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Abstract

Robust generalization beyond training distributions remains a critical challenge for deep
neural networks. This is especially pronounced in medical image analysis, where data
is often scarce and covariate shifts arise from different hardware devices, imaging pro-
tocols, and heterogeneous patient populations. These factors collectively hinder reliable
performance and slow down clinical adoption. Despite recent progress, existing learning
paradigms primarily rely on the Euclidean manifold, whose flat geometry fails to cap-
ture the complex, hierarchical structures present in clinical data. In this work, we ex-
ploit the advantages of hyperbolic manifolds to model complex data characteristics. We
present the first comprehensive validation of hyperbolic representation learning for medical
image analysis and demonstrate statistically significant gains across eleven in-distribution
datasets and three ViT models. We further propose an unsupervised, domain-invariant
hyperbolic cross-branch consistency constraint. Extensive experiments confirm that our
proposed method promotes domain-invariant features and outperforms state-of-the-art Eu-
clidean methods by an average of +2.1% AUC on three domain generalization benchmarks:
Fitzpatrick17k, Camelyonl7-WILDS, and a cross-dataset setup for retinal imaging. These
datasets span different imaging modalities, data sizes, and label granularities, confirming
generalization capabilities across substantially different conditions. The code is available at
github.com/francescodisalvo05/hyperbolic-cross-branch-consistency.

1 Introduction

Deep learning models have achieved remarkable success over the past decade, yielding exceptional results in
various computer vision tasks ranging from image classification to instance segmentation. However, ensuring
that models generalize reliably across distribution shifts remains a fundamental challenge, especially in
safety-critical applications. For instance, autonomous driving systems must generalize across varying scenery,
lighting, and weather conditions at test time (Bijelic et al., 2020; Kumar & Muhammad, 2023). Similarly,
medical imaging models face different domain generalization challenges, e.g., shifts in patient populations,
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tissue-staining protocols, or scanner manufacturers (Ktena et al., 2024; Cevora et al., 2024). These may seem
subtle compared to outdoor settings, yet they still strongly affect performance. Robustness to such subtle
but consequential domain changes is therefore essential for safe deployment of AI in hospitals and clinics.
Most domain-shift remedies in medical imaging span data augmentations (Zhang et al., 2018; Di Salvo et al.,
2024) and Euclidean representation learning (Arjovsky et al., 2019; Sagawa et al., 2020; Krueger et al., 2021).

While effective in many settings, Euclidean embeddings offer a uniform, flat geometry that may not align
with the hierarchical relationships often present in clinical data. On the other hand, the hyperbolic manifold
has gained notable traction in recent years (Mettes et al., 2024). Indeed, it offers a natural remedy: its
constant negative curvature mirrors hierarchical structures by allocating exponentially increasing space for
finer-grained distinctions, and it has shown notable performance in many vision tasks. However, end-to-end
hyperbolic networks can be unstable on large datasets (Ayubcha et al., 2024) and remain underutilized in
medical imaging. To overcome these stability challenges, we project Euclidean embeddings from a frozen
foundation model into a lightweight hyperbolic manifold and demonstrate its clear advantages over Euclidean
baselines across eleven medical datasets.

We then introduce HypCBC, a hyperbolic two-branch training strategy with domain-invariant cross-branch
consistency (CBC) regularization, as illustrated in Figure 1. This approach learns both fine-grained and
domain-agnostic representations, yielding consistent and substantial domain generalization improvements
on three datasets: Fitzpatrick17k (dermatology), Camelyon17-WILDS (histopathology), and a cross-dataset
retinal imaging benchmark.

To motivate and validate the learning dynamics of our
two-branch strategy, we also report two targeted ab-
lation studies. First, we vary the latent dimensional-
ity of a single-branch model to quantify how its capac-
ity influences domain invariance versus label discrimina-
tion. Second, we compare low-dimensional against high-
dimensional regularization, demonstrating that the for-
mer yields significant robustness gains that cannot be ex-
plained by a mere increase of parameter count. In sum-
mary, our contributions are:

e We demonstrate that hyperbolic embeddings
significantly outperform (p < 0.05) Euclidean
ones in classification accuracy across eleven
in-distribution (ID) medical imaging datasets.
These span a diverse range of imaging modalities
(9), sample sizes (102—105), and label granulari-
ties (2—11).

e We introduce a novel hyperbolic two-branch
training strategy with a domain-invariant consis-
tency constraint. This approach significantly en-
hances domain generalization (DG) performance,
measured by the area under the receiver operat-
ing curve (AUC), in dermatology, histopathology,

Figure 1: Given a frozen Euclidean feature ex-
tractor ® that outputs f, ERM applies a Eu-
clidean linear probe over a 128D projection
hissp. HypERM additionally uses a fixed ex-
ponential map exp{qg to classify over hyperbolic

and retinal imaging.

e Ablation studies on bottleneck dimension and
manifold geometry reveal two key findings. First,
a 2D low-dimensional branch effectively balances
domain invariance with label discrimination. Sec-
ond, hyperbolic regularization exhibits consistent
robustness improvements, unlike its Euclidean
counterpart.

embeddings zj28p. Our method, HypCBC, in-
troduces a second projection hop followed by
exp§ to yield zop. The logits of this low-
dimensional branch are used as targets in the
KL loss, promoting domain-agnostic information
transfer into the high-dimensional branch.
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2 Related work

2.1 Hyperbolic manifold

Hyperbolic spaces have emerged as a powerful tool for modeling hierarchical and tree-like data structures
(Mettes et al., 2024). Recent work demonstrates their effectiveness across natural language processing (Dhin-
gra et al., 2018), few-shot learning (Guo et al., 2022; Khrulkov et al., 2020), hierarchical classification (Dhall
et al., 2020), metric learning (Ermolov et al., 2022; Bi et al., 2025), semantic segmentation (Atigh et al.,
2022), out-of-distribution detection (Guo et al., 2022), category discovery (Liu et al., 2025), and anomaly
detection (Li et al., 2024; Gonzalez-Jimenez et al., 2025). Despite these successes, hyperbolic representations
remain underexplored in medical contexts. Existing efforts include fine-grained classification (Yu et al., 2022;
Ramirez et al., 2025), multi-modal neuroimaging (Ayubcha et al., 2024), and anomaly detection (Gonzalez-
Jimenez et al., 2025). However, end-to-end hyperbolic networks can exhibit numerical instability and sub-
stantially reduced training efficiency, with convergence requiring significantly more epochs, an effect that
becomes more pronounced on larger datasets (Ayubcha et al., 2024). To combine the strengths of hyperbolic
embeddings with stable training, we follow the projection-based approach of Ermolov et al. (2022), but un-
like their end-to-end fine-tuning of the backbone, we freeze a pre-trained Euclidean backbone and append
lightweight hyperbolic projection layers. We evaluate these representations for domain generalization, an-
alyzing how embedding dimensionality influences the separation of domain-specific versus domain-agnostic
features.

2.2 Domain Generalization

The community has developed a variety of domain generalization methods, primarily representation-learning
techniques such as adversarial learning (Ganin et al., 2016), invariant risk minimization (Arjovsky et al.,
2019), and meta-learning (Li et al., 2018a), often relying on domain labels. To boost robustness, image and
latent augmentation strategies such as AugMix (Hendrycks et al., 2019) and MixStyle (Zhou et al., 2024) are
also commonly utilized. Furthermore, recent works have shown that targeted augmentations offer greater
gains than domain-agnostic ones (Gao et al., 2023; Di Salvo et al., 2024).

Our approach takes advantage of the hyperbolic manifold, whose constant negative curvature more accurately
reflects the complexity of clinical data. Similar to Domain Adversarial Neural Networks (DANN) (Ganin
et al., 2016), we introduce a second branch to promote domain invariance throughout the network. However,
instead of relying on domain labels and an adversarial training strategy, our method achieves invariance in
a fully unsupervised manner. We accomplish this goal by employing a low-dimensional manifold, which has
been empirically demonstrated not to discriminate between domains (¢f. Section 5.1).

Concurrently, Bi et al. (2025) embed hyperbolic geometry directly into VMamba via end-to-end state-
space modeling for fine-grained domain generalization. By contrast, our method is backbone-agnostic and
introduces lightweight hyperbolic projections with cross-branch consistency on frozen features, targeting
unsupervised domain generalization with minimal architectural overhead.

2.3 Information transfer and consistency

Knowledge distillation, originally proposed to compress large “teacher” networks into smaller “students”,
has also been adopted for domain generalization as a form of regularization that transfers domain-invariant
information. Empirical studies suggest that early network layers often encode domain-specific information
(Zhou et al., 2024). To this extent, prior works exploit this property by distilling final-layer predictions
into randomly selected intermediate classifiers to encourage invariance throughout the network (Sultana
et al., 2022). Subsequent refinements introduce logit softening to further stabilize the distillation process
(Galappaththige et al., 2024).

In this work, we reinterpret such knowledge transfer as a cross-branch consistency regularization. Specifically,
the low-dimensional (i.e., domain-invariant) hyperbolic branch provides a compact reference that constrains
the high-dimensional branch via a consistency objective, encouraging domain-invariant representations with-
out relying on classical teacher-student distillation.
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Figure 2: Given an input image-label pair (x,y) € X X ), we extract an image embedding f = ®(x) € R”,
where n depends on the chosen backbone. This is projected via two heads into Euclidean embeddings
h; € R'?® and hy, € R% Each is mapped into its respective Poincaré ball D? by exp$, yielding hyperbolic
embeddings z; and zs. Both branches incur cross-entropy losses on their Multiclass Logistic Regression
(MLR) logits §1 and y2. In addition, o also supervises §; via a KL-based consistency term. The high-
dimensional branch captures fine-grained, class-specific features for inference, and the low-dimensional branch
enforces an information bottleneck that promotes domain-invariant representations.

While Euclidean knowledge transfer (e.g., distillation) is well studied in prior works, to the best of our
knowledge, its application in hyperbolic space remains limited. Recent work by Yang et al. (2025) introduce
a hyperbolic knowledge distillation approach for cross-domain few-shot learning. Their method relies on
multiple domain-specific teacher models, meta-learning, and access to target-domain data at test time,
placing it closer to domain adaptation than domain generalization. In contrast, our setting assumes no
domain labels and no access to target-domain data at any stage. We thus focus on improving robustness to
entirely unseen domains under a standard domain generalization protocol.

3 Method

3.1 Hyperbolic space

The n-dimensional hyperbolic space H™ naturally offers a geometry suited for complex, hierarchical data
structures, such as medical images. While Euclidean space has flat geometry, i.e., with curvature ¢ = 0,
hyperbolic space has a constant negative curvature, which can effectively capture the inherent hierarchical
feature relations of image data (Mettes et al., 2024).

Among the several isometric models of hyperbolic space, we use the widely adopted Poincaré ball model
(D2, g°) to represent an n-dimensional hyperbolic space (Khrulkov et al., 2020; Atigh et al., 2022; Ermolov
et al., 2022; Guo et al., 2022).

Following the notation of Khrulkov et al. (2020), we define the manifold as D" = {x € R" : ¢||x||* < 1},
where ¢ > 0 is a scaling factor controlling the magnitude of the negative curvature. The metric (i.e., rule
for measuring distances) of this space is given by:

2
) =0)%" M= (1)
1—cljx]|

where gF = I, is the standard Euclidean metric. In simple terms, the conformal factor \$ scales the
usual Euclidean distances, adapting them to the curved geometry of the Poincaré ball. To perform vector
operations similar to addition in Euclidean space, the gyrovector formalism (Ungar, 2009) is adopted, which
defines the Mdobius addition of two points x,y € D7 in Equation 2.
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This operation generalizes the familiar concept of vector addition to our curved space. Based on Mobius
addition, the geodesic (i.e., shortest-path) distance between two points x, y € D” is given by:

2
Dryp(x,y) = —= arctanh (V|| — x @ ) 3)
Ve
Notably, as the curvature parameter ¢ approaches 0, the hyperbolic distance converges to twice the Euclidean
distance, i.e., lim.,o Dyyp(x,y) = 2||x — y|.

To fill the gap between conventional feature extractors (which operate in Euclidean space) and our hyperbolic
representation, we employ the exponential map. This bijective mapping projects a Euclidean vector v € R™
onto the hyperbolic manifold at a chosen base point xp (usually set to 0). The exponential map is defined

as:
\/EA,“;V|> v )
2 Vellvll
This exponential mapping ensures that the features are faithfully transferred from the Euclidean to the

hyperbolic manifold. Its inverse, i.e., the logarithmic map, allows points in the hyperbolic space to be
projected back into the Euclidean space.

exp, (V) = xp e (tanh ( (4)

3.2 Multi-branch learning

To further exploit hyperbolic geometry for domain generalization, we draw inspiration from Domain-
Adversarial Neural Networks (DANN) (Ganin et al., 2016) while eliminating the need for explicit domain
labels and gradient reversal. As illustrated in Figure 2, given an image-label pair (x,y) € X x ), and a
frozen Euclidean backbone ®, we first extract an image embedding f = ®(x) € R", where n depends on
the size of the chosen backbone. For “small”, “base”, and “large” ViT backbones, n is 384, 768, and 1024,
respectively.

Two projection heads h; : R™ — R% reduce f to Euclidean embeddings h; = h;(f), with i € {1,2}, d; = 128
and dy = 2. Subsequently, given a curvature scaler ¢ € R, we apply the exponential map exp® to each
projection to obtain a hyperbolic representation in the Poincaré ball D%:.

z; = exp®(h;) € D! 25 = exp®(hy) € D? (5)

The high-dimensional branch captures fine-grained, class- and domain-specific features, whereas the low-
dimensional branch introduces an information bottleneck, encouraging domain-invariant features and facili-
tating direct visualization of the embeddings (¢f. Appendix A.1).

3.2.1 Domain-invariant cross-branch consistency

Each hyperbolic embedding z; is then passed through a Multiclass Logistic Regression (MLR) head to
produce logits ¥; = MLR(z;), where class scores are computed from geodesic distances in the Poincaré ball,
as defined in Equations 2-3. The resulting logit vectors have a dimension equal to the number of classes for
both branches ¢ = 1,2. During training, we apply the cross-entropy loss to both branches, but at test-time
only the high-dimensional branch is used for inference. To promote domain-agnostic knowledge from the
bottleneck branch into the main branch, we introduce a cross-branch consistency loss:

LkL(31,32) = T? - KL (0(32; T)|lo(31; 7)) (6)

where KL is the Kullback-Leibler divergence, and 7" € R is a temperature scaler. Notably, this cross-branch
regularization works at the class-logit level, allowing information transfer between branches despite their
differing embedding dimensions.
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3.2.2 Overall objective

The final training objective combines the cross-entropy losses from both branches and the consistency loss,
weighted with A € R:

L= Lce(¥1,y) + Lce(¥2,y) + ALkL(Y1,Y2) (7)

By merging domain-sensitive high-dimensional features z; with a low-dimensional, domain-agnostic repre-
sentation zs, our method learns both global, domain-invariant features and local, domain-specific features,
implicitly taking advantage of the structure of the hyperbolic manifold. During inference, we only use the
logits from the high-dimensional branch ¥, as they capture more fine-grained details, thereby providing
richer semantic information.

4 Experimental results

In this section, we empirically evaluate and compare the advantages of representing medical image data
within a hyperbolic manifold compared to the traditional Euclidean one. Our experiments are designed to
assess three key aspects: (1) in-distribution (ID) image classification, (2) robustness against distribution
shifts, and (3) the influence of manifold geometry and latent bottleneck size on robustness.

Across our experiments, we utilize a frozen pre-trained foundation model as a feature extractor, followed by a
linear layer of dimension d; = 128 (Ermolov et al., 2022). This head is instantiated in three variants that form
the basis of our evaluation. First, a Euclidean ERM is implemented using a standard Euclidean classification
head with a softmax-based cross-entropy objective. Second, a hyperbolic counterpart (HypERM) projects
the linear layer onto the Poincaré ball and applies Multiclass Logistic Regression (MLR) (Ganea et al., 2018).
Third, our proposed cross-branch consistency approach (HypCBC) introduces an additional low-dimensional
branch (ds = 2) and a KL loss controlled by temperature T = 3 and weight A = 0.2. For hyperbolic
models, we fix the curvature at ¢ = 1.0, a commonly used default value (Mettes et al., 2024). This isolates
the effect of hyperbolic geometry while avoiding an additional dataset-specific hyperparameter that could
distort comparisons.

Furthermore, we employ a feature-clipping radius of » = 1.0 to ensure numerical stability (Guo et al., 2022).
All models are trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with cross-entropy loss and
a cosine-annealing learning-rate schedule. We use an initial learning rate of 1x10~* with a batch size of 64,
and apply early stopping after 10 epochs without improvement. The sensitivity to the hyperparameters of
HypCBC is reported in Table 4.

4.1 Medical image classification

We first evaluate the accuracy performance achieved across eleven real-world medical datasets from the
dataset collection of Yang et al. (2023), with default train-val-test splits and resolution 224x224. These
datasets, detailed in Table 1, span a diverse range of imaging modalities (9), sample sizes (102—10°), and
label granularities (2—11). Notably, we exclude Chest from our experiments because of its multi-label setup.

We further evaluate three distinct ViT-based models: ViT-S (Dosovitskiy et al., 2021), pre-trained on
ImageNet-21k following the training recipe of Steiner et al. (2022), DeiT3-S (Touvron et al., 2022), and
DINOv2-S (Oquab et al., 2024). This allows us to assess whether the hyperbolic gains consistently transfer
across models with different pre-training strategies. For each model and dataset, we report the average
classification accuracy (over five seed runs) for both single-branch Euclidean (ERM) and hyperbolic classifiers
(HypERM).

4.1.1 Results

The results reported in Table 2 demonstrate that, overall, hyperbolic representation learning consistently
improves classification performance, although the magnitude of the gains varies depending on the specific
dataset and model.



Published in Transactions on Machine Learning Research (02/2026)

With ViT, hyperbolic embeddings outperform Euclidean on 8 of 11 tasks, with the largest gains on OCT
(+1.32%), Tissue (+1.18%), and Pneumonia (+1.12%), a minor drop on Retina, and negligible changes
on Blood and OrganA. With DeiT3, hyperbolic models score first on 10 of 11 datasets, most notably on
Pneumonia, Derma, and Breast (gains from +1.41% to +1.89%). With DINOv2, the best model overall,
hyperbolic embeddings outperform Euclidean ones in 10 out of 11 tasks, with the biggest increases on OCT
(+2.70%), Path (4+1.48%), and Tissue (4+1.36%). To summarize, across all models and datasets, hyperbolic
classifiers offer statistically significant gains over Euclidean ones (Wilcoxon signed-rank test, p < 0.05).

Table 1: Dataset details including data source, imaging modality, type of classification task (with number
of classes), and predefined data splits. ML: Multi-Label, MC: Multi-Class, BC: Binary-Class, OR: Ordinary
Regression. Table adapted from Doerrich et al. (2025).

. . Task Number of Samples
Dataset Source Imaging Modality (# Classes) Train / Val / Test
Blood Acevedo et al. (2020) Blood Cell Microscope MC (8) 11,959 / 1,712 / 3,421
Breast Al-Dhabyani et al. (2020) Breast Ultrasound BC (2) 546 / 78 / 156
Chest Wang et al. (2017) Chest X-Ray ML-BC (2) 78,468 / 11,219 / 22,433
Tschandl et al. (2018)
Derma Codella et al. (2018) Dermatoscope MC (7) 7,007 / 1,003 / 2,005
oCT Kermany et al. (2018)  Retinal OCT MC (4) 97,477 / 10,832 / 1,000
Bilic et al. (2023) .
OrganA Xu et al. (2019) Abdominal CT MC (11) 34,561 / 6,491 / 17,778
Bilic et al. (2023) .
OrganC Xu et al. (2019) Abdominal CT MC (11) 12,975 / 2,392 / 8,216
Bilic et al. (2023) .
Organs " M o0t0) Abdominal CT MC (11) 13,932 / 2,452 / 8,827
Path Kather et al. (2019) Colon Pathology MC (11) 89,996 / 10,004 / 7,180
Pneumonia Kermany et al. (2018) Chest X-Ray BC (2) 4,708 / 524 / 624
Retina Liu et al. (2022a) Fundus Camera OR (5) 1,080 / 120 / 400
Tissue Ljosa et al. (2012) Kidney Cortex Microscope MC (8) 165,466 / 23,640 / 47,280

Table 2:  Accuracy (averaged over five runs) of Euclidean (ERM) and hyperbolic (HypERM) classifiers on
eleven medical datasets, evaluated with three ViT-based models. We highlight in bold the best manifold
across each model and dataset. Notably, the hyperbolic representation is significantly better than the
Euclidean one across all experiments (Wilcoxon signed-rank test, p < 0.05).

Br Pn Re De Bl OrC OrS OrA Pa Ti OCT Avg

ViT
ERM 82.56 87.21 61.90 81.65 97.68 85.42 76.09 91.50 93.48 61.04 74.02 81.14
HypERM 83.08 88.33 61.45 82.19 97.61 85.72 77.07 91.45 93.54 62.22 75.34 81.64

DeiT3
ERM 82.56 88.59 59.15 7790 96.17 83.33 72.18 89.44 90.78 59.34 78.54 79.82
HypERM 83.97 90.48 59.65 79.44 96.50 83.61 72.03 89.48 91.23 60.61 78.90 80.54

DINOv2
ERM 85.77 89.94 64.65 82.77 97.90 88.04 76.98 92.82 92.46 61.95 83.60 83.35
HypERM 85.38 90.38 65.40 83.59 97.91 88.32 77.24 92.88 93.94 63.31 86.30 84.06
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4.2 Domain Generalization
4.2.1 Datasets

We evaluate domain generalization performance under out-of-distribution (OOD) conditions on three estab-
lished medical dataset collections.

Fitzpatrick17k (Groh et al., 2021) is a dermatological dataset including 16,577 samples labeled with three
disease classes and skin-tone information according to the Fitzpatrick scale. The Fitzpatrick skin-type
scale categorizes human skin tones from Type I (very light) to Type VI (deeply pigmented), providing a
standardized measure of skin pigmentation from light to dark. We aggregate the skin tone information in
three groups (i.e., domains), as in Daneshjou et al. (2022): {I-II, IIT-IV, V-VI}. Given the limited number
of domains, we assess the performance on a leave-one-domain-out protocol (LODO).

Camelyon17-WILDS (Bandi et al., 2018; Koh et al., 2021) is a standard binary domain generalization
benchmark for histopathology consisting of 422,394 images acquired from five hospitals. We follow the
default splits, training on three hospitals, validating on one, and testing on one.

For Retina, a 5-class diabetic retinopathy classification task, we construct cross-dataset shifts using four
widely adopted fundus imaging datasets (Che et al., 2023; Zhou et al., 2023). APTOS 2019 (Karthik &
Dane, 2019) and DeepDR (Liu et al., 2022b) serve as the in-distribution training data, comprising a total of
4,608 labeled samples. IDRiD (Porwal et al., 2018) forms the validation domain with 1,744 samples, while
Messidor-2 (Decenciere et al., 2014) provides the test domain with 7,000 samples. These datasets differ in
acquisition devices, grading protocols, and patient cohorts, thereby inducing realistic distribution shifts.

C17-WILDS [%s® #[}s < Fitzpatrick17k
Retina 5 :
PTOS DeepDR Messidor

Train Test

Figure 3: Overview of dataset domains. Top-Left: Camelyon17-WILDS, showing representative “tumor”
patches from each contributing hospital (H0-H4). Bottom-Left: Retina, showing representative fundus
images (y = 4) from each dataset domain (APTOS 2019, DeepDR, IDRiD, Messidor-2). Colored frames
indicate the train (pink), validation (orange), and test (purple) subsets. Right: Fitzpatrick17k, showing
representative “malignant” skin-lesion images from each of the three skin-tone groups (I-1I, III-1V, V-VI).

4.2.2 Methods

We compare HypCBC against standard empirical risk minimization (ERM) and its hyperbolic variant (Hy-
pERM). In addition, we evaluate Euclidean embeddings enhanced with data augmentations such as Ran-
dAugment (Cubuk et al., 2020), AugMix (Hendrycks et al., 2019), and Med-C (Di Salvo et al., 2024). We
also include established methods such as IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2020),
VREx (Krueger et al., 2021), DANN (Ganin et al., 2016), CDANN (Li et al., 2018¢c), CORAL (Sun & Saenko,
2016), MMD (Li et al., 2018b).

All methods use DINOv2 image embeddings and the default hyperparameters defined in DomainBed (Gul-
rajani & Lopez-Paz, 2021). We report the area under the receiver operating curve (AUC), averaged over five
seeds to accommodate varying class imbalance and the generally more challenging (OOD) conditions.
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Table 3: AUC averaged over five runs. Fitzpatrick17k is evaluated using a LODO strategy, reporting results
for each fold, together with their macro-average. For Camelyon17-WILDS and Retina, both val and test set
results are reported. We highlight in bold the best two methods and underline the significantly best
(paired t-test, p < 0.05) on each dataset. Across all datasets, HypCBC is the significantly best method
(Wilcoxon signed-rank test, p < 0.05).

F17k C17-WILDS Retina O0OD
Method I-11 III-1V V-VI Avg Val Test Val Test Avg
ERM 79.93+0.2 82.884+0.2 79.234+0.3 80.68 97.05+0.1 98.32+0.1 86.65+1.2 78.40+1.3 86.07
Med-C 80.15+0.1 82.80+0.4 79.664+0.2 80.87 97.14+0.1 98.22+0.0 84.85+0.2 77.13+0.5 85.71
RandAug 80.044+0.1 82.864+0.5 79.24+0.2 80.71 96.7440.0 98.15+0.1 87.85+0.2 78.824+0.5 86.24
AugMix 80.26+0.1 82.86+0.5 79.25+0.2 80.79 96.504+0.1 98.06+0.1 86.73+0.3 79.80+0.4 86.21
IRM 76.57+£0.7 80.20+0.4 78.844+0.4 78.54 96.98+0.1 98.17£0.2 85.04+0.4 75.64+0.5 84.49
GroupDRO  80.154+0.2 82.54+0.2 78.60+£0.6 80.43 97.50+0.1 98.22+0.1 85.71+1.1 77.46+0.7 85.74
VREx 79.16+0.1 82.35+0.6 79.66+0.3 80.39 97.36+0.1 98.354+0.1 87.05+0.3 78.67+0.4 86.09
DANN 79.90+0.1 82.474+0.3 79.694+0.4 80.69 97.00+0.1 98.22+0.1 86.544+0.7 78.05+0.4 85.98
CDANN 79.71£0.1 82.4440.5 80.024+0.4 80.72 97.04+0.0 98.23+£0.1 85.764+0.9 76.92+1.0 85.73
MMD 78.824+0.1 82.15+0.4 79.56+£0.3 80.18 97.024+0.2 98.27+0.1 87.42+0.2 79.07+0.4 86.05
CORAL 78.83+0.1 82.40+0.3 79.524+0.4 80.25 97.22+0.1 98.25+0.2 87.36+0.2 79.28+0.4 86.12

HypERM 81.9340.1 84.314+1.0 83.56+0.3 83.27 97.954+0.6 98.07+£0.2 87.23+0.9 79.394+0.7 87.49
HypCBC 82.3440.3 86.284+0.2 84.27+0.3 84.30 98.0440.3 98.331+0.3 87.34+0.7 80.48+0.5 88.15

4.2.3 Results

As shown in Table 3, Euclidean methods achieve comparable performance overall. Among augmentation
methods, Med-C leads on Fitzpatrick17k, while RandAugment and AugMix lead on Retina. Representation-
learning methods, such as VREx and MMD, also yield notable benefits on Camelyon17-WILDS and Retina.
Regarding the hyperbolic manifold, HypERM (single-branch) outperforms its Euclidean counterpart in
all settings except Camelyonl7-WILDS (test), where our proposed method, HypCBC, exhibits compara-
ble results with the top-scoring VREx. Notably, while VREx utilizes domain labels during training, our
method does not require such information. On the Retina test split, HypCBC outperforms the best Eu-
clidean method, AugMix, by 0.68%. Furthermore, hyperbolic methods exhibit the largest improvements
on Fitzpatrick17k. Specifically, HypERM alone significantly boosts AUC, and HypCBC achieves additional
significant gains (paired t-test, p < 0.05). This pattern aligns with the magnitude of the shift in skin
tone groups. Indeed, Fitzpatrick17k presents the most extreme shift (¢f. Figure 3), while the shifts ob-
served in Camelyonl7-WILDS and Retina are milder. Overall, HypERM delivers superior generalization
across a broad range of real-world shifts, with an average improvement of +1.42% over Euclidean embed-
dings (ERM). Furthermore, HypCBC yields an additional statistically significant improvement of 4+0.66%
(Wilcoxon signed-rank test, p < 0.05).

5 Ablation studies

5.1 Latent dimension and generalization

To quantify how the size and manifold of the low-dimensional branch govern the trade-off between domain
invariance and label discrimination, we train single-branch classifiers (i.e., no consistency constraint) with
embedding dimension d € {2,16,32,64,128} in both Euclidean and hyperbolic spaces. We evaluate on
three benchmarks: Fitzpatrickl7k (three skin-tone groups, standard ID split), Camelyonl7-WILDS (five
hospitals), and the Retina cross-dataset (four sources). For Camelyonl17-WILDS and Retina, we merge
the original train/validation/test splits and re-partition the data into a 70/10/20 stratified split, thereby
ensuring that all domain groups appear in train, validation, and test splits and enabling more reliable
invariance estimates.
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After training each model under identical hyperparameters as previous experiments, we freeze its projection
head and fit two linear classifiers on the resulting embeddings: one to predict domain labels (domain-
classification AUC, lower means more invariance) and one to predict disease labels (label-classification AUC,
higher means more discriminative). Experiments with non-linear classifiers are available in Appendix A.3.

Fitzpatrick17k Camelyon17-WILDS Retina Fitzpatrick1 7k Camelyon17-WILDS Retina
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Figure 4: Figure 4a shows the domain AUC (]) vs. latent dimension d: lower is better (more domain-
invariant), while Figure 4b plots the label AUC (1) vs. d: higher is better (more discriminative). The
curves are shown for Euclidean (ERM) and hyperbolic embeddings (HypERM). Results are reported on in-
distribution splits where all domains appear in train/val/test, yielding 3,5, and 4 domains for Fitzpatrick17k,
Camelyon17-WILDS, and Retina, respectively.

5.1.1 Results

As shown in Figure 4a, the domain-classification AUC is lowest at d = 2 for both manifolds and steadily
increases with d, confirming that a smaller bottleneck enforces stronger domain invariance. Crucially, Fig-
ure 4b demonstrates that even with a 2D bottleneck, label-classification AUC remains high (up to 99%
on Camelyonl7) and continues to improve with larger d. Notably, Euclidean embeddings plateau on Fitz-
patrick17k and Camelyon17-WILDS, with no further increase on larger d. However, hyperbolic embeddings
gain additional accuracy up to d = 128, especially on Fitzpatrickl17k, with a gap of approximately 3% AUC.
Taken together, these results suggest that (1) a very low-dimensional bottleneck provides strong domain
invariance with only a modest loss in discriminative power, and (2) hyperbolic embeddings achieve higher
label AUC than their Euclidean counterparts, with the largest gains observed at higher dimensions.

5.2 Hyperbolic cross-branch consistency

To isolate the contribution of our two-branch consistency regularization, we fix the high-dimensional branch
dy = 128 and vary the low-dimensional bottleneck ds € {2,8,16,128}. For each configuration, we measure
the AUC gain of the two-branch model over its single-branch counterpart on the same three benchmarks:
Camelyon17-WILDS (test hospital), Retina (test dataset), and Fitzpatrick17k (leave-one-domain-out). This
is evaluated on both hyperbolic and Euclidean manifolds.

5.2.1 Results

Figure 5 shows that in hyperbolic space, the largest improvements occur at do = 2 and decline steadily as
the bottleneck size grows, confirming that performance gains arise from compact regularization rather than
added capacity. Indeed, do = 128 slightly degrades hyperbolic performance. On Camelyonl7, Euclidean
cross-branch consistency (CBC) produces surprisingly negative AUC changes for all ds, while hyperbolic
CBC (HypCBC) yields positive gains at every reasonable bottleneck size. On Retina, both manifolds benefit
at do = 2. Although Euclidean gains appear larger at this point, the hyperbolic single-branch baseline itself
is already 0.99% higher than Euclidean (c¢f. Table 3). On Fitzpatrickl7k, HypCBC consistently improves
performance across all folds, achieving up to a 2% AUC boost on the III-IV split versus only 0.5% for
Euclidean. Overall, hyperbolic consistency regularization yields consistent, positive AUC gains across all
datasets and bottleneck sizes, while Fuclidean consistency produces uneven improvements.
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Figure 5: Improvement in AUC of two-branch consistency regularization over single-branch baseline (AAUC)
for Euclidean and hyperbolic manifolds, while varying bottleneck dimension dy. These are termed CBC and
HypCBC, respectively. From left to right: (1) Fitzpatrick17k leave-one-domain-out folds (I-1I, III-IV, V-
VI), differentiated with bar hatches, (2) Camelyonl17-WILDS (test), and (3) Retina (test). While Euclidean
regularization gains vary by dataset, hyperbolic regularization provides positive AAUC across every task
and reasonable (i.e., < 128) bottleneck size.

5.3 Sensitivity analysis

Finally, we perform a sensitivity analysis over our two key hyperparameters: the KL weight A, and the tem-
perature T. We sweep over values for A € {0.1,0.2,0.5,1.0} and T € {1.0,3.0,5.0,10.0} on Fitzpatrickl7k
(I-II, IIT-IV, V-VI), Retina (test), and Camelyon17-WILDS (test), reporting the mean AUC and its devia-
tion across these settings (each averaged over five seeds).

5.3.1 Results

As indicated by the standard deviations reported in Table 4, performance varies only marginally with A and
T (i.e., 0 € [0.1,0.7]). This empirically demonstrates the robustness of our proposed method with respect
to the chosen hyperparameters, thereby confirming its superiority against Euclidean baselines.

Table 4: Average AUC and standard deviation across different combinations of A and T, evaluated on
Fitzpatrick17k, Camelyon17-WILDS, and Retina.

F17k(I-IT) F17k(III-IV) F17k(V-VI) C17-WILDS Retina
81.96£0.4  85.55+0.7 83.8140.4  98.30+0.1  80.19+0.2

6 Conclusion

6.1 Limitations

Our current implementation fixes the curvature parameter ¢ and relies on a frozen Euclidean backbone
followed by lightweight hyperbolic MLR heads. While this design enables stable and efficient training, a static
curvature may not be optimal across datasets or manifold dimensions. Allowing curvature to be learnable,
or adopting data- or manifold-adaptive curvature schedules, could more effectively capture the geometric
structure of each task. Moreover, although freezing the feature extractor offers substantial computational
savings, fine-tuning the backbone or training a fully hyperbolic classifier may further amplify the benefits of
the proposed approach, at the cost of increased training complexity. Finally, our method is evaluated only
for single-label multi-class classification. Although the cross-branch consistency operates at the logit level
and is conceptually extendable to multi-label settings, we do not explore this extension in this manuscript.
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6.2 Discussion

Our work presents a hyperbolic representation learning framework for medical imaging that leverages the
inherent hierarchical structure of clinical data. Across diverse modalities and scales, replacing Euclidean
embeddings with our hyperbolic projections consistently improves in-distribution accuracy. Our two-branch,
domain-invariant hyperbolic cross-branch consistency scheme further boosts out-of-distribution performance
on three challenging benchmarks. Crucially, ablation studies confirm that these gains arise from the compact
low-dimensional consistency regularization, not merely from added capacity, and that hyperbolic consistency
outperforms its Euclidean counterpart. Overall, hyperbolic embeddings offer a straightforward yet powerful
alternative for building robust, generalizable medical Al systems.

Ethical and Data Quality Considerations

This work uses only publicly available datasets and adheres to their respective licenses. Fitzpatrick17k
is known to contain substantial label noise (= 22%) due to heterogeneous data sources and annotation
procedures, as documented by recent analyses (Groger et al., 2025). The dataset also presents limitations
related to data provenance, as it was compiled from web-scraped images with limited transparency regarding
original patient consent, and is distributed under a CC-BY-NC license. While these factors may affect
absolute performance and raise broader ethical considerations, all methods in this study are evaluated under
identical conditions, and Fitzpatrick17k remains a widely adopted dataset.
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A Appendix

A.1 Hyperbolic visualizations

Our method includes an explicit 2D hyperbolic branch, enabling direct visualization of learned represen-
tations without relying on post-hoc dimensionality reduction. Unlike techniques such as t-SNE or UMAP,
which produce approximate low-dimensional embeddings and may distort neighborhood structure, our ap-
proach yields representations that are intrinsically two-dimensional and geometrically meaningful.

Figure 6 visualizes the learned 2D hyperbolic embeddings for Camelyon17-WILDS (train), Retina (train),
and Fitzpatrickl7k (train, fold V-VI). For each dataset, embeddings are shown in the Poincaré disk and
colored by class (left) and by domain (right). Across all benchmarks, class structure is preserved, whereas
domain labels exhibit substantial overlap and lack compact, locally separable clusters, suggesting reduced
domain-specific organization.

On Camelyon17-WILDS, which comprises two classes and three hospital domains, a clear class separation is
observed, whereas domain labels remain highly mixed. Notably, the training domains are imbalanced, with
131,696, 116,959, and 53,425 samples from hospital 4, 3, and 0, respectively. This explains the predominance
of purple and orange points and the diffuse presence of the under-represented hospital 0 domain. Similar
qualitative behavior is observed on Retina and Fitzpatrickl7k. While Fitzpatrick17k shows a clearer class
separation, Retina exhibits higher class overlap (especially with class 4). This is expected given the progres-
sively graded nature of diabetic retinopathy severity, making class separation inherently more challenging.

To quantify these observations, we compute the average local k-NN entropy (k = 15) in hyperbolic space,
measuring label diversity within local neighborhoods. Lower entropy indicates stronger local discrimination.
On Camelyon17-WILDS, we observe a low class entropy (Hcjass = 0.071) and substantially higher domain
entropy (Hgomain = 0.731), confirming that neighborhoods are class-consistent but domain-mixed. This is
facilitated by the large dataset size and its binary nature. Corresponding results for the remaining datasets
are reported in Table 5. Higher class entropy on Fitzpatrick17k and Retina is expected due to increased task
complexity, and for Fitzpatrickl7k values are averaged across LODO splits, smoothing fold-specific effects.
Overall, these results provide geometric evidence that the proposed representations preserve class structure
while reducing domain-specific clustering.

Table 5: Average local k-NN entropy of 2D hyperbolic training embeddings, computed with respect to class
labels (Hcjass, ) and domain labels (Hgomain, 1) on Fitzpatrick17k (3 classes, 2 train domains), Camelyon17-
WILDS (2 classes, 3 train domains), and Retina (5 classes, 2 train domains). Lower class entropy indicates
stronger class separability, while higher domain entropy reflects reduced domain-specific structure. For
Fitzpatrick17k, entropy is averaged across the three training folds, while for Camelyon17-WILDS, results
are computed on a subset of 30,000 samples due to computational overhead. The results are consistent with
the learned embeddings preserving class information while exhibiting limited domain discrimination.

F17k C17-WILDS Retina

Hclass (wL) Hdomain (T) Hclass (J/) Hdomain (T) Hclass (»L) Hdomain (T)
0.414 £0.04 0.554 = 0.07 0.071 0.731 0.259 0.605

A.2 Standardized evaluation for Camelyon17-WILDS

Following the standard WILDS (Koh et al., 2021) evaluation protocol for Camelyonl17-WILDS, we addition-
ally report average accuracy alongside AUC (c¢f. Table 3) for both validation and test splits (¢f. Table 6).
The trends observed in AUC are consistent with those in accuracy. HypCBC achieves the best validation
performance and competitive test accuracy within the standard deviation of the top-performing methods.
Importantly, unlike GroupDRO and VREx, our method does not rely on domain labels during training.
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Figure 6: Visualization of 2D hyperbolic (training) embeddings learned by the proposed method, shown in
the Poincaré disk. For each dataset, left: points colored by class label; right: the same embeddings colored
by domain. While class separation is observed, domain separation is minimal.

Table 6: AUC and accuracy averaged over five runs for Camelyon17-WILDS val and test sets. We highlight
in bold the best two methods.

AUC Accuracy

Method Val Test Val Test

ERM 97.05+0.1 98.324+0.1 91.234+0.2 94.02+0.2
Med-C 97.1440.1 98.224+0.0 91.5040.1 94.0940.3
RandAug 96.7440.0 98.1540.1 90.48+0.1 93.8940.6
AugMix 96.50+0.1 98.06+0.1 90.1240.1 92.73+1.0
IRM 96.9940.1 98.174+0.2 90.56+0.2 93.764+0.2
GroupDRO 97.5040.1 98.2240.1 91.794+0.2  94.30+0.2
VREx 97.36+0.1 98.35+0.1  91.49+0.3 94.39+0.3
DANN 97.001+0.1 98.2240.1 91.07+0.2 93.534+0.4
CDANN 97.0440.0 98.2340.1 91.20£0.2 93.6440.6
MMD 97.02+0.2 98.27+0.1 91.224+0.3 94.21+0.2
CORAL 97.2240.1 98.251+0.2 91.324+0.3 94.04+0.2
HypERM 97.95+0.6 98.07+0.2 92.794+1.1  93.22+0.5
HypCBC 98.044+0.3 98.33+0.3 92.891+0.8 94.194+0.4

A.3 Non-linear evaluation of domain invariance

Batch effects (i.e., domain-specific acquisition or annotation artifacts) may be encoded nonlinearly (Rahman
et al., 2023), in which case linear probes can underestimate the amount of domain information present in
learned representations. To account for this, we replicate the domain-predictability experiment of Section 5.1,
replacing the linear classifier with a two-layer MLP trained on frozen embeddings for 50 epochs using AdamW
with a learning rate of 10~%.

As shown in Figure 7b, the nonlinear probe yields slightly higher absolute domain AUC than the linear clas-
sifier (Figure 7a), confirming that some domain information is indeed nonlinearly encoded. Crucially, the
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Figure 7: Figure 7a shows the domain AUC ({) vs. latent dimension d obtained with a linear classifier,
while Figure 7b plots the domain AUC (1) vs. d obtained with an MLP. The curves are shown for Euclidean
(ERM) and hyperbolic embeddings (HypERM). Results are reported on ID splits where all domains appear in
train/val/test, yielding 3, 5, and 4 domains for Fitzpatrick17k, Camelyon17-WILDS, and Retina, respectively.

qualitative trends remain unchanged: domain predictability is minimized at low-dimensional bottlenecks, in-
creases monotonically with embedding dimension, and exhibits consistent relative behavior across Euclidean
(ERM) and hyperbolic (HypERM) manifolds.

We further observe dataset-dependent differences in the gap between linear and nonlinear probes. On
Fitzpatrick17k and Camelyon17-WILDS, the difference in domain AUC between linear and MLP is marginal,
suggesting that dominant domain confounders, such as skin tone and hospital-specific staining (c¢f. Figure
3), are largely texture-driven and close to linearly separable at higher dimensions. In contrast, the Retina
benchmark exhibits a larger gap, likely due to more heterogeneous domain shifts arising from multiple
acquisition devices and grading protocols, which induce more complex and less linearly separable domain
structure. The absence of perfect domain separability on Fitzpatrick17k is also consistent with known
ambiguity in skin-tone annotation.

Overall, while the degree of nonlinearity in domain information is dataset-dependent, the qualitative domain-
invariance trends induced by low-dimensional bottlenecks remain consistent.

A.4 Augmentations within the hyperbolic manifold

This section evaluates the interaction between HypCBC and common data augmentation strategies. We
consider the same domain generalization benchmarks used throughout the paper, i.e., Fitzpatrickl7k,
Camelyon17-WILDS, and Retina, and combine our methods with RandAugment and AugMix, which are
among the strongest augmentation-based baselines in prior work.

Table 7 shows that the impact of data augmentation on HypCBC is dataset-dependent. While modest
gains are observed on Fitzpatrick17k (up to +0.62%), no consistent improvements are seen on Camelyonl7-
WILDS or Retina. This indicates that the effectiveness of augmentations varies with dataset characteristics.
Although the proposed bottleneck promotes domain-invariant representations, the model may still benefit
from input diversity when such variability is informative.

Table 7: Average AUC for hyperbolic methods combined with RandAugment and AugMix across three
domain generalization benchmarks, namely Fitzpatrickl7k, Camelyonl17-WILDS, and Retina.

F17k C17-WILDS Retina
Method I-II III-1vV V-VI Avg Val Test Val Test

HypCBC 82.34£0.3 86.28£0.2 84.27 £ 0.3 84.30 98.04 £0.3 98.33 £ 0.3 87.34 £0.7 80.48 £ 0.5
w/AugMix 82.53 £0.1 86.87 £0.2 85.37 0.3 84.92 97.77 £ 0.3 98.52 £ 0.1 86.37 0.4 80.08+0.5
w/RandAug 82.43 £0.1 86.57 £ 0.2 84.83+0.3 84.61 97.76 £ 0.4 98.52+ 0.1 86.77 £ 0.5 79.83 +0.4
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Figure 8: Toy illustration of Euclidean and hyperbolic decision boundaries under exponential and logarithmic
maps, highlighting geometric differences between Euclidean linear classifiers and hyperbolic hyperplanes.

A.5 Euclidean vs. Hyperbolic Decision Boundaries

To provide geometric intuition for the difference between Euclidean and hyperbolic classifiers, we include a
two-dimensional toy example illustrating how decision boundaries behave under the exponential and loga-
rithmic maps.

Figure 8 contrasts four corresponding views of the same classification setup. The top-left panel shows a
hyperbolic decision boundary represented as a geodesic in the Poincaré disk, separating two synthetic clusters.
In hyperbolic space, linear classifiers correspond to hyperbolic hyperplanes, which appear as circular arcs
orthogonal to the unit disk. The top-right panel shows the same hyperbolic boundary after applying the
logarithmic map to the Euclidean tangent space at the origin, where it becomes a non-linear curve. This
illustrates how hyperbolic linearity translates into non-linear decision structure in Euclidean space.

For comparison, the bottom-left panel shows a standard Euclidean linear decision boundary in tangent space.
The bottom-right panel visualizes this Euclidean boundary after mapping it into hyperbolic space via the
exponential map. While the mapped boundary remains smooth, it does not correspond to a hyperbolic
hyperplane, since hyperbolic decision boundaries are defined by geodesics in the manifold, whereas the
exponential map of a Euclidean linear separator does not generally preserve geodesicity. This highlights the
geometric mismatch between Euclidean linear classifiers and hyperbolic decision surfaces.
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