TEncDM: Understanding the Properties of Diffusion Model
in the Space of Language Model Encodings

Anonymous ACL submission

Abstract

Drawing inspiration from the success of dif-
fusion models in various domains, numerous
research papers proposed methods for adapting
them to text data. Despite these efforts, none
of them has managed to achieve the quality
of the large language models. In this paper,
we conduct a comprehensive analysis of key
components of the text diffusion models and
introduce a novel approach named 7ext Encod-
ing Diffusion Model (TEncDM). Instead of the
commonly used token embedding space, we
train our model in the space of the language
model encodings. Additionally, we propose to
use a Transformer-based decoder that utilizes
contextual information for text reconstruction.
We also analyse self-conditioning and find that
it increases the magnitude of the model outputs,
allowing the reduction of the number of denois-
ing steps at the inference stage. Evaluation of
TEncDM on two downstream text generation
tasks, QQP and XSum, demonstrates its superi-
ority over existing non-autoregressive models.

1 Introduction

Autoregressive (AR) large language models such
as GPT-4 (OpenAl, 2023) or Llama 2 (Touvron
et al., 2023) are the current gold standard in the text
generation problem. They are capable of creating
high-quality and coherent texts that are practically
indistinguishable the from human ones. However,
the disadvantage of this approach is the inability of
the model to correct its own mistakes made during
generation. This may cause the text that follows
such mistakes to be spoiled. In addition, the autore-
gressive method of token generation slows down
the inference process as it requires performing a
single model evaluation for each new token.
Diffusion model is currently the state-of-the-art
approach for data generation in image (Rombach
etal., 2022; Betker et al.), audio (Evans et al., 2024)
and video (Blattmann et al., 2023) domains. They
are a class of probabilistic generative models that

are able to iteratively transfer noise to a represen-
tative sample of data. While some of the proposed
text diffusion models are autoregressive (Lovelace
et al., 2022; Zhang et al., 2023), the majority of
them are not and, by the design, they have several
advantages over AR language models. First, being
non-autoregressive (NAR) models, they generate
all the tokens simultaneously and can adjust any
part of the sequence during the generation process.
They also can be faster than AR models because
the number of neural function evaluations for diffu-
sion models depends on the number of denoising
iterations rather than the length of the sequence.
And given the possibility of distillation of diffu-
sion models (Meng et al., 2023), the number of
iterations can be greatly reduced.

To date, a number of text diffusion models
have been proposed, each based on substantially
new ideas with little overlap with other methods.
Some works replace Gaussian noise with categor-
ical noise (Hoogeboom et al., 2021; Austin et al.,
2021), exploiting the discreteness of the text do-
main. Others train continuous diffusion on token
embeddings (Li et al., 2022; Lin et al., 2023; Gong
et al., 2023) or text latent representations reduced
in size (Lovelace et al., 2022; Zhang et al., 2023).
There are also differences in the way diffusion out-
puts are decoded back into text. Diffusion models
trained on embeddings round their predictions to
the nearest embeddings, while those that utilize
small latent spaces decode the predictions with an
AR model. This suggests that the scientific commu-
nity has not found the most robust diffusion model
design yet.

In this paper, we attempt to better understand
the specifics of text distribution models and iden-
tify best practices for their development. We in-
vestigate each component in detail: text encoding
and decoding methods, diffusion model architec-
ture, noise schedule, and self-conditioning (Chen
et al., 2023). As a result, we combine all our

findings in a method called Text Encoding Dif-
fusion Model (TEncDM). It constructs the diffu-
sion model, which operates in the latent space of
the language model encodings (e.g. BERT (Devlin
et al., 2019)). It also utilize the Transformer-based
(Vaswani et al., 2017a) decoder, which is able not
only to decode the latents but also to improve the
text quality. We do not use an AR decoder on
purpose so as not to transfer the limitation of AR
language models to the diffusion.

We compare our approach with other works on
two conditional text generation problems: para-
phrasing and summarization, on which our
method surpasses all on-autoregressive models.
The main contributions of this work are as follows:

* We propose a new text diffusion framework
TEncDM, which trains the diffusion model
in the latent space constructed by the outputs
of pre-trained Transformer-based encoder.

* We evaluate the importance of the decoder
and conclude that its robustness to inaccura-
cies in the generated latents directly affects
the generation quality. We then propose a de-
coder architecture and its training method that
boosts the model performance.

* We analyse in detail the effect of self-
conditioning on the denoising process and
show that self-conditioning increases the mag-
nitude of model’s predictions, which in turn
allows us to reduce the number of denoising
steps during inference.

* Through a thorough ablation study, we reveal
that commonly used cosine and sqrt noise
schedules do not introduce enough difficulty
to the denoising task during training. We show
that the addition of more noise significantly
increases the model quality.

2 Problem Statement and Background

Text generation problem. In the field of natural
language processing, unconditional text generation
is a task of sampling y from the unknown distri-
bution p(y), where y = [y1,. .., yn] is a sequence
of tokens with variable length n. In conditional
text generation the distribution of texts changes to
p(y|x), where z is a condition variable. The goal
is to generate a text, that satisfies this condition.

Autoregressive language models. The most
common approach for text generation is autore-
gressive (AR) left-to-right sampling of words. The

idea is to approximate the factorised distribution
p(y) = [, p(vily<i) by learning a neural net-
work pg(y;i|y<i). During generation, tokens are
sampled sequentially with conditioning on the al-
ready generated ones.

Gaussian diffusion models. The standard diffu-
sion models (Ho et al., 2020; Song et al., 2021)
learn to sample data from an unknown distri-
bution by gradually denoising random Gaussian
noise. The train procedure is defined through a
forward diffusion process that satisfies g(z¢|zp) =
N(/aizo, (1 — ay)I), where oy € [0, 1] is a pre-
defined noise schedule, t € [0, 1]. The denoizing
network (parameterized by #) is trained to recon-
struct the original latent 2y given the noisy latent
zt, as expressed in equation 1

L(0) = [lz0 — 2oz, t)[1”] (1)

E
e~N(0,I),t~U|0;1]
Sampling procedure starts from a pure Gaussian
noise zp ~ AN (0,I) and utilizes the denoizing net-
work to iteratively generate latents 2y, ., ..., 2,
where l =t >tpr_ 1> ... >t =0.

Diffusion models for text generation. The pri-
mary feature of the text domain is the discreteness
of its samples. In order to train a diffusion model
on them, they must first be translated into continu-
ous space. Consequently, alongside the denoising
model, the diffusion framework incorporates an en-
coder that maps tokens into the continuous latents
and a decoder that performs the reverse operation,
converting the generated latents into text.

3 Related Work

Embedding-based diffusion models. The ma-
jority of proposed text diffusion models use embed-
dings of tokens to construct the continuous latent
space (Li et al., 2022; Lin et al., 2023; Strudel et al.,
2022; Gong et al., 2023; Wu et al., 2023). At the
inference stage, to convert the latent predictions
into text, they map each latent vector to a token
corresponding to the nearest embedding.

Latent diffusion models. Other studies suggest
reducing the size of the latent space by training a
diffusion model in the space of text autoencoder.
PLANNER (Zhang et al., 2023) finetunes BERT
(Devlin et al., 2019) to store all information in the
first k£ hidden state vectors from its final layer and
use them as a latent space. LD4LG (Lovelace et al.,
2022) trains the compression network to reduce

both the length and dimensionality of the latent
space sample. Both methods utilize autoregressive
language models to decode the latents into text.

Self-Conditioning. Self-conditioning is a tech-
nique that significantly increases the performance
of the diffusion model (Chen et al., 2023; Strudel
et al., 2022; Lovelace et al., 2022). Usually the
model is conditioned only on the latent variable
2z and the current timestep ¢ as 2§ = Zp(z,1).
Self-conditioning proposes to also condition the
model on the estimation of data sample from the
previous timestep during generation in order to
improve the prediction at the current timestep,
b= 2g(2,t, 257,

Although widely used, no analysis has been con-
ducted to determine why this method is effective
or how it impacts the generation process.

Noise scheduler. Noise scheduler is a key compo-
nent of a diffusion model that controls the amount
of noise added on each timestep. Previous research
(Li et al., 2022; Gao et al., 2023; Ye et al., 2023)
has highlighted that the standard noise schedulers
used for image diffusion models are unsuitable for
the textual domain. Due to the discrete nature of
the texts, it is unlikely that an addition of a small
amount of noise to a latent will change its nearest
text in the latent space. Therefore, to increase the
difficulty of the denoising task for the model, the
mentioned works recommend adding more noise
on iterations that are close to 0.

4 Understanding Text Diffusion

In this section, we present our findings on the com-
ponents of the diffusion model, discuss their weak-
nesses and propose ways to enhance them.

Encodings are better than embeddings. Most
diffusion models utilize token embeddings to map
text into a continuous latent space. However, this
approach is not optimal because the embeddings do
not convey contextual information. This requires
the diffusion model to independently search for
it to retrieve ambiguous tokens. To simplify the
task, instead of embeddings, we can use the final
layer outputs of a pre-trained language model (e.g.
BERT). They contain this information and, thus,
should be more suitable for training the diffusion
model. We refer to these outputs as encodings.
Experimental results confirming our intuition are
presented in Section 7.3. It is worth noting that the
use of encodings does not slow down the generation

process, as we need to compute them only during
the training.

To improve the quality even further, it is possi-
ble to fine-tune the encoder, but we choose not to
in order to avoid overcomplicating the approach.
Investigation into fine-tuning is left for the future
work.

Decoder is important. The purpose of the de-
coder in the diffusion model is to map the generated
latents into text. Approaches that train diffusion in
the space of token embeddings decode latents by
rounding them to the nearest embeddings and se-
lecting a corresponding token. However, the diffu-
sion model may produce inaccurate latent samples
due to accumulation of errors during the denois-
ing process. Such inaccuracy might significantly
spoil the text quality, so it would be wise to train a
decoder that could improve it.

In the Section 7.4, we compare different decoder
designs and conclude that an advanced decoder,
which can consider the context for each token, in-
deed improves the generation quality.

Self-conditioning affects denoising dynamics.
Self-conditioning improves sampling quality by
conditioning the model on its previous prediction.
However, the mechanics of self-conditioning are
not fully understood yet. Our research demon-
strates that the addition of self-conditioning in-
creases the model’s prediction confidence at each
denoising timestep, resulting in a reduction in the
required number of generation steps. Furthermore,
the sample quality diminishes as the number of
steps increases. We believe that a reason for this
behaviour lies in a mismatch between the latents
used at the training stage and those at the genera-
tion stage. We provide the evidence supporting our
conclusions in Section 7.5, along with a compre-
hensive analysis of the model’s behaviour with and
without self-conditioning.

Diffusion needs even more noise. Following
the recommendations of previous works (Li et al.,
2022; Wu et al., 2023; Ye et al., 2023), we used sgrt
noise scheduler that increases the amount of noise
added to the diffusion model inputs during training
beyond the amount of typically used cosine noise
scheduler (Han et al., 2022; Lovelace et al., 2022;
Strudel et al., 2022; Zhang et al., 2023). However,
our experiments led us to conclusion that encoding-
based diffusion model requires even more noise
for successful training. We hypothesize that this

Cross-Attention

Trainable

v
Frozen
Self-cond
Z, Z,
E (X 0 DM i —» Self-cond
Normalizati /
T o
Evond Edi[f
5 e

‘cond

Xp Xy e Xy

Figure 1: Overview of our framework design for condi-
tional generation. Top is the training process, bottom is
the generation process.

is due to the presence of contextual information in
the encodings, which simplifies the denoising task.

In Section 7.6 of this study, we demonstrate that
both commonly used cosine and sqrt noise sched-
ules do not introduce a significant level of noise to
the latent variables over a wide range of timesteps.
As a result, the denoising task becomes too sim-
ple for the model, leading to a reduction in the
effectiveness of the training signal.

5 Methodology

The design of TEncDM is depicted on Figure 1. It
consists of three parts — diffusion encoder Egy; s,
diffusion model 2y and decoder D. For the condi-
tional generation, we also add conditional encoder
Econg, which encodes an input text. Its output
is provided to the diffusion model and decoder
through cross-attention.

This section exclusively focuses on the topic of
unconditional text generation. The details of the
conditional model can be found in Section 5.5.

5.1 Diffusion encoder, Ey; ¢

We use pre-trained Transformer-based (Vaswani
et al., 2017a) language model Egy;fr, which we
call diffusion encoder, to encode text y into the
latent space z. Encoding of text does not change
the length of the sequence. In order to align all
texts in length, we add paddings to the end of short
texts. After encoding the text, the encodings of all
special tokens are replaced by their corresponding
embeddings. This is necessary because diffusion
model does not use an attention mask during train-
ing, which means that the reconstruction loss is cal-
culated for both text and special tokens. However,

special token encodings usually contain meaning-
less values, because encoder does not learn to store
useful information in them. Therefore, minimiza-
tion of reconstruction loss for these encodings only
harms the diffusion training process. Embeddings
of special tokens, on the other hand, only contain
information about the token itself and the diffusion
model recovers them much easier.

5.2 Decoder, D

The decoder D is required to convert latent vari-
ables generated by diffusion model into textual
output. Although a basic linear decoder can effec-
tively reconstruct tokens with high accuracy, we
employ the BERT (Devlin et al., 2019) architec-
ture for the decoder to provide it with the ability to
capture context information and rectify potential
errors originating from the diffusion model.

We train the decoder independently of the diffu-
sion model using the following objective

—Elogpp(y | Cor(z)) — m[i)n, 2)

where Cor(z) is a corrupted latent variable ex-
tracted from the diffusion encoder. Corruption is
needed to expand the decoder training data domain
and make it robust to distribution mismatch be-
tween text encodings zg and latents Zg generated
by the diffusion model. This mismatch might arise
due to the accumulation of errors during the denois-
ing process. Its presence is especially evident for
special tokens, which always have the same fixed
representations in zg. By default, we take C'or(zp)
to be z; with randomly sampled ¢ € [0,0.15]. We
use the diffusion’s noise scheduler to calculate z;.

5.3 Diffusion model, Z

The diffusion model consists of 12 BERT layers
and it is trained to reconstruct the original latent
zp given its noisy version z; and a timestep ¢ by
minimizing the objective (1). We provide the model
with information about the timestep by adding its
embedding to the hidden state vectors of each layer.

We train the diffusion model using the variance
preserving scheme, discussed in (Song et al., 2021).
To achieve zero mean and unit variance we normal-
ize the latent variables 2y coordinate-wise, using
the statistics from the training set.

Noise scheduler We adopt the noise scheduler
from (Hoogeboom et al., 2023) and use the follow-
ing equation for ay:

1
14 tan(tr/2)2 - d?’

a (3)

where d is a hyperparameter controlling the rate
at which noise is introduced into the system. We
set d = 9 by default, which corresponds to a signif-
icantly higher noise addition rate than what is used
in all common noise schedulers. We further refer
to our scheduler as fan-d noise scheduler.

Self-condition Following the previous ap-
proaches (Lovelace et al., 2022; Strudel et al.,
2022) we incorporate self-conditioning into the
diffusion model. In order to make the model utilize
the data sample estimation from the previous
generation step, we modify the training procedure.

According to (Chen et al., 2023) we design the
training process to emulate the inference behav-
ior. On each training iteration with the probability
p = 0.5 the prediction is computed with the self-
conditioning set to zero z§ = zp(z,¢,0). And,
with probability (1 — p) = 0.5 we first calcu-
late 25 = z9(z1,t,0) and then use it as an estima-
tion of the data sample to obtain a second predic-
tion z5 = zp(21, t, SG(Z})), where SG is the stop-
gradient function that does not allow the gradient to
flow through z§. The diffusion model is optimized
using the output z}, in the former scenario and z{, in
the latter. This training strategy allows the model
to accurately approximate 2y both with and without
self-conditioning. We implement self-conditioning
in a same manner as conditioning on timestep. For
each diffusion model layer we pass the data estima-
tion through a single linear layer and add it to the
hidden state vectors.

5.4 Generation process

The generation process is illustrated on the Figure
1 (bottom). To generate text in the inference phase,
we start with a random Gaussian sample and de-
noise it in " steps using the Euler solver. At each
step, we apply self-conditioning and, because of it,
use a small number of steps — 50 by default.

5.5 Conditional generation

For the conditional generation we keep the frame-
work design similar to unconditional generation.
The only difference is that we add conditional en-
coder to process the input text and provide both dif-
fusion model and decoder with its output via cross-
attention. Implementation details can be found in
Appendix E.

6 Datasets

To evaluate the performance of our diffusion mod-
els we use three datasets in English language. The
ROCStories (Mostafazadeh et al., 2016) dataset
contains 98k five-sentence commonsense fictional
stories, that capture causal and temporal relations
between daily events. The subset of QQP (Chen
et al., 2017) dataset, proposed in (Gong et al.,
2023), consists of 144k question pairs from the
Quora platform that are paraphrases of each other.
The XSum (Narayan et al., 2018) dataset is used
for summarization problem and it contains 204k
BBC articles, which are provided as document and
summary pairs'. The detailed statistics for each
dataset can be found in Appendix F.

7 Empirical Analysis

In this section, we evaluate the components of our
framework on the ROCStories dataset. To simplify
the setup, we only consider unconditional genera-
tion. In Section 8, we demonstrate that our findings
can be successfully transferred to the conditional
generation problems. In this section, we do not
compare our method with others. The comparison
with the GPT?2 is presented in Appendix G.

7.1 Evaluation Metrics

We follow the model evaluation scheme from the
(Lovelace et al., 2022). To evaluate the qual-
ity of our model we use Perplexity (ppl), cal-
culated with GPT-2 Large (Radford et al., 2019).
To measure the diversity of the generated text
we utilize the diversity metric proposed in (Su

et al., 2022). We calculate it as div(y) =
H4 [# of unique n-grams in y|
n=2 |# of n-grams in y|

of generated texts. To ensure that the model does
not reproduce the training dataset during the genera-
tion we evaluate the Memorization (mem). We cal-
culate it as the proportion of generated 4-grams that
are found in the training set. As Perplexity tends to
be small for the texts with repetitions, we also use
MAUVE Score (Pillutla et al., 2021) to estimate
the quality of text. MAUVE is a language model-
based metric that measures the distance between
the distributions of generated and reference texts
using divergence frontiers. We leave all MAUVE
hyperparameters at the default values presented in
the original paper.

, where y is a set

'All the datasets we use in this work are publicly available
under a creative commons or an open source license.

Encoder ppll mem| div{ mauve !
BERT emb 48.9.36 .371_003 .324_002 .600_016
BERT 34166 412005 304,006 .707 g24
TS5 47766 .361 001 -330001 -475008

Table 1: Comparison of diffusion encoders.

To calculate all the metrics, we generate 1000
texts. For MAUVE, we sample 1000 reference
texts from the test set. We repeat this procedure 5
times and report the mean and standard deviation
of the obtained results in meangy notation.

7.2 Model setup

The training of our diffusion model is conducted
within the latent space of BERT encodings, as it has
shown the best performance among all encoders.
We employ a 3-layer transformer for the decoder
and train it to reconstruct zy from z;, where ¢ €
UJ[0,0.15]. A comprehensive analysis of various
decoder modifications is presented in Section 7.4
and Appendix B. The diffusion model is the 12-
layer transformer with dimensionality of 768. By
default we train it with fan-9 noise scheduler.

7.3 Effect of Diffusion Encoder

We compare latent spaces of BERT (Devlin et al.,
2019) (bert-base-cased) and T5 (Raffel et al.,
2020) (t5-base) encodings, as well as BERT em-
beddings, to ascertain the optimal choice for the
diffusion model. In this experiment, we train diffu-
sion models with the same set of hyperparameters
across all diffusion encoders. We train the decoders
according to the scheme described in Section 7.2.
The results of this comparison are presented in Ta-
ble 1 and they show a clear advantage of the latent
space derived from BERT encodings. div and mem
for TS5 encoder and BERT embeddings are better,
because their generated texts include words that do
not fit the context. The text samples are presented
Table 9 of Appendix H. This confirms our hypothe-
sis that encodings are better suited for the training
of a diffusion model.

7.4 Effect of Decoder

To confirm the hypothesis about the importance of
the decoder architecture and its training scheme, we
compare an MLP decoder consisting of two linear
layers with a 3-layer transformer. We corrupt the
decoder input zg by transforming it into z;, using
the diffusion forward process with ¢ € U|0, 0.15].
We choose this method, because it brings the de-
coder input closer to the diffusion output. A more

Decoder ppl)] mem| div{ mauve

MLP 607.1156 .332003 400004 .004 g9
+ COT‘(Z()) 36.21,8 .415,005 ~301.006 .650,03

Transformer| 40.4g5 .408 95 .308 g0 .568 2
+ COT(Z()) 34-1.66 412 g05 304006 .707_02

Table 2: Comparison of decoders for encoding-based
diffusion model.

detailed analysis of corruption techniques is pre-
sented in the Appendix B. To keep the experiment
fair, we apply all decoders to the same generated
latents. The results of the experiment are shown
in Table 2. The MLP decoder achieves the worst
text quality, because it overfits on the special token
embeddings and fails to decode them from the gen-
erated latents. Examples of the generated samples
are shown in Appendix H. Corruption of the input
helps to avoid overfitting. At the same time, incor-
porating contextual information into the decoder
increases the quality even more

7.5 Effect of self-conditioning

We conduct a series of experiments to understand
how self-conditioning affects the diffusion model.
In Figure 2, we compare the quality of the mod-
els with and without self-conditioning for dif-
ferent number of denoising steps. The results
show that while the quality of the model with-
out self-conditioning increases as the number of
steps increases, the quality of the model with self-
conditioning reaches a maximum at a value of 50
steps in terms of MAUVE, after which it starts to
drop. Nevertheless, at the highest point model with
self-conditioning surpasses the model without it
according to both MAUVE and perplexity.

We explain this drop in generation quality with
mismatch between diffusion model inputs at train
and inference stages. To confirm our hypothesis,
we calculated the mean-squared norm (magnitude)
of the values of each latent £, in a mini-batch pre-
dicted by the diffusion model during generation
(i.e. 5= 128]13, where N is a batch size, d is a
dimension and m is a sequence length). We plot
this magnitude with respect to timestep for gen-
erations with different number of steps as well as
for the predictions z}, from the training stage. The
results are presented in Figure 3. They indicate that
self-conditioning significantly increases the predic-
tion magnitude as the number of steps increases.
This can be explained by the following: during
training, the model learns to use self-conditioning
to approximate zg more accurately. Consequently,

140 0.7
1201 0.6
2100 -
b L0.5 %
=2, 80 Z
g =
A 601 A 0.4

10 —a— w/o self-conditioning
--+- w/ self-conditioning [%3
20 1 Tl °
20 50 100 200 500

generation steps

Figure 2: Comparison of models with and without self-
conditioning

0-81 —— 2§ prediction
0.7 1

S

S 0.6 1

=

‘S 0.5

g 20 steps

g 0.41 50 steps

&P 0.31 —— 100 steps
02l — 200 steps

—— 500 steps

0.1

00 02 04 06 08 1.0
t

Figure 3: Comparison of magnitudes for generation
processes with different amount of steps.

self-conditioning increases the model’s confidence,
which is directly related to prediction magnitude.
During the generation process, the model takes
its own prediction, which has an increased mag-
nitude, as an input at each step and increases it
further. Therefore, the increase in magnitude de-
pends directly on the number of generation steps.
Eventually, this leads to a mismatch between the
predictions fed into the model during training and
generation. In the Appendix C, we provide a more
detailed discussion of this phenomenon. It is worth
noting that the smallest mismatch is observed for
the trajectory of 50 generation steps, which corre-
sponds to the best quality.

7.6 Effect of Noise scheduler

We compare our noise scheduler tan-d with previ-
ously used cosine and sqrt (visualized in Appendix
D) and present the quantitative results in Table 3.
We use the same decoder and optimal amount of
generation steps for each scheduler. In Figure 4, we
evaluate the difficulty of recovering a data sample
from noised latent z; for diffusion model trained
with different noise schedulers. We measure the
reconstruction loss x——||zo — z}||3 and accuracy
of token prediction for every timestep.

While the sgrt noise scheduler adds significantly

. 1.01

cosine

0.8
e Tt

= 0.8
0.6 tan-7

tan-9 0.6
04 —— tan-11
7| —— tan-13 0.4
" / 02]
0.0+

Reconstruction loss Text reconstruction accuracy

0.00 025 050 075 1.00 0.00 025 0.50 0.75 1.00
t t

Figure 4: Comparison of noise schedulers.
Noise

Scheduler ppll mem | div? mauve T
cosine 393.2127.6 .262.004 474006 .098.011
sqrt 127.209.3 .264 004 .434.004 .364.041
tan-7 34.4 77 395 004 .320.002 .688 923
tan-9 34.1 66 412005 .304.006 707 024
tan-11 31.931 .428.004 .288.003 .694.026
tan-13 35.5.62 406,003 298 002 .676.031

Table 3: Comparison of noise schedulers.

more amount of noise in the initial timesteps than
cosine one, the rate of noise addition decreases for
the subsequent timesteps. As a result, the denoising
task becomes insufficiently hard for the timesteps
t € [0,0.5], which should lead to a decrease in
their contribution to the generation process. This
can be seen from the reconstruction accuracy. In
contrast, tan-d noise scheduler adds more noise
consistently across all timesteps, leading to a more
challenging training task and improved generation
performance.

Based on these observations, we conclude that
in order to improve the efficiently of the denoising
process, it is essential to increase the amount of
added noise within all timesteps. However, it is
important to strike a balance as adding excessive
noise can negatively impact performance. In our
experiments, tan-9 produces the best result in terms
of mauve keeping the mem and div reasonable.

As a rule of thumb, the noise schedule should
be such that the diffusion model recovers approx-
imately the same amount of information at each
timestep. Otherwise, some of the them will not
contribute to the denoising process enough.

8 Seq2Seq Experiments

We conduct experiments to validate the effective-
ness of the proposed method on two different tasks,
against ten AR (%), non-diffusion NAR (o) and
diffusion NAR (7) baselines.

Metrics For evaluation of paraphrasing task, we
adopt the setting of SeqDiffuSeq (Yuan et al., 2022)

Method Sampling | R-LT BST B-47
DiffuSeq’ 52.7 824 —

SeqDiffuSeq’ Random | — 829 233
TEncDM' (BERT) 564 83.0 304
TEncDM' (T5) 524 81.6 264
DiffuSeq’ 588 837 24.1
SeqDiffuSeq’ MBR-10 — 840 243
TEncDM (BERT)' 58.1 840 318
TEncDM (T5)" 53.5 823 274
GPT2-small FT* Nuclews | 221 825 198
Transformer-base™ 57.5 83.8 27.2

Table 4: Seq2Seq evaluation results of AR and Diffu-
sion methods on QQP. We calculate ROUGE-L (R-L),
BERTScore (BS) and BLEU-4 (B-4).

Method Sampling | ROUGE-12/L T [BS T
NAT® 24.0/3.97/203

iNAT® 24.0/4.0/20.3

CMLM?® - 23.8/3.6/202 |
LevT® 24.8/4.2/20.8

DiffuSeq’ Random | 18.9/13/13.6 | 46.8
TEncDM (BERT)' | Random | 32.2/10.8/25.7 | 69.5
TEncDM (T5)* Random | 32.4/10.9/25.7 | 68.8
DiffuSeq’ MBR-5 | 19.3/1.7/14.1 | 46.9
TEncDM (BERT)' | MBR-5 | 32.8/11.2/26.2 | 69.8
TEncDM (T5)" MBR-5 | 32.9/11.4/26.5 | 69.2
GENIE! MBR-50 | 29.3/8.3/24.7 | —
AR-Diffusion’ MBR-50 |31.7/10.1/24.7| —
Transformer-base* | Nucleus |30.5/10.4/24.2| —

Table 5: Seq2Seq evaluation results of NAR, AR and
Diffusion methods on XSum. BS is a BERTScore.

and calculate ROUGE-L (Lin, 2004), BERTScore
(Zhang et al., 2019) and BLEU-4. In addition, we
follow the approach of Wu et al. (2023) and report
ROUGE-1/2 for summarization task.

Baselines We include three groups of baselines.
The first group comprises of classical AR baselines:
Transformer (Vaswani et al., 2017b) and finetuned
GPT-2 (Radford et al., 2019). We also compare
against NAR methods: NAT (Gu et al., 2017), iNAT
(Lee et al., 2018), CMLM (Ghazvininejad et al.,
2019), LevT (Gu et al., 2019). Besides, we com-
pare the approach to other diffusion-based meth-
ods: DiffuSeq (Gong et al., 2023), SeqDiffuSeq
(Yuan et al., 2022), GENIE (Lin et al., 2023), AR-
diffusion (Wu et al., 2023).

Results We report our comparison on QQP and
XSum in Table 4 and Table 5, respectively. We
took the results of NAR and AR approaches from
the corresponding papers (Qi et al., 2021; Wu et al.,
2023; Yuan et al., 2022).

We use BERT as diffusion encoder and exper-
iment with two conditional encoders: BERT and
T5. We observe that both encoders are effective for
XSum and QQP datasets, but using BERT leads to

a better quality on QQP across all metrics and on
XSum these encoders performs similarly.

The comparison with other methods clearly
demonstrate that TEncDM outperforms the exist-
ing non-diffusion NAR approaches across all met-
rics. Furthermore, TEncDM surpasses diffusion
and AR approaches by a large margin on summa-
rization task. It also achieves consistent improve-
ments over diffusion models on QQP with random
candidate sampling.

Recent works (Li et al., 2022; Wu et al., 2023)
utilize Minimum Bayes Risk (MBR) (Kumar and
Byrne, 2004) decoding to select the best sample.
For fair comparison, we also employ MBR decod-
ing with the same number of candidates. As we
can see from Table 5, TEncDM significantly out-
performs diffusion baselines with even less number
of candidates on XSum. At the same time, Table 4
shows that the results on QQP are comparable with
other models.

9 Limitations

There are two limitations that warrant further inves-
tigation. First, while the quality of the model can
be improved by training diffusion encoder, decoder
and denoising model simultaneously, we avoid do-
ing so in order to avoid overcomplicating the ap-
proach. Second, samples from the latent space
have a high dimensionality that depends on the se-
quence length, making the training of our method
significantly slower as the length increases. This
problem can probably be eliminated by training
the autoencoder, which is a great direction for the
further research.

10 Conclusion

In this work, we explore key details of the diffusion
pipeline for text generation. We propose TEncDM
which trains the diffusion model inside the latent
space of language encoder model. In order to im-
prove text generation performance, we analyse the
effect of self-conditioning and conclude that it in-
creases the magnitudes of model’s predictions and
results in reducing of generation steps. We also
propose an efficient decoder that boosts the diffu-
sion model performance. The extensive ablation on
ROCStories proves the impact of proposed design
choices. TEncDM outperforms recent diffusion
models, non-autoregressive and classical autore-
gressive methods thorough experiments on down-
stream tasks.

References

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel
Tarlow, and Rianne van den Berg. 2021. Structured
denoising diffusion models in discrete state-spaces.
In Advances in Neural Information Processing Sys-
tems, volume 34, pages 17981-17993. Curran Asso-
ciates, Inc.

James Betker, Gabriel Goh, Li Jing, ¥ TimBrooks,
Jianfeng Wang, Linjie Li, ¥ LongOuyang, T Jun-
tangZhuang, 1 JoyceLee, | YufeiGuo, { Wesam-
Manassra, T PrafullaDhariwal, § CaseyChu, Yunx-
inJiao, and Aditya Ramesh. Improving image gener-
ation with better captions.

Andreas Blattmann, Tim Dockhorn, Sumith Ku-
lal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti,
Adam Letts, Varun Jampani, and Robin Rombach.
2023. Stable video diffusion: Scaling latent video
diffusion models to large datasets.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. 2023.
Analog bits: Generating discrete data using diffusion
models with self-conditioning.

Zihang Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2017. Quora question pairs.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zach Evans, CJ Carr, Josiah Taylor, Scott H. Hawley,
and Jordi Pons. 2024. Fast timing-conditioned latent
audio diffusion.

Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang
Zhang, Jiang Bian, and Linli Xu. 2023. Difformer:
Empowering diffusion models on the embedding
space for text generation.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
arXiv preprint arXiv:1904.09324.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2023. Diffuseq: Sequence to
sequence text generation with diffusion models. In
The Eleventh International Conference on Learning
Representations.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev-
enshtein transformer. Advances in Neural Informa-
tion Processing Systems, 32.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov.
2022. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and
modular control. arXiv preprint arXiv:2210.17432.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840—
6851.

Emiel Hoogeboom, Jonathan Heek, and Tim Sali-
mans. 2023. Simple diffusion: end-to-end diffusion
for high resolution images. In Proceedings of the
40th International Conference on Machine Learning,
ICML’23. OpenReview.net.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini,
Patrick Forré, and Max Welling. 2021. Argmax flows
and multinomial diffusion: Learning categorical dis-
tributions. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 12454-12465.
Curran Associates, Inc.

Shankar Kumar and Bill Byrne. 2004. Minimum bayes-
risk decoding for statistical machine translation. In
Proceedings of the Human Language Technology
Conference of the North American Chapter of the
Association for Computational Linguistics: HLT-
NAACL 2004, pages 169-176.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. arXiv
preprint arXiv:1802.06901.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy
Liang, and Tatsunori Hashimoto. 2022. Diffusion-
Im improves controllable text generation. ArXiv,
abs/2205.14217.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu,
Zhihao Fan, Chen Lin, Nan Duan, and Weizhu Chen.
2023. Text generation with diffusion language mod-
els: a pre-training approach with continuous para-
graph denoise. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot
Shekhtman, and Kilian Weinberger. 2022. Latent
diffusion for language generation. arXiv preprint
arXiv:2212.09462.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Sali-
mans. 2023. On distillation of guided diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 14297-14306.

https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://api.semanticscholar.org/CorpusID:264403242
https://api.semanticscholar.org/CorpusID:264403242
https://api.semanticscholar.org/CorpusID:264403242
http://arxiv.org/abs/2311.15127
http://arxiv.org/abs/2311.15127
http://arxiv.org/abs/2311.15127
http://arxiv.org/abs/2208.04202
http://arxiv.org/abs/2208.04202
http://arxiv.org/abs/2208.04202
https://api.semanticscholar.org/CorpusID:233225749
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2402.04825
http://arxiv.org/abs/2402.04825
http://arxiv.org/abs/2402.04825
http://arxiv.org/abs/2212.09412
http://arxiv.org/abs/2212.09412
http://arxiv.org/abs/2212.09412
http://arxiv.org/abs/2212.09412
http://arxiv.org/abs/2212.09412
https://openreview.net/forum?id=jQj-_rLVXsj
https://openreview.net/forum?id=jQj-_rLVXsj
https://openreview.net/forum?id=jQj-_rLVXsj
https://proceedings.neurips.cc/paper_files/paper/2021/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/67d96d458abdef21792e6d8e590244e7-Paper.pdf

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839-849, San Diego,
California. Association for Computational Linguis-
tics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797-1807, Brussels, Bel-
gium. Association for Computational Linguistics.

OpenAl. 2023.
abs/2303.08774.

Gpt-4 technical report. ArXiv,

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 4816—4828. Cur-
ran Associates, Inc.

Weizhen Qi, Yeyun Gong, Jian Jiao, Yu Yan, Weizhu
Chen, Dayiheng Liu, Kewen Tang, Houqiang Li,
Jiusheng Chen, Ruofei Zhang, et al. 2021. Bang:
Bridging autoregressive and non-autoregressive gen-
eration with large scale pretraining. In International
Conference on Machine Learning, pages 8630-8639.
PMLR.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages

10684-10695.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole.
2021. Score-based generative modeling through
stochastic differential equations. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun
Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl,

10

Nikolay Savinov, Sander Dieleman, Laurent Sifre,
and Rémi Leblond. 2022. Self-conditioned embed-
ding diffusion for text generation.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-
peng Kong, and Nigel Collier. 2022. A contrastive
framework for neural text generation. In Advances
in Neural Information Processing Systems.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almabhairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cant6n Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017a. Attention is
all you need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates,
Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017b. Attention is all
you need. Advances in neural information processing
systems, 30.

Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun
Gong, yelong shen, Jian Jiao, Juntao Li, zhongyu wei,
Jian Guo, Nan Duan, and Weizhu Chen. 2023. AR-
diffusion: Auto-regressive diffusion model for text
generation. In Thirty-seventh Conference on Neural
Information Processing Systems.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and
Mingxuan Wang. 2023. Dinoiser: Diffused con-
ditional sequence learning by manipulating noises.
arXiv preprint arXiv:2302.10025.

Hongyi Yuan, Zheng Yuan, Chuangi Tan, Fei Huang,
and Songfang Huang. 2022. Seqdiffuseq: Text dif-
fusion with encoder-decoder transformers. arXiv
preprint arXiv:2212.10325.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-

https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/260c2432a0eecc28ce03c10dadc078a4-Paper.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
http://arxiv.org/abs/2211.04236
http://arxiv.org/abs/2211.04236
http://arxiv.org/abs/2211.04236
https://openreview.net/forum?id=V88BafmH9Pj
https://openreview.net/forum?id=V88BafmH9Pj
https://openreview.net/forum?id=V88BafmH9Pj
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=0EG6qUQ4xE
https://openreview.net/forum?id=0EG6qUQ4xE
https://openreview.net/forum?id=0EG6qUQ4xE
https://openreview.net/forum?id=0EG6qUQ4xE
https://openreview.net/forum?id=0EG6qUQ4xE

uating text generation with bert.
arXiv:1904.09675.

arXiv preprint

Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei
Zhai, Joshua M. Susskind, and Navdeep Jaitly. 2023.
PLANNER: Generating diversified paragraph via la-
tent language diffusion model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

A Decoder for embedding-based model

We show that our proposed decoder is robust not
only for encoding-based diffusion model, but also
for embedding-based one. In Table 6, we compare
our decoder described in Section 7.2 with the com-
monly used rounding to the closest embedding. It
is easy to see that our decoder improve the text
quality according to MAUVE. Also, it hugely im-
proves Memorization and Diversity. Low value of
Perplexity for the rounding method comes from the
low diversity and it does not imply the high quality
of the generated samples.

Decoder ppll mem | div{ mauve
Rounding 32.4.41 .437.007 .252.005 .421.043
Transformer

+ CO?“(Z(]) 48.9 36 .371.003 .324.002 .600 016

Table 6: Decoders for the BERT embedding-based
model.

B Corruption for decoder training

Decoder is trained to map the latents 2y generated
by the diffusion into text. These latents might be
inaccurate and the decoder must take this into ac-
count in order to produce the best possible text.
Therefore, we make the training task harder for the
decoder by corrupting the input latents zg in order
to mimic an imprecision of 2.

In this section, we experiment with two corrup-
tion techniques:

1. Replacing 2y with z; by the diffusion forward

process, Cor(zo) = /arzo + /(1 — oy)e =

Zt.

2. Adding a random Gaussian noise to decoder
input, Cor(zg) 20 + oe, where ¢ €

N(0,1).

The both techniques introduce the random noise
into the decoder input. However, the first one at-
tempt to mimic the samples from the diffusion
model denoising trajectory. We implement it by

11

randomly sampling the timestep from the range
t € [0, t;,ax] and calculating the corresponding z;.
In Figure 6, we show the text generation quality
in terms of Perplexity and MAUVE Score with re-
spect to t,,az. In Figure 5, we present the similar
result for the second decoder training technique
with varying noise strength . To make the compar-
ison fair we apply all decoders to the same latents
produced be the diffusion model. Both plots sug-
gest that there is an optimal amount of noise that
should be added. However, the first technique re-
sults in a better performance.

Decoder trained to restore from zy + o€

F0.725
40 1 I 0.700

r0.675

@

r 0.650

MAUVE

F0.625

Perplexity

I 0.600
34 F0.575

r 0.550

0.6 0.8 1.0 1.2

g

0.0 0.2 0.4

Figure 5: The dependence between the generation qual-
ity and the maximum amount of noise added to the
latents during the decoder training.

Decoder trained to restore from z;

r0.725

r0.700

r0.675

2 -
5381 L 0.650 >
< 2
%37 L0.625 g
[aW

r 0.600

r0.575

r0.550

T T T T
0.15 0.20 0.25 0.30

max t

T T T
0.00 0.05 0.10

Figure 6: The dependence between the generation qual-
ity and the maximum amount of noise in z; during the
decoder training.

C Self-conditioning increases prediction
magnitude

We show that self-conditioning tend to increase
the magnitude of values of model’s output by con-
ducting the following experiment. We sample z;

https://openreview.net/forum?id=SLwy8UVS8Y
https://openreview.net/forum?id=SLwy8UVS8Y
https://openreview.net/forum?id=SLwy8UVS8Y

using the diffusion forward process and predict
Zh = 2g(24,t, 2b) from it several times. Each time
we feed the model its previous prediction and do
not change z; and timestep ¢. In Figure 7, we plot
the trajectories of prediction magnitude obtained
by this repeated prediction scheme for different
timesteps t. The results show that the prediction
magnitude grows at each step, even though we
change only the sample, which we provide to a
model using the self-conditioning. This allows
us to conclude that self-conditioning is indeed re-
sponsible for the increase in prediction magnitude,
which is reflected in the inference behaviour of the
model.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

o
)
|

o
o
L

magnitude

o
S
L

\

st
Zp

0.2 A

10 20 30 40 50

Z prediction step

o4

Figure 7: The effect of repeatedly predicting z§ without
deviating from the noisy latent z; on the magnitude of
that prediction.

D Noise Schedulers

1.01 .
cosine
0.81 —— sqart
tan-7
. 0.61 tan-9
E — tan-11
0.4 — tan-13
0.2
0.0 1
0.00 0.25 0.50 0.75 1.00

t

Figure 8: Visualizing different noise schedulers /.

E Implementation details

We train our models using 4 A100 GPUs. The train-
ing takes approximately 10 hours for ROCStories,
10 hours for QQP and 30 hours for XSum.

12

ROCStories XSum QQP
Diffusion Trainable Params 101M
Decoder Trainable Params 44M
Transformer Layers 12
Transformer Dim 768
Self-Attention Heads 12
Optimizer AdamW
Learning Rate 2e-4 4e-4 4e-4
(B1, B2) (0.9, 0.980)
Batch Size 512
Warmup Steps 500
Learning Rate Sch Constant
Weight Decay 0.01
Gradient Clipping 1
EMA Decay 0.9999
Training Steps 100k 50k 100k
Max Seq Length 80 64 64
Max Context Length — 256 32

Table 7: Training details for TEncDM across different
datasets.

F Dataset Statistics

ROCStories The dataset consists of 98,161 in-
stances. 93,161 instances are held out for training,
1,000 instances for validation, 4,000 instances for
testing.

XSum The dataset is used for summarization task
and it contains 204k BBC articles, which are pro-
vided as document and summary pairs and covered
wide range of topics (Sports, Politics, etc.). It has
204,045 training instances, 11,332 validation in-
stances, and 11,334 test instances.

QQP The subset of QQP dataset, proposed in
(Gong et al., 2023), consists of 144k question pairs
from the Quora platform that are paraphrases of
each other. It has 144,715 training instances, 2,048
validation instances, and 2,500 test instances.

G Comparison with GPT2

We compare our diffusion model with fine-tuned
GPT2-small (Radford et al., 2019) on an un-
conditional generation task using ROCStories
(Mostafazadeh et al., 2016) dataset. We use the
Nucleus sampling with p = 0.9 for the GPT gen-
eration, as is produced the best results. Both mod-
els have similar amount of parameters (124M for
GPT?2 and 145M for TEncDM). The result of the
comparison is presented in Table 8 and it shows
that GPT2 has a higher MAUVE, but it also tends
to memorise the training data set more and has a
lower diversity. The perplexity comparison is un-
fair as it is computed with the GPT2-large model,
which behaves similarly to GPT2-small. Given that
the GPT?2 is pre-trained and TEncDM was trained

from scratch, we can conclude that both models
perform at about the same level.

Decoder ppl, mem| div{ mauve !
GPT2-small FT 15.5'11 .519.004 .269,003 .739‘031
TEncDM 34~1.66 .412.005 ~304.006 .707‘024

Table 8: Comparison on unconditional generation (ROC-

Stories).

H Generation examples

13

BERT enc
with

MLP
decoder

BERT emb

with
Transformer
decoder

BERT enc

with
Transformer
decoder

- A man wanted to go swimming.
and drove to the beach. They found a nice spot by the water. They
swam for hours, remorving the scenery. At the end of the trip, they
had to go home. chantingctic Widow leopard paranoidntialivatingolar chanting

They packed up the boat,

Heather wanted to bake a cake.
put the cake in the oven.
the cake was on fire!

She grabbed some ingredients and
Her alarm rang, but didn’t go off. To her dismay
The cake was so mess that she forgot to turn off the

. Rita was always bullied in school. But every time time she

stood up, she was bullied. Rita was too young. But as the bully
grew, she improved. After school, Rita was no longer bullied. fraction

Last week my brother brought my skateboard with me. He started using the skateboard

after half an hour long. I - my leg and started to _ My brother got

into the piece. He was able to - me and take me to the hospital.

Liz was in the kitchen TV. She heard a sharp s Henk. She picked it
up and ran downstairs to grab what her sandwich was. She quickly grabbed a hot cheese
from her sandwich. She put the sandwich on the stove and turned it

Larry and his girlfriend were making family dinner last night. After a long time, they
decided to make lasagna. They made the meat mix and tested the bread. They had to cut
It as soon as it was done.

Emily wanted her nails become pink. She took some - from a grocery store and
thought it looked horrible. She tried everything to get rid of it. It ended up making a ton of
mess. Emily had to throw the mess all out.

Bianca was at a local tennis party. She was having a good time with her friends. Suddenly
she realized that she had lost her wallet! She searched for an hour to no avail. Luckily she
found it there and was glad that she didn’t lose it.

Ally wakes up one morning feeling very well. Ally realizes she has a pregnancy test.
Ally decides she will go to the doctor to get her test. Ally is shocked when the results show
that she is pregnant. Ally is very excited when her pregnancy test _

T5 enc

with
Transformer
decoder

Jack had a dog that he loved named Frankt. He was a big Shepherd who had
_ and collar. One day, Jack left Fredt at his house and didn t find him.

After three days, - owner found out. _ The next day, his owner

found Frankt in the house.
The kids climbed outside with the gun. They wanted to shooting their neighbor” [(0'gun.

They fell on a
heavy to carry from the kids.
Shera and her - were packing a box of pictures. Shera - searched through

each box for the favorite picture. Finally it was time the numbers. Shera put

the pictures in the box in front of the _ is, it took of lot time to _

. mom tried to carry the rifle for them. It was too

right.

Table 9: Examples of generated texts for different models.

	Introduction
	Problem Statement and Background
	Related Work
	Understanding Text Diffusion
	Methodology
	Diffusion encoder, E_diff
	Decoder, D
	Diffusion model, _
	Generation process
	Conditional generation

	Datasets
	Empirical Analysis
	Evaluation Metrics
	Model setup
	Effect of Diffusion Encoder
	Effect of Decoder
	Effect of self-conditioning
	Effect of Noise scheduler

	Seq2Seq Experiments
	Limitations
	Conclusion
	Decoder for embedding-based model
	Corruption for decoder training
	Self-conditioning increases prediction magnitude
	Noise Schedulers
	Implementation details
	Dataset Statistics
	Comparison with GPT2
	Generation examples

