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Abstract

AI-based molecule generation provides a promising approach to a large area of
biomedical sciences and engineering, such as antibody design, hydrolase engineer-
ing, or vaccine development. Because the molecules are governed by physical laws,
a key challenge is to incorporate prior information into the training procedure to
generate high-quality and realistic molecules. We propose a simple and novel ap-
proach to steer the training of diffusion-based generative models with physical and
statistics prior information. This is achieved by constructing physically informed
diffusion bridges, stochastic processes that guarantee to yield a given observation at
the fixed terminal time. We develop a Lyapunov function based method to construct
and determine bridges, and propose a number of proposals of informative prior
bridges for high-quality molecule generation. With comprehensive experiments,
we show that our method provides a powerful approach to the 3D generation task,
yielding molecule structures with better quality and stability scores.

1 Introduction

As exemplified by the success of AlphafoldV2 [16] in solving protein folding, deep learning tech-
niques have been creating new frontiers on molecular sciences [38]. In particular, the problem of
building deep generative models for molecule design has attracted increasing interest with a magnitude
of applications in physics, chemistry, and drug discovery [e.g., 1, 2, 19]. Recently, diffusion-based
generative model have been applied to molecule generation problems [6, 13] and obtain superior
performance. The idea of these methods is to corrupt the data with diffusion noise and learn a neural
diffusion model to revert the corruption process to generate meaningful data from noise.

A key challenge in deep generative models for molecule is to efficiently incorporate strong prior
information to reflect the physical and problem-dependent statistical properties of the problems at
hand. In fact, a recent fruitful line of research [8, 18, 29] have shown promising results by introducing
inductive bias into the design of model architectures to reflect physical constraints such as SE(3)
equivariance. In this work, we present a different paradigm of prior incorporation tailored to diffusion-
based generative models, and leverage it to yield substantial improvement in high-quality and stable
molecule generation. Our contributions are summarized as follows.

Prior Guided Learning of Diffusion Models. We introduce a simple and flexible framework for
injecting informative problem-dependent prior and physical information when learning diffusion-
based generative models. The idea is to elicit and inject prior information regarding how the diffusion
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process should look like for generating each given data point, and train the neural diffusion model to
imitate the prior processes. The prior information is presented in the form of diffusion bridges which
are diffusion processes that are guaranteed to generate each data point at the fixed terminal time. We
provide a general Lyapunov approach for constructing and determining bridges and leverage it to
develop a way to systematically incorporate prior information into bridge processes.

Physics-informed Molecule Generation. We apply our method to molecule generation. We propose
a number of energy functions for incorporating physical and statistical prior information. Compared
with existing physics-informed molecule generation methods [e.g., 6, 11, 21, 11], our method modifies
the training process, rather than imposing constraints on the model architecture. Experiments show
that our method achieves current state-of-the-art generation quality and stability on multiple test
benchmarks of molecule generation.

2 Related works

Diffuse Bridge Process. Diffusion-based generative models [12, 32, 33, 36] have achieved great
successes in various AI generation tasks recently; these methods leverage a time reversion technique
and can be viewed as learning variants auto-encoders with diffusion processes as encoders and
decoders. Schrodinger bridges [4, 6, 37] have also been proposed for learning diffusion generative
models that guarantee to output desirable outputs in a finite time interval, but these methods involve
iterative proportional fittings and are computationally costly. Our framework of learning generative
models with diffusion bridges is similar to that of [27], which learn diffusion models as a mixture of
forward-time diffusion bridges to avoid the time-reversal technique of [35]. But our framework is
designed to incorporate physical prior into bridges and develop a systematic approach for constructing
a broad class of prior-informed bridges.

3D Molecule Generation. Generating molecule in 3D space has been gaining increasing interest.
A line of works [e.g. 22, 24, 30, 31, 40, 41, 42] consider conditional conformal generation, which
takes the 2D SMILE structure as conditional input and generate the 3D molecule conformations
condition on the input. Another series of works [e.g., 10, 13, 20, 29, 39] focus on directly generating
the atom position and type for the molecule unconditionally. For these series of works, improvements
usually come from architecture design and loss design. For example, G-Schnet [10] auto-regressively
generates the atom position and type one by one after another; EN-Flow [29] and EDM [13] adopt
E(n) equivariant graph neural network (EGNN) [29] to train flow-based model and diffusion model.
These methods aim at generating valid and natural molecules in 3D space and outperform previous
approaches by a large margin. Our work provides a very different approach to incorporating the
physical information for molecule generation by injecting the prior information into the diffusion
process, rather than neural network architectures.

3 Method

We first introduce the definition of diffusion generative models and discuss how to learn these models
with prior bridges. After introducing the training algorithm for deep diffusion generative models, we
discuss the energy functions that we apply to molecules example.

3.1 Learning Diffusion Generative Models with Prior Bridges

Problem Definition. We aim at learning a generative model given a dataset {x(k)}nk=1 drawn from
an unknown distribution Π∗ on Rd. A diffusion model on time interval [0, 1] is

Pθ : dZt = sθt (Zt)dt+ σt(Zt)dWt, ∀t ∈ [0, 1], Z0 ∼ µ0,

where Wt is a standard Brownian motion; σt : Rd → Rd×d is a positive definition covariance
coefficient; sθt : Rd → Rd is parameterized as a neural network with parameter θ, and µ0 is the
initialization. Here we use Pθ to denote the distribution of the whole trajectory Z = {Zt : t ∈ [0, 1]},
and Pθ

t the marginal distribution of Zt at time t. We want to learn the parameter θ such that the
distribution Pθ

1 of the terminal state Z1 equals the data distribution Π∗.

Learning Diffusion Models. There are an infinite number of diffusion processes Pθ that yield
the same terminal distribution but have different distributions of latent trajectories Z. Hence, it is
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important to inject problem-dependent prior information into the learning procedure to obtain a model
Pθ that simulate the data for the problem at hand fast and accurately. To achieve this, we elicit an
imputation process Qx for each x ∈ Rd, such that a draw Z ∼ Qx yields trajectories that 1) are
consistent with x in that Z1 = x deterministically, and 2) reflect important physical and statistical
prior information on the problem at hand.

Formally, if Qx(Z1 = x) = 1, we call that Qx is a bridge process pinned at end point x, or simply
an x-bridge. Assume we first generate a data point x ∼ Π∗, and then draw a bridge Z ∼ Qx

pinned at x, then the distribution of Z is a mixture of Qx with x drawn from the data distribution:
QΠ∗

:=
∫
Qx(·)Π∗(dx).

A key property of QΠ∗
is that its terminal distribution equals the data distribution, i.e., QΠ∗

1 = Π∗.
Therefore, we can learn the diffusion model Pθ by fitting the trajectories drawn from QΠ∗

with
the “backward” procedure above. This can be formulated by maximum likelihood or equivalently
minimizing the KL divergence:

min
θ

{
L(θ) := KL(QΠ∗

|| Pθ)
}
.

Furthermore, assume that the bridge Qx is a diffusion model of form

Qx : dZt = bt(Zt | x)dt+ σt(Zt)dWt, Z0 ∼ µ0, (1)

where bt(Zt | x) is an x-dependent drift term need to carefully designed to both satisfy the bridge
condition and incorporate important prior information (see Section 3.2). Assuming this is done, using
Girsanov theorem [25], the loss function L(θ) can be reformed into a form ofdenoised score matching
loss of [e.g., 33, 35, 34]:

L(θ) = EZ∼QΠ∗

[
1

2

∫ 1

0

∥∥σ(Zt)
−1(sθt (Zt)− bt(Zt | Z1))

∥∥2
2
dt

]
+ const, (2)

which is a score matching term between sθ and b. The const term contains the log-likelihood for the
initial distribution µ0, which is a const in our problem. Here θ∗ is an global optimum of L(θ) if

sθ
∗

t (z) = EZ∼QΠ∗ [bt(z|Z1) | Zt = z].

This means that the drift term sθt should be matched with the conditional expectation of bt(z|x) with
x = Z1 conditioned on Zt = z.
Remark 3.1. The SMLD can be viewed as a special case of this framework when we take Qx to be a
time-scaled Brownian bridge process:

Qx,bb : dZt = σ2
t

x− Zt

β1 − βt
dt+ σtdWt, Z0 ∼ N (x, β1), (3)

where σt ∈ [0,+∞) and βt =
∫ t

0
σ2
sds. This can be seen by the fact that the time-reversed process

Z̃t := Z1−t follows the simple time-scaled Brownian motion dZ̃t = σ1−tdW̃t starting from the data
point Z̃0 = x, where W̃t is another standard Brownian motion. The Brownian bridge achieves
Z1 = x because the magnitude of the drift force is increasing to infinite when t is close to time 1.

However, the bridge of SMLD above is a relative simple and uninformative process and does not
incorporate problem-dependent prior information into the learning procedure. This is also the case
of the other standard diffusion-based models [35], such as denoising diffusion probabilistic models
(DDPM) which can be shown to use a bridge constructed from an Ornstein–Uhlenbeck process.
We refer the readers to [27], which provides a similar forward time bridge framework for learning
diffusion models, and it recovers the bridges in SMLD and DDPM as a conditioned stochastic
process derived using the h-transform technique [7]. However, the h-transform method is limited to
elementary stochastic processes that have an explicit formula of the transition probabilities, and can
not incorporate complex physical statistical prior information. Our work strikes to construct and use a
broader class of more complex bridge processes that both reflect problem-dependent prior knowledge
and satisfy the endpoint condition Qx(Z1 = x) = 1. This necessitate systematic techniques for
constructing a large family of bridges, as we pursuit in Section 3.2.
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3.2 Designing Informative Prior Bridges

The key to realizing the general prior-informed learning framework above is to have a general and
user-friendly technique to design Qx in (1) to ensure the bridge condition Qx(Z1 = x) = 1 while
leaving the flexibility of incorporating rich prior information. To achieve this, we first develop a
general criterion of bridges based on a Lyapunov function method which allows us to identify a very
general form of bridge processes; we then propose a particularly simple family of bridges that we use
in practice by introducing modification to Brownian bridges.
Definition 3.2 (Lyapunov Functions). A function Ut(z) is said to be a Lyapunov function for set
A ⊂ Rd at time t = 1 if U1(z) ≥ 0 for ∀z ∈ Rd and U1(z) = 0 if and only if z ∈ A.

Intuitively, a diffusion process Q is a bridge A, i.e., Q(Z1 ∈ A) = 1, if it (at least) approximately
follows the gradient flow of a Lyapunov function and the magnitude (or step size) or the gradient flow
should increase with a proper magnitude in order to ensure that Zt ∈ A at the terminal time t = 1.
Therefore, we identify a general form of bridges to A as follows:

QA : dZt = (−αt∇zUt(Zt) + νt(Zt)) dt+ σt(Zt)dWt, t ∈ [0, 1], Z0 ∼ µ0, (4)
where αt > 0 is the step size of the gradient flow of U and ν is an extra perturbation term. The step
size αt should increase to infinity as t → 1 sufficiently fast to dominate the effect of the diffusion
term σtdWt and the perturbation νtdt term to ensure that U is minimized at time t = 1.
Proposition 3.3. Assume Ut(z) = U(z, t) is a Lyapunov function of a measurable set A at time 1 and
U(·, t) ∈ C2(Rd) and U(z, ·) ∈ C1([0, 1]). Then, QA in (4) is an bridge to A, i.e., QA(Z1 ∈ A) = 1,
if the following holds:

1) U follows an (expected) Polyak-Lojasiewicz condition: EQA [Ut(Zt)]− ∥∇zUt(Zt)∥2] ≤ 0,∀t.

2) Let βt = EQA [∇zUt(Zt)
⊤νt(Zt)], and γt = EQA [∂tUt(Zt) +

1
2 tr(∇

2
zUt(Zt)σ

2
t (Zt))], and

ζt = exp(
∫ t

0
αsds). Then limt↑1 ζt = +∞, and limt↑1

ζt∫ t
0
ζs(βs+γs)ds

= +∞.

Brownian bridge can be viewed as the case when Ut(z) = ∥x− z∥2 /2 and αt = σ2
t /(β1 − βt), and

ν = 0. Hence simply introducing an extra drift term into bridge bridge yields that a broad family of
bridges to x:

Qx,bb,f : dZt =

(
σtft(Zt) + σ2

t

x− Zt

β1 − βt

)
dt+ σtdWt, Z0 ∼ µ0. (5)

In Appendix A.4 and A.5, we show that Qx,bb,f is a bridge to x if EQx,bb [∥ft(Zt)∥2] < +∞ and
σt > 0,∀t, which is very mild condition and is satisfied for most practical functions. The intuition
is that the Brownian drift σ2

t
x−Zt

β1−βt
is singular and grows to infinite as t approaches 1. Hence,

introducing an f into the drift would not change of the final bridge condition, unless f is also singular
and has a magnitude that dominates the Brownian bridge drift as t → 1.

To make the model Pθ compatible with the physical force f , we assume the learnable drift has
a form of sθt (z) = αft(z) + s̃θt (z) where s̃ is a neural network (typically a GNN) and α can be
another learnable parameter or a pre-defined parameter. Please refer to algorithm 3.2 and Figure 1 for
descriptions about our practical algorithm.

Algorithm 1 Learning diffusion generative models.

Input: Given a dataset {x(k)}, Qx the bridge in (5), and a problem-dependent prior force f ,v and
a diffusion model Pθ.
Training: Estimate θ by minimizing L(θ) in (2) with stochastic gradient descent and time dis-
cretization.
Sampling: Simulate from Pθ.

4 Molecule and 3D Generation with Informative Prior Bridges

We apply our method to the molecule generation. Informative physical or statistical priors that reflects
the underlying real physical structures can be particularly beneficial for molecule generation as we
show in experiments.
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Figure 1: An overview of our training pipeline with molecule generation as an example. Initialized from a
given distribution, we pass the data through the network multiple times, and finally get the meaningful output.

In our problem, each data point x is a collection of atoms of different types, more generally marked
points, in 3D Euclidean space. In particular, we have x = [xr

i , x
h
i ]

m
i=1, where xr

i ∈ R3 is the
coordinate of the i-th atom, and xh

i ∈ {e1, . . . , ek} where each ei = [0 · · · 1 · · · 0] is the i-th basis
vector of Rk, which indicates the type of the i-th atom of k categories. To apply the diffusion
generative model, we treat xh

i as a continuous vector in Rr and round it to the closest basis vector
when we want to output a final result or have computations that depend on atom types (e.g., calculating
an energy function as we do in sequel). Specifically, for a continuous xh

i ∈ Rk, we denote by
x̂h
i = I(xh

i = max(xh
i )) the discrete type rounded from it by taking the type with the maximum

value. To incorporate priors, we design an energy function E(x) and incorporate ft(·) = −∇E(·)
into the Brownian bridge (5) to guide the training process. We discuss different choices of E in the
following.

4.1 Prior Bridges for Molecule Generation

Previous prior guided molecule or protein 3D structure generation usually depends on pre-defined
energy or force [22, 42]. We introduce our two potential energies. One is formulated inspired by
previous works in biology, and the other is an k nearest neighbour statistics directly obtained from
the data.

AMBER Inspired Physical Energy. AMBER [9] is a family of force fields for molecule simulation.
It is designed to provide a computationally efficient tool for modern chemistry-molecular dynamics
and free energy calculations. It consists of a number of important forces, including the bond energy,
angular energy, torsional energy, the van der Waals energy and the Coulomb energy. Inspired by
AMBER, we propose to incorporate the following energy term into the bridge process:

E(x) = Ebond(x) + Eangle(x) + ELJ(x) + ECoulomb(x). (6)

• The bond energy is Ebond(x) =
∑

ij∈bond(x)(Len(x
r
ij) − ℓ(x̂h

i , x̂
h
j ))

2, where Len(xr
ij) =∥∥xr

i − xr
j

∥∥, and bond(x) denotes the set of bonds from x, which is set to be the set of atom pairs
with a distance smaller than 1.15 times the covalent radius; the ℓ0(r, c) denotes the expected bond
length between atom type r and c, which we calculate as side information from the training data.

• The angle energy is Eangle(x) =
∑

ijk∈angle(x)(Ang(xr
ijk)−ω0(x̂h

ijk))
2, where angle(x) denotes

the set of angles between two neighbour bonds in bound(x), and Ang(xr
ijk) denotes the angle formed

by vector xr
i − xr

j and xr
k − xr

j , and ω0(x̂h
ijk) is the expected angle between atoms of type x̂h

i , x̂h
j ,

x̂h
k , which we calculate as side information from the training data.

• The Lennard-Jones (LJ) energy is defined by ELJ(x) =
∑

i ̸=j e(
∥∥xr

i − xr
j

∥∥) and e(ℓ) = (σ/ℓ)12−
2(σ/ℓ)6. The parameter σ is an approximation for average nucleus distance.

• The nuclei-nuclei repulsion (Coulomb) electromagnetic potential energy is ECoulomb(x) =
κ
∑

ij q(x̂
h
i )q(x̂

h
j )/

∥∥xr
i − xr

j

∥∥, where κ is Coulomb constant and q(r) denotes the point charge
of atom of type r, which depends on the number of protons.

Statistical Energy. When accurate physic laws are unavailable, molecular geometric statistics, such
as bond lengths, bond angles, and torsional angles, etc, can be directly calculated from the data and
shed important insights on the system [e.g., 5, 15, 23]. We propose to design a prior energy function
in bridges by directly calculate these statistics over the dataset.

5



Specifically, we assume that the lengths and angles of each type of bond follows a Gaussian distribu-
tion that we learn from the dataset, and define the energy function as the negative log-likelihood:

Estat(x) =
∑

ij∈knn(x)

1

σ̂2
x̂h
ij

∥∥∥Len(xr
ij)− µ̂x̂h

ij

∥∥∥2 + ∑
ij,jk∈knn(x)

1

σ2
x̂h
ijk

∥∥∥Ang(xr
ijk)− µx̂h

ijk

∥∥∥2 , (7)

where knn(x) denotes the K-nearest neighborhood graph constructed based on the distance matrix of
x; for each pair of atom types r, c ∈ [k], µ̂rc and σ̂2

rc denotes empirical mean and variance of length
of rc-edges in the dataset; for each triplet r, c, r′ ∈ [k], µ̂rcr′ and σ̂2

rcr′ is the empirical mean and
variance of angle betwen rc and cr′ bonds.

Intuitively, depending on the atom type and order of the nearest neighbour, we force the atom distance
and angle to mimic the statistics calculated from the data. We thus implicitly capture different kinds
of interaction forces. Compared with the AMBER energy, the statistical energy (7) is simpler and
more adaptive to the dataset of interest.

5 Experiment

Table 1: Results of our method and several baselines on QM9 and GEOM-DRUG. For QM9, we additionally
report the ‘Novelty’ score evaluated by RDKit [17] to show that our method can generate novel molecules. We
evaluate the percentage of valid and unique molecules out of 12000 generated molecules.

QM9 GEOM-DRUG
Atom Sta (%) ↑ Mol Sta (%) ↑ Novelty (%) ↑ Valid + Unique ↑ Atom Sta (%) ↑ Mol Sta (%) ↑

EN-Flow [29] 85.0 4.9 81.4 0.349 75.0 0.0
GDM [13] 97.0 63.2 74.6 - 75.0 0.0
E-GDM [13] 98.7±0.1 82.0±0.4 65.7±0.2 0.902 81.3 0.0
Bridge 98.7±0.1 81.8±0.2 66.0±0.2 0.902 81.0±0.7 0.0
Bridge + Force (7) 98.8±0.1 84.6±0.3 68.8±0.2 0.907 82.4±0.8 0.0

We verify the advantages of our proposed method (Bridge with Priors) in several different domains.
We first compare our method with advanced generators (e.g., diffusion model, normalizing flow, etc.)
on molecule generation tasks.

We directly compare the performance and also analyze the difference between our energy prior and
other energies we discuss in Section 3.

5.1 Force Guided Molecule Generation

To demonstrate the efficiency and effectiveness of our bridge processes and physical energy, we
conduct experiments on molecule and macro-molecule generation experiments. We follow [21] in
settings and observe that our proposed prior bridge processes consistently improve the state-of-the-art
performance. Diving deeper, we analyze the impact of different energy terms and hyperparameters.

Metrics. Following [13, 29], we use the atom and molecular stability score to measure the model
performance. The atom stability is the proportion of atoms that have the right valency while the
molecular stability stands for the proportion of generated molecules for which all atoms are stable.
For visualization, we use the distance between pairs of atoms and the atom types to predict bond
types, which is a common practice. To demonstrate that our force does not only memorize the data in
the dataset, we further calculate and report the RDKit-based [17] novelty score. we extracted 10,000
samples to calculate the above metrics.

Dataset Settings QM9 [28] molecular properties and atom coordinates for 130k small molecules
with up to 9 heavy atoms with 5 different types of atoms. This data set contains small amino acids,
such as GLY, ALA, as well as nucleobases cytosine, uracil, and thymine. We follow the common
practice in [13] to split the train, validation, and test partitions, with 100K, 18K, and 13K samples.
GEOM-DRUG [3] is a dataset that contains drug-like molecules. It features 37 million molecular
conformations annotated by energy and statistical weight for over 450,000 molecules. Each molecule
contains 44 atoms on average, with 5 different types of atoms. Following [13, 29], we retain the 30
lowest energy conformations for each molecule.

Training Configurations. On QM9, we train the EGNNs with 256 hidden features and 9 layers
for 1100 epochs, a batch size 64, and a constant learning rate 10−4, which is the default training
configuration. We use the polynomial noise schedule used in [13] which linearly decay from 10−2/T
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Table 2: We compare w. and w/o force results with different discretization time steps.

Time Step
50 100 500

Atom Stable (%) Mol Stable (%) Atom Stable (%) Mol Stable (%) Atom Stable (%) Mol Stable (%)
EGM 97.0±0.1 66.4±0.2 97.3±0.1 69.8±0.2 98.5±0.1 81.2±0.1
Bridge + Force (7) 97.3±0.1 69.2±0.2 97.9±0.1 72.3±0.2 98.7±0.1 83.7±0.1

to 0. We linearly decay α from 10−3/T to 0 w.r.t. time step. We set k = 5 (7) by default. On
GEOM-DRUG, we train the EGNNs with 256 hidden features and 8 layers with batch size 64, a
constant learning rate 10−4, and 10 epochs. It takes approximately 10 days to train the model on
these two datasets on one Tesla V100-SXM2-32GB GPU. We provide E(3) Equivariant Diffusion
Model (EDM) [13] and E(3) Equivariant Normalizing Flow (EN-Flow) [29] as our baselines. Both
two are trained with the same configurations as ours.

QM9 GEOM-DRUG

Figure 2: Examples of molecules generated by our method on QM9 and GEOM-DRUG.

Time Step

Figure 3: An example of generation trajectory following Pθ of our method, trained on GEOM-DRUG.

Results: Higher Quality and Novelty. We summarize our experimental results in Table 1. We
observe that (1) our method generates molecules with better qualities than the others. On QM9, we
notice that we improve the molecule stability score by a large margin (from 82.0 to 84.6) and slightly
improve the atom stability score (from 98.7 to 98.8). It indicates that with the informed prior bridge
helps improves the quality of the generated molecules. (2) Our method achieves a better novelty
score. Compared to E-GDM, we improve the novelty score from 65.7 to 68.8. This implies that our
introduced energy does not hurt the novelty when the statistics are estimated over the training dataset.
Notice that although the GDM and EN-Flow achieve a better novelty score, the sample quality is
much worse. The reason is that, due to the metric definition, low-quality out-of-distribution samples
lead to high novelty scores. (3) On the GEOM-DRUG dataset, the atom stability is improved from
81.3 to 82.4, which shows that our method can work for macro-molecules. (4) We visualize and
qualitatively evaluate our generate molecules. Figure 3 displays the trajectory on GEOM-DRUG and
Figure 2 shows the samples on two datasets. (5) Bridge processes and E-GDM obtain comparable
results on our tested benchmarks. (6) The computational load added by introducing prior bridges is
small. Compared to EGM, we only introduce 8% additional cost in training and 3% for inference.

Result: Better With Fewer Time Steps. We display the performance of our method with fewer time
steps in Table 2. We observe that (1) with fewer time steps, the baseline EGM method gets worse
results than 1000 steps in Table 1. (2) with 500 steps, our method still keeps a consistently good
performance. (3) with even fewer 50 or 100 steps, our method yields a worse result than 1000 steps
in Table 1, but still outperforms the baseline method by a large margin.

Table 3: We compare EGM models trained with different force mentioned in Section 3.

Method Atom Stable (%) Mol Stable (%) Method Atom Stable (%) Mol Stable (%)
Force (7), k = 7 98.8±0.1 84.5±0.2 Force (6) 98.7±0.1 83.1±0.2
Force (7), k = 5 98.8±0.1 84.6±0.3 Force (6) w/o. bond 98.7±0.1 82.5±0.1
Force (7), k = 3 98.8±0.1 83.9±0.3 Force (6) w/o. angle 98.7±0.1 82.4±0.2
Force (7), k = 1 98.8±0.1 82.7±0.3 Force (6) w/o. Long-range 98.7±0.1 82.7±0.2
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Ablation: Impacts of Different Energies. We apply several energies we discuss in Section 3, and
compare them on the QM9 dataset. (1) We notice that our energy (7) gets better performance with
larger k when k ≤ 5. k = 7 achieves comparable performance as k = 5. Larger k also requires
more computation time, which yields a trade-off between performance and efficiency. (2) For (6),
once removing a typical term, the performance drops. (3) In all the cases, applying additional forces
outperforms the bridge processes baseline w/o. force.

6 Conclusion and Limitations
We propose a framework to inject informative priors into learning neural parameterized diffusion
models, with applications to both molecules and 3D point cloud generation. Empirically, we
demonstrate that our method has the advantages such as better generation quality, less sampling time
and easy-to-calculate potential energies. For future works, we plan to 1) study the relation between
different types of forces for different domain of molecules, 2) study how to generate valid proteins in
which the number of atoms is very large, and 3) apply our method to more realistic applications such
as antibody design or hydrolase engineering.

In both energy functions in (7) and (6), we do not add torsional angle related energy [14] mainly
because it is hard to verify whether four atoms are bonded together during the stochastic process. We
plan to study how to include this for better performance in future works.

Another weakness of deep diffusion bridge processes are their computation time. Similar to previous
diffusion models [21], it takes a long time to train a model. We attempted to speed the training up by
using a large batch size (e.g., 512, 1024) but found a performance drop. An important future direction
is to study methods to distribute and accelerate the training.
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A Proofs

Proof of Proposition 3.3. It is a direct result of Theorem A.1.

Theorem A.1. Assume
dZt = η(Zt, t)dt+ σ(Zt, t)dWt, t ∈ [0, 1].

We have Z1 ∈ A with probability one if there exists a function U : Rd × [0, 1] → R such that

1) U(·, t) ∈ C2(Rd) and U(z, ·) ∈ C1([0, 1]);

2) U(z, 1) ≥ 0, z ∈ Rd, and U(z, 1) = 0 implies that z ∈ A, where A is a measurable set in Rd;

3) There exists a sequence {αt, βt, γt : t ∈ [0, 1]}, such that for t ∈ [0, 1],

E[∇zU(Zt, t)
⊤η(Zt, t)] ≤ −αtE[U(Zt, t)] + βt,

E[∂tU(Zt, t) +
1

2
tr(∇2

zU(Zt, t)σ
2(Zt, t))] ≤ γt;

4) Define ζt = exp(
∫ t

0
αsds). We assume

lim
t↑T

ζt = +∞, lim
t↑T

ζt∫ t

0
ζs(βs + γs)ds

= +∞. (8)

Proof. Following dZt = η(Zt, t)dt+ σ(Zt, t)dWt, we have by Ito’s Lemma,

dU(Zt, t) = ∇U(Zt, t)
⊤(η(Zt, t)dt+ σ(Zt, t)dWt) + ∂tU(Zt, t)dt+

1

2
tr(∇2U(Zt, t)σ

2(Zt, t))dt,

for t ∈ [0, T ]. Taking expectation on both sides,
d

dt
E(U(Zt)) = E[∇zU(Zt, t)

⊤η(Zt, t)] + E
[
∂tU(Zt, t) +

1

2
tr(∇2U(Zt, t)σ

2(Zt, t))

]
.

Let ut = E[U(Zt, t)]. By the assumption above, we get
u̇t ≤ −αtut + βt + γt.

Following Grönwall’s inequality (see Lemma A.2 below), we have E[U(Z1, 1)] = u1 = limt↑1 ut ≤
0 if (8) holds. Because U(z, 1) ≥ 0, this suggests that U(Z1, 1) = 0 and hence Z1 ∈ A almost
surely.

Lemma A.2. Let ut ∈ R and αt, βt ≥ 0, and d
dtut ≤ −αtut + βt, t ∈ [0, T ] for T > 0. We have

ut ≤
1

ζt
(ζ0u0 +

∫ t

0

ζsβsds), where ζt = exp(

∫ t

0

αsds).

Therefore, we have limt↑T ut ≤ 0 if

lim
t↑T

ζt = +∞, lim
t↑T

ζt∫ t

0
ζsβsds

= +∞.

Proof. Let vt = ζtut, where ζt = exp(
∫ t

0
αsds) so ζ̇t = ζtαt. Then

d

dt
vt = ζ̇tut + ζtu̇t ≤ (ζ̇t − ζtαt)ut + ζtβt = ζtβt.

So

vt ≤ v0 + β

∫ t

0

γsds,

and hence

ut ≤
1

ζt
(ζ0u0 +

∫ t

0

ζsβsds).

To make limt↑T ut ≤ 0, we want

lim
t↑T

ζt = +∞, lim
t↑T

ζt∫ t

0
ζsβsds

= +∞.
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Corollary A.3. Let dZt =
x−Zt

1−t +ςtdWt with law Q. This uses the drift term of Brownian bridge, but
have a time-varying diffusion coefficient ςt ≥ 0. Assume supt∈[0,T ] ςt < ∞. Then Q(Z1 = z) = 1.

Proof. We verify the conditions in Theorem A.1. Define U(z, t) = ∥x− z∥2 /2, and η(z, t) = x−Zt

1−t .
We have η(z, t)⊤∇U(z, t) = −U(z, t)/(T − t). So αt = 1/(T − t).

Also, ∂tU(z, t) + 1
2 tr(ς

2
t ∇2

zU(z, t)) = 1
2diag(ς

2
t Id×d) =

d
2 ς

2
t := βt ≤ C < ∞.

Then ζt = exp(
∫ t

0
αsds) =

1
1−t → +∞ as t ↑ T .

Also,
∫ t

0
ζsβsds ≤ C

∫ t

0
ζsds = CT (log(T )− log(T − t)). So

lim
t↑T

ζt∫ t

0
ζsβsds

≥ lim
t↑T

1
1−t

CT (log(T )− log(T − t))
= +∞.

Using Girsanov theorem, we show that introducing arbitrary non-singular changes (as defined below)
on the drift and initialization of a process does not change its bridge conditions.

Proposition A.4. Consider the following processes

Q : Zt = bt(Zt)dt+ σt(Zt)dWt, Z0 ∼ µ0

Q̃ : Zt = (bt(Zt) + σt(Zt)ft(Zt))dt+ σt(Zt)dWt, Z0 ∼ µ̃0.

Assume we have KL(µ0 || µ̃0) < +∞ and EQ[
∫ T

0
∥ft(Zt)∥2] < ∞. Then for any event A, we have

Q(Z ∈ A) = 1 if and only if Q̃(Z ∈ A) = 1.

Proof. Using Girsnaov theorem [26], we have

KL(Q || Q̃) = KL(µ0 || µ̃0) +
1

2
EQ

[∫ 1

0

∥ft(Zt)∥22 dt
]
.

Hence, we have KL(Q || Q̃) < +∞. This implies that Q and Q̃ has the same support. Hence
Q(Z ∈ A) = 1 iff Q̃(Z ∈ A) = 1 for any measurable set A.

This gives an immediate proof of the following result that we use in the paper.

Corollary A.5. Consider the following two processes:

Qx,bb : dZt =

(
σ2
t

x− Zt

β1 − βt

)
dt+ σtdWt, Z0 ∼ µ0,

Qx,bb,f : dZt =

(
σtft(Zt) + σ2

t

x− Zt

β1 − βt

)
dt+ σtdWt, Z0 ∼ µ0.

Assume EQx,bb,f [∥ft(Zt)∥2] < +∞ and σt > 0 for t ∈ [0,+∞). Then Qx,bb,f is a bridge to x.

B Model Details

B.1 Model Architecture for Molecule Generation.

Following EGM [13], we apply an E(3) equivariant GNN network (EGNN) as our basic model
architecture. EGNNs are a type of graph neural networks that satisfies the equivariance constraint,

Rx′ + t, h′ = f(Rx+ t, h) when x′, h′ = f(x, h), (9)

where x and h represent the 3D coordinates and additional features, orthogonal R stands for the
random rotation and t ∈ R3 is a random transformation. One EGNN is usually made up of
multiple stacked equivariant graph convolutional layers (EGCL), and every EGCL satisfies the

13



equivariance constraint. Denote N the number of nodes, xl and hl the coordinates and features for
layer l ∈ {0, · · · , L}, we have

mij = ϕe(h
l
i, h

l
j , dij), (10)

hl+1
i = ϕh(h

l
i, {mij}Nj=1),

xl+1
i = xl

i +
∑
j ̸=i

xl
i − xl

j

d+ 1
ϕx(h

l
i, h

l
j , dij),

where h0 = h, x0 = x, dij = ∥xl
i − xl

j∥2, dij + 1 is introduced to improve training stability, and
ϕe, ϕh, ϕx represents fully connected neural network with learnable parameters. We refer the readers
to the previous paper [29] for more details.

Scaling Features Following [13], we re-scale the data with additional scaling factors. The atom
type one-hot vector and atom charge value ×.25 and ×0.1, respectively. It significantly improves
performance over non-scaled inputs, e.g. 47% relative improvements on molecule stability.
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