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Abstract

Classifier guidance is a recently introduced method to trade off mode coverage and
sample fidelity in conditional diffusion models post training, in the same spirit as
low temperature sampling or truncation in other types of generative models. This
method combines the score estimate of a diffusion model with the gradient of an
image classifier and thereby requires training an image classifier separate from the
diffusion model. We show that guidance can be performed by a pure generative
model without such a classifier: we jointly train a conditional and an unconditional
diffusion model, and find that it is possible to combine the resulting conditional
and unconditional scores to attain a trade-off between sample quality and diversity
similar to that obtained using classifier guidance.

1 Introduction

Diffusion models have recently emerged as an expressive and flexible family of generative models,
delivering competitive sample quality and likelihood scores on image and audio synthesis tasks [15,
16, 5, 17, 8]. These models have delivered audio synthesis performance rivaling the quality of
autoregressive models with substantially fewer inference steps [2, 9], and they have delivered
ImageNet generation results outperforming BigGAN-deep [1] and VQ-VAE-2 [11] in terms of FID
score and classification accuracy score [6, 3].

Dhariwal and Nichol [3] proposed classifier guidance, a technique to boost the sample quality of a
diffusion model using an extra trained classifier. Using classifier guidance, they generate high fidelity,
non-diverse ImageNet samples that match or exceed the Inception scores of truncated BigGAN, and
by varying the strength of the classifier gradient, they can trade off Inception score [14] and FID
score [4] (or precision and recall) in a manner similar to varying the truncation parameter of BigGAN.

Prior to classifier guidance, it was not known how to generate “low temperature” samples from a
diffusion model similar to those produced by truncated BigGAN: naive ways of doing so, such as
scaling the model score vectors or decreasing the amount of Gaussian noise added during sampling,
are ineffective. Classifier guidance resolves this issue but raises more questions. Because classifier
guidance mixes a score estimate with a classifier gradient during sampling, classifier-guided diffusion
sampling can be interpreted as attempting to confuse an image classifier with a gradient-based
adversarial attack. This raises the question of whether classifier guidance is successful at boosting
classifier-based metrics such as FID and Inception score (IS) simply because it is adversarial against
such classifiers. Stepping in direction of classifier gradients also bears some resemblance to GAN
training, particularly with nonparameteric generators; this also raises the question of whether classifier-
guided diffusion models perform well on classifier-based metrics because they are beginning to
resemble GANs, which are already known to perform well on such metrics.

To resolve these questions, we present classifier-free guidance, our guidance method which avoids
any classifier entirely. Rather than sampling in the direction of the gradient of an image classifier,
our method instead mixes the score estimates of a conditional diffusion model and a jointly trained
unconditional diffusion model. By sweeping over the mixing weight, we attain a FID/IS tradeoff
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similar to that attained by classifier guidance. Our results demonstrate that pure generative diffusion
models are capable of synthesizing extremely high fidelity samples possible with other types of
generative models.

2 Background

Let x be data drawn from a data distribution p(x). We train a diffusion model in continuous
time [17, 2, 8]: letting z = {zλ |λ ∈ [λmin, λmax]} for hyperparameters λmin < λmax ∈ R, the
forward process q(z|x) is the variance-preserving Markov process [15] specified as

q(zλ|x) = N (αλx, σ
2
λI), where α2

λ = 1/(1 + e−λ), σ2
λ = 1− α2

λ (1)

q(zλ|zλ′) = N ((αλ/αλ′)zλ′ , σ2
λ|λ′I), where λ < λ′, σ2

λ|λ′ = (1− eλ−λ
′
)σ2
λ (2)

We will use the notation p(z) (or p(zλ)) to denote the marginal of z (or zλ) when x ∼ p(x). Note
that λ = logα2

λ/σ
2
λ, so λ can be interpreted as the log signal-to-noise ratio of zλ, and the forward

process runs in the direction of decreasing λ. Conditioned on x, the forward process can be described
in reverse by the transitions q(zλ′ |zλ,x) = N (µ̃λ′|λ(zλ,x), σ̃

2
λ′|λI), where

µ̃λ′|λ(zλ,x) = eλ−λ
′
(αλ′/αλ)zλ + (1− eλ−λ

′
)αλ′x, σ̃2

λ′|λ = (1− eλ−λ
′
)σ2
λ′ (3)

The reverse process generative model pθ(z) starts from pθ(zλmin) = N (0, I). We specify the
transitions:

pθ(zλ′ |zλ) = N (µ̃λ′|λ(zλ,xθ(zλ)), (σ̃
2
λ′|λ)

1−v(σ2
λ|λ′)v) (4)

During sampling, we apply this transition along an increasing sequence λmin = λ1 < · · · < λT =
λmax for T timesteps. If the model xθ is correct, then as T →∞, we obtain samples from an SDE
whose sample paths are distributed as p(z) [17]. The variance is a log-space interpolation of σ̃2

λ′|λ
and σ2

λ|λ′ as suggested by [10]; for simplicity we use a constant hyperparameter v rather than learned
zλ-dependent v. Note that variances simplify to σ̃2

λ′|λ as λ′ → λ, so v has an effect only when
sampling with non-infinitesimal timesteps as done in practice.

The reverse process mean comes from an estimate xθ(zλ) ≈ x plugged into q(zλ′ |zλ,x) [5, 8] (xθ
also receives λ as input, but we suppress this to keep our notation clean). We parameterize xθ in
terms of ε-prediction [5]: xθ(zλ) = (zλ − σλεθ(zλ))/αλ, and we train on the objective

Eε,λ

[
‖εθ(zλ)− ε‖22

]
(5)

where ε ∼ N (0, I), zλ = αλx + σλε, and λ is drawn from a distribution p(λ) over [λmin, λmax].
This objective is denoising score matching [18] over multiple noise scales [16], and when p(λ) is
uniform, the objective is proportional to the variational lower bound on the marginal log likelihood of
the latent variable model

∫
pθ(x|z)pθ(z)dz, ignoring the term for the unspecified pθ(x|z) and for

the prior at zλmin
[8]. For a different distribution p(λ), the objective can be interpreted as weighted

variational lower bound whose weighting can be tuned for sample quality [5]. We use a p(λ) inspired
by the cosine noise schedule of [10]: sampling λ is given by λ = −2 log tan(au+ b) for uniformly
distributed u ∈ [0, 1], where b = arctan(e−λmax/2) and a = arctan(e−λmin/2)− b. This represents
a hyperbolic secant distribution modified to be supported on a bounded interval. For finite timestep
sampling, we use λ values corresponding to uniformly spaced u ∈ [0, 1].

Because the loss for εθ(zλ) is denoising score matching for all λ, the score εθ(zλ) learned by our
model estimates the gradient of the log-density of the distribution of our noisy data zλ, that is
εθ(zλ) ≈ −σλ∇zλ

log p(zλ); note, however, that because we use unconstrained neural networks to
define εθ, there need not exist any scalar potential whose gradient is εθ. Sampling from the learned
diffusion model resembles using Langevin diffusion to sample from a sequence of distributions p(zλ)
that converges to the conditional distribution p(x) of the original data x.

In the case of conditional generative modeling, the data x is drawn jointly with conditioning informa-
tion c, i.e. a class label for class-conditional image generation. The only modification to the model is
that the reverse process function approximator receives c as input, as in εθ(zλ, c).
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3 Guidance

An interesting property of certain generative models, such as GANs and flow-based models, is the
ability to perform truncated or low temperature sampling by decreasing the variance or range of noise
inputs to the generative model at sampling time. The intended effect is to decrease the diversity of
the samples while increasing the quality of each individual sample. Truncation in BigGAN [1], for
example, yields a tradeoff curve between FID score and Inception score for low and high amounts of
truncation, respectively. Low temperature sampling in Glow [7] has a similar effect.

Unfortunately, straightforward attempts of implementing truncation or low temperature sampling
in diffusion models are ineffective. For example, scaling model scores or decreasing the variance
of Gaussian noise in the reverse process cause the diffusion model to generate blurry, low quality
samples [3].

3.1 Classifier guidance

To obtain a truncation-like effect in diffusion models, Dhariwal and Nichol [3] introduce classifier
guidance, where the diffusion score εθ(zλ, c) ≈ −σλ∇zλ

log p(zλ|c) is modified to include the
gradient of the log likelihood of an auxiliary classifier model pθ(c|zλ) as follows:

ε̃θ(zλ, c) = εθ(zλ, c)− wσλ∇zλ
log pθ(c|zλ) ≈ −σλ∇zλ

[log p(zλ|c) + w log pθ(c|zλ)],

where w is a parameter that controls the strength of the classifier guidance. This modified score
ε̃θ(zλ, c) is then used in place of εθ(zλ, c) when sampling from the diffusion model, which has the
effect of up-weighting the probability of data for which the classifier pθ(c|zλ) assigns high likelihood
to the correct label: data that can be classified well scores high on the Inception score of perceptual
quality [14], which rewards generative models for this by design. Dhariwal and Nichol [3] therefore
find that by setting w > 0 they can improve the Inception score of their diffusion model, at the
expense of decreased diversity in their samples. Interestingly, they obtain their best results when
applying classifier guidance to an already class-conditional model as described above, and they find
that applying guidance to an unconditional model performs less well: the effects of class-conditioning
and guidance thus seem complimentary.

3.2 Classifier-free guidance

A downside of classifier guidance is that it requires an additional classifier model and thus complicates
the training pipeline. This model has to be trained on noisy data zλ, so it is not possible to plug
in a standard pre-trained classifier. We explore an alternative method of modifying εθ(zλ, c) to
achieve the same effect of boosting the perceptual quality as measured by the Inception score without
requiring an auxiliary classifier. We call this new method classifier-free guidance.

Instead of training a separate classifier model, we choose to train an unconditional denoising diffusion
model pθ(z) parameterized through a score estimator εθ(zλ) together with the conditional model
pθ(z|c) parameterized through εθ(zλ, c). We use a single neural network to parameterize both
models, where for the unconditional model we can simply input zeros for the class identifier c when
predicting the score, i.e. εθ(zλ) = εθ(zλ, c = 0). We jointly train the unconditional and conditional
models simply by randomly setting c to the unconditional class identifier.

We then perform sampling using the following linear combination of the conditional and unconditional
score estimates:

ε̃θ(zλ, c) = (1 + w)εθ(zλ, c)− wεθ(zλ) (6)

Eq. (6) has no classifier gradient present, so taking a step in the ε̃θ direction cannot be interpreted as
a gradient-based adversarial attack on an image classifier. Furthermore, ε̃θ is constructed from score
estimates that are non-conservative vector fields due to the use of unconstrained neural networks, so
there in general cannot exist a scalar potential such as a classifier log likelihood for which ε̃θ is the
classifier-guided score.

Despite the fact that there in general cannot exist a classifier for which Eq. (6) is the classifier-
guided score, it is in fact inspired by the gradient of an implicit classifier pi(c|zλ) ∝ p(zλ|c)/p(zλ).
If we had access to exact scores ε∗(zλ, c) and ε∗(zλ) (of p(zλ|c) and p(zλ), respectively), then
the gradient of this implicit classifier would be ∇zλ

log pi(c|zλ) = − 1
σλ

[ε∗(zλ, c)− ε∗(zλ)], and
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classifier guidance with this implicit classifier would modify the score estimate into ε̃∗(zλ, c) =
(1 + w)ε∗(zλ, c) − wε∗(zλ). Note the resemblance to Eq. (6), but also note that ε∗(zλ, c) dif-
fers fundamentally from εθ(zλ, c). The former is constructed from the scaled classifier gradient
ε∗(zλ, c)−ε∗(zλ); the latter is constructed from the estimate εθ(zλ, c)−εθ(zλ), and this expression
is not in general the (scaled) gradient of any classifier, again because the score estimates are the
outputs of unconstrained neural networks. The fact that Eq. (6) is as effective as classifier guidance
despite this is an empirical finding that we report in Section 4.

4 Experiments

Our method is extremely simple to implement: during training we simply drop out the class label,
and during sampling we simply mix the conditional and unconditional scores as in Eq. (6). Here, we
report our results on 64× 64 area-downsampled ImageNet [12]. We trained a model with architecture
and hyperparameters identical to the 64 × 64 model in [3], and we jointly trained the model on
unconditional generation with probability 0.1. We choose λmin = −20, λmax = 20, and v = 0.3.
We consider implied-classifier weights w ∈ {0, 0.1, 0.2, . . . , 5} and calculate FID and Inception
Scores with 50000 samples for each value using T = 256 sampling steps.

Figure 1 and Fig. 2 list our results: we obtain the best FID result with a small amount of guidance
(w = 0.1) and the best IS result with strong guidance (w ≥ 4). These results compare favorably
to [3, 6] and are currently state-of-the-art for this data set as far as we are aware for models that
use T ≈ 256 steps (the ADM result uses 250 steps, and the CDM result is a two-stage model with
4000 steps each). Between these two extremes we see a clear trade-off between these two metrics
of perceptual quality, with FID monotonically decreasing and IS monotonically increasing with
guidance weight w.

Figure 3 shows randomly generated samples from our model for different levels of guidance: here
we clearly see that increasing guidance has the effect of decreasing sample variety and increasing
individual sample fidelity. Figure 4 shows samples from a similar model trained on 128 × 128
ImageNet.

Method FID (↓) IS (↑)
ADM [3] 2.07 -
CDM [6] 1.48 67.95

Ours, no guidance 1.80 53.71

Ours, with guidance
w = 0.1 1.55 66.11
w = 0.2 2.04 78.91
w = 0.3 3.03 92.8
w = 0.4 4.30 106.2
w = 0.5 5.74 119.3
w = 0.6 7.19 131.1
w = 0.7 8.62 141.8
w = 0.8 10.08 151.6
w = 0.9 11.41 161
w = 1.0 12.6 170.1
w = 2.0 21.03 225.5
w = 3.0 24.83 250.4
w = 4.0 26.22 260.2

Figure 1: ImageNet 64x64 results
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Figure 2: ImageNet 64x64 FID vs. IS
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(a) Non-guided conditional sampling: FID=1.80, IS=53.71

(b) Classifier-free guidance with w = 1.0: FID=12.6, IS=170.1

(c) Classifier-free guidance with w = 3.0: FID=24.83, IS=250.4

Figure 3: Classifier-free guidance on ImageNet 64x64. Left: random classes. Right: single class
(malamute). Same random seeds used for sampling in each subfigure.
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Figure 4: Classifier-free guidance on 128x128 ImageNet. Left: non-guided samples, right: guided
samples with w = 3.0. Interestingly, strongly guided samples such as these display saturated colors.

5 Discussion

The most practical advantage of our classifier-free guidance method is its extreme simplicity: it is
only a one-line change of code during training—to randomly drop out the class conditioning—and
during sampling—to mix the conditional and unconditional score estimates. Classifier guidance, by
contrast, complicates the training pipeline since it requires training an extra classifier. This classifier
must be trained on noisy zλ, so it is not possible to plug in a standard pre-trained classifier.

Besides practical advantages, classifier-free guidance is able to trade off IS and FID like classifier
guidance without needing an extra trained classifier, so we have demonstrated that guidance can
be performed with a pure generative model. We confirm that it is possible to maximize Inception
scores using classifier-free guidance (and improve FID score for a small amount of guidance), thus
providing evidence that classifier-based sample quality metrics can be improved using methods that
are not adversarial against ImageNet classifiers using classifier gradients. Our diffusion models are
parameterized by unconstrained neural networks and therefore their score estimates do not necessarily
form conservative vector fields, unlike classifier gradients [13]. Therefore, an unconditional-guided
sampler follows step directions that do not resemble classifier gradients at all and thus cannot be
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interpreted as a gradient-based adversarial attack on a classifier; hence our results show that boosting
the classifier-based IS and FID metrics can be accomplished with pure generative models with a
sampling procedure that is not adversarial against image classifiers.

We also have arrived at an intuitive explanation for how guidance works: it decreases the uncondi-
tional likelihood of the sample while increasing the conditional likelihood. Classifier-free guidance
accomplishes this by decreasing the unconditional likelihood with a negative score term, which to
our knowledge has not yet been explored and may find uses in other applications.

A potential disadvantage of classifier-free guidance is sampling speed. Generally, classifiers can be
smaller and faster than generative models, so classifier guided sampling may be faster than classifier-
free guidance because the latter needs to run two forward passes of the diffusion model, one for
conditional score and another for the unconditional score. The necessity to run multiple passes of the
diffusion model might be mitigated by changing the architecture to inject conditioning late in the
network, but we leave this exploration for future work.

Finally, any guidance method that increases sample fidelity at the expense of diversity must face the
question of whether decreased diversity is acceptable. There may be negative impacts in deployed
models, since sample diversity is important to maintain in applications where certain parts of the data
are underrepresented in the context of the rest of the data. It would be an interesting avenue of future
work to try to boost sample quality while maintaining sample diversity.

6 Conclusion

We have presented classifier-free guidance, a method to increase sample quality while decreasing
sample diversity in diffusion models. Classifier-free guidance is classifier guidance without a classifier,
and our results showing the effectiveness of classifier-free guidance confirm that pure generative
diffusion models are capable of maximizing classifier-based sample quality metrics while entirely
avoiding classifier gradients. We look forward to further explorations of classifier-free guidance in a
wider variety of settings.
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