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Abstract

Large Vision-Language Models (LVLMs) typically encode an image into a fixed
number of visual tokens (e.g., 576) and process these tokens with a language model.
Despite their strong performance, LVLMs face challenges in adapting to varying
computational constraints. This raises the question: can we achieve flexibility in
the number of visual tokens to suit different tasks and computational resources? We
answer this with an emphatic yes. Inspired by Matryoshka Representation Learning,
we introduce the Matryoshka Query Transformer (MQT), capable of encoding an
image into m visual tokens during inference, where m can be any number up to a
predefined maximum. This is achieved by employing a query transformer with M
latent query tokens to compress the visual embeddings. During each training step,
we randomly select m ≤ M latent query tokens and train the model using only
these first m tokens, discarding the rest. Combining MQT with LLaVA, we train
a single model once, and flexibly and drastically reduce the number of inference-
time visual tokens while maintaining similar or better performance compared to
training independent models for each number of tokens. Our model, MQT-LLAVA,
matches LLaVA-1.5 performance across 11 benchmarks using a maximum of 256
tokens instead of LLaVA’s fixed 576. Reducing to 16 tokens (8x less TFLOPs)
only sacrifices the performance by 2.4 points on MMBench. On certain tasks
such as ScienceQA and MMMU, we can even go down to only 2 visual tokens
with performance drops of just 3% and 6% each. Our exploration of the trade-off
between the accuracy and computational cost brought about by the number of
visual tokens facilitates future research to achieve the best of both worlds.

1 Introduction

Recent work in Large Vision-Language Models (LVLMs) (OpenAI, 2023; Liu et al., 2023b; Bai et al.,
2023) has shown remarkable performance across a broad range of vision-language tasks (Huang
et al., 2023; Chen et al., 2023; Cai et al., 2024a; Li et al., 2023b). These LVLMs typically consist of
a vision encoder to embed images into grid features, which are fed into a Large Language Model
(LLM) (Touvron et al., 2023; Chiang et al., 2023) for processing and reasoning alongside a text input.

A key research question is how to transform these raw visual embeddings into the visual tokens
that are fed into the LLM. Prior work either directly projects the grid features with a multi-layer
perceptron (MLP) (Liu et al., 2023b) or compresses the grid features into fewer tokens with a query
transformer or resampler (Li et al., 2023a; Dai et al., 2023; Bai et al., 2023; Ye et al., 2023; Alayrac
et al., 2022). However, these models all need to pre-determine how many tokens an image is worth,
and set a fixed number for all images. Finding a flexible number that adaptively strikes a balance
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Figure 1: Our model, MQT-LLAVA, matches LLaVA-1.5 performance on 11 benchmarks using only
256 visual tokens instead of 576. We achieve a 2x speed-up with 256 tokens and 8X speed-up in
TFLOPs using 16 tokens with only a 2.4 performance drop compared to LLaVA-1.5 on MMBench.

between efficiency and performance is difficult. More visual tokens encode more information, but
come at a higher inference cost, as the complexity of the transformers used in these LVLMs scales
quadratically with the number of input tokens. Additionally, not all applications require or allow
the same token budget: some applications have limited computational resources, necessitating a
lower token budget to ensure real-time processing. In practice, most best-performing LVLMs choose
a fixed, large number of visual tokens per image (e.g., 576 for LLaVA-1.5) without the ability to
adaptively adjust the visual token allocation at deployment time.

In this work, inspired by Matryoshka Representation Learning (MRL) (Kusupati et al., 2022;
Kudugunta et al., 2023), we introduce Matryoshka Query Transformer (MQT), a simple way to train
a single LVLM that supports adaptively changing the number of visual tokens at inference time. We
use a query transformer (Li et al., 2022; Alayrac et al., 2022) with M latent query tokens to transform
grid features into visual tokens. Crucially, during each training step, we train the model using only
the first m latent query tokens while dropping the rest, where m is randomly selected within the
range of M . With such a tail-token dropping strategy, the query tokens form a Matryoshka structure.
Intuitively, the significance of each token correlates with its placement within this nested structure.
During inference, we have the flexibility to selectively utilize solely the initial m visual tokens.

We combine MQT with LLaVA-1.5: the resulting model, MQT-LLAVA, is able to match LLaVA-1.5
performance across 11 benchmarks using only a maximum of 256 tokens, instead of LLaVA’s fixed
576. When the maximum number of tokens is dropped drastically to only 2 tokens, MQT-LLAVA
performance drops by only 3% on ScienceQA and 6% on MMMU. Finally, we study the performance
of 2, 4, 8, 16, 36, 64, 144, and 256 visual tokens during inference across 11 benchmarks, and
offer a trade-off in the selection of visual tokens that balances achieving the highest accuracy with
minimizing computational costs on different tasks. Interestingly, we find that changing the number of
visual tokens impacts different tasks very differently. For instance, tasks involving language-based
reasoning and subject-level scientific knowledge can achieve excellent performance with only a few
tokens, whereas complex open-ended visual question tasks that involve rich local information details
require a larger number of tokens.

In summary, we make the following key contributions:

• We introduce Matryoshka Query Transformer (MQT), which allows for a flexible choice of the
number of visual tokens and accommodates varying computational constraints in different tasks.

• Leveraging MQT, we build MQT-LLAVA, a vision-language model that matches the perfor-
mance of LLaVA-1.5 using less than half the number of visual tokens, and outperforms it in 6
out of 11 benchmarks.

• We further explore the performance and computation trade-offs across 11 tasks and demonstrate
that a significant speed-up can be achieved with minimal performance drop by reducing the
number of visual tokens (e.g., 8X fewer TFLOPs with 2.4 points drop on MMBench).
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Figure 2: Our model employs a query transformer to encode images as visual tokens. We randomly
select the �rstm tokens during training, and enable �exible choice ofanym number underM during
inference, whereM is the maximum number of initialized tokens.

2 Matryoshka Query Transformer

Preliminary: Matryoshka Representation Learning (MRL). MRL (Kusupati et al., 2022;
Kudugunta et al., 2023) involves training models with nested dimensions to learn representations at
multiple granularities, enabling adaptive deployment per computational constraints. MRL de�nes a
series of modelsf 1; f 2; : : : ; f M with the same input and output space but growing hidden dimensions.

The name “Matryoshka” comes from the fact that the parameters off m are contained byf m +1 .
For example, in Kudugunta et al. (2023),f f m g are a series of Transformers with the same depth
but different widths. Consider a speci�c Feed Forward Network (FFN) block inf M that hasdM
neurons in the hidden layer. Then, the FFN block inf m will contain the �rst dm neurons, and
d1 � d2 � � � � � dM . MRL then trains these models jointly with the following loss:

X

m

cm � L (f m (x); y) ; (1)

whereL is the loss function andy is the ground truth label. Note that for each training step, MRL
performs forward and backward passes for allM models, inducing signi�cant training overhead
compared to training one model. After training, MRL can perform inference with any hidden
dimensiondi � M , enabling �exible deployment based on speci�c needs. MRL is our motivation to
train LVLMs that can perform inference with a �exibly selected number of visual tokens.

2.1 MQT-LL AVA

We �rst explain how we encode images with a query transformer, then discuss our training paradigm.

Encoding images with a Query Transformer. We employ a query transformer-based architecture
to extract visual tokens from images following previous work (Li et al., 2022; Bai et al., 2023).
Speci�cally, an input imagex is �rst processed by an image encoder and are then �attened into
H � W grid featuresG = [ g11; � � � ; g1W ; � � � ; gH 1; � � � ; gHW ]. Then, a query transformerQ is
applied to compress the grid features toM visual tokens. Speci�cally,Q assumes a set of latent
query tokensZ = [ z1; : : : ; zM ] as input, whereM is usually smaller thanH � W . The query tokens
cross-attend to the grid features and compress the information into the query tokens. The �nal-layer
query tokens become the visual tokensV that are fed to a large language model together with the
input text tokens. I.e.,V = Q(Z; G). A linear projection layer is added in the end to match the
hidden size of the language model.1

Matryoshka Query Transformer. To enable elastic inference, given theM latent query tokens
Z = [ z1 ; : : : ; zM ], at each training step, we feed only the �rstm query tokens to the query transformer
Q. Subsequently, we obtain onlym visual tokens from the query transformer.m can be any number
equal to or smaller than the maximal token numberM . In practice, we choosem from a linear set of
maximum dimensions, in increments of 2, e.g.m can be any number inf 2; 4; 6; : : : ; 252; 254; 256g

1Unlike previous work (Bai et al., 2023; Ye et al., 2023) that �rst applies projection followed by attention,
we empirically �nd that our “attention then projection” architecture performs better (c.f.x4.3).
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whenM = 256. From a training ef�ciency perspective, our approach uses, on average, half of the
visual tokens compared to the original query transformer-based models.

Formally, given an input image with its corresponding text questionq and answery, at each training
step, we randomly select am and feed the �rstm latent tokensZ1:m and the text questionq to the
model. We compare the model output andy and minimize

cm � L ( LM(V ; q); y) ; whereV = Q(Z1:m ; G); (2)

LM is the language model,L is the language modeling loss function, andcm is a constant coef�cient
to control the weight of different numbers of visual tokens, which is always set to1 in our setting.

Discussion. Here we discuss several interesting properties of MQT. (1) Unlike the original ma-
tryoshka representation learning that maintains a nested structure in the parameter space, we specif-
ically target LVLMs and make the visual tokens Matryoshka-like. (2) Despite discarding the tail
M � m tokens during each training step, models trained with this token-dropping strategy perform
comparably to those trained consistently with allM tokens, as long as we utilize the entireM
tokens during inference for both models. (3) Unlike the original MRL, which performs forward and
backward passes for allM con�gurations in each step, we now select just one model con�guration
per training step, signi�cantly cutting training costs. (4) Our cost reduction enables training across a
broader spectrum ofm values, facilitating the training of models with a more diverse range of choices
compared to the original MRL's limited scope.

3 Experiments

We �rst introduce the implementation details of our query transformer architecture (x3.1). We then
show the empirical performance of our approach compared to state-of-the-art models across 11
benchmarks (x3.2. Finally, we further study the performance-ef�ciency trade-off (x3.3).

3.1 Experimental Setup

MQT-LL AVA Implementation Details. We implement our models based on LLaVA-1.5 (Liu
et al., 2023a), except that we use our Matryoshka Query Transformer instead of an MLP to obtain
the visual tokens. The MQT is a single-layer Transformer with cross-attention. Following Liu et al.
(2023a), we select CLIP ViT-L/14 (Radford et al., 2021) as our vision encoder, supporting 336x336
image resolution, and Vicuna-v1.5 (Chiang et al., 2023) as our LLM. As studied in Hu et al. (2023);
Zhu et al. (2023); Liu et al. (2023b), we adopt a two-stage training approach. We train only the query
transformer in the �rst-stage alignment, using LLaVA-558K for 1 epoch with a batch size of 256 and
a learning rate of 1e-3. We then �ne-tune both the query transformer and LLM using LLaVA-665K
for 2 epochs with a batch size of 128 and a learning rate of 2e-5. All training is on 8xA6000s, with 4
and 30 hours per stage, respectively. We apply MQT during the second stage (c.f.x4.3).

Baselines. As shown in Table 1, we compare our model with LLaVA-1.5 (Liu et al., 2023a) and
our model's baseline LLaVA query transformer (QT-LLaVA), which is trained with a �xed number
of 256 visual tokens across all training stages. We also list other models' results for comparison,
including BLIP-2 (Li et al., 2023a), InstructBLIP (Dai et al., 2023), Shikra (Chen et al., 2023),
IDEFICS (IDEFICS, 2023), and Qwen-VL (Bai et al., 2023).

Evaluation Benchmarks. We evaluate our model across 11 mainstream benchmarks, including
VizWiz (Gurari et al., 2018), ScienceQA-IMG (Lu et al., 2022), VQA-v2 (Goyal et al., 2017),
GQA (Hudson and Manning, 2019), POPE (Li et al., 2023c), MME Perception (Fu et al., 2023),
MME Cognition (Fu et al., 2023), MMBench (Liu et al., 2023c), LLaVA-Bench (In-the-Wild) (Liu
et al., 2023b), and MM-Vet (Yu et al., 2024).

3.2 Main Results

Table 1 presents the results ofMQT-LL AVA with inference visual token budgets of 2, 4, 8, 16, 36,
64, 144, and 256. We refer to the baseline approach, where the model is trained with a �xed number
of visual tokens across all training stages, as LLaVA Query Transformer (QT-LLaVA).MQT-LL AVA
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Method LLM Res. #TokensVizWiz SQAI VQAv2 GQA POPE MMEP MMEC MMMU MMB LLaVA W MM-Vet Avg

BLIP-2 Vicuna-13B 224 32 19.6 61 41.0 41 85.3 1293.8 – – – 38.1 22.4 –
InstructBLIP Vicuna-7B 224 32 34.5 60.5 – 49.2 – 1084 229 30.6 – 60.9 26.2 –
InstructBLIP Vicuna-13B 224 32 33.4 63.1 – 49.5 78.9 1212.8 243 33.8 – 58.2 25.6 –
Shikra Vicuna-13B 224 256 – – 77.4� – – – – – 58.8 – – –
IDEFICS-9B LLaMA-7B 224 64 35.5 – 50.9 38.4 – – – – 48.2 – – –
IDEFICS-80B LLaMA-65B 224 64 36.0 – 60.0 45.2 – – – – 54.5 – – –
Qwen-VL Qwen-7B 448 256 35.2 67.1 78.8� 59.3� – – – – 38.2 – – –
Qwen-VL-Chat Qwen-7B 448 256 38.9 68.2 78.2� 57.5� – 1487.5– – 60.6 – – –
LLaVA-1.5 Vicuna-1.5-7B 336 576 50.0 66.8 78.5� 62.0� 85.9 1510.7316.1 34.7 64.3 63.4 30.5 59.2
QT-LLaVA Vicuna-1.5-7B 336 256 51.1 68.1 76.8� 61.5� 84.1 1431.2 348.2 34.3 64.0 63.9 27.9 58.8

MQT-LL AVA Vicuna-1.5-7B336 256 53.1 67.6 76.8� 61.6� 84.4 1434.5 353.6 34.8 64.3 64.6 29.8 59.4
MQT-LL AVA Vicuna-1.5-7B336 144 52.0 67.5 76.4� 61.4� 83.9 1446.4 351.8 34.4 64.4 61.4 29.9 58.9
MQT-LL AVA Vicuna-1.5-7B336 64 51.5 67.0 75.3� 60.0� 83.6 1464.3 352.9 34.4 63.5 59.4 28.9 58.3
MQT-LL AVA Vicuna-1.5-7B336 36 51.0 66.8 73.7� 58.8� 81.9 1416.3 349.3 34.4 63.4 59.6 27.8 57.4
MQT-LL AVA Vicuna-1.5-7B336 16 49.8 67.5 71.1� 57.6� 80.8 1408.5 349.3 33.6 61.9 55.2 25.3 56.1
MQT-LL AVA Vicuna-1.5-7B336 8 49.4 66.2 67.2� 55.5� 79.4 1282.2 323.6 33.1 58.6 51.4 21.3 53.3
MQT-LL AVA Vicuna-1.5-7B336 4 49.4 65.1 64.1� 53.0� 77.6 1176.1 296.8 32.8 56.5 44.3 20.2 50.8
MQT-LL AVA Vicuna-1.5-7B336 2 48.5 65.0 61.0� 50.8� 74.5 1144.0 268.9 32.5 54.4 41.7 19.5 49.0

Table 1:Comparison with state-of-the-art methods on 11 vision-language benchmarks. Our model (MQT-
LL AVA) with up to 256 tokens achieves on par or better than LLaVA-1.5 performance across 11 benchmarks,
outperforming it on 6 of 11 benchmarks. We mark the best performance inbold and the second-bestunderlined.
#Tokens is the number of visual tokens used during inference. Avg is the normalized average across 11
benchmarks, out of 100. Benchmark names are abbreviated for brevity:SQAI : ScienceQA-IMG,MMEP: MME
Perception,MMEC: MME Cognition, MMB: MMBench, LLaVAW: LLaVA-Bench (In-the-Wild).� The training
images of the datasets are observed during training.

outperforms the baseline QT-LLaVA with 256 tokens in 9 out of 11 benchmarks. One possible
explanation is that by enforcing our model to only see fewer tokens during training, the stricter
constraint helps the model generalize better to unseen tasks. This is especially evident in the higher
performance on VizWiz. When compared to open-source state-of-the-art models, our model with 256
tokens achieves on par or better than LLaVA-1.5 performance with 576 tokens across 11 benchmarks,
outperforming it in 6 out of 11 benchmarks. Even with 64 tokens, our model falls short of LLaVA-1.5
by only 0.9 points on average. When drastically drop to only 2 tokens, our score falls by only 3% on
ScienceQA and 6% on MMMU. While directly adding a query transformer to LLaVA degrades the
performance, our strategy can achieve comparable or better performance than LLaVA-1.5.

Figure 3: With only 2 visual tokens,MQT-LL AVA
outperforms InstructBLIP (which uses 32 visual
tokens) on all 8 benchmarks it is evaluated on.

We explore performing inference using a variety
of numbers of visual tokens, including 1) an ex-
tremely low number of tokens; 2) a number of
visual tokens unseen during training. As shown
in Figure 3,MQT-LL AVA with only 2 visual
tokens outperforms InstructBLIP (Vicuna-7B),
which is based on Q-Former (Li et al., 2023a)
using 32 visual tokens. This demonstrates the
effectiveness of our model in compressing vi-
sual information, pointing to its potential use for
applications in computation-heavy tasks. For an
unseen number of visual tokens, we pick a ran-
dom number of visual tokens: 77, and include
its results in Appendix C. Despite never being
explicitly trained for this number of tokens, our
model can generalize to any number within 256
during inference, demonstrating a further bene�t
of our elastic approach.

3.3 Computational Ef�ciency

To demonstrate our computational ef�ciency, we compute TFLOPs when runningMQT-LL AVA
on MMBench with 8, 16, 36, 64, 144, and 256 visual tokens, compared to LLaVA with 576 tokens.
As shown in Figure 1, we are able to achieve signi�cant speed-ups with little-to-no performance
loss: our model with 256 and 144 tokens respectively achieve a 2x and 3x speed-up compared to
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Figure 4: Grad-CAM visualization of 1 randomly picked token from using 8, 16, 64, 256 visual
tokens, respectively, to encode an image. The model effectively concentrates on high-level concepts
using fewer tokens and delves into low-level details with more tokens. The complete input to the
third image is “List all the objects on the desk. The objects on the desk include a computer monitor, a
keyboard, a mouse, a cell phone, and a pair of headphones”.

LLaVA-1.5 while maintaining the same or even better performance; and when using 16 tokens, we
achieve an 8x speed-up with a performance drop of only 2.4 points.

4 Analyses

To better understand the meaning of visual tokens and to systematically study the number of tokens
required by different vision-language tasks, we investigate two key questions: (1) How does the
focus of the model change with varying numbers of visual tokens? (x4.1); and (2) How do different
numbers of visual tokens impact various tasks? (x4.2)

4.1 How does the focus of the model change with varying numbers of visual tokens?

To explore what visual information each token encodes, we utilize Grad-CAM (Selvaraju et al., 2017)
to visualize the focus of visual tokens. As illustrated in Figure 4, we qualitatively analyze the results
of using 8, 16, 64, and 256 tokens.

We observe that the model's focus changes with the number of tokens used. When using a few tokens
(e.g., 8), the model accurately concentrates on global visual concepts related to the question. As the
number of tokens increases (e.g., 256), the model not only attends to the relevant objects but also
delves into localized details. For example, in the third image, with 8 tokens, the model focuses on the
monitor. With 16 tokens, it includes both the monitor and the mouse. With 64 tokens, it highlights the
monitor and keyboard. Finally, with 256 tokens, the model encompasses several objects, including
the monitor, keyboard, and cell phone. In the examples from the �rst and second images, our model
effectively focuses on the man ironing behind the car and the two cats, even with only 8 tokens. The
impressive qualitative results, especially those using only a few tokens, demonstrate the effectiveness
of our approach and the strong capabilities obtained despite using a minimal number of tokens.

4.2 How do different numbers of visual tokens impact different tasks?

When using varying numbers of visual tokens during inference, we observe that the model's perfor-
mance change varies across different tasks.
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