing method. Our contributions can be 139

summarized as follows: 140

• We constructed a Commonsense Knowledge 141

Editing Benchmark (CKEBench) dataset that 142

provides a benchmark for editing Common- 143

sense knowledge based on free-text. 144

• Through Knowledge Localization for Free- 145

Text (KLFT), we found that compared to 146

triple facts, commonsense knowledge predom- 147

inantly resides in the MLP layers and Attn 148

layers, the storage of knowledge is not local 149

but rather dispersed throughout. 150

• To edit commonsense knowledge based on 151

free-text, we propose a Dynamics-aware Edit- 152

ing Method(DEM). Specifically, the DEM 153

includes a Dynamic-aware Module and a 154

Knowledge Editing Module. The experimen- 155

tal results validated the effectiveness of the 156

method. 157

2 Constructing CKEBench Dataset 158

In this section, we constructed an Commonsense 159

Knowledge Editing Benchmark(CKEBench). This 160

datasets consist of 15,600 samples. 161

2.1 Dataset Construction 162

Based on the ATOMIC (Sap et al., 2019) 163

database, we constructed a Commonsense Knowl- 164
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Commonsense Knowledge Editing Benchmark(CKEBench) < ATOMIC Data Source >
IDx Commonsense Prompt Target Answer

Sample 1 PersonX about to get married, as a result, PersonX wants to live happily ever after
Sample 2 PersonX accepts PersonY appointment, resulting in personX travels to appointment

Sample 3
PersonX can tell PersonY that PersonY is being solipsist
and insolent, as a result,

others want to to stop what they’re doing

Table 1: An example of converting source data from ATOMIC database into directly generated(DG), multiple-choice
questions(MQ), and true/false questions(T/F).

edge Editing Benchmark(CKEBench). ATOMIC165

is a well-known commonsense database that was166

developed by Allen Institute and subsequently op-167

timized for its version (Hwang et al., 2021). The168

CKEBench contains 23 types of relationships and169

describes commonsense knowledge based on free-170

text, they fall into three natural categories based on171

their meaning: physical-entity, social- interaction172

and event-centered commonsense.173

2.2 Dataset Preparation174

In ATOMIC, the data format is <175

Event1,Relationship,Event2 >, which con-176

tains some unrecognized markers (e.g. ___, etc.)177

and invalid characters (e.g. &, etc.), which we178

manually filter out. In addition, the relationship179

types in ATOMIC are abbreviated and not easily180

understood by humans. Even if ATOMIC provides181

corresponding annotations, it is still not enough to182

form a smooth statement when constructing the183

prompt. as shown in the Appendix A, we have184

rewritten the 23 relationship categories in ATOMIC185

into templates that can be read by humans and186

counted their sample sizes. Afterwards, we will187

use the reorganized dataset dataset as the initial188

data to construct the CKEBench dataset.189

2.3 Dataset Analysis190

After filtering and rewriting, we obtained a total191

of 15600 high-quality samples, of which "xAttr"192

had the highest number of samples, totaling 3224.193

The average length of "Commonsense Prompt" is194

72 tokens, and the average length of Target An-195

swer is 16 tokens. After testing on LLaMA-3 (8B)196

(Touvron et al., 2023a), the Perplexity (PPL) of the197

dataset is 7.3, indicating that the text of the entire198

dataset is smoother and the quality of the dataset is199

higher. The appendix C shows an example.200

3 Knowledge Localization for Free-Text201

To locate commonsense knowledge based on202

free-text within LLMs, we propose a Knowledge203

Localization for Free-Text (KLFT) method, which 204

involves two experiments : knowledge location and 205

recall. 206

3.1 KLFT Method 207

Inspired by causal tracing (Meng et al., 2022a), 208

we adopt KLFT method to explore the way knowl- 209

edge is stored. Similar to the causal tracing, a clean 210

run that predicts the fact, a corrupted run where 211

the prediction is damaged, and a corrupted-with- 212

restoration run that tests the ability of a single state 213

to restore the prediction. 214

• In the clean run, we pass a commonsense 215

prompt x = [x1, ..., xT ] into model Fθ 216

and collect all hidden activations {hli|i ∈ 217

[1, T ], l ∈ [1, L]}, L represents the number of 218

hidden layers in the model. Table 1 provides 219

an Sample 1 illustration with the common- 220

sense prompt: " PersonX about to get married, 221

as a result, PersonX wants to", the expected 222

target answer is "live happily ever after". 223

• In the corrupted run, There are 23 relation- 224

ship categories in the CKEBench. We con- 225

sider the text before the relationship as the 226

subject, and the text after the relationship as 227

the object. The subject is obfuscated from Fθ 228

before the network runs. Concretely, imme- 229

diately after x is embedded as [h01, h
0
2, ..., h

0
T ], 230

we set h0i = h0i + δ for all indices i that 231

correspond to the subject entity, where δ ∈ 232

N (0, σ2). Fθ is then allowed to continue nor- 233

mally, giving us a set of corrupted activations 234

{hli∗|i ∈ [1, T ], l ∈ [1, L]}. Because Fθ loses 235

some information about the subject, it will 236

likely return an incorrect answer. 237

• In the corrupted-with-restoration run, We 238

have the Fθ run calculations on noise embed- 239

dings, except in some tokens xi′ and layers 240

l′. Afterwards, we hook Fθ and forced it to 241

output clean state hl
′
i′ . Future calculations can 242
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Fig. 2: Storing Factual and Commonsense Knowledge
in LLMs.

continue without intervention. Afterwards,243

The ability of a few clean states to restore244

correct facts afterwards indicates their impor-245

tance in the calculation graph. Previous work246

(Meng et al., 2022a; Gupta et al., 2023) has247

shown that the last token xs−last of the sub-248

ject with added noise contributes the most to249

knowledge localization, and we fix the token250

xs−last as the xi′ .251

The probability value Pl′ of restoring the tar-252

get answer will be used as the contribution of this253

layer l′ to common sense knowledge. The larger254

Pl′ , the greater the probability that commonsense255

knowledge is stored in this layer. For commonsense256

knowledge based on free-text , the target answer is257

usually a complete sentence with multiple tokens,258

and Pl′ cannot be directly obtained. We utilize259

GPT-4 (Achiam et al., 2023) and LLaMA-3 (8B)260

(Touvron et al., 2023a) to evaluate the semantic261

similarity Sl′
1 and Sl′

2 between the text output of262

the model and the target output, and then make263

Pl′ =
Sl′
1 +Sl′

2
2 .264

3.2 Knowledge Location265

3.2.1 Locating commonsense knowledge266

before decoupling267

We compared the differences between factual268

and commonsense knowledge in storage locations269

by KLFT method. As show in the Figure 2, the fact270

prompt is "Beats Music is owned by", the target271

answer is "Apple", the commonsense knowledge is272

sample 3 in Table 1. The horizontal axis represents273

the layers in LLMs, and the vertical axis represents274

the tokens xi of different knowledge. The depth of275

color is determined by Pl′ , and the larger Pl′ , the276

Fig. 3: The storage of commonsense knowledge after
decoupling factual knowledge.

darker the color, indicating a higher probability of 277

storing knowledge in that layer. 278

Unlike factual knowledge, which is typically 279

stored in fixed MLP layers(Meng et al., 2022a), 280

commonsense knowledge is not limited to specific 281

layer neurons. Evidence of storage can be observed 282

in both the MLP and Attn layers. 283

3.2.2 Locating commonsense knowledge after 284

decoupling 285

Commonsense knowledge is non instantiation 286

and is often abstractly represented. By contrast, 287

facts are usually instanciated. To more accurately 288

locate commonsense knowledge and decouple it 289

from factual elements, we perform multiple same- 290

type text replacements for the factual elements that 291

may be contained in free text. For example, we 292

replace "personX" in free-text with multiple per- 293

son names and take the intersection of the located 294

results. 295

As shown in Figure 3, we obtained the storage 296

situation of commonsense knowledge decoupled 297

from factual knowledge (The "Mean" column). Un- 298

like factual knowledge, which is stored in the mid- 299

dle and front layers of MLP in LLMs, we found 300

that commonsense knowledge is dispersed in the 301

MLP and Attn layers, which poses a challenge for 302

commonsense knowledge editing. 303

3.2.3 Locating commonsense knowledge of 304

the entire dataset 305

We conducted KLFT experiment on each rela- 306

tionship category, selecting 100 samples for each 307

relationship category, totaling 2300 samples. The 308

experiment selected top k=3 layers as the storage 309

location of knowledge. As shown in the Figure 4, 310

the storage location of the MLP layer is mainly in 311

the middle and front layers, but other layers also 312

store some knowledge. Unlike the experimental 313
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Fig. 4: Display the storage location of samples for each
relationship category in the MLP and Attn layers. The
horizontal axis represents the parameter layer of the
model, and the vertical axis represents the relationship
category. The darker the color, the more knowledge
stored in that layer.

results of MLP, the knowledge storage in the Attn314

layer is relatively scattered, with most layers stor-315

ing knowledge.316

3.3 Knowledge Recall317

To verify the conclusions of commonsense318

knowledge based on free-text in localization, we319

recorded the contribution of MLP and Attn layers320

to knowledge during the recall process.321

Experimental design. After passing through322

each layer of parameters in the model, the informa-323

tion flow undergoes certain changes, which we con-324

sider as an indicator to evaluate the contribution of325

parameter layers to knowledge. We hook model Fθ326

and obtain the hidden states {hlin, hlout|l ∈ [1, L]}.327

Specifically, we directly compare the hidden states328

hlin and hlout passing through the l-th parameter329

layers , utilizing cosine similarity as the evaluation330

metric. At the same time, we utilize the hlin and331

hlout as the input for the final prediction lm_head332

layer of the model, then obtain the corresponding333

predicted token probabilities plin and plout. We take334

tokens with top k=50 as candidate sets, and use335

the Simpson algorithm to calculate the similarity336

between the plin and plout.337

Data selection. For factual and commonsense338

knowledge, we selected 1150 samples each to ex-339

plore the process of knowledge recall. Among340

them, there are a total of 23 relationship categories341

for commonsense knowledge, with 50 samples se-342

lected for each relationship category. We assume343

that the similarity is inversely proportional to the344

contribution of corresponding knowledge. When345

the similarity is close to zero, it indicates that the346

layer has the greatest impact on knowledge during347

the knowledge recall process.348

Fig. 5: The comparison of activation response results
between factual and commonsense knowledge in knowl-
edge recall process. Among them, the green line rep-
resents the MLP layer, the orange line represents the
Attention layer. The horizontal axis represents different
layers, and the vertical axis represents the numerical
value of similarity.

Result analysis. As shown in the Figure 5, for 349

the MLP layer, the similarity of factual knowledge 350

is much greater than zero in the middle part and 351

close to zero in the rest, while the similarity of 352

commonsense knowledge is only close to zero in 353

the middle and front parts. For the Attn layer, the 354

similarity between factual knowledge and common- 355

sense knowledge is close to zero at most layer, but 356

there is also a certain difference in values. The ex- 357

perimental results show that the localization results 358

of the KLFT method are consistent with the pa- 359

rameter layer response of knowledge recall process. 360

For commonsense knowledge based on free-text, 361

which is mainly stored in the middle and front lay- 362

ers of MLP as well as most Attn layers. 363

4 Dynamics-aware Editing Method 364

To edit commonsense knowledge based on 365

free-text, we propose a Dynamics-aware Editing 366

Method(DEM). Specifically, the DEM includes a 367

Dynamics-aware Module and Knowledge Editing 368

Module. 369

4.1 Dynamics-aware Module 370

Through section 3, we conclude that unlike fac- 371

tual knowledge, commonsense knowledge is stored 372

in the MLP and Attn layers, and the storage loca- 373

tions of knowledge are relatively scattered. The 374

existing knowledge editing methods always edit 375

all factual knowledge at fixed parameter layer. For 376

example, when editing all samples on GPT-J (6B) 377
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Fig. 6: The overall architecture of the Dynamics-aware
Editing Method.

(Wang and Komatsuzaki, 2021) model, the edited378

layers for the ROME (Meng et al., 2022a) and379

PMET (Li et al., 2024) methods are fixed [5] and380

[3,4,5,6,7,8], respectively, which is obviously un-381

reasonable for editing commonsense knowledge.382

As shown in the Figure 6, we propose a383

Dynamics-aware module for selecting MLP and384

Attn layers for editing. When commonsense385

prompts x = [x1, ..., xT ] input to model Fθ, the386

information flow will change after passing through387

parameters layer. We hook Fθ to obtain the last388

token’s hidden state {h(T )lin, h(T )lout|l ∈ [1, L]}.389

The h(T )lin and h(T )lout represent the hidden states390

of the token’s input and output in l-th layer, respec-391

tively. Then we utilize Cosine Similarity as an392

indicator for selecting editing layers:393

Cosine_Similarity =
h(T )lin · h(T )lout

∥h(T )lin∥∥h(T )lout∥
(1)394

the closer the Cosine Similarity is to zero, the395

greater the contribution of this layer to knowledge.396

Select layers with top k=3 for editing.397

4.2 Knowledge Editing Module398

We edit the selected layers l̂ of the dynamic per-399

ception module in section 4.1. For a given question400

x = [x1, ..., xT ], where xi represents the i-th to-401

ken of the question, and T represents the number402

of question tokens. The model Fθ generates text403

by iteratively sampling from a conditional token404

distribution P(o1, ..., on|x1, ..., xT ), where oj rep-405

resents the j-th token of the output. We utilize406

{hli|i ∈ [1, T ], l ∈ [1, L]} to represent the hidden407

state of xi in the l-th layer.408

4.2.1 Step1: Obtaining Incremental Weights409

DEM first computes the target answer repre-410

sentations in the selected layers l̂ of MLP and411

Attn by simultaneously optimizing the TC (Trans-412

former Component, namely MLP and Attn) hidden413

states. Secondly, DEM updates both MLP and Attn 414

weights in the critical layers through target answer 415

oj representations. Overall, DEM optimizes an 416

objective function to obtain target weights (Meng 417

et al., 2022b): 418

WMLP,WAttn ≜ argmin
W

((

n∑
i=1

(∥Wki − vi)∥2+

n+u∑
i=n+1

(∥Wki − vi)∥2))
(2) 419

where ki ≜ kl̂i and vi ≜ v l̂i represent the sets of 420

keys and values, respectively, encoding the com- 421

monsense prompt in l̂-th layer.
∑n

i=1(∥Wki − 422

vi)∥2 indicates that we want to retain n pieces 423

of knowledge, while
∑n+u

i=n+1(∥Wki − vi)∥2 in- 424

dicates that we want to modify u >> 1 pieces of 425

knowledge. We represent the keys and val- ues as 426

matrices stacked horizontally: [k1|k2|...|kn] ≜ K 427

and [v1|v2|...|vn] ≜ V , and we consider the target 428

weight WMLP and WAttn as the sum of the origi- 429

nal weight WMLP
0 and WAttn

0 , and the incremen- 430

tal weight △ (i.e. WMLP = WMLP
0 + WMLP

△ and 431

WAttn = WAttn
0 + WAttn

△ ). Based on the deriva- 432

tion from MEMIT (Meng et al., 2022b), the formal 433

expression for the incremental weight is: 434

△MLP = RMLP (kMLP
1 )T (CMLP

0 + kMLP
1 (kMLP

1 )T )−1

△Attn = RAttn(kAttn
1 )T (CAttn

0 + kAttn
1 (kAttn

1 )T )−1

(3) 435

where RMLP ≜ V MLP
1 − WMLP

0 KMLP
1 rep- 436

resents the residual between the values V MLP
1 437

(namely target answer representations) correspond- 438

ing to the keys KMLP
1 of the target knowledge 439

and the model original knowledge WMLP
0 KMLP

1 . 440

CMLP
0 ≜ kAttn

0 (kAttn
0 )T = αE[kkT ] is an esti- 441

mate of the set of previously memorized keys ob- 442

tained through sampling. Here, α is a hyperparam- 443

eter which balances the degree of model modifica- 444

tion and preservation. 445

We consider modifying the original answers re- 446

lated to commonsense prompts x = [x1, ..., xT ] 447

in LLMs to target answers o = [o1, ..., on]. As- 448

suming that the set of previously memorized keys 449

CMLP
0 has already been obtained through sam- 450

pling, and knowledge clues xi have been inputed 451

into the original model to obtain WMLP
0 KMLP

1 , 452

we then need the sets of keys and values for the 453

target knowledge, denoted as K1 and V1, respec- 454

tively. Similar to MEMIT (Meng et al., 2022b), we 455

calculate the target answer set of the edited layer 456

6



L = max(RMLP ). The relevant parameters of457

Attn and MLP layers are similar.458

4.2.2 Step2: Updating Weights459

As shown in the Figure 6, ali and ml
i are the460

hidden states of the Attn and MLP of the l-th layer461

and the i-th token, respectively. The general forms462

of the Attn and MLP at the l-th layer and the i-th463

token xli are given by:464

al
i = W l

oattnAttnl(γ(hl−1
1 , hl−1

2 , ..., hl−1
i )),

ml
i = W l

omlpΦ(W
l
Iγ(h

l−1
j ))

(4)465

Where W l
oattn and W l

omlp are the output weights466

of the Attn and MLP at the l-th layer, respectively.467

W l
I are the input weights of the MLP at the l-th468

layer. The Φ represents the non-linear activation469

function.470

DEM adds optimizable parameters δmi and δai to471

hidden states vmi and vai at the l-th layer, respec-472

tively. DEM retains the optimized hidden state of473

MLP and Attn to update their weights separately,474

denoted as vmi = ml
i + δmi = argminL(vmi ) and475

vai = ali + δai = argminL(vai ). The formulas476

L(vmi ) and L(vai ) are similar, with the main dif-477

ference being their application in MLP and Attn478

calculations. The L(vmi ) is defined as follows:479

L (vmi ) = α ·DKL

(
PF†

θ
[ym | pm] |PFθ [y

m|pm]
)

+ β · 1

P

P∑
j=1

− log PF†
θ

[
yZt
i | prefj ⊕p (xm

i )
]
.

(5)480

Where F†
θ

△
= Fθ(a

l
i+ = δai ) represents the op-481

timizable parameters δai is added to the hidden482

states of Attn at the l-th layer of the model Fθ.483

The α and β are hyperparameters used to balance484

reliability and specificity. prefj ⊕p (xm
i ) is uti-485

lized to enhance the prefix of target knowledge486

generalization and commonsense knowledge gen-487

eralization (such as randomly replacing person488

names).Simultaneously calculate KL divergence489

and stack the calculation results into matrix V1.490

With this, DEM follows the same algorithm steps491

as PMET (Li et al., 2024) to update MLP and Attn492

weights.493

5 Experiments494

In the section, we investigated the effectiveness495

of DEM method and existing editing methods in496

editing commonsense knowledge based in free-497

text.498

5.1 Experimental Setup 499

Baselines and Datasets. Our experiments are 500

conducted on GPT-J (6B) (Wang and Komat- 501

suzaki, 2021) and LLaMA-2 (7B) (Touvron et al., 502

2023b). The baseline methods include the learning- 503

based method MEND, and locating and editing the 504

methods Fine-Tuning (FT+W) (Zhu et al., 2020), 505

MEND (Mitchell et al., 2021), MEMIT (Meng 506

et al., 2022b) and PMET (Li et al., 2024). We 507

chose the CKEBench dataset we constructed as the 508

benchmark. 509

Evaluation. For CKEBench datasets, the target 510

answer is an free-text that contains multiple tokens. 511

Therefore, we utilize the GPT-4 (Achiam et al., 512

2023) model to determine the similarity between 513

the generated text and the original text as the ex- 514

perimental result. Similar to the factual knowledge, 515

the evaluation metrics include Score, Efficiency, 516

Generalization, Specificity, Fluency and Consis- 517

tency. In addition, we have added a Commonsense 518

indicator to evaluate the ability of the method to 519

edit commonsense knowledge. The data in the 520

"sub_neighborhood_prompts" at Appendix C is uti- 521

lized to evaluate this indicator. 522

5.2 Overall Results 523

We conduct experiments on commonsense 524

knowledge datasets to verify the effectiveness of 525

our method DEM. 526

Results on the GPT-J (6B). The Table 2 shows 527

that DEM performs better than baselines methods. 528

Specifically, DEM built upon GPT-J (6B), is +4.5 529

better on indicator Score than PMET, and obtains 530

a new state-of-the-art(SOTA) result. Meanwhile, 531

our method achieves 13.8% improvements of Com- 532

monsense score on the true/false questions dataset. 533

The significant performance gain of our method 534

over the baselines demonstrates that the proposed 535

DEM is very effective for this task. 536

Results on the LLaMA-2 (7B). As show in Ta- 537

ble 2, Our method improves upon the basic PMET 538

method by 15.7% and 5.6% in term of F1 Common- 539

sense score and Specificity score on the LLaMA-2 540

(7B), respectively. Meanwhile, our DEM achieves 541

3.0% improvements of Score. We attribute the im- 542

provements to that our method DEM takes advan- 543

tage of Dynamics-aware and Knowledge Editing 544

Module, thus achieving superior performance than 545

the previous model PMET. 546
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Editor Score Efficacy Generalization Specificity Fluency Consistency Commonsense
GPT-J (6B) 12.4 14.5 12.1 9.4 605.3 20.9 7.2
FT-W 22.7 39.3 20.4 21.5 313.5 25.7 11.8
MEND 25.8 29.5 22.7 31.3 501.2 27.8 14.7
MEMIT 31.6 45.6 21.8 35.6 556.9 33.7 21.8
PMET 39.8 56.8 53.3 48.8 619.7 44.7 27.9
DEM(ours) 44.3(↑4.5) 60.3(↑3.5) 57.4(↑4.1) 50.3(↑1.5) 611.3 45.6(↑0.9) 41.7(↑13.8)
LLaMA-2(7B) 13.7 18.7 13.5 12.3 617.7 19.9 9.2
MEMIT 33.5 42.9 27.3 36.3 600.8 33.5 23.8
PMET 40.5 58.7 55.9 47.3 615.5 47.2 27.7
DEM(ours) 43.5(↑3.0) 62.2(↑3.5) 57.3(↑1.4) 52.9(↑5.6) 609.8 50.3(↑3.1) 43.4(↑15.7)

Table 2: The main results directly generated in the CKEBench dataset. The performance of our method is followed
by the improvements (↑) over the previous method.

Model Efficacy Commomsense
GPT-J (6B)(DEM) 60.3 41.7

w/o DA 57.6 (↓ 2.7) 31.5 (↓ 10.2)
w/o EM 18.8 (↓ 41.5) 9.3 (↓ 32.4)
w/o EA 58.5 (↓ 1.8) 40.1 (↓ 0.6)

Table 3: Ablation study of DEM. We turn off different
components of the model one at a time.

5.3 Ablation Study547

To show the efficacy of our proposed techniques,548

we conduct an ablation study experiment by turning549

off one component at a time. 1) w/o DA, which550

removes the Dynamics-aware module; 2) w/o EM,551

which does not edit MLP layers in the Knowledge552

Editing module, only the Attn layers; 3) w/o EA,553

which does not edit Attn layers in the Knowledge554

Editing module, only the MLP layers; . We present555

the results of ablation study in Table 3. From the556

results, we can observe that:557

(1) Effectiveness of Dynamics-aware module.558

When we remove the Dynamics-aware module559

from the DEM, the Score drops by 10.2% on560

commonsense knowledge dataset. It proves the561

Dynamics-aware module is very effective for the562

task.563

(2) Effectiveness of not editing MLP layers.564

Not editing the MLP layer, the performance drops565

significantly. Specifically, the Efficacy score drops566

from 60.3% to 18.8% on the commonsense dataset.567

(3) Effectiveness of not editing Attn layers.568

Compared without editing Attn layers, our method569

DEM achieves 1.8% improvements of Efficacy570

score on the commonsense dataset. It demonstrates571

that the Attn layer is crucial for editing common-572

sense knowledge.573

6 Related Work 574

The existing knowledge editing dataset can be 575

divided into triplet form and event form. In triplet 576

format dataset, commonsense knowledge dataset 577

includes PEP3k and 20Q (Porada et al., 2021; 578

Gupta et al., 2023), factual knowledge includes 579

ZsRE (Levy et al., 2017), CounterFact (Meng et al., 580

2022a), Fact Verification (Mitchell et al., 2022) , 581

Calibration (Dong et al., 2022), MQuAKE (Zhong 582

et al., 2023) and RaKE (Wei et al., 2023). In event 583

format dataset, datasets with only factual knowl- 584

edge, including ELKEN (Peng et al., 2024) and 585

EVEDIT (Liu et al., 2024). 586

The previous editing methods mainly focused 587

on editing knowledge in the form of triples, with 588

a small amount of knowledge in the form of edit- 589

ing events. The methods for editing triplet forms 590

mainly include : (1)Locate-Then-Edit method (Dai 591

et al., 2021; Meng et al., 2022a,b; Li et al., 2024), 592

(2) Memory-based method (Mitchell et al., 2022; 593

Madaan et al., 2022; Zhong et al., 2023; Zheng 594

et al., 2023), (3) Hyper-network method (Mitchell 595

et al., 2021; De Cao et al., 2021; Tan et al., 2023). 596

The method for editing event forms is Self-Edit 597

(Liu et al., 2024). 598

7 Conclusion 599

In this paper, we aim to edit commonsense 600

knowledge based on free-text. Firstly, we con- 601

structed CKEBench dataset that provides a bench- 602

mark for editing Commonsense knowledge based 603

on free-text. Additionally, we propose a KLFT 604

method, and concluded that commonsense knowl- 605

edge is dispersed in the MLP and Attn layers. Fi- 606

nally, we propose the DEM method to edit com- 607

monsense knowledge, and the experimental results 608

verify the effectiveness of this method. 609
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8 Limitations610

Due to limitations in computing resources, we611

did not conduct relevant experiments on larger lan-612

guage models.613
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A Appendix A729

Relations Human Readable Template Size

oWant
as a result, personY want to

7775
as a result, others want to *

xEffect
as a result, PersonX will

13862
resulting in *

xIntent
because PersonX wanted

8558
which means *

xNeed which means PersonX need 13734
xWant as a result, PersonX wants 7775
xReact which indicates that personX 10689

oEffect
resulting in personY

5181
resulting in others *

oReact
and personY’s reaction is

4740
and others’s reaction is *

xAttr
which means that PersonX

19441
which means that *

AtLocation located in the 234
ObjectUse are used to 311
Desires desires 271
HasProperty has the property of 428
NotDesires have no desire to 287
Causes causes 322
HasSubEvent The sub event of E1 is to E2 118
xReason The reason for E1is E2 290
CapableOf is/are capable of 512
MadeUpOf made up of 291
isAfter happens after 465
isBefore happens before 164
isFilledBy blank can be filled by 174
HinderedBy can be hindered by 612

Table 4: The correspondence between relationships and
rewriting templates in the ATOMIC database. Among
them, "*" represents that the token "personX/personY"
in < Event1,Relationship,Event2 > is not in Event1
or Event2. "E1" and "E2" represent Event1 or Event2.

B Appendix B: Effects of the existing 730

methods 731

Fig. 7: Examples of commonsense knowledge editing
using existing methods.

We conducted experiments to evaluate the effi- 732

cacy of existing methods in editing commonsense 733

knowledge based on free-text. As show in Figure 7, 734

"One edit" refers to editing the sample once, while 735

"Multiple edits" involves editing the sample five 736

times. It is observed that both the original output 737

and the utilization of MEMIT (Meng et al., 2022b) 738

methods (including One and Multiple edits) fail to 739

effectively edit commonsense knowledge. Further- 740

more, multiple edits lead to repeated instances of 741

partial target answers. These experimental findings 742

highlight the limitations of existing methods in edit- 743

ing commonsense knowledge based on free-text. 744

C Appendix C 745

    {
        "case_id": 9313
        "requested_rewrite": {
            "prompt": "{}, as a result, others want to to stop what they're doing",
            "subject": "PersonX can tell PersonY that PersonY is being solipsist and insolent",
            "subsubject": "PersonX",
            "target_new": {
                "str": "to stop what they're doing"
            },
        },
        "paraphrase_prompts": [
            "PersonX can inform PersonY that they are acting solipsistic and disrespectful, as a result, personY want to to 

stop what they're doing",
            "PersonX has the ability to inform PersonY about their solipsistic and insolent behavior, as a result, personY 

want to to stop what they'redoing",
],

        "neighborhood_prompts": [
            "PersonX breaks the enemy 's ___, as a result, others want to to stop what they're doing",
            "PersonX asks the neighbors, as a result, others want to to stop what they're doing",

],
        "sub-neighborhood_prompts": [
            "James can tell PersonY that PersonY is being solipsist and insolent, as a result, personY want to to stop 

what they're doing",
            "David can tell PersonY that PersonY is being solipsist and insolent, as a result, personY want to to stop what 

they're doing",
],

        "sub-neighborhood_prompts_rewrite": [
        ],
        "generation_prompts": [
            "PersonX can tell PersonY that PersonY is being solipsist and insolent,  and personY's reaction is to stop 

what they're doing",
            "PersonX can tell PersonY that PersonY is being solipsist and insolent,  resulting in personY to stop what 

they're doing",
],

    }

Fig. 8: Sample id:9313 of CKEBench dataset. Due to
space constraints, this sample only displays the structure
rather than the entirety
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