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Abstract

This work tackles the problem of geo-localization
with a new paradigm using a large vision-
language model (LVLM) augmented with human
inference knowledge. A primary challenge here
is the scarcity of data for training the LVLM -
existing street-view datasets often contain numer-
ous low-quality images lacking visual clues, and
lack any reasoning inference. To address the data-
quality issue, we devise a CLIP-based network to
quantify the degree of street-view images being
locatable, leading to the creation of a new dataset
comprising highly locatable street views. To en-
hance reasoning inference, we integrate external
knowledge obtained from real geo-localization
games, tapping into valuable human inference
capabilities. The data are utilized to train GeoRe-
asoner, which undergoes fine-tuning through ded-
icated reasoning and location-tuning stages. Qual-
itative and quantitative evaluations illustrate that
GeoReasoner outperforms counterpart LVLMs by
more than 25% at country-level and 38% at city-
level geo-localization tasks, and surpasses Street-
CLIP performance while requiring fewer training
resources. The data and code are available at
https://github.com/lingli1996/GeoReasoner.

1. Introduction

Street-view geo-localization seeks to predict geographical
locations for the given street-view images. The significance
of street-view geo-localization is evident in a variety of ap-
plications, spanning social studies (Ye et al., 2019b), urban
planning (Shen et al., 2018), and navigation (Chalvatzaras
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Figure 1. Different paradigms in existing and the proposed geo-
localization approaches: retrieval-based (left-top), classification-
based (left-bottom), and our LVLM-based (right).

et al., 2022). As shown in Figure 1 (left), existing frame-
works for street-view geo-localization can be mainly di-
vided into two categories: retrieval-based and classification-
based. Retrieval-based approaches entail identifying the
most similar image within a geo-tagged image gallery and re-
turning the corresponding geographical location (Zhu et al.,
2022; Lin et al., 2022; Zhang et al., 2023b). However, the
methods rely on the diversity and comprehensiveness of
the geo-tagged image gallery, which can be challenging to
curate. Alternatively, classification-based approaches par-
tition the Earth’s surface into distinct regions and assign
the input image to a specific region (Clark et al., 2023; Pra-
manick et al., 2022; Miiller-Budack et al., 2018; Seo et al.,
2018; Weyand et al., 2016). While these methods leverage
shared visual features within a single region, they may ne-
glect valuable semantic information (e.g., signboard texts)
crucial for geo-localization. More importantly, these classi-
fication methods often operate as black-box models, lacking
reasoning capabilities for users to interpret.

Achieving street view-based geo-localization with reasoning
capability poses a considerable challenge. This study intro-
duces a new paradigm that facilitates geo-localization with
reasoning capability for street-view images, as depicted in
Figure 1(right). The paradigm leverages an LVLM for its ex-
cellent capability in handling multi-modal visual and textual
inputs and incorporates external knowledge learned from
various online games for the reasoning procedure. Specifi-
cally, we introduce the concept of locatability as a metric
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to quantify the degree of locatability in street-view images.
On this basis, we devise a CLIP-based visual-text pairing
network to match large-scale Google Street View (GSV) im-
ages with 3K finely reasoned text-image pairs from online
games, to tackle the challenge of the absence of a high-
quality street-view dataset. The process filters through over
70K GSV images with geo-tags, all of which exhibit a high
degree of locatability.

Next, we construct an LVLM model, named GeoReasoner,
to overcome the difficulty of integrating reasoning capabil-
ity in geo-localization. The training procedures of GeoRe-
asoner are divided into two folds: reasoning tuning and
location tuning. In the first stage, we utilize the 3K reasoned
text-image pairs encapsulating human inference knowledge,
to fine-tune a well-trained LVLM model with LoRA (Hu
et al., 2022) for reasoning adaptation. In the second stage,
we leverage the curated 70K high-locatability GSV images
dataset, to further fine-tune the LVLM model with another
LoRA stacked on the first one for location tuning. We assess
GeoReasoner in terms of accuracy for both country-level
(i.e., predicting the country in which a street view is located)
and city-level (i.e., predicting the city in which a street view
is located) geo-localization. The results demonstrate that
GeoReasoner outperforms the other counterparts by more
than 25% at the country-level geo-localization and 38% at
the city-level geo-localization with reasoning on our test
dataset. Notably, GeoReasoner performs slightly better than
StreetCILP (Haas et al., 2023), which was trained on a sub-
stantially larger dataset of 1.1 million geo-tagged street-view
images. We also evaluate GeoReasoner against state-of-
the-art models for geo-localization using open benchmark
datasets. The results show that GeoReasoner achieves com-
parable performance with only 10k Flickr images used for
training. The main contributions of our work are:

* We present a new paradigm that leverages an LVLM
and external knowledge of human inference for geo-
localization with reasoning from street-view images.

* We introduce the concept of locatability and devise a
CLIP-based network to quantify the degree of locata-
bility in street-view images.

* We propose GeoReasoner, an LVLM that outperforms
existing geo-localization models and provides detailed
reasoning for the inferred results.

2. Related work
2.1. Street Views

Street views, as the realm of physical environments rou-
tinely accessed and engaged with in daily life, bear signifi-
cant relevance to human perception (Ye et al., 2019b) and
urban design (Shen et al., 2018). Analyses of street views

contribute to decision-making support (Ye et al., 2019a),
improved understanding of urban social and economic struc-
tures (Bai et al., 2023b), and traffic asset monitoring and
maintenance (Campbell et al., 2019; Li et al., 2021). This
study places an emphasis on geo-localization based on street
views. Specifically, drawing motivation from Zhang et al.
(2018), we delineate the distribution of scene elements to
quantify the degree of locatability in street views. Highly
locatable street-view images are curated to train an LVLM
that surpasses existing geo-localization models.

2.2. Image-based Geo-localization

Geo-localization entails determining spatial coordinates on
the Earth’s surface, with broad applications in practical sce-
narios, including tracking individual trajectories (Cheng
et al., 2022) and positioning autonomous vehicles (Chal-
vatzaras et al., 2022). This study focuses on image-based
geo-localization, utilizing image data as input. Research
on image-based geo-localization can be primarily classi-
fied into two approaches: retrieval-based (Zhu et al., 2022;
Lin et al., 2022; Zhang et al., 2023b) and classification-
based (Clark et al., 2023; Pramanick et al., 2022; Miiller-
Budack et al., 2018; Seo et al., 2018; Weyand et al., 2016).

The retrieval-based approach involves the sequential match-
ing of a single image with a gallery of overhead views, each
labeled with geographical coordinates, and identifying the
result with the highest matching as the location. However,
the utilization of this method is limited due to its require-
ment for additional reference datasets. The classification-
based approach, exemplified by Weyand et al. (2016), in-
volves subdividing the Earth’s surface into thousands of
geographical cells and predicting the geographical unit to
which an image belongs. The prediction effectiveness can be
boosted with a dataset comprising millions of street views,
whilst the granularity is influenced by the number of subdi-
vided geographical cells. As such, many studies have been
devoted to learning to corresponding multi-level features at
different granularity (Vo et al., 2017), or multi-pair features
for different tasks (Miiller-Budack et al., 2018; Pramanick
et al., 2022; Vivanco Cepeda et al., 2024).

We approach image-based geo-localization with a novel
paradigm. Specifically, we integrate semantic visual con-
cepts that offer locatable features (Theiner et al., 2022),
and incorporate human reasoning knowledge learned from
geo-localization games using an LVLM.

2.3. Vision-Language Models

The emergence of Large Language Models (LLMs) has sig-
nificantly impacted various tasks related to natural language
processing. These models exhibit remarkable performance
in tasks such as text generation (Zhang et al., 2023a) and
text-based question answering (Shao et al., 2023), owing to
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Figure 2. The locatability quantization network devises a CLIP-
based visual-text pairing approach to predict the locatability metric.

their robust and versatile capabilities. As a result, research
attention has shifted towards exploring prompt engineering
techniques to enhance the performance of LLMs in down-
stream tasks (Wei et al., 2022; Yao et al., 2024; Dai et al.,
2023; Xu et al., 2023; Ying et al., 2024).

Large vision-language models (LVLMs) integrate visual en-
coders with LLMs, exhibiting remarkable effectiveness in
visual question-answering tasks (Liu et al., 2024; Bai et al.,
2023a; Rao et al., 2023). This study harnesses the capabili-
ties of LVLMs to address geo-localization of street views.
However, the optimal utilization of LVLMs remains a chal-
lenging issue, particularly due to the absence of high-quality
training data and a lack of reasoning capabilities. We over-
come these challenges through an innovative paradigm and
the thoughtful design of model architecture, contributing to
a more effective utilization of LVLMs in this domain.

3. GeoReasoner

This section outlines our approach to addressing two chal-
lenges: 1) the absence of a high-quality street-view geo-
localization dataset (discussed in Sect. 3.1), and 2) the diffi-
culty of integrating reasoning in geo-localization (discussed
in Sect. 3.2), when constructing GeoReasoner.

3.1. Locatability-Enhanced Data Curation

Throughout the development of this work, we observed vari-
ations in the degree of locatability among different street
views. For example, the images featuring textual signboards
or prominent landmarks (e.g., Eiffel Tower) are easily lo-
catable, whilst those captured in a tunnel or obscured by a
wall tend to be less locatable. Refer to Figure 4 for further
illustration. Simply merging all these street-view images to
train an LVLM is not an optimal approach, as the inclusion
of poor-quality data can adversely affect the training effi-
ciency of updating an LVLM (Radford et al., 2021). To this

as shown in Figure 2. The network naturally incorporates
data from two perspectives:

* Street-View Images. We collected street-view images

from the Google Street View' (GSV). To enrich the
diversity of the dataset, we first selected the top global
cities according to the Globalization and World Cities
Study Group and Network (GaWC) ranking. Next, we
utilized the global OpenStreetMap? (OSM) geographic
database to obtain the vector data of the road network
in these urban areas. The road network was passed to
ArcPy, a Python site package of ArcGIS, to automati-
cally extract sampling points at 4000-meter intervals
and generate a CSV table containing information about
these sampling points. Subsequently, we employed
the GSV API interface to compile a comprehensive
dataset. This dataset encompassed street-view images
captured from four distinct directions - front, back, left,
and right - of each sampling point. Considering the
impact of data sparsity and image similarity, we ran-
domly selected two of the four views from each data
point, denoted as [I,,I,], where « € (left,right),
y € (front,back). The process has yielded a total of
over 130k street-view images with geo-tags collected
from 72 cities in 48 countries.

Textual Clues. Textual clues often serve a pivotal
role in delineating the geographical locations of street-
view images. However, there is currently no readily
available textual clue dataset. Two prominent games,
namely GeoGuessr® and Tuxun®, which are centered
around geo-localization based on street views, provide
a potential solution to this gap. The communities sur-
rounding these games possess a well-structured and
efficacious collection of textual clues, utilized for ge-
ographical positioning across various countries and
cities. These clues are collaboratively maintained and
curated by both administrators and players. The do-
main knowledge lays the groundwork for identifying
decisive factors and assessing the significance of each
factor in street views. We acquired image-text data
pairs for geo-localization from the two open-source
communities. Subsequently, we utilized the BERT-
based Named Entity Recognition (NER) (Kenton &
Toutanova, 2019) model to clean and filter text that
lacked specific geographical location information. In
this way, we collected a total of over 3K textual clues
that encapsulate rich geo-localization information. For
instance, “houses in central Chile are more likely to
have terracotta tiled roofs”. Each clue is paired with a
corresponding street-view image.

end, we introduce locatability, a metric that quantifies the
level of locatability of street-view images. We then devise
a CLIP-based visual-text pairing network to produce the
desired locatability metric for an input street-view image,

Thttps://www.google.com/streetview
2https://www.openstreetmap.org
3https://www.geoguessr.com
*“https://tuxun.fun
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Figure 3. The architecture of GeoReasoner consists of three modules: Vision Encoder, VL Adapter and Pre-trained LLM. The model
undergoes a two-fold supervised fine-tuning process: reasoning tuning and location tuning, to enable geo-localization with reasoning.

With the GSV images and textual clues, our subsequent task
is to filter GSV images with a high degree of locatability, for
the purpose of training an LVLM. To achieve this, we design
a CLIP-based visual-text pairing network. As depicted in
Figure 2, the GSV images undergo processing by an image
encoder that deduces the image attributes.

Here, we first use MaskFormer (Cheng et al., 2021) to pre-
dict segmentation masks for various classes in GSV images,
such as buildings, sky, and vehicles. We then compute an
n-length vector I,.4, which quantifies the area ratio of each
mask class, where n represents the number of classes. Sub-
sequently, we utilize Sentence-BERT (Reimers & Gurevych,
2019) to measure the similarity between textual clues and
semantic segmentation labels, yielding an m X n matrix
M, where m is the number of textual clues. After that, we
normalize M using min-max normalization, and set val-
ues lower than the threshold to zero, resulting in another
m x n matrix M. We reduce M to an n-length vector by
calculating the mean across its rows, and then normalize
it to obtain w;,.. This vector represents the importance
of each semantic segmentation label for geo-localization.
With the segmentation mask ratio I., and the correspond-
ing weight w;,, the locatability metric of a GSV image is
computed through the multiplication and accumulation of
the respective values, as follows:

locatability(Lseg, Wioe) = leeg (k) - Wﬁ,c, (D
k=1

where L., (k) denotes pixel ratio of the k-th class in the
segmentation mask L., .

A higher locatability value indicates a higher degree of
visual clues exhibited in a GSV image for geo-localization,
while a lower value suggests the opposite. Empirically,
we selected a threshold value of 0.4 for filtering locatable
GSV images. This resulted in over 70k highly locatable
images with geo-tags passing to the next stage for training
an LVLM.

3.2. Geo-localization with Reasoning

While many models (e.g., Clark et al. (2023); Pramanick
et al. (2022); Miiller-Budack et al. (2018); Seo et al. (2018);
Weyand et al. (2016)) exist for image-based geo-localization,
these models typically predict locations without providing
the inference process. This introduces several limitations:
First, the models operate as black boxes without providing
insights, making it challenging for users to interpret. This
obstacle impedes further refinement of the geo-localization
model. More importantly, studies have demonstrated that
integrating the reasoning process can enhance the capabili-
ties of LLMs (Qiao et al., 2023). Therefore, our objective
is to construct an LVLM for image-based geo-localization
with reasoning capability.

Model Architecture. Figure 3 illustrates the architecture of
the proposed model GeoReasoner, which is based on Qwen-
VL (Bai et al., 2023a). GeoReasoner consists of three mod-
ules: Vision Encoder, Vision-Language (VL) Adapter and
Pre-trained LLM. Specifically, the Vision Encoder module
employs the Vision Transformer (ViT) (Dosovitskiy et al.,
2021) architecture. The input street-view images are re-
sized to a specific resolution and then divided into a set
of image patches. To refine image patches into sequential
representations compatible with an LLM, the VL Adapter
is introduced. In the VL Adapter, the sequence of visual
features is initially condensed to a fixed length to address
efficiency challenges posed by the substantial number of
visual feature sequences. Subsequently, the processed visual
features are integrated with the LLM using cross-attention
mechanisms. Following this, the compressed visual feature
sequence and text sequence are passed to the Pre-trained
LLM module, which functions as a decoder for generating
the answer.

Supervised Fine-tuning. The overall model undergoes a
staged pre-training process that is divided into two folds:
reasoning tuning and location tuning. In the first stage, our
objective is to enhance the model’s reasoning capability
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Figure 4. Locatability examples. Top row: the street views are
highly locatable by signboards, architectural styles, and landmarks.
Bottom row: no visual clues for locating the street views.

by utilizing textual clues paired with street-view images
collected from geo-localization games. The input street-
view image & question, and the output answer are formatted
as prompts in the following manner:

[INPUT] {image : IMAGE,

question : ‘which country is the image located?
Explain the reason’ }
[OUTPUT] {country : ‘South Korea’,
reason : ‘Korean signboard’ }
Here, we can only provide reasoning at the country level due
to the granularity exhibited in the image-text pairs. Never-
theless, this reasoning procedure is sufficient to facilitate the
second stage of location tuning. Next, we integrate the prior
knowledge of country information with highly locatable
GSV images with geo-tags to infer the fine-grained city-
level location information. We utilize a similar prompt for-
mat as in the first stage but without a reasoning requirement.
Both stages are fine-tuned from the pre-trained Qwen-VL
with LoRA, which contributes to the overall performance
improvement of Qwen-VL in both the reasoning and lo-
cation tuning stages, allowing the model to better capture
complex relationships within the image-text pairs.

4. Experiments

We conduct a series of experiments to evaluate the effective-
ness of the locatability-enhanced geo-localization dataset
(Sect. 4.1) and the model GeoReasoner for geo-localization
with reasoning (Sect. 4.2).

4.1. Experiments on Locatability-Enhanced Dataset

4.1.1. QUALITATIVE COMPARISON

Figure 4 presents examples of the predicted locatability
degrees of different street-view images by our locatability
quantization network. The top row showcases street views

o =4 o o4
b o N »

Locatablity Metric
o o
w

0ds.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 10
Building Proportion

e
[N]

o
-

0.0

Figure 5. The relationship between building proportion and the
degree of locatability in street views. The locatability metric peaks
when the building proportion is approximately 0.2.

distinguished by prominent localizable attributes. The left
image features the Korean language on a signboard, the mid-
dle image captures the distinctive Art Nouveau architectural
style commonly found in Switzerland, and the right image
shows an art & design museum in India. In contrast, street
views in the bottom row display lower locatability degrees.
The left image resembles a tunnel, lacking additional dis-
cernible information for accurate localization. Similarly, the
middle image is occluded by a wall, and the right image
faces common vegetation that is available worldwide.

For the proposed locatability metric in Equation 1, we also
evaluated the relationship between building proportion and
the degree of locatability of street views. The results are
shown in Figure 5. The locatability metric slightly increases
as the building proportion ranges from O to 0.2, but de-
creases as the building proportion continues to increase.
The results indicate that buildings are not the sole determi-
nant of locatability. As the proportion of buildings increases,
the street-view images transition from panoramic to close-
up views, leading to reduced information availability and
consequently diminishing the degree of locatability.

The qualitative analysis indicates the effectiveness of the
locatability quantization network in predicting locatability
degrees of street-view images. Furthermore, the prediction
aligns with human inference knowledge harvested from real
geo-localization games, providing the ground truths for fine-
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Figure 6. Quantitative comparison of country- and city-level geo-
localization accuracy by different models trained on mixed datasets
with varying proportions of high locatable GSV images.
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Ground Truth

/s LLavA
«'country": 'United States' e city": 'Miami'
‘reason': 'The presence of palm trees and a blue car parked on
the side of the road are indicative of a warm climate, which is
commonly associated with Miami, Florida. Additionally, the image
shows a busy city street with people walking and cars driving,
which is consistent with the urban environment of Miami."

@ GPT-4V

o 'country": 'Singapore' e 'city": 'Singapore'
‘reason': 'The image features tropical trees, the car has a license
plate that is consistent with Singapore's format, and the architec-
ture of the buildings suggests a modern, urban environment
typical of Singapore. Additionally, the taxi has 'COMFORT written
on it, which is a taxi company operating in Singapore.'

Ground Truth

NEW YORK

/a LLaVA
NEW YORK

«'country”: 'United States' e 'city": 'New York'
‘reason': 'The presence of the New York sign and the tall buildings
in the background, along with the busy street filled with cars, all
indicate that the image is most likely taken in New York City."

GPT-4v

«'country": 'United States' e 'city": 'Las Vegas'
‘reason': 'The presence of the replica Eiffel Tower and the New
York-New York Hotel and Casino, which are iconic landmarks on
the Las Vegas Strip.'

/a LLavA
«'country":'China' e 'city": 'Beijing'
‘reason': 'The presence of Chinese characters on the buildings
and signs, as well as the traditional Chinese clothing worn by the
people in the image, suggest that the location is in China, specifi-
cally in Beijing.'

GPT-4V

o'country": 'China' e 'city":'Lhasa’

‘reason': 'The architectural style and the traditional attire of the
person in the foreground are indicative of Tibetan culture. The
signs on the buildings are in both Tibetan script and Chinese,

which is common in Tibet, China. The urban setting with the
specific style of buildings and signage suggests that is taken in
Lhasa, the capital city of the Tibet Autonomous Region in China.'

«'country". 'Singapore' « 'city": 'Singapore'

QWeRVLY {7
«‘country": 'Malaysia' e 'city": 'Kuala Lumpur'
‘reason’: 'There are tall buildings, a ComfortDelGro taxi, and
people walking on the sidewalk."

GeoReasoner
«'country': 'Singapore' e 'city": 'Singapore'
‘reason’; [The ComfortDelGro taxiis a recognizable symbol of

Singapore's public transportation system.', 'The small size of the
island nation and the need to accommodate a large population
have led to the development of high-density residential areas
such as Tiong Bahru.', 'The city-state has a tropical climate with
high humidity and rainfall, which has influenced the development
of urban green spaces such as parks and gardens.']

«'country': 'United States' e« 'city": 'Las Vegas'

QWeRVLY {7
'country": 'United States' e'city": 'Las Vegas'
‘reason’: 'The neon lights and busy streets are iconic to Las Vegas,
Nevada.'

GeoReasoner
«'country": 'United States' e'city": 'Las Vegas'

‘reason': ['Large neon lit buildings and billboards line the Las
Vegas Strip.]

Qwen-VL 47,
e 'country":'China' e'city": 'Lhasa’
‘reason': 'The main square of Lhasa is the most famous square in
Lhasa, and it is also the symbol of Lhasa.'

GeoReasoner
e 'country":'China' e'city" 'Lhasa’
‘reason’: ['The picture shows a Tibetan woman in traditional
clothing, which is a distinctive feature of Tibet.', 'The flag of China
can be seen in the picture, indicating that the picture was taken in
China.', 'The picture shows a busy street in Lhasa, which is the
capital city of Tibet."]

Figure 7. Examples of LVLM-based approaches in geo-localization with reasoning. Prediction results matching the ground truth are
highlighted in green, while reasons offering valid information are marked in blue.

tuning the reasoning component in GeoReasoner.

4.1.2. QUANTITATIVE COMPARISON

We conducted quantitative experiments to investigate the
importance of using high-locatability GSV images in train-
ing the location component in GeoReasoner. Various
datasets were prepared, featuring different proportions of
high-locatability GSV images, ranging from 0% (only low-
locatability GSV images) to 100% (only high-locatability
GSV images). To ensure fairness, each experimental group
retained consistent 10K GSV images, with only the pro-
portion of high-locatability images varying. Subsequently,
models were trained for each dataset, and their accuracy in
country- and city-level geo-localization was evaluated on a
randomly sampled set of 1K GSV images.

The experimental results are presented in Figure 6. Overall,
the results reveal that as the proportion of high-locatability
GSV images in the training dataset increases, the perfor-
mance of the fine-tuned location component improves in
both country- and city-level geo-localization. Specifically,
the country- and city-level geo-localization accuracy in-
creases from 0.63 & 0.47 for 0% high-locatability GSV
images, to 0.72 & 0.51 for 100% high-locatability GSV

images. Notably, the experiments only utilize 10K GSV
images instead of all the curated 70K high-locatability GSV
images due to training complexity. Nevertheless, the results
demonstrate that high-locatability GSV images offer more
meaningful insights and less extraneous noise, making them
highly valuable in the geo-localization task.

4.2. Experiments on Geo-localization with Reasoning
4.2.1. QUALITATIVE COMPARISON WITH SOTA

To assess the efficacy of GeoReasoner in terms of geo-
localization with reasoning, we conduct a qualitative com-
parison with state-of-the-art LVLM-based approaches, in-
cluding LLaVA (Liu et al., 2024), Qwen-VL (Qwen-
7B) (Bai et al., 2023a), and GPT-4V (Achiam et al., 2023).
In the experimental phase, we presented the same input
street-view images, reasoning process, and result formats to
these models. Specifically, a consistent prompt is used, as
below:

According to the content of the image, please think step by
step and deduce in which country and city the image is most
likely located and offer possible explanations. Output in
JSON format, e.g., { ‘country’: , ‘city’: , ‘reasons’:*’}.
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Table 1. Comparison of Precision, Recall and F1 scores in country-level and city-level geo-localization. * represents the model trained on

high-locatability GSV images.

Model Country City
Accuracy?  Recallt F171 Accuracy?  Recallf F11

StreetCLIP (Haas et al., 2023) 0.7943 1.00 0.8854 0.7457 1.00 0.8543
LLaVA (Liu et al., 2024) 0.4029 1.00 0.5744 0.2400 1.00 0.3871
Qwen-VL (Qwen-7B) (Bai et al., 2023a) 0.5829 0.95 0.7225 0.3743 0.89 0.5270
GPT-4V (Achiam et al., 2023) 0.8917 0.34 0.4923 0.5083 0.31 0.3851
ViT* (Dosovitskiy et al., 2021) 0.7100 1.00 0.8304 0.6762 1.00 0.8068
GeoReasoner* 0.8237 1.00 0.9033 0.7521 1.00 0.8585

Figure 7 illustrates the inference results of counterpart mod-
els and GeoReasoner on three diverse street views from dif-
ferent countries and cities—namely, Singapore-Singapore
(top), United States-Las Vegas (middle) and China-Lhasa
(bottom). Overall, GeoReasoner not only outperforms exist-
ing models in the accuracy of country or city-level predic-
tions but also provides coherent explanations with insightful
reasoning for the inference results.

In Figure 7 (top), GeoReasoner identifies the word ‘COM-
FORT’ on the taxi in the image. Drawing from prior knowl-
edge, ‘the ComfortDelGro taxi is a distinctive symbol of
Singapore’s public transportation system’ in the text-image
pairs, the model deduces that the area is likely to be in
Singapore. GPT-4V predicts the same geo-location with
accurate reasoning, yet the other two models fail, either due
to not recognizing the taxi by LLaVA or making an incorrect
inference about the city by Qwen-VL.

Figure 7 (middle) presents a scene of the Las Vegas Strip.
A conspicuous ‘NEW YORK’ sign is prominently visible
in the upper-left corner of the image. This sign causes
the reasoning error in the task performed by LLaVA. Al-
though Qwen-VL generates accurate predictions of Las
Vegas-United States, the most essential factor, i.e., ‘Las
Vegas Strip’, is not considered in the reasoning process. In
contrast, both GeoReasoner and GPT-4V provide the correct
geo-location along with accurate inference.

Based on the depiction of Chinese characters and traditional
clothing in Figure 7 (right), all models make accurate pre-
dictions regarding the country, identifying it as China. How-
ever, LLaVA makes an incorrect prediction of the city, spec-
ifying Beijing. In contrast, the other models successfully
predict the city as Lhasa, providing sensible and justifiable
reasons for their inferences.

4.2.2. QUANTITATIVE COMPARISON WITH SOTA

We further conduct quantitative experiments to compare
with counterparts LVLMs. In addition, we choose Street-
CLIP (Haas et al., 2023) as the state-of-the-art classification-
based approach and omit retrieval-based approaches relying
on a geo-tagged image gallery that is not available. It is

important to clarify that, for the LVLM-based approaches,
obtaining corresponding and relevant answers is not guar-
anteed at all times. Therefore, we included Recall rate to
measure the proportion of effective answers within the large
language models. When calculating the Accuracy rate, only
the accuracy of these effective answers is taken into account.
We additionally compute F/ values, taking into considera-
tion both Accuracy and Recall metrics.

Table 1 presents the prediction results by the counterparts
and GeoReasoner. Overall, GeoReasoner outperforms
all the counterparts, particularly those LVLM-based ap-
proaches. Taking the best performed Qwen-VL for example,
GeoReasoner outperforms it 25.02% on country-level geo-
localization and 38.61% on city-level geo-localization, in
terms of F1 value. Surprisingly, the recall performance
of GPT-4V for the geo-localization task was notably low.
Most of the responses were mainly: ‘I'm sorry, I can’t pro-
vide assistance with that request.” or ‘I'm sorry, but [ am
unable to provide the exact location, such as the country
and city, for the image you have provided. My capabilities
do not include analyzing specific details to determine the
geographical location of the image content.’

We speculate that GPT-4V has undergone extensive mea-
sures to ensure the model’s security and privacy, which may
contribute to its reluctance or denial of recognition in the
task of geo-localization.

In comparison to StreetCLIP that is specialized in geo-
localization, GeoReasoner demonstrates only a slight supe-
riority. Nevertheless, it’s important to note that StreetCLIP
was trained on a significantly larger dataset of over 1.1 mil-
lion street-view images, while our GeoReasoner was trained
with only 70K street views. For ViT trained on the same
data, GeoReasoner still exhibits superior geolocation capa-
bilities. Moreover, GeoReasoner offers reasoning capability,
providing added value for various downstream tasks.

4.2.3. ABLATION EXPERIMENTS

To assess the contributions of the location tuning and reason-
ing tuning components in GeoReasoner, we design several
ablation experiments using the Qwen-VL (Bai et al., 2023a)
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Table 2. Results of the ablation experiments using baseline Qwen-VL (Qwen-7B), GeoReasoner w/o location tuning, GeoReasoner w/o

reasoning tuning, and the full GeoReasoner models.

Training Performance
Model Reasoning  Location Country City
AccuracyT  Recallt F11 Accuracy?  Recallt F17
Qwen-VL (Qwen-7B) - - 0.5829 0.95 0.7225 0.3743 0.89 0.5270
GeoReasoner w/o location tuning v X 0.6971 1.00 0.8215 04114 0.99 0.5813
GeoReasoner w/o reasoning tuning X v 0.7803 1.00 0.8766 0.7029 1.00 0.8255
GeoReasoner v v 0.8237 1.00 0.9033 0.7521 1.00 0.8584

Table 3. Comparison results on Im2GPS dataset. The top five rows
are derived from the results reported in the paper, while the last
four rows are from retesting on the filtered Im2GPS dataset, which
includes only highly locatable data.

Model Dataset w/ Filter ~ Street  City  Country
Train Test 1km 25km 750km
PlaNet X X 0.08 0.25 0.54
CPlaNet X X 0.17 0.37 0.62
ISNs X X 0.17 0.43 0.67
Translocator X X 0.20 0.48 0.76
GeoDecoder X X 0.22 0.50 0.80
ISNs X v 0.25 0.43 0.78
GeoCLIP X v 0.25 0.49 0.87
GeoReasoner X v 0.10 0.41 0.82
GeoReasoner v v 0.13 0.44 0.86

pre-trained model as the baseline. Next, we integrated the
Qwen-VL pre-trained model with LoRA1 (GeoReasoner
without location tuning) and LoRA2 (GeoReasoner with-
out reasoning tuning). The last experiment involved the
full GeoReasoner model, including both the location tuning
and reasoning tuning components. The same prompts were
utilized for all these models, as in the previous experiments.

Table 2 presents the quantitative results in terms of accuracy,
recall, and FI. Overall, the results indicate that both the
location tuning and reasoning tuning components improve
the model performance. Specifically, the location tuning
component is essential for geo-localization, as GeoReasoner
w/o reasoning tuning (row 3) achieves much higher accuracy
than GeoReasoner w/o location tuning (row 2), especially
for fine-grained city-level prediction. This result further
strengthens the evidence that high-locatability GSV images
are essential for geo-localization. The reasoning tuning
component also plays a significant role in the performance
improvement, as evidenced by the superior performance of
the full GeoReasoner (row 4).

4.2.4. GENERALIZABILITY EVALUATION

To further assess the generalizability of Georeasoner in
geo-localization, we conduct additional testing on open
Flickr image datasets of Im2GPS (Hays & Efros, 2008) and

Table 4. Comparison results on Im2GPS3k dataset. The top six
rows are derived from the results reported in the paper, while the
last four rows are from retesting on the filtered Im2GPS3k dataset,
which includes only highly locatable data.

Model Dataset w/ Filter ~ Street  City  Country
Train Test lkm  25km  750km
PlaNet X X 0.09 0.25 0.48
CPlaNet X X 0.10 0.27 0.49
ISNs X X 0.11 0.28 0.50
Translocator X X 0.12 0.31 0.59
GeoDecoder X X 0.13 0.34 0.61
GeoCLIP X X 0.14 0.34 0.70
ISNs X v 0.10 0.29 0.59
GeoCLIP X v 0.12 0.38 0.83
GeoReasoner X v 0.09 0.35 0.74
GeoReasoner v v 0.10 0.38 0.83

Im2GPS3k (Vo et al., 2017). Here we use only 10k Flickr
images for fine-tuning Georeasoner. Since Georeasoner
predicts city names rather than GPS coordinates, we first
convert the predicted city names generated by Georeasoner
into the GPS coordinates of their respective city centers, then
measure the distance between these predicted coordinates
and ground-truth locations.

Table 3 and Table 4 present the performance compari-
son of Georeasoner with PlaNet (Weyand et al., 2016),
CPlaNet (Seo et al., 2018), ISNs (Miiller-Budack et al.,
2018), Translocator (Pramanick et al., 2022), GeoDe-
coder (Clark et al., 2023), and GeoCLIP (Vivanco Cepeda
et al., 2024) on Im2GPS and Im2GPS3k datasets, respec-
tively. The results demonstrate that fine-tuning GeoRea-
soner using highly locatable images significantly improves
prediction accuracy for street, city, and country levels (row
8 vs. row 9 in Table 3, and row 9 vs. row 10 in Table 4).
Remarkably, despite being fine-tuned solely on a smaller
number of Flickr images, GeoReasoner achieves results
comparable to ISNs and GeoCLIP trained on millions of
Flickr images, particularly in terms of city- and country-
level accuracy. Besides, GeoReasoner trained on the filtered,
highly locatable Flickr images also show improvements in
the city- and country-level geo-localization, demonstrating
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the generalizability of our proposed locatability module.

5. Discussion

The significance of high-locatability street-view images.
We observe a significant performance improvement when
GeoReasoner is trained upon high-locatability street-view
images. Such images often contain explicit visual clues such
as stylized architecture, traffic signs, and landmarks, provid-
ing the model with richer contextual information. Therefore,
increasing the quality of the training dataset enhances the
model’s geo-localization performance. Additionally, the
quantity of high-locatability images is vital, as the model
trained with 70K images (as in Sect. 4.2.2) achieves sig-
nificantly higher accuracy than the one trained with 10K
images (Sect. 4.1.2). In balancing the quality and quantity
of the training dataset, we empirically applied a threshold
of 0.4 to differentiate between highly and less localizable
street views. Setting the threshold too high (e.g., 0.7) can
lead to a notable decrease in the amount of high-locatability
images, whilst a lower threshold (e.g., 0.1) may bring in
introduce low-quality images.

The necessity of reasoning process. The introduction of the
reasoning component successfully elevated GeoReasoner’s
performance in the geo-localization task. This signifies that
LVLM can adeptly capture intricate relationships among
image features, location clues, and geo-locations in the
training process. Implemented an innovative solution to
empower the reasoning capability within GeoReasoner by
leveraging human inference knowledge extracted from geo-
localization games. Despite the relatively small dataset, a
noticeable improvement in performance has been achieved.
In the future, we plan to expand the reasoning dataset by
diversifying the influencing clues. For instance, the current
textual clues are absent of landscape information, which
could provide invaluable insights for geo-localization. We
will collaborate with domain experts such as urban planners
and geographers to address these limitations.

Failure cases. GeoReasoner comprehends architectural
style as a pivotal factor in geo-localization. However, the
model can be misled by the learned significance of archi-
tectural style. Figure 8 presents a street view of the Fiffel
Tower in Paris, France (left), and replicas of the Eiffel Tower
in New York, USA (middle) and in Hangzhou, China (right).
GeoReasoner fails to distinguish between them, predicting
all instances as located in Paris, France. This misclassifi-
cation is not unique to GeoReasoner but also extends to
other LVLMs like GPT-4V. Consequently, it underscores
the necessity for LVLM-based methods to delve deeper into
knowledge for more sophisticated geo-localization capa-
bilities. Once again, it is imperative to collaborate with
domain experts and enhance the visual clues and reasoning
procedure comprehensively to tackle this issue.

GT: New York, USA | |GT:  Hangzhou, China

GT: Paris, France
Predicted:Paris, France | |Predicted:Paris, France | Predicted:Paris, France |

Figure 8. GeoReasoner fails to distinguish the Eiffel Tower and its
replicas in New York, USA, and Hangzhou, China.

6. Conclusion

In this paper, we present a new paradigm that integrates a
large vision-language (LVLM) model with human inference
knowledge for street view geo-localization with reasoning.
We introduce the concept of locatability and devise a CLIP-
based network to quantify the degree of locatability in street-
view images, facilitating the selection of high-quality data.
We design an LVLM-based model named GeoReasoner,
which harnesses external knowledge of human inference
from real geo-localization games and curated high-quality
data to enhance the performance of geo-localization tasks
with reasoning capabilities. The model undergoes two-stage
fine-tuning, namely reasoning tuning and location tuning.
The reasoning tuning stage aims to acquire potential linkage
between coarse-grained geographical locations (i.e., coun-
try) and the associated positioning reasons. In location
tuning stage, we employ the curated high-quality data to
further refine the model in fine-grained geo-localization
(i.e., city) learning. Extensive experiments prove that Geo-
Reasoner outperforms previous models qualitatively and
quantitatively.
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Impact Statement

GeoReasoner advances image-based geo-localization tech-
nologies that are pivotal for many applications such as
autonomous navigation. The pipeline of constructing the
dataset featuring high-locatability street views proves highly
beneficial across multiple scenarios, such as urban studies,
culture studies, and digital humanities, all of which are in-
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creasingly reliant on the analysis of high-quality street-view
data.

The proposed paradigm represents the fusion of LVLM with
human inference knowledge, which has implications for
the advancement of artificial intelligence (Al) that is more
aligned with human cognition. The synergy can lead to the
creation of Al that is not only more effective in complex
inference tasks but also more understandable and relatable
to human users. As Al becomes more pervasive in daily life,
the importance of designing systems that are both transpar-
ent and capable of complex reasoning cannot be overstated.
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A. Implementation Details

Table 5 and Table 6 present the hyper-parameter settings and training details for the models. We conducted training and
testing on Nvidia A800 (80G), with CUDA 12.1, PyTorch 2.0.0, and Transformers 4.33.0.

Table 5. The hyper-parameter settings of the proposed GeoReasoner.

Hyper Params Value
Learning Rate le-5
Total Batch Size 64
Weight Decay 0.1
Warmup Ratio 0.01
Optimizer AdamW
Adam Betal 0.9
Adam Beta2 0.95
LR Scheduler cosine

Model Max Length 2048

Table 6. The training details of the proposed GeoReasoner.

Training Speed  Inference Latency BaseNl\L/lII:d(e):f Parair:) SR A Flops

LoRAT1 (reason) 0.41 sample/s 1.560s 9.6B 112.19M 71.9B
LoRA2 (location)  0.63 sample/s 0.894s 9.6B 112.19M 71.9B

B. Additional Qualitative Results

Additionally, we present the results of the GeoReasoner on alternative street-view images, depicted in Figure 9. Each street
view image is annotated with the ground truth geographic location, along with the inference results from GeoReasoner. It
can provide geographical predictions accompanied by reasonable explanations.

Ground Truth Vienna, Austria GeoReasoner Ground Truth Boston, USA GeoReasoner

‘country": 'United States', ‘city": 'Boston'
'reasons': ['Massachusetts Institute of
Technology is located in Boston,
Massachusetts']

‘country": 'Austria’, ‘city": 'Vienna'

‘reasons"”: ['The picture shows the Messe
Wien in Vienna, Austria', 'The flagpoles in

2 | front of the building carry the flags of Austria
and Vienna', 'The building has a glass facade
and is surrounded by trees and shrubs']

Ground Truth Tokyo, Japan GeoReasoner GeoReasoner

‘country': 'Qatar’, 'city": '‘Doha’
‘reasons': ['The picture shows the Souq
Wagqif, the old market in Doha, Qatar.]

‘country': Japan', ‘city": ‘Tokyo'

2 |'reasons': ['Mount Fuiji is visible in the
background', 'There are many street signs
and traffic lights', 'The street is lined with
shops and restaurants']

GeoReasoner GeoReasoner

‘country": 'Canada’, 'city": 'Vancouver',
‘reasons": ['Gastown is the oldest
neighborhood in Vancouver, known for its
steam clock and historic architecture., 'The
steam clock is a popular tourist attraction
and a symbol of Gastown., 'The
neighborhood is known for its trendy bars
and restaurants.’]

‘country": 'China’, 'city": 'Fuzhou'

‘reasons': ['The picture shows the Tulou of
the Hakka in Yongding, Fujian province', 'The
sky is pink, which indicates that the time is
sunset’, 'The lanterns are red, which is a
traditional custom in Chinese festivals']

Figure 9. Additional qualitative results from the proposed GeoReasoner.
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