

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 END-TO-END DOCUMENT UNDERSTANDING VIA CHAIN-OF-READING

Anonymous authors

Paper under double-blind review

ABSTRACT

Intelligent Document Analysis (IDA) is a formidable task owing to documents' complex layouts, dense tables, charts, and mixed modalities. Conventional pipelines apply OCR before large language model reasoning but suffer from error propagation. End-to-end multimodal models avoid explicit pipelines yet struggle to scale to multi-page documents, where information dilution and evidence localization remain major bottlenecks. We propose Chain-of-Reading (CoR), an end-to-end framework that transforms traditional text-centric reading into a native multimodal paradigm. CoR directly consumes PDF pages as visual input, mimicking human eyes, and performs document-level question answering through a chain-of-thought process. It first localizes relevant evidence, then selectively applies OCR, and finally performs reasoning over the localized content. To further enhance comprehension of visual elements such as charts and scientific figures—which exacerbate information dilution and impede pinpointing evidence—we introduce Masked Auto-Regression (Mask-AR), a self-supervised method for multimodal grounding. CoR achieves a 14.3% improvement over the base model on the MMLongBench-Doc benchmark. We will release the CoR-Dataset and our fine-tuned model, Qwen2.5-VL-CoR.

1 INTRODUCTION

The proliferation of Large Language Models (LLMs) has precipitated a paradigm shift in Intelligent Document Analysis (IDA). Nonetheless, a formidable challenge persists: enabling these models to achieve deep semantic comprehension of complex, visually-rich documents, such as PDFs. These documents, curated for human readership, fuse text, charts, and intricate layouts into a semi-structured format that poses a substantial barrier to information extraction and query reasoning. The key problems in this field, therefore, converge on the imperative to develop models that can accurately and efficiently reason over information embedded within these complex visual layouts.

Two dominant paradigms address this challenge. The first relies on a pipeline-based approach, executing tasks sequentially, such as layout analysis, OCR, and specialized recognition for tables or formulas (Livathinos et al., 2025; Cui et al., 2025). Although modular, this approach suffers from high complexity and maintenance overhead. More importantly, it is highly susceptible to cascading errors: a single inaccuracy from an upstream module, like OCR, can propagate through the pipeline and compromise the integrity of the final output.

The second paradigm focuses on end-to-end solutions that bypass traditional OCR, including OCR-free Multimodal LLMs (MLLMs) (Ye et al., 2023; Wei et al., 2024) and multi-modal Retrieval-Augmented Generation (RAG) systems (Faysse et al., 2024). RAG first retrieves relevant document patches and then feeds them to a model for generation; however, decoupling retrieval from reasoning often makes the retriever a critical bottleneck. A more promising direction involves MLLMs that learn to read, localize, and reason directly from raw document pixels, integrating comprehension and reasoning within a single end-to-end framework.

Despite their potential, existing MLLMs exhibit substantial performance limitations when processing long multi-modal documents. Their effectiveness diminishes in multi-page scenarios due to two main challenges: **key information dilution** and **evidence localization difficulty** (Ma et al., 2024; Deng et al., 2024). As input sequences grow, models struggle to identify relevant passages, and they

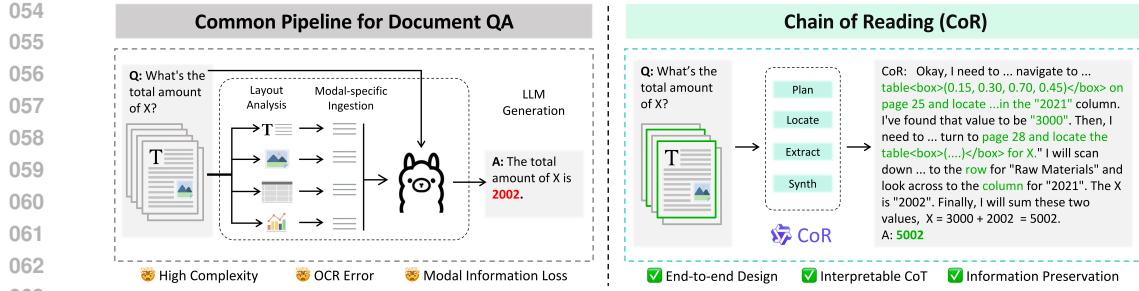


Figure 1: Comparison of pipeline-based methods and our Chain-of-Reading (CoR) framework for document understanding

often miss critical visual cues embedded in tables or charts. These shortcomings frequently result in reasoning errors or factual hallucinations, which significantly constrain their practical utility.

To address these issues, we introduce the **”Chain-of-Reading” (CoR)**, a training paradigm inspired by human cognitive strategies for document analysis (Figure 1). CoR guides the model to first construct an explicit information-gathering path before performing complex reasoning. Under CoR, the model learns to first *locate* evidence—pinpointing relevant texts, charts, or pages—and then performs *integrated reasoning* upon this grounded foundation. This process mirrors the human cognitive pattern of scanning for key information before conducting an in-depth analysis. Furthermore, given that chart comprehension presents a distinct and formidable challenge, we also designed **Masked Auto-Regression (Mask-AR)**, an efficient self-supervised method aimed at bolstering the model’s fine-grained comprehension of such complex visual elements.

Our main contributions are as follows:

- We propose **Chain-of-Reading (CoR)**, a novel training paradigm that effectively addresses evidence localization in long PDF documents and reduces hallucination.
- We introduce **Masked Auto-Regression (Mask-AR)**, a self-supervised method that substantially enhances fine-grained, multimodal comprehension of complex charts.
- We construct and release the **CoR-dataset**, the first dataset specifically designed for CoR training, curated through a low-cost, high-quality data generation pipeline.
- We develop and open-source **Qwen2.5-VL-CoR**, an end-to-end document understanding model. Experiments on long-document benchmarks demonstrate that our model achieves significant improvements, surpasses existing open-source methods—including agentic approaches—and reaches performance comparable to leading proprietary MLLMs.

2 RELATED WORK

2.1 INTELLIGENT DOCUMENT ANALYSIS

Intelligent Document Analysis (IDA) is a foundational discipline for extracting and reasoning over complex documents prevalent in fields like finance, law, and science. The contemporary landscape of IDA is largely defined by a dichotomy between pipeline-based and end-to-end methodologies.

Pipeline-based methods orchestrate a sequence of specialized modules. These systems typically commence with OCR engines or PDF parsers to extract raw text and layout information, which is then fed into a downstream LLM for semantic processing (Xie et al., 2024; Wang et al., 2024a). This modular architecture permits the integration of powerful, task-specific models for layout analysis, table recognition, and formula parsing (Huang et al., 2022; Blecher et al., 2023), as exemplified by systems like DocLayLLM and DocFormer (Liao et al., 2025; Appalaraju et al., 2021). However, this approach harbors a critical vulnerability: its susceptibility to cascading errors, where upstream inaccuracies can irrevocably degrade downstream performance.

To circumvent this fragility, end-to-end methods have emerged as a compelling alternative. These models employ a single, unified MLLM to process document images directly, thereby obviating

108 fragile intermediate steps. This OCR-free philosophy was pioneered by models like Donut (Kim
 109 et al., 2021) and Pix2Struct (Lee et al., 2023), which reframe document understanding as a direct
 110 image-to-sequence task. Recent advancements, such as mPLUG-DocOwl 1.5 and TextMonkey, have
 111 further enhanced cross-page understanding and robustness in text-dense scenarios (Hu et al., 2024;
 112 Liu et al., 2024). State-of-the-art models like Qwen2.5-VL now demonstrate capabilities that are
 113 closing the gap with proprietary systems like GPT-4V on a spectrum of document-centric tasks (Bai
 114 et al., 2025; Yang et al., 2023). Despite these advances, such models still grapple with the core
 115 challenges of information dilution and evidence localization in long documents—the precise gap
 116 our work aims to address.

117 2.2 MULTIMODAL LARGE MODELS AND REASONING STRATEGIES

118 The fusion of vision and language within MLLMs has unlocked new frontiers in complex reasoning.
 119 Architecturally, these models typically consist of a vision encoder, a projection layer for modality
 120 alignment, and an LLM backbone for inference. The rapid evolution of open-source models, includ-
 121 ing the InternVL series and MiniCPM-V, has been remarkable, steadily narrowing the performance
 122 chasm with their proprietary counterparts on diverse multimodal benchmarks (Chen et al., 2024c;b;
 123 Yao et al., 2024).

124 To elevate their reasoning capabilities from simple perception to complex cognition, strategies like
 125 Chain-of-Thought (CoT)(Wei et al., 2022) have been adapted for the multimodal domain (MCoT)
 126 (Wang et al., 2025). By generating explicit intermediate reasoning steps, MCoT enhances both
 127 model transparency and performance, a benefit substantiated by methods such as DDCoT and Com-
 128 positional CoT (Mitra et al., 2024). Such explicit cognitive pathways have been shown to not only
 129 boost task performance but also to mitigate the propensity for model hallucination (Wang et al.,
 130 2025).

131 However, for all their success, standard CoT variants overlook a crucial step in the human cognitive
 132 process for document analysis: the distinct, sequential act of first locating relevant information
 133 before engaging in reasoning. This observation forms the central motivation for our work. While
 134 recent efforts have begun to touch upon similar concepts—for instance, SV-RAG employs an MLLM
 135 as a retriever to first select evidence (Chen et al., 2024a)—they often remain within a retrieve-then-
 136 reason paradigm rather than an integrated, trainable process. The acute challenges highlighted by
 137 benchmarks like LongDocURL and MMLongBench-Doc further underscore the urgent need for a
 138 more integrated paradigm (Deng et al., 2024; Ma et al., 2024). Drawing conceptual support from the
 139 “multi-paradigm collaboration” ideology in mathematical reasoning (Yu et al., 2025), our **Chain-of-**
 140 **Reading (CoR)** formalizes this “locate-then-reason” sequence into a trainable, end-to-end paradigm
 141 tailored specifically for deep document understanding.

142 3 METHOD

143 3.1 CHAIN-OF-READING

144 3.1.1 ANALYSIS OF FAILURE CASES

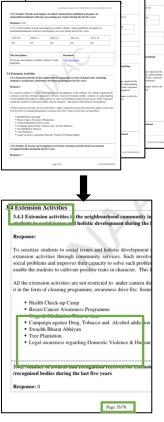
145 To identify the bottlenecks of existing methods, we systematically diagnose the failure cases of
 146 leading MLLMs on long-document benchmarksA.10.1. Our analysis reveale two fundamental bot-
 147 tlenecks in long-document processing.

148 **Macroscopic Level: Contextual Inertia and Localization Failure.** Models exhibit significant
 149 “inertia” when processing long sequences, with sharp performance degradation when critical evi-
 150 dence is buried deep within a document or requires cross-page integration. This inefficient retrieval
 151 is a contributing factor to localization failure,

152 **Microscopic Level: Shallow Comprehension.** Even when evidence is successfully located, mod-
 153 els could still fail due to insufficient depth of understanding. As shown in Figure 2, they struggle to
 154 disambiguate nuanced concepts, perform calculations on tabular data, or interpret complex charts,
 155 indicating that they merely succeed in locating evidence but fail to demonstrate genuine comprehen-
 156 sion.

162		
163		
164		
165		
166		
167		
168	Query	
169	What is the removal efficiency of Methyl Orange dye using the BiMgFeO4/Bentonite composite as an adsorbent?	
170		
171		
172		
173		
174	Evidence	
175	"The percentage of the solution dye decolorization is higher with the BiMgFeO4/Bentonite composite. It reached 92% for 1.5g of adsorbent in 100 mL of solution, while it is 72% for BiMgFeO4 nano ferrite as adsorbent with the same dose."	
176		
177	Ground-truth	
178	72%	
179		
180		
181		
182	Result from Base Model (Qwen2.5-VL)	
183	Based on the document, the BiMgFeO4/Bentonite composite showed a 92% removal efficiency in the tests , under the conditions of 1.5g of adsorbent in 100 mL of a 50 mg/L Methyl Orange solution, after 720 minutes of contact time.	
184	Result from Qwen2.5-VL-CoR (Ours)	
185	<think> The user wants to know the removal efficiency of Methyl Orange using BiMgFeO4 nanoferrite, which requires finding a specific numerical value. I have located the information in section 5.2 , which contains a key sentence directly comparing the performance of two materials. The sentence is: "The percentage of the solution dye decolorization is higher with the BiMgFeO4/Bentonite composite. It reached 92% for 1.5g of adsorbent in 100 mL of solution, while it is 72% for BiMgFeO4 nanoferrite as adsorbent with the same dose." My task is to extract the percentage specifically for the "BiMgFeO4 nanoferrite", not the composite. The sentence clearly identifies this value as 72% . Therefore, the correct value to extract is 72% .</think>	
186	</think>	
187	<answer> 72% </answer>	
188		
189		
190		
191		
192		
193		
194		
195		
196		
197	3.1.2 THE "CHAIN-OF-READING" PARADIGM	
198	To address both macroscopic localization and microscopic comprehension bottlenecks, we propose the Chain-of-Reading (CoR) paradigm. CoR emulates an expert's reading process by transforming unstructured exploration into a structured reasoning chain, as exemplified in Figure 3. The process consists of the following four stages.	
199		
200	First, the Task Planning stage, in which the model formulates a retrieval strategy based on the query and document structure, such as prioritizing the "Methodology" section for technical questions. Second, the Phased & Focused Search stage, during which the model executes a coarse-to-fine iterative search, transforming the needle-in-a-haystack problem into a logical workflow of (1) scope reduction, (2) snippet localization, and (3) field extraction. Third, the Cross-modal Evidence Integration stage, in which the model aggregates all the textual and visual evidence located. Finally, the Synthesized Reasoning & Verification stage, during which the model reasons over only the integrated evidence chain to generate the answer, effectively minimizing hallucination and reducing computational overhead.	
201		
202	Fine-tuning on data with explicit CoR traces significantly enhances model performance in long-document scenarios. For a comprehensive gallery of detailed, step-by-step examples illustrating CoR in various complex scenarios, please see the Appendix A.9.	
203	3.2 MASKED AUTO-REGRESSION FOR VISUAL GROUNDING	
204	While CoR establishes a macroscopic reasoning framework, achieving a deep understanding of information-dense and complex visual elements like charts and diagrams requires finer-grained perception and reasoning abilities. However, constructing large-scale supervised datasets for such fine-grained tasks is often prohibitively expensive. To address this challenge, we introduce Masked Auto-Regression (Mask-AR) , an efficient self-supervised learning method designed to enhance the model's capacity for in-depth analysis of complex visual artifacts.	
205		
206		
207		
208		
209	In this method, we use scientific literature as the primary data source. Scientific articles contain abundant figures and tables, whose captions or titles provide dense, expert-authored summaries of the most important multimodal information. We design a pre-training task in which the MLLM model receives native multimodal inputs (PDF page image sequences), while a layout model masks portions of key caption text. The Mask-AR task is formulated to reconstruct masked text segments by leveraging both the visual content and the surrounding contextual information.	
210		
211		
212		
213		
214		
215	This task encourages the model to form deep cross-modal associations between visual features and textual semantics. The self-supervised process implicitly guides the model to analyze the internal	

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232



Question: Enumerate the activities organized by the extension programs in the neighborhood community

Response:

<think>

The user wants me to list the extension activities. I need to find the section on extension activities and extract the list of examples provided. I'll scan the document for keywords like "extension activities" or "neighborhood community".

I've located section 3.4, "Extension Activities," on page 35. Within this section, subsection 3.4.1 describes the activities. It explicitly states, "Some of the activities are listed here" and then provides a bulleted list. I will carefully transcribe each item from this list to ensure accuracy. The items are:- Health Check-up Camp- Breast Cancer Awareness Programme-Yoga & Meditation Time to time- Campaign against Drug, Tobacco and Alcohol addiction- Swachh Bharat Abhiyan- Tree Plantation.- Legal awareness regarding Domestic Violence & Human Rights.

I will format this list as the answer.

</think>

<answer>

Health Check-up Camp, Breast Cancer Awareness Programme, Yoga & Meditation Time to time, Campaign against Drug, Tobacco and Alcohol addiction, Swachh Bharat Abhiyan, Tree Plantation, Legal awareness regarding Domestic Violence & Human Rights.

</answer>

Single-page Evidence

Question: Which policy received the lowest percentage of 'No' responses between GE2a, GE2b, GE3, GE4, and BE1?(A). GE2a (B). GE2b (C). GE3 (D). GE4 Choose the letter name in front of the right option from A, B, C, D.

Response:

<think>

This is a multi-step reasoning question. First, I need to find the percentage of 'No' responses for each policy listed in the question . Second, I need to compare them to find the lowest one. Third, I need to identify the policy corresponding to that lowest value. I will go through the policies one by one. Policy GE2a: The table shows 'No' responses are 0.69% on page 43 .Policy GE2b: The table shows 'No' responses are 2.07% on page 44.Policy GE3: The table shows 'No' responses are 0.70% on page 45. Policy GE4: The table shows 'No' responses are 0.70% on page 47.Policy BE1: The table shows 'No' responses are 4.29% on page 48.Now I will compare these percentages: 0.69%, 2.07%, 2.74%, 0.70%, 4.29%. The lowest value is 0.69%. This value corresponds to policy GE2a. The question asks for the letter name of the right option, which is 'A'.

</think>

<answer>

A

</answer>

Multi-page Evidence

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 3: Exemplars of the Chain-of-Reading (CoR) paradigm in action. Top: precise localization and extraction of a list from a specific section; Bottom: cross-page evidence retrieval and comparison to identify the minimum value across multiple tables.

structure of visual elements—such as complex model architectures or multi-step flowcharts—and accurately align these visual cues with their corresponding textual descriptions.

This enhanced comprehension is crucial for complex tasks, such as identifying and rejecting questions based on false premises, as demonstrated in Appendix A.9.11, Example 11. Implementation details are provided in Appendix A.1.

By leveraging abundant figure-caption pairs in scientific documents, Mask-AR offers a fully self-supervised, data-efficient, and scalable approach for developing advanced visual reasoning capabilities.

4 DATASET AND TRAINING

4.1 DATASET CONSTRUCTION

4.1.1 MOTIVATION AND THE COR-DATASET

The advancement of long-document understanding has been critically hindered by the scarcity of appropriate training data. Most existing VQA and document analysis datasets are confined to single-page input (Huang et al., 2022; Masry et al., 2022), a limitation that precludes models from de-

270
271
272
273
274
275
276
277
278
279
280
281
veloping the cross-page reasoning and evidence aggregation capabilities essential for real-world
applications involving multi-page reports or scholarly articles.

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
To address this critical deficit, we construct the **CoR-Dataset**, a resource specifically engineered following our Chain-of-Reading paradigm. The dataset was curated using a novel, low-cost semi-automated pipeline that yields high-fidelity data, as depicted in Figure 4. This process integrates guided data generation with automated quality assessment and iterative refinement, ultimately yielding 26 088 high-quality QA pairs. Each pair is annotated with an explicit reasoning trace that materializes the structured “reading chain,” providing the direct supervision necessary for our training approach. **A detailed statistical breakdown of the CoR-Dataset’s composition, including distributions of document types, question intents and reasoning complexity, is provided in Appendix A.8.** A detailed breakdown of each stage in our data generation pipeline is provided in Appendix A.2.

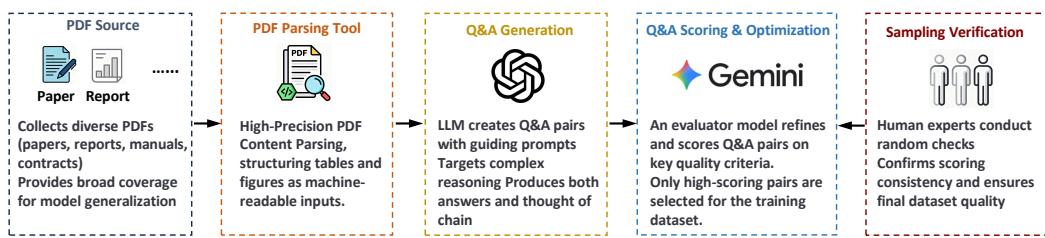


Figure 4: Overview of our data generation pipeline for the CoR-Dataset. The process involves document parsing, guided Q&A generation with reasoning trace annotation, automated scoring and refinement, and final human verification. Full details are in Appendix A.2.

4.1.2 MASK-AR DATASET

The training data for our Mask-AR objective are also sourced from our extensive corpus of scientific documents. We note that naive extraction of all figure-caption pairs yields a dataset fraught with low-quality and irrelevant samples (e.g., simple logos or decorative images). To ensure that the self-supervised task is both challenging and semantically meaningful, we engineer a sophisticated filtering pipeline, as depicted in Figure 5. Following an initial PDF parsing with Uni-Parser(Team, 2025), a high precision PDF parsing framework, we employ a powerful MLLM (Gemini-2.5-Pro), which acts as an expert surrogate to programmatically identify and select the most valuable samples. This curation process is guided by criteria that prioritize pairs exhibiting high information density in the caption and substantial visual complexity in the figure, such as architectural diagrams or plots of experimental results. This meticulous curation is indispensable for creating a dataset that guides the model to develop deep visual-textual reasoning skills. The complete step-by-step methodology is further detailed in Appendix A.1.

4.2 THREE-STAGE TRAINING STRATEGY

Our training recipe is progressive, in a three-stage framework, designed methodically to comprehensively enhance the model capabilities of document analysis.

324 **Stage 1: Foundational Capability Enhancement.** We start by bolstering the foundational capabilities
 325 of the base model (Qwen2.5-VL-7B). Using Low-Rank Adaptation (LoRA) Hu et al. (2022), we
 326 perform parameter-efficient fine-tuning on a curated mixture of publicly available document analysis
 327 datasets. This foundational training is designed to enhance the model’s core competencies in
 328 visual text recognition, layout understanding, and table/chart parsing. **A comprehensive list of the**
 329 **datasets employed is detailed in Appendix A.7.** This stage focuses updates on the language model
 330 components while the visual encoder remained frozen.

331 **Stage 2: Task-Specific Fine-tuning.** The model then undergoes full-parameter fine-tuning on the
 332 language model components using our proprietary **CoR-Dataset** and **Mask-AR dataset**. This crucial
 333 stage deeply ingrains the CoR reasoning patterns and enhances its visual grounding abilities.
 334 The training is specifically structured to remediate common failure modes identified in our analysis,
 335 such as evidence hallucination, format inconsistency, and superficial content retrieval.

336 **Stage 3: Preference Alignment.** In the final stage, we align the model’s outputs with human
 337 preferences for quality, reliability, and helpfulness using Direct Preference Optimization (DPO)
 338 Rafailov et al. (2023). We train the model on a custom-built preference dataset of 5,000 pairs. The
 339 preferred (chosen) responses are high-quality examples from our CoR-Dataset, while the undesirable
 340 (rejected) responses are synthetically generated to reflect the common error patterns identified. To
 341 enhance training stability and mitigate the impact of potential label noise, we employ a hybrid loss
 342 function combining the standard sigmoid loss with a robust variant. The mathematical formulation
 343 and further details are available in Appendix A.3.

344 5 EXPERIMENTS

345 5.1 EXPERIMENTAL SETUP

346 We fine-tune the Qwen2.5-VL-7B model, henceforth referred to as **Qwen2.5-VL-CoR-7B**. We conduct
 347 a comprehensive evaluation, benchmarking our model against its base version as well as series
 348 of leading open-source and proprietary models. Detailed training configurations are provided in
 349 Appendix A.5.

350 **Evaluation Benchmarks.** We evaluate model performance on two challenging public benchmarks
 351 for long-document multimodal question answering: **MMLongBench-Doc** Ma et al. (2024) and
 352 **LongDocURL** Deng et al. (2024). These benchmarks are specifically selected as they feature
 353 lengthy, multi-page documents and complex queries that necessitate synthesizing evidence across
 354 multiple pages and modalities. Consequently, they serve as an ideal testbed for evaluating the core
 355 capabilities our work aims to enhance. A detailed statistical breakdown of each benchmark is available
 356 in Appendix A.4.

357 **Evaluation Metrics.** For both benchmarks, we strictly adhere to their official evaluation protocols.
 358 To facilitate a granular analysis, we report accuracy disaggregated by both the modality of
 359 the required evidence and the number of pages from which information must be synthesized. Furthermore,
 360 we report the overall **generalized accuracy** and **F1 score** to provide a holistic view of performance.
 361 The main results are presented in Table 1 and Table 2.

362 5.2 MAIN RESULTS AND ANALYSIS

363 The experimental results, presented in Table 1 and Table 2, unequivocally demonstrate the substantial
 364 performance gains conferred by our proposed framework.

365 **Dominant Performance on MM-LongBench-Doc.** As shown in Table 1, Qwen2.5-VL-CoR-7B
 366 establishes a new state-of-the-art among open-source end-to-end models. It achieves an overall
 367 accuracy of **37.4%** and an F1-score of **36.0%**, decisively outperforming its base model (23.1%
 368 Acc) by a remarkable margin of +14.3 percentage points. This substantial delta underscores the
 369 profound impact of our CoR training paradigm and multi-stage fine-tuning strategy.

370 In a broader comparison, Qwen2.5-VL-CoR-7B not only surpasses all open-source rivals like
 371 Docopilot-8B but also outperforms formidable proprietary models such as GPT-4V (32.4%). While

378 Table 1: Detailed performance on the **MM-LongBench-Doc** benchmark. The **best overall** score in
 379 each column is bolded, and the **best open-source** score is underlined. [†]Results are from Han et al.
 380 (2025), Duan et al. (2025), or the official benchmark paper (Ma et al., 2024). Abbreviations: SIN
 381 (single-page), MUL (multi-page), UNA (unanswerable). All scores are in percentage (%).

Method	Overall		By Page Count (Acc.)			By Evidence Source (Acc.)				
	ACC	F1	SIN	MUL	UNA	TXT	CHA	LAY	TAB	FIG
<i>Non-End-to-End Methods (RAG, etc.)</i>										
OCR(Tesseract)+GPT-4o [†]	30.5	30.1	35.4	29.3	18.6	41.1	23.4	28.5	38.1	22.4
MDocAgent [†]	31.5	—	—	—	—	34.7	32.3	40.1	29.4	32.1
<i>End-to-End Methods (Open-source)</i>										
Docopilot-8B [†]	28.8	23.0	—	—	—	—	—	—	—	—
Qwen2.5-VL-7B	23.1	22.5	24.3	16.5	31.1	27.4	20.5	25.2	22.4	20.3
Qwen2.5-VL-CoR-7B (Ours)	37.4 (+14.3)	36.0 (+13.5)	41.9	25.9	45.5	39.4	27.7	31.2	38.6	27.5
<i>End-to-End Methods (Proprietary)</i>										
GPT-4V [†]	32.4	31.2	36.4	27.0	31.2	34.4	28.3	28.2	32.4	26.8
Gemini-1.5-Pro [†]	28.2	20.6	21.1	11.1	69.2	21.0	17.6	6.9	14.5	15.2
GPT-4o [†]	42.8	44.9	54.5	41.5	20.2	46.3	46.0	45.3	50.0	44.1

397 Table 2: Detailed performance on the **LongDoc-URL** benchmark. The **best overall** score is bolded,
 398 and the **best open-source** score is underlined. [†]Results are from Han et al. (2025) or the official
 399 benchmark paper (Deng et al., 2024). All scores are reported as Accuracy (%).

Method	Overall		Main Task			Element Type			Evidence Pages	
	ACC	UND	REA	LOC	TXT	LAY	FIG	TAB	SIN	MUL
<i>Non-End-to-End Methods (Agent-based, etc.)</i>										
OCR(PyMuPDF) + GPT-4o [†]	34.7	35.3	28.0	37.2	34.3	33.7	35.0	26.9	28.2	35.1
OCR(PyMuPDF) + o1-preview [†]	35.8	35.6	30.6	38.6	33.2	36.8	35.9	33.0	29.1	37.1
MDocAgent [†]	51.7	—	—	—	—	—	—	—	—	—
<i>End-to-End Methods (Open-source)</i>										
Qwen2-VL-7B [†]	30.6	36.8	24.0	22.6	33.4	38.2	30.9	24.3	26.4	34.4
Qwen2.5-VL-7B	39.2	44.5	31.2	33.5	42.8	43.9	37.5	33.3	36.5	41.0
Qwen2.5-VL-CoR-7B (Ours)	51.5 (+12.3)	56.3	41.2	48.6	55.6	51.4	48.2	46.2	51.8	51.3
<i>End-to-End Methods (Proprietary)</i>										
Qwen-VL-Max [†]	49.5	58.9	43.9	36.0	53.5	55.2	52.5	46.7	50.9	51.9
Gemini-1.5-Pro [†]	50.9	55.6	42.3	46.4	51.8	56.1	52.1	43.1	44.4	53.5
GPT-4o [†]	64.5	68.6	59.3	59.6	66.3	64.1	67.5	60.2	62.2	65.7

418 the latest GPT-4o model sets a high ceiling at 42.8%, our 7B-parameter model exhibits highly
 419 competitive performance. The disaggregated results further illuminate our model’s strengths, revealing
 420 significant gains in both single-page (SIN) and, critically, multi-page (MUL) reasoning scenarios,
 421 alongside robust improvements across all evidence modalities.

423 **Leading Performance on the More Demanding LongDoc-URL Benchmark.** The LongDoc-
 424 URL benchmark, characterized by its significantly longer documents, poses a more formidable
 425 challenge to long-context reasoning. On this rigorous testbed (Table 2), Qwen2.5-VL-CoR-7B con-
 426 tinues its exceptional performance, achieving an overall accuracy of **51.5%**. This result cements our
 427 model as the **premier open-source end-to-end solution**, again showcasing a massive improvement
 428 of +12.3 points over its base model.

429 Crucially, our model’s performance transcends the open-source sphere and is highly competitive
 430 with top-tier proprietary systems. It is particularly noteworthy that Qwen2.5-VL-CoR-7B (51.5%)
 431 effectively matches the performance of the powerful, agent-based MDocAgent system (51.7%) and
 432 **surpasses other leading proprietary models, including Qwen-VL-Max (49.5%) and Gemini-**

432 **1.5-Pro (50.9%).** This is a remarkable achievement for a 7B-parameter model, demonstrating that
 433 our targeted training approach can bridge the performance gap typically attributed to massive model
 434 scale or complex external tool usage. The ability to outperform larger proprietary models under-
 435 scores the efficiency and power of instilling structured reasoning directly into the model.
 436

437 **Summary of Experimental Findings.** In summary, our comprehensive evaluations on two de-
 438 manding long-document benchmarks validate the superiority of our methodology. Qwen2.5-VL-
 439 CoR-7B consistently sets a new standard for open-source models in this domain. The results furnish
 440 compelling evidence that with a principled, data-centric approach to teaching structured reasoning,
 441 smaller models can not only compete with but, in certain cases, surpass their much larger, proprietary
 442 counterparts.

443 5.3 ABLATION STUDIES

445 To rigorously dissect the contribution of each component within our framework, we conduct a com-
 446 prehensive ablation study. We systematically evaluate the incremental impact of Supervised Fine-
 447 Tuning (SFT) on our Chain-of-Reading (CoR) and Mask-AR datasets, followed by Direct Preference
 448 Optimization (DPO). The results are summarized in Table 3.

450 Table 3: Main ablation study on overall accuracy (%). The checkmarks (✓) indicate which compo-
 451 nents are included in each configuration. The performance gains for each step are shown relative to
 452 the base model.

454 Configuration	455 Components			456 Overall Accuracy (%)	
	457 CoR SFT	458 Mask-AR	459 DPO	460 MMLongBench	461 LongDocURL
462 Base Model				463 23.1	464 39.2
465 + CoR	✓			466 34.0 (+10.9)	467 47.0 (+7.8)
468 + CoR + Mask-AR	✓	✓		469 35.1 (+12.0)	470 48.1 (+8.9)
471 + CoR + DPO	✓		✓	472 35.9 (+12.8)	473 48.9 (+9.7)
474 Full Model (Ours)	✓	✓	✓	475 37.4 (+14.3)	476 51.5 (+12.3)

477 **Analysis of Component Synergy.** The main ablation results in Table 3 clearly elucidate the effec-
 478 tiveness of our multi-stage architecture. SFT with the CoR dataset provides a foundational perfor-
 479 mance boost(+10.9% and +7.8% on the two benchmarks, respectively), establishing robust reason-
 480 ing capabilities . Both Mask-AR and DPO contribute further gains on top of this foundation. Crit-
 481 ically, the full model (Row 5), which integrates all three components, achieves the highest scores,
 482 confirming a powerful synergistic effect. This indicates that enhancing visual grounding (Mask-AR)
 483 and aligning with human preferences (DPO) are complementary, rather than redundant, to the core
 484 reasoning patterns instilled by CoR.

485 **Component-Specific Contributions.** To further investigate these effects, we analyzed the spe-
 486 cific roles of Mask-AR and DPO. Our fine-grained analysis reveals that Mask-AR provides a tar-
 487 geted boost to visual-centric questions, measurably improving accuracy on queries requiring chart
 488 and figure interpretation. Concurrently, DPO proves instrumental in refining higher-level cogni-
 489 tive abilities, yielding the most substantial gains in complex, multi-page reasoning tasks where nu-
 490 nanced judgment is paramount. A detailed breakdown substantiating these claims is provided in
 491 Appendix A.6.

492 6 CONCLUSION

493 This paper presents Chain-of-Reading (CoR), an end-to-end paradigm for document understand-
 494 ing. CoR enhances multimodal document QA by structuring document-level reasoning through explicit
 495 reasoning paths. It further leverages Masked Auto-Regression for fine-grained visual comprehen-
 496 sion with self-supervised visual grounding. Qwen2.5-VL-CoR-7B achieves accuracy improvements of
 497 14.3% on MMLongBench-Doc and 12.3% on LongDocURL compared to Qwen2.5-VL-7B, and,
 498 despite having only 7B parameters, delivers performance comparable to proprietary MLLMs such
 499 as GPT-4o.

486 REFERENCES
487

488 Srikanth Appalaraju, Bhavan Jasani, Bhargava Urala Kota, Yusheng Xie, and R Manmatha. Doc-
489 former: End-to-end transformer for document understanding. In *Proceedings of the IEEE/CVF*
490 *international conference on computer vision*, pp. 993–1003, 2021.

491 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
492 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
493 2025.

494 Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat: Neural optical
495 understanding for academic documents. *arXiv preprint arXiv:2308.13418*, 2023.

496

497 Jian Chen, Ruiyi Zhang, Yufan Zhou, Tong Yu, Franck Dernoncourt, Jiuxiang Gu, Ryan A Rossi,
498 Changyou Chen, and Tong Sun. Sv-rag: Lora-contextualizing adaptation of mllms for long doc-
499 ument understanding. *arXiv preprint arXiv:2411.01106*, 2024a.

500 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
501 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
502 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
503 2024b.

504 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
505 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
506 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
507 *Vision and Pattern Recognition*, pp. 24185–24198, 2024c.

508

509 Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust dpo: Aligning
510 language models with noisy feedback. *arXiv preprint arXiv:2403.00409*, 2024.

511 Cheng Cui, Ting Sun, Manhui Lin, Tingquan Gao, Yubo Zhang, Jiaxuan Liu, Xueqing Wang,
512 Zelun Zhang, Changda Zhou, Hongen Liu, et al. Paddleocr 3.0 technical report. *arXiv preprint*
513 *arXiv:2507.05595*, 2025.

514 Chao Deng, Jiale Yuan, Pi Bu, Peijie Wang, Zhong-Zhi Li, Jian Xu, Xiao-Hui Li, Yuan Gao, Jun
515 Song, Bo Zheng, et al. Longdocurl: a comprehensive multimodal long document benchmark
516 integrating understanding, reasoning, and locating. *arXiv preprint arXiv:2412.18424*, 2024.

517

518 Yuchen Duan, Zhe Chen, Yusong Hu, Weiyun Wang, Shenglong Ye, Botian Shi, Lewei Lu, Qibin
519 Hou, Tong Lu, Hongsheng Li, et al. Docopilot: Improving multimodal models for document-level
520 understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
521 4026–4037, 2025.

522 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre
523 Colombo. Colpali: Efficient document retrieval with vision language models. *arXiv preprint*
524 *arXiv:2407.01449*, 2024.

525

526 Siwei Han, Peng Xia, Ruiyi Zhang, Tong Sun, Yun Li, Hongtu Zhu, and Huaxiu Yao. Mdoca-
527 gent: A multi-modal multi-agent framework for document understanding. *arXiv preprint*
528 *arXiv:2503.13964*, 2025.

529

530 Anwen Hu, Haiyang Xu, Liang Zhang, Jiabo Ye, Ming Yan, Ji Zhang, Qin Jin, Fei Huang, and
531 Jingren Zhou. mplug-docowl2: High-resolution compressing for ocr-free multi-page document
532 understanding. *arXiv preprint arXiv:2409.03420*, 2024.

533

534 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
535 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

536

537 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-training for
538 document ai with unified text and image masking. In *Proceedings of the 30th ACM international*
539 *conference on multimedia*, pp. 4083–4091, 2022.

540

541 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jinyoung Park, Jinyeong Yim, Wonseok Hwang,
542 Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Donut: Document understanding trans-
543 former without ocr. *arXiv preprint arXiv:2111.15664*, 7(15):2, 2021.

540 Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos,
 541 Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screen-
 542 shot parsing as pretraining for visual language understanding. In *International Conference on
 543 Machine Learning*, pp. 18893–18912. PMLR, 2023.

544 Wenhui Liao, Jiapeng Wang, Hongliang Li, Chengyu Wang, Jun Huang, and Lianwen Jin. Do-
 545 clayllm: An efficient multi-modal extension of large language models for text-rich document
 546 understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 547 4038–4049, 2025.

549 Yuliang Liu, Biao Yang, Qiang Liu, Zhang Li, Zhiyin Ma, Shuo Zhang, and Xiang Bai.
 550 Textmonkey: An ocr-free large multimodal model for understanding document. *arXiv preprint
 551 arXiv:2403.04473*, 2024.

552 Nikolaos Livathinos, Christoph Auer, Maksym Lysak, Ahmed Nassar, Michele Dolfi, Panos Vage-
 553 nas, Cesar Berrospi Ramis, Matteo Omenetti, Kasper Dinkla, Yusik Kim, et al. Docling: An ef-
 554 ficient open-source toolkit for ai-driven document conversion. *arXiv preprint arXiv:2501.17887*,
 555 2025.

557 Yubo Ma, Yuhang Zang, Liangyu Chen, Meiqi Chen, Yizhu Jiao, Xinze Li, Xinyuan Lu, Ziyu Liu,
 558 Yan Ma, Xiaoyi Dong, et al. Mmlongbench-doc: Benchmarking long-context document under-
 559 standing with visualizations. *Advances in Neural Information Processing Systems*, 37:95963–
 560 96010, 2024.

561 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 562 mark for question answering about charts with visual and logical reasoning. *arXiv preprint
 563 arXiv:2203.10244*, 2022.

565 Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-
 566 thought prompting for large multimodal models. In *Proceedings of the IEEE/CVF Conference
 567 on Computer Vision and Pattern Recognition*, pp. 14420–14431, 2024.

568 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 569 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 570 in neural information processing systems*, 36:53728–53741, 2023.

572 Uni-Parser Team. Uniparser, 2025. URL <https://huggingface.co/UniParser>.

574 Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu,
 575 Yuan Qu, Fukai Shang, et al. Mineru: An open-source solution for precise document content
 576 extraction. *arXiv preprint arXiv:2409.18839*, 2024a.

577 Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
 578 Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling.
 579 *arXiv preprint arXiv:2401.06080*, 2024b.

581 Yaoting Wang, Shengqiong Wu, Yuecheng Zhang, Shuicheng Yan, Ziwei Liu, Jiebo Luo, and
 582 Hao Fei. Multimodal chain-of-thought reasoning: A comprehensive survey. *arXiv preprint
 583 arXiv:2503.12605*, 2025.

585 Haoran Wei, Lingyu Kong, Jinyue Chen, Liang Zhao, Zheng Ge, Jinrong Yang, Jianjian Sun, Chun-
 586 rui Han, and Xiangyu Zhang. Vary: Scaling up the vision vocabulary for large vision-language
 587 model. In *European Conference on Computer Vision*, pp. 408–424. Springer, 2024.

588 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 589 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 590 neural information processing systems*, 35:24824–24837, 2022.

592 Xudong Xie, Hao Yan, Liang Yin, Yang Liu, Jing Ding, Minghui Liao, Yuliang Liu, Wei Chen, and
 593 Xiang Bai. Wukong: A large multimodal model for efficient long pdf reading with end-to-end
 594 sparse sampling. *arXiv preprint arXiv:2410.05970*, 2024.

594 Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
 595 juan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). *arXiv preprint*
 596 *arXiv:2309.17421*, 2023.

597 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 598 Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
 599 *arXiv:2408.01800*, 2024.

600 Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming Yan, Yuhao Dan, Chenlin Zhao, Guohai Xu,
 601 Chenliang Li, Junfeng Tian, et al. mplug-docowl: Modularized multimodal large language model
 602 for document understanding. *arXiv preprint arXiv:2307.02499*, 2023.

603 Yiyao Yu, Yuxiang Zhang, Dongdong Zhang, Xiao Liang, Hengyuan Zhang, Xingxing Zhang, Mah-
 604 moud Khademi, Hany Awadalla, Junjie Wang, Yujiu Yang, et al. Chain-of-reasoning: Towards
 605 unified mathematical reasoning in large language models via a multi-paradigm perspective. *arXiv*
 606 *preprint arXiv:2501.11110*, 2025.

607 A APPENDIX

608 This appendix provides supplementary details on our methodology and dataset construction to facilitate
 609 reproducibility and deeper understanding.

610 A.1 IMPLEMENTATION DETAILS OF MASKED AUTO-REGRESSION (MASK-AR)

611 The implementation of our Mask-AR self-supervised objective follows a structured process designed to
 612 maximize its learning signal for deep, cross-modal reasoning. The process, illustrated in the main
 613 text in Figure 5, consists of the following steps:

- 614 1. **Extraction:** We use a high-fidelity document parser (Uni-Parser) to extract all figure images and their corresponding caption texts from a large corpus of scientific and technical documents. Each figure-caption pair is maintained with a link to its source document.
- 615 2. **Intelligent Filtering:** To create a challenging and high-quality training set, we filter the extracted pairs. Each pair, along with its full document context, is evaluated by a powerful MLLM (Gemini-2.5-Pro) based on predefined criteria:
 - 616 • **Information Density:** Captions that are rich in technical details, experimental results, or key conclusions are preferred over simple descriptive labels (e.g., "Figure 1: System Overview").
 - 617 • **Visual Complexity:** Figures with multiple components, data series, complex layouts, or abstract concepts are prioritized.
 - 618 • **Content Relevance:** We select figures that are central to the document's main contributions, such as model architecture diagrams or plots of primary experimental results.
- 619 3. **Sample Construction:** For each selected document, we adhere to a "one instance per document" principle. We mask the caption of only the single most representative figure identified during the filtering stage. The training sample then consists of all pages of the document (with the target caption text masked out) and the target figure image.
- 620 4. **Training Objective:** The model is trained to auto-regressively generate the original, unmasked caption text. This task compels the model to synthesize information from both the visual data in the figure and the textual context scattered throughout the document, effectively teaching it to perform the complex cognitive process of summarizing visual evidence in context.

621 A.2 DATASET CONSTRUCTION DETAILS

622 A.2.1 CoR-DATASET GENERATION PIPELINE

623 The CoR-Dataset was constructed using the semi-automated pipeline shown in Figure 4. The four
 624 key stages are:

648

649 1. **Document Collection and Parsing:** We first gathered a diverse collection of PDF doc-
650 uments spanning scientific literature, financial reports, technical manuals, and legal con-
651 tracts. Each document was processed with Uni-Parser, a high-performance tool that per-
652 forms OCR and structures content like tables and lists, providing a clean, machine-readable
653 foundation.

654 2. **Guided Q&A and CoR Generation:** The parsed document content was fed to a power-
655 ful teacher model (GPT-4o). We used carefully engineered prompts to guide the model to
656 generate question-answer pairs that necessitate complex reasoning (e.g., cross-page com-
657 parison, chart interpretation with text). Crucially, we also prompted the model to output a
658 detailed, step-by-step "reading chain" that explicitly follows our CoR paradigm, serving as
659 the ground-truth reasoning path.

660 3. **Automated Quality Assessment and Refinement:** To ensure data quality, we employed
661 an independent evaluator model (Gemini-2.5-Pro) to score each generated sample. The
662 scoring criteria included the logical soundness of the question, the clarity of the CoR chain,
663 and the factual accuracy of the answer. Low-scoring samples were either discarded or sent
664 back to the teacher model with feedback for revision, creating a closed-loop optimization
665 process that continuously improved data quality.

666 4. **Human Verification:** The final stage involved manual review and verification by human
667 annotators to filter out any remaining subtle errors and ensure the dataset's overall reliabil-
668 ity.

669

A.3 DETAILS OF THE DPO TRAINING STAGE

671 In Stage 3 of our training, we used Direct Preference Optimization (DPO) to align the model with
672 human preferences.

673 **DPO Loss Function.** DPO directly optimizes the policy on a dataset of ranked preferences. Given
674 a prompt x and a pair of responses (y_w, y_l) , where y_w is the preferred (winning) response and y_l is
675 the dispreferred (losing) response, the DPO loss function is defined as:

$$\mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right] \quad (1)$$

676 where \mathcal{D} is the preference dataset, π_θ is the policy model being optimized, π_{ref} is a fixed reference
677 model (initialized from the Stage 2 checkpoint), β is a temperature hyperparameter, and σ is the
678 logistic sigmoid function.

679 **Preference Dataset Construction.** We constructed a high-quality preference dataset containing
680 5,000 pairs. The generation process was as follows:

681 • **Preferred Responses (y_w):** We selected high-scoring, correct examples from a held-out
682 portion of our CoR-Dataset. These represent the ideal model outputs in terms of format,
683 reasoning, and accuracy.

684 • **Dispreferred Responses (y_l):** We first conducted a thorough error analysis of the outputs
685 from the Stage 2 model. Based on a typology of common errors (e.g., factual inaccuracies,
686 evidence misattribution, format violations, lazy retrieval), we prompted Gemini-2.5-Pro to
687 generate corresponding dispreferred responses for each prompt x and its preferred response
688 y_w . This ensures that the model learns to avoid specific, realistic failure modes.

689 **Hybrid Loss Function.** To enhance training stability and robustness against potential label noise
690 in our synthetically-aided preference dataset, we employed a hybrid loss function that combines two
691 variants. The total loss $\mathcal{L}_{\text{total}}$ is a weighted sum:

$$\mathcal{L}_{\text{total}} = w_1 \cdot \mathcal{L}_{\text{sigmoid}} + w_2 \cdot \mathcal{L}_{\text{robust}}, \quad (2)$$

692 where $w_1 = 0.7$ and $w_2 = 0.3$ (configured via `--loss_type sigmoid robust`). The compo-
693 nents are:

702
703
704

- **Sigmoid Loss ($\mathcal{L}_{\text{sigmoid}}$):** This is the standard loss from the original DPO paper Rafailov et al. (2023), equivalent to Equation 1:

705
706
707

$$\mathcal{L}_{\text{sigmoid}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right], \quad (3)$$

708 where σ is the sigmoid function, fitting a Bradley-Terry model to the preferences.

709
710
711

- **Robust Loss ($\mathcal{L}_{\text{robust}}$):** This variant is an unbiased estimator of the DPO loss that is resilient to preference noise in the data Wang et al. (2024b); Chowdhury et al. (2024). It models the possibility of incorrect preference labels via a label smoothing hyperparameter $\varepsilon \in (0, 1/2)$ (the flip rate of preference labels). The loss is defined as:

712
713
714
715

$$\mathcal{L}_{\text{robust}}(\pi_\theta; \pi_{\text{ref}}) = \frac{1}{N} \sum_{i=1}^N \frac{(1 - \varepsilon) \mathcal{L}_{\text{sigmoid}}(\pi_\theta; \pi_{\text{ref}}, x_i, \tilde{y}_{w,i}, \tilde{y}_{l,i}) - \varepsilon \mathcal{L}_{\text{sigmoid}}(\pi_\theta; \pi_{\text{ref}}, x_i, \tilde{y}_{l,i}, \tilde{y}_{w,i})}{1 - 2\varepsilon}, \quad (4)$$

716 where $\tilde{y}_{w,i}$ and $\tilde{y}_{l,i}$ are the potentially noisy preferred and dispreferred responses for prompt
717 x_i , and N is the batch size. When $\varepsilon = 0$, this reduces to the standard sigmoid loss. In our
718 experiments, we used $\varepsilon = 0.1$ (or specify your value if different).

719

A.4 EVALUATION BENCHMARKS

720 Our experiments were conducted on the following standard long-document VQA benchmarks,
721 which are designed to test a model’s ability to comprehend and reason over lengthy, visually com-
722 plex documents.

723
724
725
726
727
728
729
730
731
732
733

- **MMLongBench-Doc** Ma et al. (2024): This benchmark consists of 135 long-form PDF documents, with an average of 47.5 pages and 21,214 tokens per document. It contains 1,082 expert-annotated questions designed to test long-context understanding.
- **LongDocURL** Deng et al. (2024): This dataset is constructed from 396 lengthy PDF documents, averaging 85.6 pages and 43,622.6 tokens. It includes 2,325 high-quality question-answering pairs. A key challenge of this benchmark is that correct answers often require synthesizing evidence from multiple modalities (e.g., text, tables, images) and across different pages.

734

A.5 TRAINING CONFIGURATIONS

735 All fine-tuning was performed on a server equipped with **8 NVIDIA A100 80GB GPUs**. The
736 training utilized the PyTorch framework, along with libraries such as Hugging Face Transformers
737 and Swift. The base model for all stages is **Qwen2.5-VL-7B**. Below are the specific configurations
738 for each of our three training stages.

739

A.5.1 STAGE 1: FOUNDATIONAL CAPABILITY ENHANCEMENT (LoRA)

740 In this stage, we performed parameter-efficient fine-tuning using Low-Rank Adaptation (LoRA) to
741 enhance the model’s core document understanding abilities on a mixture of public datasets.

742
743
744
745
746
747
748
749
750
751
752
753
754
755

- **Method:** Low-Rank Adaptation (LoRA).
- **Trained Components:** LoRA adapters were applied to the language model’s attention (q_proj, k_proj, v_proj, o_proj) and MLP (gate_proj, up_proj, down_proj) layers, as well as the multimodal projector (mm_projector). The visual encoder weights remained frozen.
- **LoRA Hyperparameters:**
 - LoRA Rank (r): 16
 - LoRA Alpha (α): 32
 - LoRA Dropout: 0.05
- **Training Hyperparameters:**
 - Optimizer: AdamW
 - Learning Rate: 1.0×10^{-4}
 - LR Scheduler: Cosine decay with a 10% warmup ratio

756 – Global Batch Size: 64 (1 per device \times 8 accumulation steps \times 8 GPUs)
 757 – Number of Epochs: 3.0
 758 – Precision: bfloat16
 759 – Max Sequence Length: 32,768
 760 – Attention Implementation: Flash Attention 2
 761 – Weight Decay: 0.05
 762 – Gradient Clipping Norm: 0.3

764 A.5.2 STAGE 2: TASK-SPECIFIC FINE-TUNING (FULL-PARAMETER)

766 This stage involved full-parameter fine-tuning on our proprietary CoR-Dataset and Mask-AR dataset
 767 to instill the Chain-of-Reading reasoning patterns.

- 768 • **Method:** Full-parameter supervised fine-tuning.
- 769 • **Trained Components:** We updated the full weights of the language model and the multimodal
 770 projector. The visual encoder (`vision_tower`) remained frozen throughout this stage.
- 771 • **Training Hyperparameters:**

- 772 – Optimizer: AdamW
- 773 – Learning Rate: 1.0×10^{-5}
- 774 – LR Scheduler: Cosine decay with a 5% warmup ratio
- 775 – Global Batch Size: 16 (1 per device \times 2 accumulation steps \times 8 GPUs)
- 776 – Number of Epochs: 1.0
- 777 – Precision: bfloat16
- 778 – Max Sequence Length: 32,768
- 779 – Parallelism Strategy: DeepSpeed ZeRO Stage 3
- 780 – Attention Implementation: Flash Attention 2

782 A.5.3 STAGE 3: PREFERENCE ALIGNMENT (DPO WITH LoRA)

784 In the final stage, we aligned the model with human preferences using Direct Preference Optimiza-
 785 tion (DPO). For computational efficiency, this stage was also conducted using LoRA.

- 787 • **Method:** Direct Preference Optimization (DPO) with LoRA.
- 788 • **Reference Model:** The reference model (p_{ref}) for calculating the KL-divergence was the check-
 789 point obtained at the end of Stage 2.
- 790 • **Hybrid Loss Function:** As mentioned in Section 4.2, we employed a hybrid loss function. The
 791 final loss was a weighted sum of the standard sigmoid loss and a robust loss variant: $L_{\text{hybrid}} =$
 $0.7 \times L_{\text{sigmoid}} + 0.3 \times L_{\text{robust}}$.

- 792 • **LoRA Hyperparameters:**
 - 793 – LoRA Rank (r): 8
 - 794 – LoRA Alpha (α): 32
 - 795 – Target Modules: All linear layers in the language model.

- 796 • **Training Hyperparameters:**
 - 797 – Optimizer: AdamW
 - 798 – Learning Rate: 5.0×10^{-6}
 - 799 – LR Scheduler: Cosine decay with a 5% warmup ratio
 - 800 – Global Batch Size: 16 (1 per device \times 2 accumulation steps \times 8 GPUs)
 - 801 – Number of Epochs: 1.0
 - 802 – Precision: bfloat16
 - 803 – Max Sequence Length: 32,767
 - 804 – Parallelism Strategy: DeepSpeed ZeRO Stage 3

806 A.6 DETAILED BREAKDOWN OF ABLATION COMPONENT EFFECTS

808 To further dissect the results of our main ablation study (Table 3), we analyzed the specific impact
 809 of the Mask-AR and DPO stages on relevant sub-tasks.

810
 811 **Effect of Mask-AR on Visual Element Understanding.** To specifically isolate the impact of
 812 the Mask-AR dataset on visual parsing, we compare performance on visually-intensive evidence
 813 types before and after its inclusion, across both benchmarks. As shown in Table 4, adding Mask-
 814 AR SFT consistently improves accuracy on questions related to figures and charts/tables. On
 815 MMLongBench-Doc, chart-related accuracy increases by **+3.1%**, while on LongDocURL, figure
 816 accuracy improves by **+3.2%**. This consistently positive impact across different benchmarks and vi-
 817 sual types directly validates our hypothesis that Mask-AR enhances the model’s ability to interpret
 818 and extract information from complex visual elements.

819
 Table 4: Impact of Mask-AR on visual categories (Accuracy, %) across both benchmarks.

Benchmark	Evidence Type	+ CoR SFT	+ CoR + Mask-AR SFT
MMLongBench	Chart (CHA)	23.1	26.2
	Figure (FIG)	20.7	21.3
LongDocURL	Figure	44.3	47.5
	Table	41.8	42.3

820
 821
 822 **Effect of DPO on Higher-Level Cognitive Abilities.** We hypothesize that DPO’s primary role is
 823 to refine the model’s high-level cognitive abilities. To verify this, we measured its impact on complex
 824 reasoning and comprehension sub-tasks in both benchmarks. Table 5 shows that applying DPO
 825 yields significant gains in these crucial areas. It boosts multi-page reasoning on MMLongBench
 826 by a remarkable **+7.6%**, demonstrating an improved ability to synthesize information across long
 827 contexts. Similarly, on LongDocURL, it enhances both Understanding (**+3.2%**) and Reasoning
 828 (**+1.6%**). This robust evidence across two benchmarks confirms that DPO is crucial for aligning the
 829 model with nuanced human expectations, fundamentally improving its ability to think and reason
 830 through complex problems.

831
 Table 5: Impact of DPO on reasoning and comprehension (Accuracy, %) across both benchmarks.

Benchmark	Sub-task	SFT Only (CoR+Mask-AR)	+ DPO (Full Model)
MMLongBench	Multi-page (MUL)	18.3	25.9
LongDocURL	Understanding (UND)	53.1	56.3
	Reasoning (REA)	39.6	41.2

840
 841

A.7 DATASETS FOR STAGE 1 FOUNDATIONAL FINE-TUNING

842 In the first stage of our training, we performed LoRA-based fine-tuning on a diverse collection of
 843 public and curated datasets to enhance the model’s fundamental document understanding skills. The
 844 datasets were carefully selected to cover a wide range of tasks, including document-based visual
 845 question answering (DocVQA), table question answering (TableQA), and chart question answering
 846 (ChartQA). This mixed-data approach ensures the model develops robust capabilities across various
 847 document types and formats before undergoing specialized training in Stage 2. Table 6 provides a
 848 detailed summary of each dataset component.

849
 850

A.8 STATISTICAL ANALYSIS OF THE CoR-DATASET

851 The CoR-Dataset was meticulously designed to encompass a wide diversity of documents, question
 852 types, and reasoning challenges, reflecting the complexity of real-world document analysis tasks.
 853 In total, the dataset comprises 26 087 high-quality, annotated question-answer pairs. To ensure its
 854 breadth and depth, we analyzed its composition across several key dimensions. A summary of the
 855 primary statistics is presented in Table 7, while the detailed distributions for each dimension are
 856 illustrated in **Figures 6 through 9**.

857 The distributions highlight a focus on academic and technical documents, which provide fertile
 858 ground for complex questions. The question intents are predominantly geared towards factual ex-
 859 traction, but with significant representation from summarization, comparison, and causal inquiries,

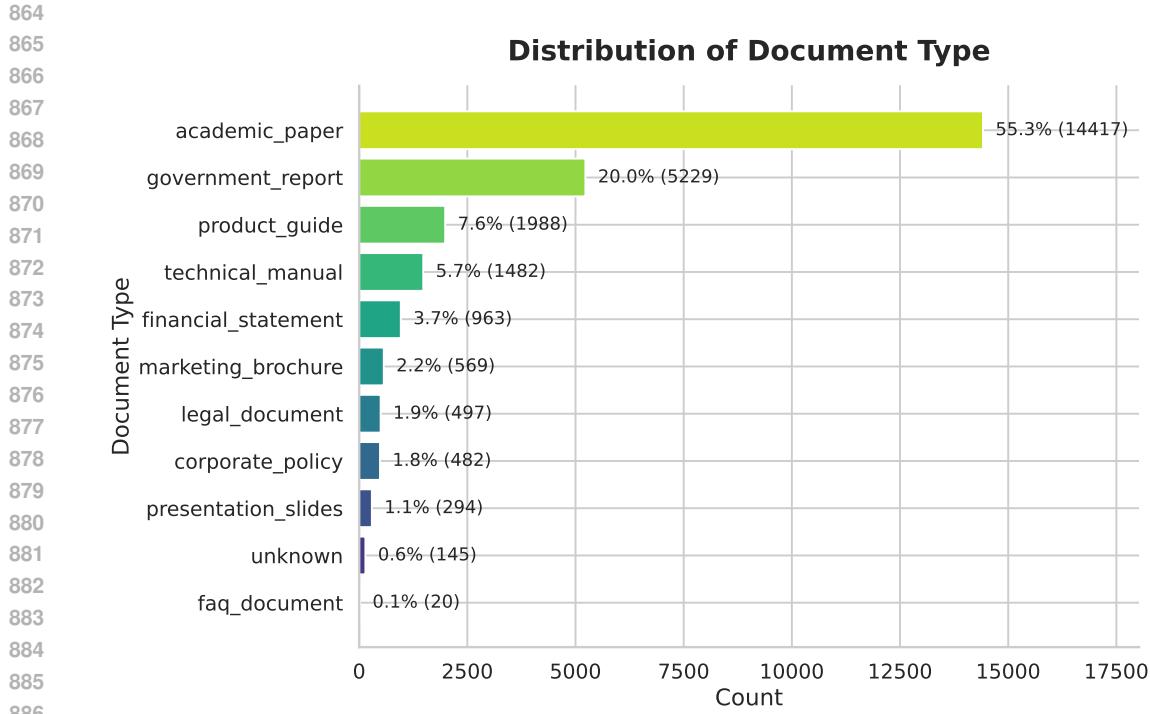


Figure 6: Distribution of document types in the CoR-Dataset. The dataset is predominantly composed of academic papers (55.3%) and government reports (20.0%), providing a rich source of structured, information-dense content for training complex reasoning.

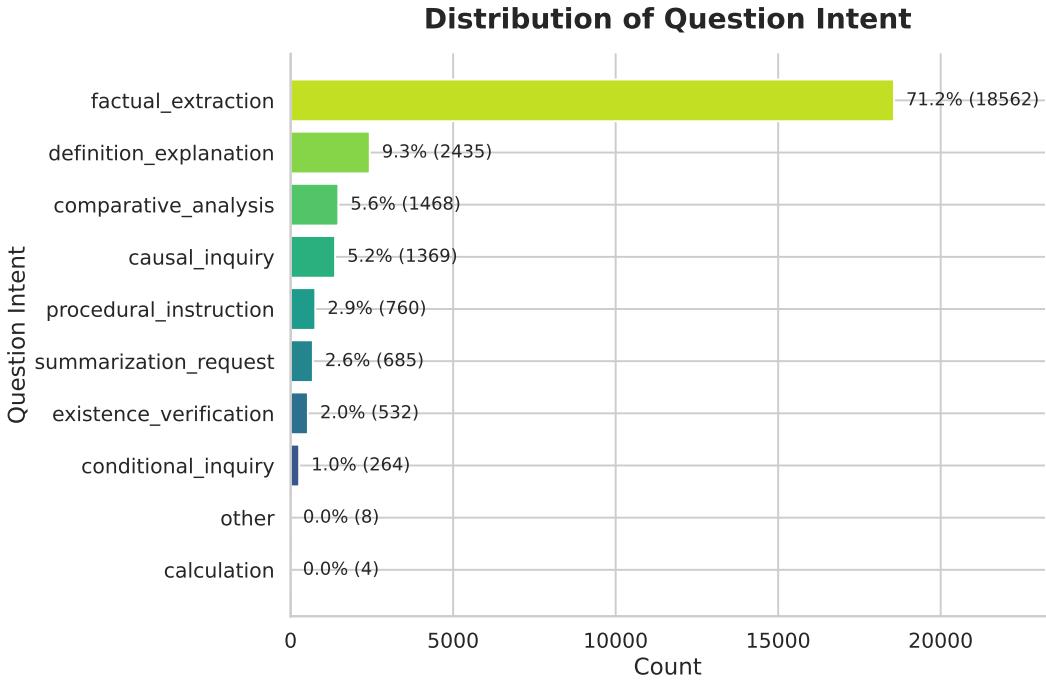


Figure 7: Distribution of question intents. While factual extraction (71.2%) forms the core, the dataset includes a significant proportion of questions requiring higher-level understanding, such as definition/explanation (9.3%) and comparative analysis (5.6%).

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

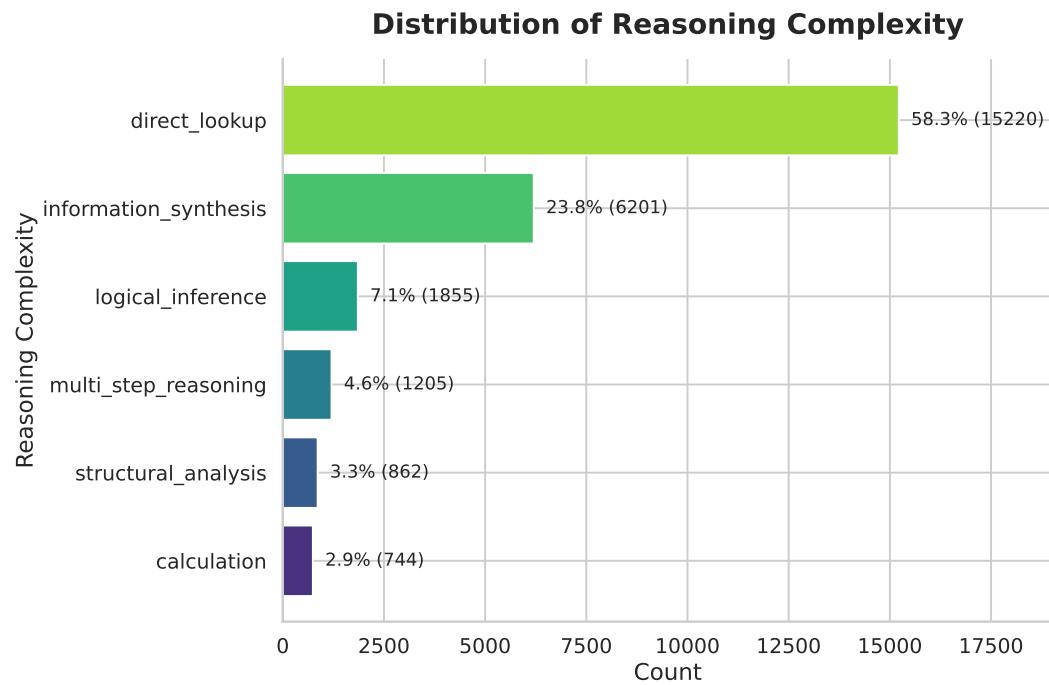


Figure 8: Distribution of reasoning complexity. A key feature of the dataset is that over 40% of questions require more than simple direct lookups, demanding skills like information synthesis (23.8%) and multi-step reasoning (4.6%) to arrive at the correct answer.

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

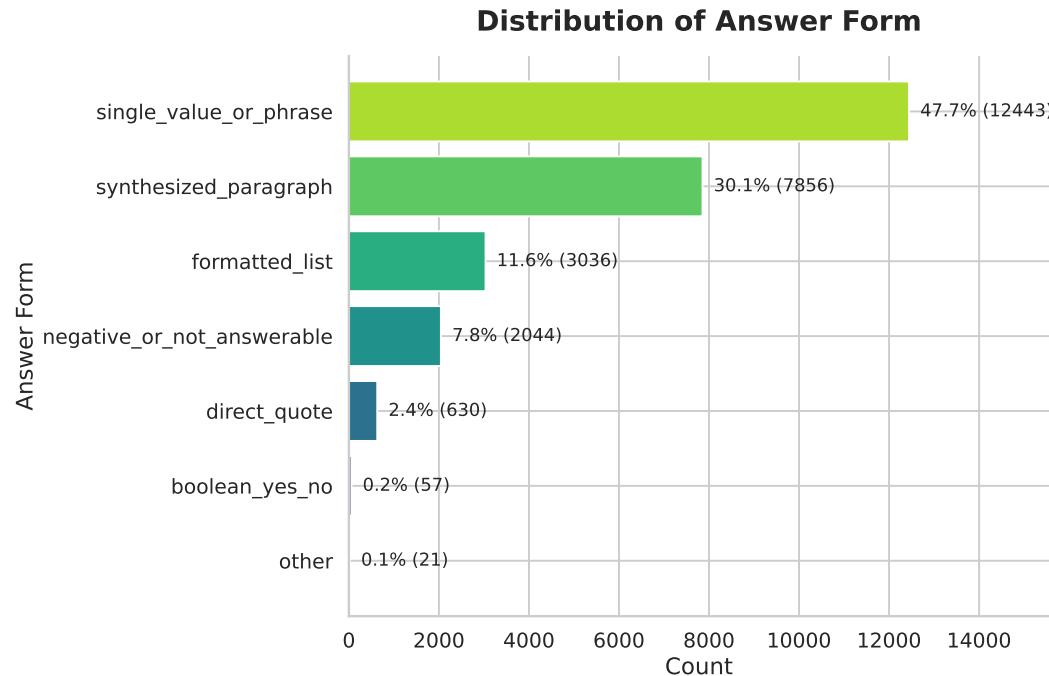


Figure 9: Distribution of expected answer forms. The dataset requires models to generate a variety of output formats, from concise single phrases (47.7%) to comprehensive synthesized paragraphs (30.1%), mirroring real-world application needs.

972 Table 6: Datasets used for Stage 1 foundational fine-tuning. The total volume comprises over 48 000
 973 question-answer pairs, providing a solid foundation for the model.
 974

975 Dataset Component	976 Primary Source	977 Task Type	978 Size (Pairs)	979 Key Characteristics
980 ChartQA (subset)	981 Open-source	982 ChartQA	983 5000	984 Short-form question-answering pairs focused on chart comprehension.
985 DocVQA (subset)	986 Public Benchmark	987 DocVQA	988 5349	989 Question-answering on real-world scanned documents with challenging OCR.
990 Paper+CC VQA Mix	991 Scholarly Papers, CC	992 Mixed VQA	993 2127	994 A composite dataset blending academic paper content with web data from Common Crawl.
995 Curated DocQA Mix	996 Diverse Sources	997 Single-page QA	998 29 489	999 A large, diverse collection of QA pairs from various single-page document types.
1000 Visual QA (generic)	1001 Public VQA Dataset	1002 General VQA	1003 6000	1004 Standard open-domain visual question-answering pairs to bolster general visual reasoning.

1005 Table 7: Summary statistics of the CoR-Dataset. The dataset is intentionally skewed towards more
 1006 complex, multi-faceted categories to foster advanced reasoning capabilities.
 1007

1008 Dimension	1009 Dominant Category	1010 Count	1011 Percentage
1012 Document Type	1013 Academic Paper	1014 14 417	1015 55.3%
	<i>(Top 3 total)</i>	21 634	82.9%
1016 Question Intent	1017 Factual Extraction	1018 18 562	1019 71.2%
	<i>(Top 3 total)</i>	22 465	86.1%
1020 Reasoning Complexity	1021 Direct Lookup	1022 15 220	1023 58.3%
	Information Synthesis	6201	23.8%
1024 Answer Form	1025 Single Value/Phrase	1026 12 443	1027 47.7%
	Synthesized Paragraph	7856	30.1%

1028 pushing models beyond simple lookups. Similarly, while direct lookups are common, over 40% of
 1029 the questions require more advanced cognitive skills like information synthesis and multi-step rea-
 1030 soning. This composition ensures that models trained on the CoR-Dataset are robustly prepared for
 1031 diverse and demanding document understanding scenarios.

1032 A.9 DETAILED CHAIN-OF-READING APPLICATION EXAMPLES

1033 This section provides a series of detailed, step-by-step examples to illustrate the practical application
 1034 and effectiveness of the Chain-of-Reading (CoR) framework. Each case breaks down a complex doc-
 1035 ument understanding task into the CoR stages, demonstrating how the model navigates challenges
 1036 like irregular layouts, repetitive content, and nested data structures. The document examples used in
 1037 this paper are sourced from MMlongbench-doc(Ma et al., 2024), LongDoc-URL(Deng et al., 2024),
 1038 and publicly available documents online intended for academic exchange.

1026 A.9.1 EXAMPLE 1: REASONING OVER IRREGULAR VISUAL LAYOUTS
10271028 This first example demonstrates CoR's capability to parse non-standard document layouts where
1029 data is presented in a visually associative manner rather than a conventional grid table. This requires
1030 the model to perform visuo-spatial reasoning to correctly link headers to data before performing any
1031 calculations.1032 **Question:** *"What is the absolute difference in the Solar Heat Gain Coefficient between the 'STAN-
1033 DARD LOW E2' and the 'ZO-E-SHIELD 5 EXTREME' window?"*

1034

1035 **Generated CoR Trace:**
10361037 [Task Planning] The user wants to calculate the difference in the Solar Heat Gain
1038 Coefficient (SHGC) for two products. I will first locate the chart, then visually
1039 associate the product names with their data columns, extract the two SHGC values,
1040 and finally compute the difference.1041 [Phased & Focused Search] I have identified the performance chart. "STAN-
1042 DARD LOW E2" is the first column; "ZO-E-SHIELD 5 EXTREME" is the third
1043 column. Now locating the "Solar Heat Gain Coefficient" row.1044 [Cross-modal Evidence Integration] The value for 'Standard' (Column 1) is
1045 0.30. The value for 'Extreme' (Column 3) is 0.19.1046 [Grounded Reasoning & Verification] The task is to calculate the absolute dif-
1047 ference: $0.30 - 0.19 = 0.11$. The steps are verified, and the answer is grounded in
1048 the extracted values.1049 **Final Answer:** The absolute difference is **0.11**.
1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Energy Savings and Leading Performance

With the majority of a window being made up of glass, picking the right glass is critical. Weather Shield offers a wide range of glass to meet the performance that is right for you.

STANDARD LOW E ²	ZO-E-SHIELD 5	ZO-E-SHIELD 5 EXTREME	
Casement Total Unit Performance			
U-Value*	0.27	0.26	0.23
Solar Heat Gain Coefficient*	0.30	0.20	0.19
Visible Light Transmittance*	0.52	0.46	0.42
Ultraviolet Rays Blocked	85%	95%	95%

* Total Unit calculations are derived from computer simulations that are then verified by 3rd party testing in accordance with NFRC 100-04. Values include Argon gas.

Real Warm-Edge® Spacer System

Weather Shield's Real Warm-Edge® spacer has no metal to transfer temperatures. This improves the efficiency of the glass and reduces condensation and frost build-up. Standard on all Weather Shield insulated glass.

05
Pages 5 of 4068263.pdf (60 pages) in LongDocURL

Question: What is the difference in the solar heat gain coefficient between standard and extreme casement units?

Response:

<think>

The user wants to know the difference between the solar heat gain coefficient for 'standard' and 'extreme' casement units. I need to find a table that compares these two types of units. I've located a table under the heading \"Casement Total Unit Performance\" on page 4. This table has columns for 'Standard', 'ZO-E-SHIELD 5', and 'ZO-E-SHIELD 5 EXTREME'. It also has a row labeled 'Solar Heat Gain Coefficient*'. To find the answer, I need to extract the values from this row for both the 'Standard' and 'ZO-E-SHIELD 5 EXTREME' columns. The value for 'Standard' is '0.30'. The value for 'ZO-E-SHIELD 5 EXTREME' is '0.19'. The question asks for the difference, so I will calculate: $0.30 - 0.19 = 0.11$.

</think>

<answer>

0.11

</answer>

Figure 10: A product brochure snippet with a non-standard layout. The model must visually associate the product titles at the top with their corresponding data columns below.

A.9.2 EXAMPLE 2: EVIDENCE LOCALIZATION IN REPETITIVE DOCUMENTS

This case showcases CoR's ability to navigate visually repetitive multi-page documents, a common scenario in reports and surveys. The key challenge is to disambiguate between many similar-looking

1134 pages to pinpoint the precise evidence required by the user's query, thereby avoiding hallucinations
 1135 from incorrect context.
 1136



Pages 12 of 4083860.pdf (69 pages) in LongDocURL

Question: What is the highest score for 'Safe environment - Bullying & harassment'

Response:

<think>

The user wants to know the "highest score" for the theme "Safe environment - Bullying & harassment". I need to find the table with this title.

I have located it on **page 12**.

The table has four rows: 'Best', 'Your org', 'Average', and 'Worst'. The question asks for the highest score, which corresponds to the 'Best' row. I will extract the value from the 'Best' row.

The value is **8.7**.

</think>

<answer>

8.7

</answer>"

Figure 11: A multi-page report where many pages share an identical visual template. The main challenge is to locate the specific page that matches the query's context before data extraction.

Question: "What is the highest score for 'Safe environment - Bullying & harassment'?"

Generated CoR Trace:

[Task Planning] The user wants the "highest score" for a specific theme. I need to scan the document for the theme title "Safe environment - Bullying & harassment" to find the correct page.

[Phased & Focused Search] I am scanning the document thumbnails and titles. I have located the correct chart on **page 12**.

[Cross-modal Evidence Integration] The question asks for the "highest score." In the table on page 12, this corresponds to the row labeled "Best". The value in this row is 8.7.

[Grounded Reasoning & Verification] The evidence is located on the correct page and the semantic meaning of "highest score" is correctly mapped to "Best". The extracted value is verified.

Final Answer: The highest score is **8.7**.

1188
1189

A.9.3 EXAMPLE 3: NAVIGATING COMPLEX NESTED TABLES

1190
1191
1192
1193

This final example highlights CoR’s proficiency in parsing complex, nested tables commonly found in academic papers. The challenge lies not just in finding the correct table, but in navigating its hierarchical structure (Panels, Columns, Sub-columns, and Rows) to pinpoint a single data point with high precision.

1194
1195
1196

Question: *“What is the regression discontinuity (RD) effect of stimulus payments on consumer spending in bottom income quartile ZIP codes over the period April 1-April 30 (Table 4, Panel A, Column 1)?”*

1197
1198**Generated CoR Trace:**1199
1200
1201
1202
1203

[Task Planning] The user is asking for a very specific data point. I will deconstruct the query into a navigation path: Table 4 - \downarrow Panel A - \downarrow Column ”Bottom Income Quartile ZIP Codes” / Sub-column ”(1)” - \downarrow Row ”RD Effect of Stimulus:”.

1204
1205

[Phased & Focused Search] Navigating to Table 4, titled ”Causal Effect of Stimulus Payments...”. Focusing on ”Panel A: Impact... on Consumer spending”.

1206
1207

[Cross-modal Evidence Integration] I have pinpointed the intersection of the specified row and column. The value at this exact location in the table is ”25.15”.

1208
1209
1210

[Grounded Reasoning & Verification] The extracted value ”25.15” directly corresponds to the multi-coordinate location specified in the query. The retrieval path is verified.

1211
1212

Final Answer: The value is **25.15**.

1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Table 4				
Causal Effect of Stimulus Payments on Spending and Small Business Revenue:				
Regression Discontinuity Estimates				
<i>Panel A: Impact of Stimulus Payments on Consumer Spending</i>				
Dep. Var.:	Change in Consumer Spending (%)			
	Bottom Income Quartile ZIP Codes	Top Income Quartile ZIP Codes		
	(1)	(2)	(3)	(4)
RD Effect of	25.15	36.97	8.45	15.83
Stimulus:	(7.15)	(9.81)	(3.83)	(5.14)
Window:	April 1 - April 30	April 7 - April 21	April 1 - April 30	April 7 - April 21
<i>Panel B: Impact of Stimulus Payments on Small Business Revenue</i>				
Dep. Var.:	Change in Small Business Revenue (%)			
	Bottom Rent Quartile ZIP Codes	Top Rent Quartile ZIP Codes		
	(1)	(2)	(3)	(4)
RD Effect of	17.92	20.83	1.20	-7.54
Stimulus:	(9.59)	(16.76)	(6.27)	(10.45)
Window:	April 1 - April 30	April 7 - April 21	April 1 - April 30	April 7 - April 21

Notes: This table shows regression discontinuity estimates of changes in spending and business revenue around the date of stimulus payments on April 15, 2020. Panel A shows estimated effects of stimulus payments on consumer spending. To construct the estimates, we first express consumer spending on each day as a percentage change relative to mean daily consumer spending over the period January 4-31 in the corresponding calendar year. We then residualize these daily percentage changes with respect to day of week and first day of the month fixed effects, which we estimate using data from January 1, 2019, to May 10, 2019. We then compute OLS regressions of the residualized outcome variable on an indicator variable for the date being on or after April 15 2020, using a linear control function before and after April 15, and excluding the partially treated date of April 14. The first row shows the coefficient on the indicator variable for the date being on or after April 15, which we refer to as the RD effect of stimulus; standard errors are reported in parentheses. The dependent variable is scaled as a percentage change from January so that, for example, the first row of Column (1) indicates that stimulus payments increased consumer spending by 25.15 percentage points in bottom income quartile ZIP codes relative to the January 2020 level of spending. In columns (1) and (2), we compute daily changes in spending restricted to cardholders in ZIP codes in the bottom quartile of the distribution of ZIP code median household income (based on data from the 2014-2018 ACS). Columns (3) and (4) replicate columns (1) and (2), computing daily changes in spending restricted to cardholders living in the top income quartile of ZIP codes. The coefficient and standard error in columns (1) and (3) of Panel A correspond to the specifications displayed in Figures 13b and 13c. Panel B shows regression discontinuity estimates for the effect of stimulus payments on small business revenue using data from Womply. We first express small business revenue on each day relative to mean daily small business revenue over the period January 4-31 of the corresponding year. We then residualize daily changes in small business revenue as in Panel A, and compute OLS regressions as in Panel A. Columns (1) and (2) restrict to ZIP codes in the bottom quartile of the distribution of ZIP code median rent for a two bedroom apartment (based on data from the 2014-2018 ACS). Columns (3) and (4) restrict to businesses in the top rent quartile ZIP codes. The coefficient and standard error in columns (1) and (3) of Panel B correspond to the specifications displayed in Figures 14a and 14b. In both panels, columns (1) and (3) include all of April 2020 in the regression specification, while columns (2) and (4) restrict to a narrower bandwidth, within one week on either side of the stimulus payment date. Data sources: Panel A: Affinity Solutions; Panel B: Womply.

Pages 70 of 4078345.pdf (109 pages) in LongDocURL

Question: What is the regression discontinuity (RD) effect of stimulus payments on consumer spending in bottom income quartile ZIP codes over the period April 1-April 30 (Table 4, Panel A, Column 1)?

Response:

<think>

This is a precise data extraction question. I need to find the value at the intersection of a specific row and column in Table 4. First, I'll deconstruct the question. The key components are: "regression discontinuity (RD) effect," "stimulus payments," "consumer spending," "bottom income quartile ZIP codes," and "Table 4, Panel A, Column 1." Next, I'll narrate my search. I will navigate to Table 4, which is titled "Causal Effect of Stimulus Payments on Spending and Small Business Revenue: Regression Discontinuity Estimates." The question specifies "Panel A: Impact of Stimulus Payments on Consumer Spending," so I will focus on that panel. Now, I'll demonstrate precision. Within Panel A, I need to find the column corresponding to "Bottom Income Quartile ZIP Codes" and the sub-column "(1)". Then, I must locate the row labeled "RD Effect of Stimulus:". The value at the exact intersection of this row and column is "25.15".

</think>

<answer>

25.15

</answer>

Figure 12: An academic table with a complex, hierarchical structure (Panels and multi-level columns). Precise extraction requires careful navigation of this structure.

1296
1297

A.9.4 EXAMPLE 4: MULTI-STEP CALCULATION WITH PRIOR KNOWLEDGE

1298
1299
1300
1301

This example demonstrates the model's ability to solve complex questions that require not only precise data extraction but also the application of prior knowledge, such as a specific mathematical formula. The CoR process shows how the model formulates a calculation plan, extracts the necessary data points, and then executes the multi-step reasoning to arrive at the final answer.

1302
1303

Question: *"What was the percentage change in the Maltese lira against the euro between the average for Q4 2004 and the average for Q4 2003?"*

1304
1305
1306**Generated CoR Trace:**1307
1308
1309
1310

[Task Planning] This is a multi-step calculation question. My plan is: 1. Find the exchange rates for the Maltese lira against the euro for Q4 2004 and Q4 2003. 2. Apply the percentage change formula: $((\text{New Value} - \text{Old Value}) / \text{Old Value}) * 100$.

1311
1312
1313

[Phased & Focused Search] I have located "Table 5.3 MALTESE LIRA EXCHANGE RATES...". I need to extract values from the 'EUR/MTL' column for the rows 'Average for Q4 2004' and 'Average for Q4 2003'.

1314
1315

[Cross-modal Evidence Integration] The value for 'Average for Q4 2004' is 2.3181. The value for 'Average for Q4 2003' is 2.3327.

1316
1317
1318
1319

[Grounded Reasoning & Verification] Now, I will perform the calculation based on my plan: $((2.3181 - 2.3327) / 2.3327) * 100$. This equals $(-0.0146 / 2.3327) * 100$, which is approximately -0.626%. Rounding to one decimal place gives -0.6%. The calculation is verified.

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Final Answer: The percentage change was **-0.6%**.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

2003, net direct investment inflows dropped by Lm52.4 million to Lm39.9 million. This essentially reflected a smaller amount of inter-company transactions, which include trade credits and loans between parents and subsidiaries. Moreover, net inflows of equity capital, which had been boosted by heavy investment in one bank in the fourth quarter of 2003, also declined. These developments outweighed a rise in earnings retained by foreign-owned firms operating in Malta. Net flows related to financial derivatives, which record instruments including options, futures and swaps, also turned negative.

Conversely, net portfolio outflows dropped sharply, from Lm104.5 million to Lm17.9 million. Although the banking sector continued to invest

The Maltese lira

During the fourth quarter of 2004, the Maltese lira continued to depreciate against the euro, shedding 1.3% (see Table 5.3). On the other hand, the lira maintained its appreciation against the US dollar, gaining 8.5% as a result of the continuous retreat of the dollar on international foreign exchange markets. The lira also continued to strengthen against sterling and the Japanese yen, appreciating by 1.5% and 0.7%, respectively. Throughout the first quarter of 2005, counter to the previous trend, the lira rose marginally against the euro and depreciated against the dollar (see Chart 5.2). At the same time, the lira rose further against the yen, while it fell against sterling.

Table 5.3
MALTESE LIRA EXCHANGE RATES AGAINST SELECTED CURRENCIES

Period	EUR/MTL	USD/MTL	GBP/MTL	JPY/MTL
Average for Q4 2004	2.3181	3.0053	1.6114	317.8
Average for Q4 2003	2.3327	2.7747	1.6269	302.0
% change	-0.6	8.3	-1.0	5.2
Closing rate on 31.12.2004	2.3023	3.1393	1.6252	321.7
Closing rate on 30.09.2004	2.3315	2.8921	1.6012	319.6
% change	-1.3	8.5	1.5	0.7

46

Central Bank of Malta Quarterly Review 2005:1

Pages 46 of 4064830.pdf (133 pages) in LongDocURL

Question: What was the percentage change in the Maltese lira against the euro between the average for Q4 2004 and the average for Q4 2003?

Response:

<think>
 This is a multi-step calculation question. First, I need to deconstruct it. I need to find the exchange rate for the Maltese lira against the euro for two periods: **Q4 2004** and **Q4 2003**. Second, I need to calculate the percentage change using the formula: $((\text{New Value} - \text{Old Value}) / \text{Old Value}) * 100$. I'll search for a table containing exchange rates. I've located "Table 5.3 MALTESE LIRA EXCHANGE RATES AGAINST SELECTED CURRENCIES". I need to be precise and extract the values from the 'EUR/MTL' column. For the 'Average for Q4 2004' row, the value is **2.3181**. For the 'Average for Q4 2003' row, the value is **2.3327**. Now I'll perform the calculation: $((2.3181 - 2.3327) / 2.3327) * 100$. This simplifies to $(-0.0146 / 2.3327) * 100$, which equals **-0.6%**. The answer should be rounded to one decimal place.

</think>

<answer>

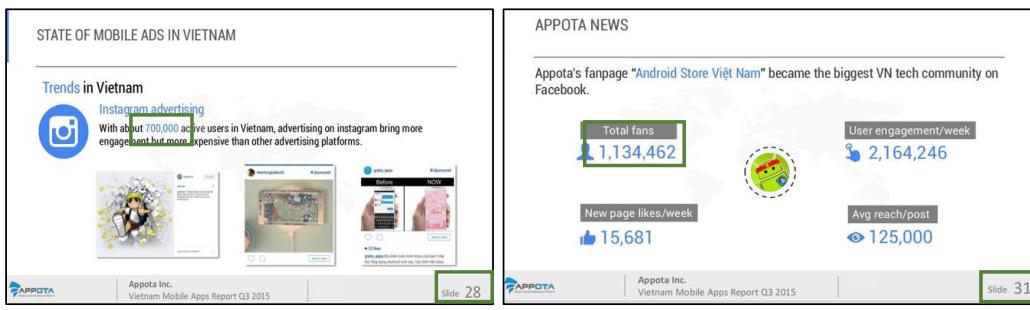
-0.6%

</answer>

Figure 13: A financial data table listing currency exchange rates. Answering questions based on this table requires finding multiple values and performing calculations.

1404 A.9.5 EXAMPLE 5: CROSS-PAGE EVIDENCE SYNTHESIS FROM HETEROGENEOUS LAYOUTS
1405

1406 This case demonstrates a crucial capability for real-world document analysis: synthesizing information scattered across disparate, non-consecutive pages with heterogeneous layouts, a common
1407 feature of slide decks and reports. The model must independently locate two pieces of evidence
1408 from visually distinct contexts and then perform a comparison.
1409



1410 Pages 25, 31 of reportq32015-151009093138-lva1-app6891_95.pdf (34pages) in MMLongBench-Doc
1411

1412 **Question: As of Q3 2015, are there more active Instagram users in Vietnam, or are there
1413 more fans for Appota's fan page? Directly answer 'Instagram' or 'Appota'.**

1414 **Response:**

1415 <think>

1416 The user is asking a direct comparison question about the number of users for two entities:
1417 "Instagram" and "Appota's fan page".

1418 The document is a report titled "VIETNAM MOBILE APPS REPORT Q3 2015". This title is
1419 present on Slide 1, which is the **first page** of the document. This confirms the context and
1420 time frame of the report.

1421 The question asks for a comparison as of Q3 2015. The document's title explicitly states this
1422 timeframe. I will search the document for the term "Instagram". **On Slide 28**, under the
1423 section "Trends in Vietnam", there is a sub-section "Instagram advertising". The text within
1424 this sub-section provides a specific figure: "With about 700,000 active users in Vietnam...".
1425 This directly answers the part of the question concerning Instagram users. Next, I will search
1426 the document for information related to "Appota's fan page". **On Slide 31**, under the
1427 section "APPOTA NEWS", there is a sub-section that discusses the fan page. The text reads:
1428 "Appota's fanpage "Android Store Việt Nam" became the biggest VN tech community on
1429 Facebook." This identifies the fan page. The slide also contains a table with the heading
1430 "Total fans" and the value "1,134,462". This is the number of total fans for the fan page.
1431

1432 Now, I will compare the two figures found in the document:

1433 *Instagram users: 700,000 (Slide 28)

1434 *Appota's fan page total fans: 1,134,462 (Slide 31)

1435 Comparing these two numbers, 1,134,462 is greater than 700,000. Therefore, the number
1436 of fans for Appota's fan page is greater than the number of active Instagram users in
1437 Vietnam as of Q3 2015. The question asks me to directly answer 'Instagram' or 'Appota'.
1438 Based on my analysis, the correct response is 'Appota'.

1439 </think>

1440 <answer>

1441 **Appota**

1442 </answer>

1443 Figure 14: Evidence scattered across two different pages (Slide 28 and Slide 31) from a presentation.
1444 The pages have completely different visual styles, requiring the model to perform robust, context-
1445 independent searches.
1446

1447 **Question: "As of Q3 2015, are there more active Instagram users in Vietnam, or are there more
1448 fans for Appota's fan page? Directly answer 'Instagram' or 'Appota'."**

1458
1459**Generated CoR Trace:**1460
1461
1462
1463

[Task Planning] This is a comparison question requiring two data points from different parts of the document. My plan is: 1. Search for the number of "Instagram users in Vietnam". 2. Search for the number of fans for "Appota's fan page". 3. Compare the two numbers and provide a direct answer as requested.

1464
1465
1466
1467

[Phased & Focused Search] I am searching the document for "Instagram". On Slide 28, I found the text "With about 700,000 active users in Vietnam...". Next, I am searching for "Appota's fan page". On Slide 31, I found a table with "Total fans" and the value "1,134,462".

1468
1469

[Cross-modal Evidence Integration] - Evidence 1 (Slide 28): Instagram active users = 700,000. - Evidence 2 (Slide 31): Appota's fan page fans = 1,134,462.

1470
1471
1472
1473

[Grounded Reasoning & Verification] Now I will compare the two values. 1,134,462 is greater than 700,000. Therefore, Appota has more fans. The question requires a direct answer of 'Instagram' or 'Appota'. Based on my reasoning, the correct answer is 'Appota'.

1474
1475**Final Answer: Appota**1476
1477
1478
14791480
14811482
14831484
14851486
14871488
14891490
14911492
14931494
14951496
14971498
14991500
15011502
15031504
15051506
15071508
15091510
1511

1566 **[Task Planning]** The user is asking for an app that meets two criteria: it is in the
 1567 Android top 10, but not in the iOS top 10. This requires a set difference operation.
 1568 My plan is to: 1. Locate and extract the list of top 10 Android apps. 2. Locate and
 1569 extract the list of top 10 iOS apps. 3. Compare the two lists to find the app present
 1570 only in the Android list.

1571 **[Phased & Focused Search]** I have located the "TOP VIETNAMESE iOS APPS
 1572 ON APPOTA PLATFORM" chart on page 29. On page 30, I found the "TOP
 1573 VIETNAMESE ANDROID APPS ON APPOTA PLATFORM" chart. The rank-
 1574 ings are presented visually, from top to bottom.

1575 **[Cross-modal Evidence Integration]** The model extracts the two lists of app
 1576 names from the charts. The first list contains the top 10 iOS apps, and the second
 1577 list contains the top 10 Android apps, including one app not present in the first
 1578 list.

1579 **[Grounded Reasoning & Verification]** Now I will perform the set difference
 1580 operation: (Android List) - (iOS List). By systematically comparing the two ex-
 1581 tracted lists, I have determined that a specific browser app is present in the Android
 1582 list but is absent from the iOS list. All other apps in the Android top 10 are also
 1583 present in the iOS list. Therefore, this is the unique app that satisfies the user's
 1584 condition.

1585 **Final Answer: UC Browser Tieng Viet**

1587 A.9.7 EXAMPLE 7: JOINT REASONING OVER TEXT AND UNCAPTIONED IMAGES

1588 This example demonstrates the model's ability to perform joint reasoning by synthesizing informa-
 1589 tion from both surrounding text and an uncaptioned, illustrative image. To answer the question,
 1590 the model must first locate a relevant text passage and then use the context provided by that text to
 1591 correctly interpret the visual information in the adjacent figure.

1593 **Question:** *"What is the color on the watch that shows the aerobic zone?"*

1595 **Generated CoR Trace:**

1596 **[Task Planning]** The user is asking for the color corresponding to the "aerobic
 1597 zone". My plan is to search the document for the term "aerobic zone" and analyze
 1598 the surrounding text and any associated images for color information.

1599 **[Phased & Focused Search]** I have searched the document and located the term
 1600 "aerobic" on page 19, within section "3.1 Monitoring your heart rate". The text
 1601 nearby mentions "Your watch will display different colors when your heart rate
 1602 reaches corresponding zones..." and points to an example figure on the same page
 1603 showing an outdoor run.

1604 **[Cross-modal Evidence Integration] - Textual Evidence (Page 19):** Confirms
 1605 that different zones are represented by different colors and directs attention to the
 1606 figure. - **Visual Evidence (Page 19):** The figure, though uncaptioned, shows a
 1607 watch interface. I can visually identify a section highlighted in yellow with the
 1608 text label "Aerobic" directly next to it.

1609 **[Grounded Reasoning & Verification]** By combining the textual clue (zones
 1610 have colors) with the direct visual evidence (the label "Aerobic" is next to the
 1611 color yellow), I can confidently conclude that the color for the aerobic zone is
 1612 yellow. The reasoning is grounded in this direct text-to-image link.

1613 **Final Answer: Yellow**

1615 A.9.8 EXAMPLE 8: LINGUISTIC AND VISUAL REASONING ON SCANNED ARCHIVES

1616 This example showcases the model's robustness and deep reasoning capabilities when dealing with
 1617 low-quality, historical documents. The task requires accurate localization within the document,
 1618 advanced OCR on degraded, archaic fonts, and a nuanced linguistic understanding to differentiate
 1619 between singular and plural nouns in the figure captions to arrive at a correct count.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647

Setting the heart rate zone calculation method

The heart rate interval can be calculated based on the maximum heart rate percentage or HRR percentage. To set the heart rate interval calculation method, open the Huawei Health app, go to **Me > Settings > Heart rate limit and zones** and set **Calculation method** to either **Maximum heart rate percentage** or **HRR percentage**.

NOTE

- If you select **Maximum heart rate percentage** as the calculation method, the heart rate zone for different types of workout activities (Extreme, Anaerobic, Aerobic, Fat-burning, and Warm-up) is calculated based on your maximum heart rate ("220 - your age" by default). Heart rate = Maximum heart rate x Maximum heart rate percentage.
- If you select **HRR percentage** as the calculation method, the heart rate interval for different types of workout activities (Advanced anaerobic, Basic anaerobic, Lactic acid, Advanced aerobic, and Basic aerobic) is calculated based on your heart rate reserve (HRmax - HRrest). Heart rate = Heart rate reserve x Heart rate reserve percentage + Resting heart rate.
- The heart rate zone calculation methods while you are running are not affected by the settings in the Huawei Health app. For most running courses, **HRR percentage** is selected by default.

Your watch will display different colors when your heart rate reaches corresponding zones during a workout. The following figure shows how heart rate is displayed during an outdoor run.

Measuring your heart rate during a workout

- After you start a workout, swipe on the watch screen to check your real-time heart rate and heart rate zone.
- After completing your workout, you can check your average heart rate, maximum heart rate, and heart rate zone on the workout results screen.

Issue 01 (2020-09-07)

Copyright © Huawei Technologies Co., Ltd.

19

Pages 23 of honor_watch_gs_pro.pdf (42pages) in MMLongBench-Doc

Question: What is the color on the watch that shows the aerobic zone?

Response:

<think>

The user is asking for the specific color of the "aerobic zone" on the watch. I will search the entire document for the term "aerobic zone".

On page 19, under the section "3.1 Monitoring your heart rate", there is a sub-section titled "Setting the heart rate zone calculation method". Within this section, the text states: "Your watch will display different colors when your heart rate reaches corresponding zones during a workout."

It then provides an example image: "The following figure shows how heart rate is displayed during an outdoor run." This image is on the same page (19). The image explicitly labels the "Aerobic" zone with a yellow color. The document provides a direct visual example of the color associated with the aerobic zone. Therefore, the information is present and can be extracted directly from the image. The question asks for the color, which is a factual detail.

The document provides this detail through its figures and text. The user's question is answerable.n9. The answer is "Yellow"

</think>

<answer>

Yellow

</answer>

1667
1668
1669
1670
1671
1672
1673

Figure 16: An excerpt from a user manual on page 19. The answer is not in the text alone but requires linking the description of heart rate zones to the colors shown in the unlabeled example image.

Question: "Among figure 1-4, how many figures show more than one breccia gash?"

1674
1675**Generated CoR Trace:**1676
1677
1678
1679

[Task Planning] The user wants me to count how many of the first four figures depict more than one "breccia gash". My plan is to locate the specified figures, carefully read the caption for each one, and use linguistic cues (singular vs. plural) to determine the count for each figure before summing the result.

1680
1681
1682

[Phased & Focused Search] I have located the relevant content on page 3 of the document. This page contains four diagrams labeled Fig. 1, Fig. 2, Fig. 3, and Fig. 4, each with a descriptive caption below it.

1683
1684
1685
1686
1687
1688
1689

[Cross-modal Evidence Integration] I will analyze each figure's caption: - **Fig. 1:** The caption reads "Diagram of Breccia-Gash..." (singular). This figure shows one gash. - **Fig. 2:** The caption reads "Diagram of Breccia Gashes..." (plural). This figure shows more than one gash. - **Fig. 3:** The caption reads "Diagram of narrow Breccia Gashes" (plural). This figure shows more than one gash. - **Fig. 4:** The caption reads "Diagram of Breccia-Gash..." (singular). This figure shows one gash.

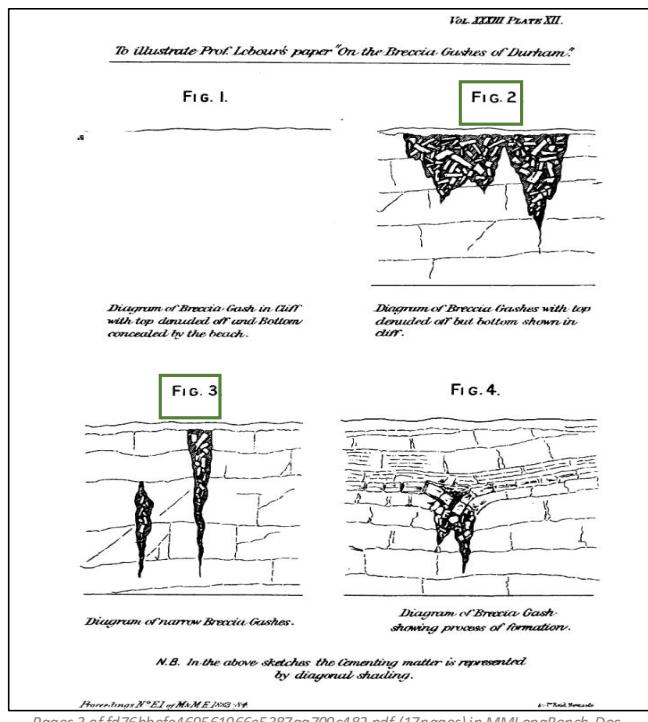
1690
1691
1692
1693
1694

[Grounded Reasoning & Verification] Based on the linguistic analysis of the captions, Figures 2 and 3 show "more than one breccia gash". Figures 1 and 4 show only one. Therefore, the total count of figures showing more than one gash is two. The reasoning is grounded in the grammatical distinction found in the scanned text.

1695

Final Answer: 21696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750



1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774

Question: Among figure 1-4, how many figures show more than one breccia gash?

Response:

<think>

The user's question asks to count the figures that depict more than one breccia gash among figures 1-4. I will examine the provided document images to locate the figures.

Page 3 contains the figures. The caption for this page reads: "Vol. XXXIII PLATE XII. To illustrate Prof. Lebour's paper 'On the Breccia Gashes of Durham'." The figures are numbered as follows: * Fig. 1: "Diagram of Breccia Gash in CLIP with top denuded off and Bottom concealed by the beach." * Fig. 2: "Diagram of Breccia Gashes with top denuded off but bottom shown in cliff." * Fig. 3: "Diagram of narrow Breccia Gashes." * Fig. 4: "Diagram of Breccia Gash showing process of formation."

The question specifies "figure 1-4". This means I will analyze figures 1, 2, 3, and 4. Now, I will examine each figure to determine if it shows more than one breccia gash. * Figure 1: This figure shows a single diagram of a "Breccia Gash". * Figure 2: This figure shows a diagram of "Breccia Gashes". The word "Gashes" implies multiple gashes are depicted. The caption explicitly says "...but bottom shown in cliff." This confirms it shows more than one gash. * Figure 3: This figure shows diagrams of "narrow Breccia Gashes". The word "narrow" does not change the fact that they are multiple gashes. The caption explicitly says "...of narrow Breccia Gashes." This confirms it shows more than one gash. * Figure 4: This figure shows a diagram of a "Breccia Gash".

It does not show more than one gash. Based on this analysis, figures 2 and 3 show more than one breccia gash. The question asks for the total count. Therefore, the answer is 2.

</think>

<answer>

2

</answer>

1775
1776
1777
1778
1779
1780
1781

Figure 17: A low-quality scan from a historical scientific paper, identified by the model as page 3. To answer the question, the model must accurately read the captions for Figures 1-4 and interpret the linguistic cues within them.

1782
1783

A.9.9 EXAMPLE 9: MULTI-STEP REASONING ACROSS HETEROGENEOUS PAGES

1784
1785
1786
1787

This case study demonstrates the model’s ability to solve complex, multi-step questions by synthesizing clues from disparate sections of a document. The process requires decomposing the initial query, locating evidence across heterogeneous page types (a table and a chart), interpreting graphical data, and performing a final calculation.

1788
1789
1790

Question: *"In the year in which Palestine was added to the survey, respondents who believe traditional values are outdated increased by how many percentage points compared to 2011?"*

1791
1792**Generated CoR Trace:**1793
1794
1795
1796

[Task Planning] The user’s question requires a multi-step process. First, I need to identify the year Palestine was added to the survey. Second, I must find the percentage point data for that year and for 2011. Finally, I will calculate the difference.

1797
1798
1799
1800
1801

[Phased & Focused Search] I am searching for "Palestine". On page 6, a table lists "Palestine" under the heading "New in 2014". This establishes the target year. Next, I am locating the data on values. On page 10, a bar chart provides the percentage of respondents who believe "Traditional values are outdated" for various years.

1802
1803
1804
1805

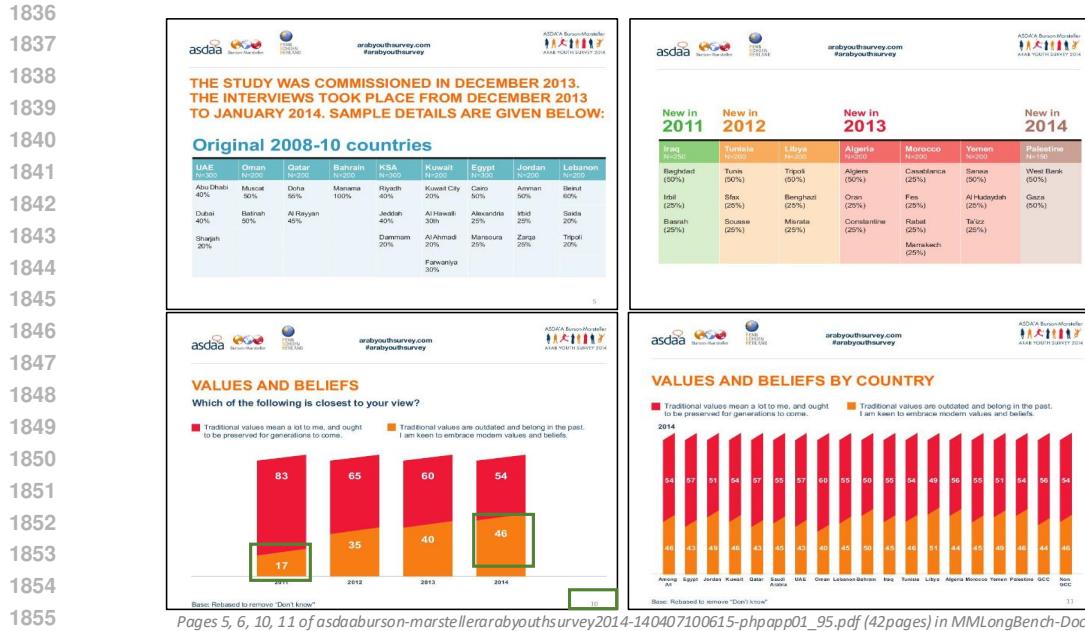
[Cross-modal Evidence Integration] - **Evidence 1 (from Table, Page 6):** The year Palestine was added is 2014. - **Evidence 2 (from Chart, Page 10):** The value for 2011 is 17%. - **Evidence 3 (from Chart, Page 10):** The value for 2014 is 46%.

1806
1807
1808
1809
1810

[Grounded Reasoning & Verification] The question asks for the increase in percentage points. The calculation is a simple subtraction: 46% (the value for 2014) minus 17% (the value for 2011). The result is 29 percentage points. The reasoning is verified, as I correctly linked the country to the year and then used that year to extract the correct data for the final calculation.

1811

Final Answer: 291812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835



Pages 5, 6, 10, 11 of asdaaburson-marstellerarabyouthsurvey2014-140407100615-pphapp01_95.pdf (42pages) in MMLongBench-Doc

Question: In the year in which Palestine was added to the survey, respondents who believe traditional values are outdated increased by how many percentage points compared to 2011?

Response:

<think>

Identify the Year of Addition: The question asks about the year in which "Palestine was added to the survey". I will search the document for this information. .

On page 6, there is a table that lists countries "New in 2011", "New in 2012", etc. This table explicitly categorizes countries based on their inclusion in the survey. In the last column of this table, under the heading "New in 2014", the country listed is "Palestine". This directly answers the first part of the question: the year is 2014. Locate Data for 2011 and 2014: The question also requires the percentage point change between 2011 and 2014. I will examine the "VALUES AND BELIEFS" section, which contains data for these years. On page 10, the chart shows the percentage of respondents who believe "Traditional values are outdated and belong in the past" for each year. For the year 2011, the value is 17%. For the year 2014, the value is 46%. Calculate the Difference: The question asks for the increase in percentage points. This is a simple subtraction: 46% (2014 value) - 17% (2011 value). The calculation is $46 - 17 = 29$.

Verify Context: To ensure the answer is correct, I will verify the context. The table on page 6 confirms that "Palestine" was a new country in 2014. The "VALUES AND BELIEFS BY COUNTRY" chart on page 11 shows the percentage of respondents in "Among All" who hold the "Traditional values are outdated" view. The data for "Among All" is the sum of the percentages from all countries. The data for "Among All" in 2011 is 17% (17% of the total respondents held this view), and the data for "Among All" in 2014 is 46% (46% of the total respondents held this view). The difference between 46% and 17% is indeed 29 percentage points. .

Final Check: The question asks for the increase in percentage points. The calculation is $46 - 17 = 29$. The document provides the necessary data points (17% for 2011 and 46% for 2014) and the table on page 6 confirms that "Palestine" was a new country in 2014. Therefore, the calculation is correct and the answer is 29.

</think>

<answer>

29

</answer>

Figure 18: Evidence required to solve the query is scattered across two different pages. The model must first use the table on page 6 to identify the target year (2014), and then use that information to extract relevant data from the bar chart on 10.

1890 A.9.10 EXAMPLE 10: ROBUSTNESS ON A HIGH-DIFFICULTY, ERROR-PRONE TASK
1891

1892 This case study demonstrates the model’s robustness and high precision on a complex, multi-
1893 constraint query. The inherent difficulty of this task is underscored by the fact that the benchmark’s
1894 own annotations for the evidence pages were found to be incorrect, likely due to the challenge of
1895 pinpointing specific data across multiple, similarly formatted tables. Despite this, our model suc-
1896 cessfully navigated the document and independently located the correct evidence on pages 15 and
1897 16. This success on an error-prone task highlights the model’s superior ability to deconstruct com-
1898 plex questions and maintain reasoning accuracy, a key advantage of the CoR framework.
1899

1900 **Question:** *“What is the percentage gap between the percentage of the male 65+ age group who use
1901 the internet or email, and the percentage of that group who have broadband at home, according to
1902 the Pew Research Center’s Internet Project July 18-September 30, 2013 tracking survey?”*

1903 **Generated CoR Trace:**

1904 [Task Planning] The user is asking for a “percentage gap”, which implies sub-
1905 traction. I need to find two specific percentages for the “male 65+” group from a
1906 specific survey: their internet usage and their broadband adoption rate. My plan
1907 is to locate both values and then calculate the difference.

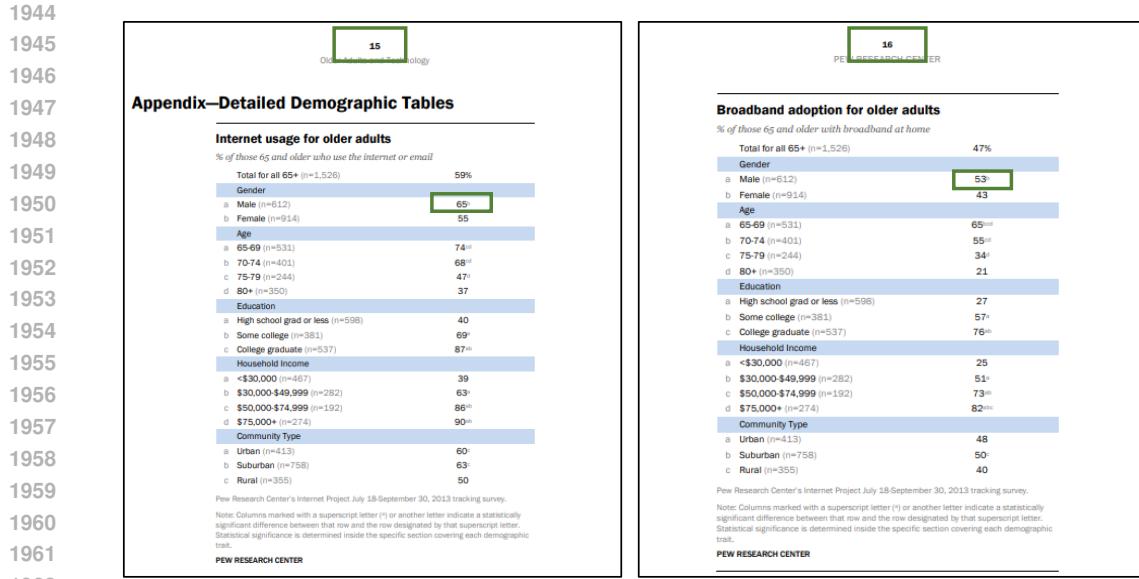
1908 [Phased & Focused Search] I am searching for tables related to the “Pew Re-
1909 search Center... 2013 tracking survey”. I have located a table for “Internet us-
1910 age for older adults” on page 15, and another for “Broadband adoption for older
1911 adults” on page 16. In both tables, I will find the row for “Male”.

1912 [Cross-modal Evidence Integration] - **Evidence 1 (from Table, Page 15):** In
1913 the “Internet usage” table, the value for “Male (n=612)” is 65(%). - **Evidence 2**
1914 **(from Table, Page 16):** In the “Broadband adoption” table, the value for “Male
1915 (n=612)” is 53(%).

1916 [Grounded Reasoning & Verification] The task is to calculate the percentage
1917 gap. The calculation is 65% (internet usage) - 53% (broadband adoption). The
1918 result is 12 percentage points. The model’s ability to independently locate the
1919 correct evidence pages (15 and 16) confirms its robust and accurate understanding
1920 of the document’s content and structure.

1921 **Final Answer: 12**

1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943



1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Question: What is the percentage gap between male 65+ age group who use internet and broadband at home in the Pew Research Center's Internet Project July 18-September 30, 2013 tracking survey? Please write the answer into float format.

Response:

<think>

The user is asking for a specific calculation: the percentage gap between two groups ("male 65+ age group") and two metrics ("internet" and "broadband at home") from a specific survey ("Pew Research Center's Internet Project July 18-September 30, 2013 tracking survey"). I will search the document for the keywords "male", "65+", "internet", "broadband", and the specified survey date range.

On page 15, under the table titled "Internet usage for older adults", I find the row "Gender" and its sub-row "Male (n=612)". The value in this cell is "65a". This represents the percentage of male seniors who use the internet or email. On page 16, under the table titled "Broadband adoption for older adults", I find the row "Gender" and its sub-row "Male (n=612)". The value in this cell is "53b". This represents the percentage of male seniors who have broadband at home. The question asks for the "percentage gap". This means I need to calculate the difference between these two percentages..

The calculation is: **65% (internet usage) - 53% (broadband at home) = 12%**. The question also specifies that the answer should be written in "float format". The number 12 is already a float. The final check is the context. The tables are explicitly for the "Pew Research Center's Internet Project July 18-September 30, 2013 tracking survey".

The text on page 15 and page 16 confirms this survey period. The calculated value directly answers the question.

</think>

<answer>

12

</answer>

1992
1993
1994
1995
1996
1997

Figure 19: Evidence for the query is split across two tables on consecutive pages (15 and 16). The model must correctly parse the complex query to locate the precise cells corresponding to "Male 65+" for both "internet usage" and "broadband adoption".

1998
1999

A.9.11 EXAMPLE 11: IDENTIFYING AND REJECTING HALLUCINATION TRAPS

2000
2001
2002
2003
2004
2005

This final, crucial example demonstrates the model's advanced ability to perform meta-reasoning and resist "hallucination traps"—questions that are based on a false premise about the document's content. Instead of attempting to generate a factually incorrect answer, the model correctly identifies the discrepancy by performing a comprehensive document search, locating the most relevant figures, and concluding that the question's core subject ("BERT model") is not present. This capability is vital for building trustworthy and reliable document analysis systems.

2006
2007

Question: *"In the pipeline diagram of the BERT model, which type of organism is used as the input case?"*

2008

2009
2010
Generated CoR Trace:2011
2012
2013
2014
2015

[Task Planning] The user is asking about an input case in the "pipeline diagram of the BERT model". My plan is to first search the entire document for any mention of a "BERT model" pipeline diagram. If found, I will analyze it. If not found, I must verify if the document discusses BERT at all to determine if the question is answerable.

2016
2017
2018

[Phased & Focused Search] A global search for "BERT" yields no results. However, to be thorough, I searched for "pipeline diagram". This led me to two key figures: Fig. 1 on page 2 and Fig. 2 on page 6.

2019
2020
2021

[Cross-modal Evidence Integration] - Fig. 1 (Page 2): The caption discusses the motivation for "CLIP and MLLM" and the proposed "RAR" model. No mention of BERT. - **Fig. 2 (Page 6):** The caption explicitly describes the "Pipeline of RAR". It details a multimodal retriever and refiner. No mention of BERT.

2022
2023
2024
2025
2026

[Grounded Reasoning & Verification] My comprehensive search confirms that the document does not contain a pipeline diagram for the BERT model; the diagrams present are for different models (RAR, MLLM). The user's question is based on a false premise. Therefore, the question is unanswerable from the given document. Attempting to answer it would lead to hallucination.

2027
2028
2029

Final Answer: The provided document does not contain a pipeline diagram for the BERT model.

2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061

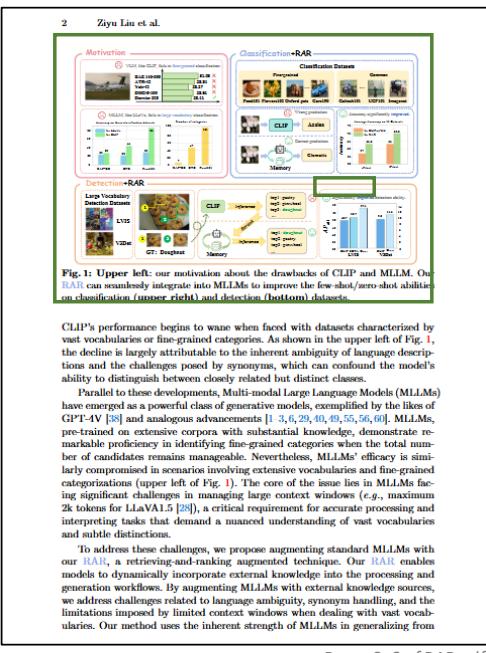


Fig. 1: Upper left: our motivation about the drawbacks of CLIP and MLLM. Our RAR can seamlessly integrate into MLLMs to improve the few-shot/zero-shot abilities on classification (upper right) and detection (bottom) datasets.

2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072

CLIP's performance begins to wane when faced with datasets characterized by vast vocabularies or fine-grained categories. As shown in the upper left of Fig. 1, the decline is largely attributable to the inherent ambiguity of language descriptions and the challenges posed by synonyms, which can confound the model's ability to correctly identify the target object based on the provided context.

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Part and to these developments, Multi-modal Large Language Models (MLLMs) have emerged as a powerful class of generative models, exemplified by the likes of GPT-4V [28] and analogous advancements [1, 3, 6, 20, 40, 49, 55, 56, 60]. MLLMs, pre-trained on extensive corpora with substantial knowledge, demonstrate remarkable proficiency in identifying fine-grained categories when the total number of candidates remains manageable. Nevertheless, MLLMs' efficacy is similarly compromised in scenarios involving extensive vocabularies and fine-grained categorizations (upper left of Fig. 1). The core of the issue lies in MLLMs facing significant challenges in managing large context windows (e.g., maximum 2k tokens for LLaVA1.5 [28]), a critical requirement for accurate processing and interpreting tasks that demand a nuanced understanding of vast vocabularies and subtle distinctions.

To address these challenges, we propose integrating standard MLLMs with our RAR, a retrieving-and-ranking augmented technique. Our RAR enables models to leverage external knowledge into the pre-training and downstream generation workflows. By augmenting MLLMs with external knowledge sources, we address challenges related to language ambiguity, synonym handling, and the limitations imposed by limited context windows when dealing with vast vocabularies. Our method uses the inherent strength of MLLMs in generalizing from

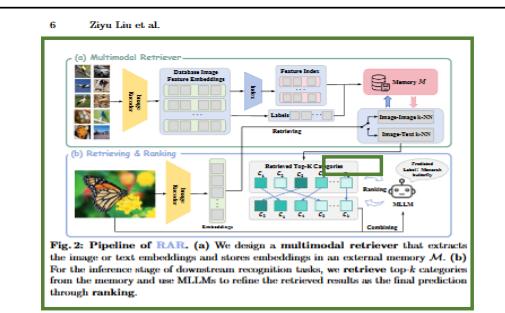


Fig. 2: Pipeline of RAR. (a) We design a multimodal retriever that extracts the image or text embeddings and stores embeddings in an external memory M . (b) For the inference stage of downstream recognition tasks, we retrieve top- k categories from the memory and use MLLMs to refine the retrieved results as the final prediction through ranking.

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

its efficiency markedly diminishes as the dataset escalates to the magnitude of millions of embeddings. To enhance the speed of retrieval, we implement an index system that uses the HNSW (Hierarchical Navigable Small World) algorithm [35]. The adoption of the HNSW methodology facilitates a significant dimensionality reduction, thus minimizing the computation of a more condensed index. Specifically, vectors in a d space of dimension d are transformed into a reduced $\frac{d}{4}$ dimensional space; this reduction in dimensionality plays a pivotal role in enhancing the speed of the retrieval process.

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2073
2074
2075
2076
2077
2078
2079
2080
2081

2106 A.10 CASE STUDY
21072108 A.10.1 CASE STUDY: NEGATION BLINDNESS VS. SYSTEMATIC VERIFICATION
21092110 This example highlights a common failure mode in complex query understanding: **negation blindness**.
2111 The question requires the model to identify an option that is *not* present in the text, a task that
2112 demands more than simple keyword matching.2113 A base model, lacking a structured reasoning plan, tends to exhibit this failure. It is driven by infor-
2114 mation retrieval, successfully locating a passage that confirms one of the options (D) and incorrectly
2115 presenting it as the answer, thereby failing to address the negative constraint of the query.2116 In contrast, our CoR model employs a **systematic verification strategy**. It correctly interprets the
2117 task as a process of elimination and methodically checks each option against the source document.
2118 This robust process allows it to ignore misleading positive matches and correctly identify the truly
2119 absent option.2120 Figure 21 provides a side-by-side comparison of the final outputs, visually demonstrating the base
2121 model’s failure and the success of our CoR-driven approach.
21222123 **Question:** *"Which of the following is NOT mentioned as a consideration for whaling-related CG
2124 operations?*2125 A. *Guidance for Cutters/Aviation, including D17 MMPA Guidance/D17INST/OPLAN/NEPA.*
2126 B. *The dangers of whaling, particularly its occurrence >40NM offshore villages during whaling
2127 season.*
2128 C. *The potential impact of commercial fishing vessels on whale populations.*
2129 D. *The potential impact of research vessels on whales, including the risk of diverting westward
2130 migration.*2131 *Choose the letter name in front of the right option from A, B, C, D."*
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

2160 A.10.2 CASE STUDY: FAILURE IN NUMERICAL AND COMPARATIVE REASONING
21612162 This case study demonstrates a failure in fine-grained numerical and comparative reasoning, a crit-
2163 ical task in document analysis. Answering the question requires not only locating the correct data
2164 but also accurately interpreting and comparing the values.2165 The base model successfully locates the correct evidence source (Figure 7) and even extracts the
2166 relevant numerical data for both low-wage (-17.7%) and high-wage (-16.9%) workers. However, it
2167 fails at the final, crucial reasoning step. It incorrectly concludes that a -16.9% decline is a more
2168 severe negative impact than a -17.7% decline, leading to a completely erroneous final answer.2169 This highlights a key advantage of our CoR model. Its explicit verification and reasoning steps
2170 would force a direct numerical comparison, correctly identifying that -17.7% represents a larger
2171 magnitude of decline. The stark difference in the models’ final outputs is illustrated in Figure 22.
21722173 **Question:** *“In terms of employment rates, who is more negatively impacted by ‘low-wage workers’*
2174 *vs ‘high-wage workers’?”*2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

2214 **B STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs)**
22152216 During the preparation of this manuscript, the Large Language Models (LLMs) Grok and Gemini
2217 were utilized to assist with the literature review, as well as for language polishing and grammatical
2218 correction to improve clarity and readability. It is important to state that the role of these models
2219 was strictly supportive; they were not involved in the core conceptualization, experimental design, or
2220 data analysis of this research. The authors completed all academic work independently and assume
2221 full responsibility for the final content, ensuring it adheres to all scholarly standards.
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321

Whaling: Agency Operational Issues

- Cutters/Aviation: Guidance includes –
 - D17 MMPA Guidance/D17INST/OPLAN/NEPA
 - AEWC Conflict Avoidance Agreement (CAA):
 - CG does not sign this document, but *abides* by these guidelines unless a valid need to do otherwise
 - Food Security vs. Vessel Ops/Research
 - > 40NM offshore villages during whaling season
 - Contact AEWCD or local Whaling Captain Associations
 - Do not operate in whaling zones during whaling season unless SAR or other necessity:
- Subsistence Hunting (Maritime/SAR Awareness):
 - Skin-covered boats in ice (Spring Harvest)
 - Skiffs/Open-Water Hunts (Fall Harvest)
 - Up to 40-60 Miles Offshore

29

Research Vessel Issues Before, During, & After

- Potential to "Divert" whales migrating westward
- Fall whale hunts – up to 50NM offshore/open water hunt
- Difference in "Research" vs. "Industry" Ops/MMPA
- AWSC working for long-term resolution of Research issues
- Annual "Arctic Research Matrix" Research Operations Schedule

Pages 29, 32 of 4034595.pdf (52 pages) in LongDocURL

Question: Which of the following is NOT mentioned as a consideration for whaling-related CG operations?

- A.Guidance for Cutters/Aviation, including D17 MMPA Guidance/D17INST/OPLAN/NEPA.
- B.The dangers of whaling, particularly its occurrence >40NM offshore villages during whaling season.
- C.The potential impact of commercial fishing vessels on whale populations.
- D.The potential impact of research vessels on whales, including the risk of diverting westward migration.

Choose the letter name in front of the right option from A, B, C, D.

Answer: "C"

Qwen2.5-VL ✗

After reviewing the document's section on "Whaling: Agency Operational Issues," the text confirms that the potential impact of research vessels on whales, including the risk of diverting westward migration, is a mentioned consideration for CG operations. So the answer is D.

Qwen2.5-VL-CoR-7B ✓

<think>

The user wants me to identify which of four options is *not* mentioned in the document. This requires me to verify the existence of each option and then report the one that is absent. First, I need to locate the relevant section. I'll search for keywords like \"whaling\" and \"CG operations\". I've found a section titled \"Whaling: Agency Operational Issues\". This seems like the most relevant place to find information about considerations for CG operations. Now, I will examine each of the four options presented in the question. Option A: \"Guidance for Cutters/Aviation, including D17 MMPA Guidance/D17INST/OPLAN/NEPA.\" This is explicitly listed under the \"Cutters/Aviation\" heading. Option B: \"The dangers of whaling...\". This is mentioned under the \"Subsistence Hunting (Maritime/SAR Awareness)\" heading. Option C: \"The potential impact of commercial fishing vessels on whale populations.\" I have searched the entire document, including the \"Whaling\" section, and there is no mention of commercial fishing vessels. Option D: \"The potential impact of research vessels on whales...\". This is mentioned under the \"Research Vessel Issues\" heading. Since option C is the only one that is not mentioned anywhere in the document, it is the correct answer.

</think>

<answer>

C

</answer>

Figure 21: A side-by-side comparison for a negation-based question. The Base Model incorrectly matches keywords for option D and outputs it as the answer. Our CoR model correctly identifies the unmentioned option C through its systematic verification process.

