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Abstract
Drawing inspiration from the success of dif-001
fusion models in various domains, numerous002
research papers proposed methods for adapting003
them to text data. Despite these efforts, none004
of them has managed to achieve the quality005
of the large language models. In this paper,006
we conduct a comprehensive analysis of key007
components of the text diffusion models and008
introduce a novel approach named Text Encod-009
ing Diffusion Model (TEncDM). Instead of the010
commonly used token embedding space, we011
train our model in the space of the language012
model encodings. Additionally, we propose to013
use a Transformer-based decoder that utilizes014
contextual information for text reconstruction.015
We also analyse self-conditioning and find that016
it increases the magnitude of the model outputs,017
allowing the reduction of the number of denois-018
ing steps at the inference stage. Evaluation of019
TEncDM on two downstream text generation020
tasks, QQP and XSum, demonstrates its superi-021
ority over existing non-autoregressive models.022

1 Introduction023

Autoregressive (AR) large language models such024

as GPT-4 (OpenAI, 2023) or Llama 2 (Touvron025

et al., 2023) are the current gold standard in the text026

generation problem. They are capable of creating027

high-quality and coherent texts that are practically028

indistinguishable the from human ones. However,029

the disadvantage of this approach is the inability of030

the model to correct its own mistakes made during031

generation. This may cause the text that follows032

such mistakes to be spoiled. In addition, the autore-033

gressive method of token generation slows down034

the inference process as it requires performing a035

single model evaluation for each new token.036

Diffusion model is currently the state-of-the-art037

approach for data generation in image (Rombach038

et al., 2022; Betker et al.), audio (Evans et al., 2024)039

and video (Blattmann et al., 2023) domains. They040

are a class of probabilistic generative models that041

are able to iteratively transfer noise to a represen- 042

tative sample of data. While some of the proposed 043

text diffusion models are autoregressive (Lovelace 044

et al., 2022; Zhang et al., 2023), the majority of 045

them are not and, by the design, they have several 046

advantages over AR language models. First, being 047

non-autoregressive (NAR) models, they generate 048

all the tokens simultaneously and can adjust any 049

part of the sequence during the generation process. 050

They also can be faster than AR models because 051

the number of neural function evaluations for diffu- 052

sion models depends on the number of denoising 053

iterations rather than the length of the sequence. 054

And given the possibility of distillation of diffu- 055

sion models (Meng et al., 2023), the number of 056

iterations can be greatly reduced. 057

To date, a number of text diffusion models 058

have been proposed, each based on substantially 059

new ideas with little overlap with other methods. 060

Some works replace Gaussian noise with categor- 061

ical noise (Hoogeboom et al., 2021; Austin et al., 062

2021), exploiting the discreteness of the text do- 063

main. Others train continuous diffusion on token 064

embeddings (Li et al., 2022; Lin et al., 2023; Gong 065

et al., 2023) or text latent representations reduced 066

in size (Lovelace et al., 2022; Zhang et al., 2023). 067

There are also differences in the way diffusion out- 068

puts are decoded back into text. Diffusion models 069

trained on embeddings round their predictions to 070

the nearest embeddings, while those that utilize 071

small latent spaces decode the predictions with an 072

AR model. This suggests that the scientific commu- 073

nity has not found the most robust diffusion model 074

design yet. 075

In this paper, we attempt to better understand 076

the specifics of text distribution models and iden- 077

tify best practices for their development. We in- 078

vestigate each component in detail: text encoding 079

and decoding methods, diffusion model architec- 080

ture, noise schedule, and self-conditioning (Chen 081

et al., 2023). As a result, we combine all our 082
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findings in a method called Text Encoding Dif-083

fusion Model (TEncDM). It constructs the diffu-084

sion model, which operates in the latent space of085

the language model encodings (e.g. BERT (Devlin086

et al., 2019)). It also utilize the Transformer-based087

(Vaswani et al., 2017a) decoder, which is able not088

only to decode the latents but also to improve the089

text quality. We do not use an AR decoder on090

purpose so as not to transfer the limitation of AR091

language models to the diffusion.092

We compare our approach with other works on093

two conditional text generation problems: para-094

phrasing and summarization, on which our095

method surpasses all on-autoregressive models.096

The main contributions of this work are as follows:097

• We propose a new text diffusion framework098

TEncDM, which trains the diffusion model099

in the latent space constructed by the outputs100

of pre-trained Transformer-based encoder.101

• We evaluate the importance of the decoder102

and conclude that its robustness to inaccura-103

cies in the generated latents directly affects104

the generation quality. We then propose a de-105

coder architecture and its training method that106

boosts the model performance.107

• We analyse in detail the effect of self-108

conditioning on the denoising process and109

show that self-conditioning increases the mag-110

nitude of model’s predictions, which in turn111

allows us to reduce the number of denoising112

steps during inference.113

• Through a thorough ablation study, we reveal114

that commonly used cosine and sqrt noise115

schedules do not introduce enough difficulty116

to the denoising task during training. We show117

that the addition of more noise significantly118

increases the model quality.119

2 Problem Statement and Background120

Text generation problem. In the field of natural121

language processing, unconditional text generation122

is a task of sampling y from the unknown distri-123

bution p(y), where y = [y1, . . . , yn] is a sequence124

of tokens with variable length n. In conditional125

text generation the distribution of texts changes to126

p(y|x), where x is a condition variable. The goal127

is to generate a text, that satisfies this condition.128

Autoregressive language models. The most129

common approach for text generation is autore-130

gressive (AR) left-to-right sampling of words. The131

idea is to approximate the factorised distribution 132

p(y) =
∏n

i=1 p(yi|y<i) by learning a neural net- 133

work pθ(yi|y<i). During generation, tokens are 134

sampled sequentially with conditioning on the al- 135

ready generated ones. 136

Gaussian diffusion models. The standard diffu- 137

sion models (Ho et al., 2020; Song et al., 2021) 138

learn to sample data from an unknown distri- 139

bution by gradually denoising random Gaussian 140

noise. The train procedure is defined through a 141

forward diffusion process that satisfies q(zt|z0) = 142

N (
√
αtz0, (1 − αt)I), where αt ∈ [0, 1] is a pre- 143

defined noise schedule, t ∈ [0, 1]. The denoizing 144

network (parameterized by θ) is trained to recon- 145

struct the original latent z0 given the noisy latent 146

zt, as expressed in equation 1 147

L(θ) = E
ε∼N (0,I),t∼U [0;1]

[||z0 − ẑθ(zt, t)||2] (1) 148

Sampling procedure starts from a pure Gaussian 149

noise zT ∼ N (0, I) and utilizes the denoizing net- 150

work to iteratively generate latents ztT−1 , ..., zt1 , 151

where 1 = tT > tT−1 > ... > t1 = 0. 152

Diffusion models for text generation. The pri- 153

mary feature of the text domain is the discreteness 154

of its samples. In order to train a diffusion model 155

on them, they must first be translated into continu- 156

ous space. Consequently, alongside the denoising 157

model, the diffusion framework incorporates an en- 158

coder that maps tokens into the continuous latents 159

and a decoder that performs the reverse operation, 160

converting the generated latents into text. 161

3 Related Work 162

Embedding-based diffusion models. The ma- 163

jority of proposed text diffusion models use embed- 164

dings of tokens to construct the continuous latent 165

space (Li et al., 2022; Lin et al., 2023; Strudel et al., 166

2022; Gong et al., 2023; Wu et al., 2023). At the 167

inference stage, to convert the latent predictions 168

into text, they map each latent vector to a token 169

corresponding to the nearest embedding. 170

Latent diffusion models. Other studies suggest 171

reducing the size of the latent space by training a 172

diffusion model in the space of text autoencoder. 173

PLANNER (Zhang et al., 2023) finetunes BERT 174

(Devlin et al., 2019) to store all information in the 175

first k hidden state vectors from its final layer and 176

use them as a latent space. LD4LG (Lovelace et al., 177

2022) trains the compression network to reduce 178
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both the length and dimensionality of the latent179

space sample. Both methods utilize autoregressive180

language models to decode the latents into text.181

Self-Conditioning. Self-conditioning is a tech-182

nique that significantly increases the performance183

of the diffusion model (Chen et al., 2023; Strudel184

et al., 2022; Lovelace et al., 2022). Usually the185

model is conditioned only on the latent variable186

zt and the current timestep t as ẑt0 = ẑθ(zt, t).187

Self-conditioning proposes to also condition the188

model on the estimation of data sample from the189

previous timestep during generation in order to190

improve the prediction at the current timestep,191

ẑt0 = ẑθ(zt, t, ẑ
t−1
0 ).192

Although widely used, no analysis has been con-193

ducted to determine why this method is effective194

or how it impacts the generation process.195

Noise scheduler. Noise scheduler is a key compo-196

nent of a diffusion model that controls the amount197

of noise added on each timestep. Previous research198

(Li et al., 2022; Gao et al., 2023; Ye et al., 2023)199

has highlighted that the standard noise schedulers200

used for image diffusion models are unsuitable for201

the textual domain. Due to the discrete nature of202

the texts, it is unlikely that an addition of a small203

amount of noise to a latent will change its nearest204

text in the latent space. Therefore, to increase the205

difficulty of the denoising task for the model, the206

mentioned works recommend adding more noise207

on iterations that are close to 0.208

4 Understanding Text Diffusion209

In this section, we present our findings on the com-210

ponents of the diffusion model, discuss their weak-211

nesses and propose ways to enhance them.212

Encodings are better than embeddings. Most213

diffusion models utilize token embeddings to map214

text into a continuous latent space. However, this215

approach is not optimal because the embeddings do216

not convey contextual information. This requires217

the diffusion model to independently search for218

it to retrieve ambiguous tokens. To simplify the219

task, instead of embeddings, we can use the final220

layer outputs of a pre-trained language model (e.g.221

BERT). They contain this information and, thus,222

should be more suitable for training the diffusion223

model. We refer to these outputs as encodings.224

Experimental results confirming our intuition are225

presented in Section 7.3. It is worth noting that the226

use of encodings does not slow down the generation227

process, as we need to compute them only during 228

the training. 229

To improve the quality even further, it is possi- 230

ble to fine-tune the encoder, but we choose not to 231

in order to avoid overcomplicating the approach. 232

Investigation into fine-tuning is left for the future 233

work. 234

Decoder is important. The purpose of the de- 235

coder in the diffusion model is to map the generated 236

latents into text. Approaches that train diffusion in 237

the space of token embeddings decode latents by 238

rounding them to the nearest embeddings and se- 239

lecting a corresponding token. However, the diffu- 240

sion model may produce inaccurate latent samples 241

due to accumulation of errors during the denois- 242

ing process. Such inaccuracy might significantly 243

spoil the text quality, so it would be wise to train a 244

decoder that could improve it. 245

In the Section 7.4, we compare different decoder 246

designs and conclude that an advanced decoder, 247

which can consider the context for each token, in- 248

deed improves the generation quality. 249

Self-conditioning affects denoising dynamics. 250

Self-conditioning improves sampling quality by 251

conditioning the model on its previous prediction. 252

However, the mechanics of self-conditioning are 253

not fully understood yet. Our research demon- 254

strates that the addition of self-conditioning in- 255

creases the model’s prediction confidence at each 256

denoising timestep, resulting in a reduction in the 257

required number of generation steps. Furthermore, 258

the sample quality diminishes as the number of 259

steps increases. We believe that a reason for this 260

behaviour lies in a mismatch between the latents 261

used at the training stage and those at the genera- 262

tion stage. We provide the evidence supporting our 263

conclusions in Section 7.5, along with a compre- 264

hensive analysis of the model’s behaviour with and 265

without self-conditioning. 266

Diffusion needs even more noise. Following 267

the recommendations of previous works (Li et al., 268

2022; Wu et al., 2023; Ye et al., 2023), we used sqrt 269

noise scheduler that increases the amount of noise 270

added to the diffusion model inputs during training 271

beyond the amount of typically used cosine noise 272

scheduler (Han et al., 2022; Lovelace et al., 2022; 273

Strudel et al., 2022; Zhang et al., 2023). However, 274

our experiments led us to conclusion that encoding- 275

based diffusion model requires even more noise 276

for successful training. We hypothesize that this 277
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Figure 1: Overview of our framework design for condi-
tional generation. Top is the training process, bottom is
the generation process.

is due to the presence of contextual information in278

the encodings, which simplifies the denoising task.279

In Section 7.6 of this study, we demonstrate that280

both commonly used cosine and sqrt noise sched-281

ules do not introduce a significant level of noise to282

the latent variables over a wide range of timesteps.283

As a result, the denoising task becomes too sim-284

ple for the model, leading to a reduction in the285

effectiveness of the training signal.286

5 Methodology287

The design of TEncDM is depicted on Figure 1. It288

consists of three parts – diffusion encoder Ediff ,289

diffusion model ẑθ and decoder D. For the condi-290

tional generation, we also add conditional encoder291

Econd, which encodes an input text. Its output292

is provided to the diffusion model and decoder293

through cross-attention.294

This section exclusively focuses on the topic of295

unconditional text generation. The details of the296

conditional model can be found in Section 5.5.297

5.1 Diffusion encoder, Ediff298

We use pre-trained Transformer-based (Vaswani299

et al., 2017a) language model Ediff , which we300

call diffusion encoder, to encode text y into the301

latent space z. Encoding of text does not change302

the length of the sequence. In order to align all303

texts in length, we add paddings to the end of short304

texts. After encoding the text, the encodings of all305

special tokens are replaced by their corresponding306

embeddings. This is necessary because diffusion307

model does not use an attention mask during train-308

ing, which means that the reconstruction loss is cal-309

culated for both text and special tokens. However,310

special token encodings usually contain meaning- 311

less values, because encoder does not learn to store 312

useful information in them. Therefore, minimiza- 313

tion of reconstruction loss for these encodings only 314

harms the diffusion training process. Embeddings 315

of special tokens, on the other hand, only contain 316

information about the token itself and the diffusion 317

model recovers them much easier. 318

5.2 Decoder, D 319

The decoder D is required to convert latent vari- 320

ables generated by diffusion model into textual 321

output. Although a basic linear decoder can effec- 322

tively reconstruct tokens with high accuracy, we 323

employ the BERT (Devlin et al., 2019) architec- 324

ture for the decoder to provide it with the ability to 325

capture context information and rectify potential 326

errors originating from the diffusion model. 327

We train the decoder independently of the diffu- 328

sion model using the following objective 329

−E log pD(y | Cor(z0)) → min
D

, (2) 330

where Cor(z0) is a corrupted latent variable ex- 331

tracted from the diffusion encoder. Corruption is 332

needed to expand the decoder training data domain 333

and make it robust to distribution mismatch be- 334

tween text encodings z0 and latents ẑ0 generated 335

by the diffusion model. This mismatch might arise 336

due to the accumulation of errors during the denois- 337

ing process. Its presence is especially evident for 338

special tokens, which always have the same fixed 339

representations in z0. By default, we take Cor(z0) 340

to be zt with randomly sampled t ∈ [0, 0.15]. We 341

use the diffusion’s noise scheduler to calculate zt. 342

5.3 Diffusion model, ẑθ 343

The diffusion model consists of 12 BERT layers 344

and it is trained to reconstruct the original latent 345

z0 given its noisy version zt and a timestep t by 346

minimizing the objective (1). We provide the model 347

with information about the timestep by adding its 348

embedding to the hidden state vectors of each layer. 349

We train the diffusion model using the variance 350

preserving scheme, discussed in (Song et al., 2021). 351

To achieve zero mean and unit variance we normal- 352

ize the latent variables z0 coordinate-wise, using 353

the statistics from the training set. 354

Noise scheduler We adopt the noise scheduler 355

from (Hoogeboom et al., 2023) and use the follow- 356

ing equation for αt: 357
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αt =
1

1 + tan(tπ/2)2 · d2
, (3)358

where d is a hyperparameter controlling the rate359

at which noise is introduced into the system. We360

set d = 9 by default, which corresponds to a signif-361

icantly higher noise addition rate than what is used362

in all common noise schedulers. We further refer363

to our scheduler as tan-d noise scheduler.364

Self-condition Following the previous ap-365

proaches (Lovelace et al., 2022; Strudel et al.,366

2022) we incorporate self-conditioning into the367

diffusion model. In order to make the model utilize368

the data sample estimation from the previous369

generation step, we modify the training procedure.370

According to (Chen et al., 2023) we design the371

training process to emulate the inference behav-372

ior. On each training iteration with the probability373

p = 0.5 the prediction is computed with the self-374

conditioning set to zero z̄t0 = zθ(zt, t, 0). And,375

with probability (1 − p) = 0.5 we first calcu-376

late z̄t0 = zθ(zt, t, 0) and then use it as an estima-377

tion of the data sample to obtain a second predic-378

tion z̃t0 = zθ(zt, t,SG(z̄t0)), where SG is the stop-379

gradient function that does not allow the gradient to380

flow through z̄t0. The diffusion model is optimized381

using the output z̄t0 in the former scenario and z̃t0 in382

the latter. This training strategy allows the model383

to accurately approximate z0 both with and without384

self-conditioning. We implement self-conditioning385

in a same manner as conditioning on timestep. For386

each diffusion model layer we pass the data estima-387

tion through a single linear layer and add it to the388

hidden state vectors.389

5.4 Generation process390

The generation process is illustrated on the Figure391

1 (bottom). To generate text in the inference phase,392

we start with a random Gaussian sample and de-393

noise it in T steps using the Euler solver. At each394

step, we apply self-conditioning and, because of it,395

use a small number of steps – 50 by default.396

5.5 Conditional generation397

For the conditional generation we keep the frame-398

work design similar to unconditional generation.399

The only difference is that we add conditional en-400

coder to process the input text and provide both dif-401

fusion model and decoder with its output via cross-402

attention. Implementation details can be found in403

Appendix E.404

6 Datasets 405

To evaluate the performance of our diffusion mod- 406

els we use three datasets in English language. The 407

ROCStories (Mostafazadeh et al., 2016) dataset 408

contains 98k five-sentence commonsense fictional 409

stories, that capture causal and temporal relations 410

between daily events. The subset of QQP (Chen 411

et al., 2017) dataset, proposed in (Gong et al., 412

2023), consists of 144k question pairs from the 413

Quora platform that are paraphrases of each other. 414

The XSum (Narayan et al., 2018) dataset is used 415

for summarization problem and it contains 204k 416

BBC articles, which are provided as document and 417

summary pairs1. The detailed statistics for each 418

dataset can be found in Appendix F. 419

7 Empirical Analysis 420

In this section, we evaluate the components of our 421

framework on the ROCStories dataset. To simplify 422

the setup, we only consider unconditional genera- 423

tion. In Section 8, we demonstrate that our findings 424

can be successfully transferred to the conditional 425

generation problems. In this section, we do not 426

compare our method with others. The comparison 427

with the GPT2 is presented in Appendix G. 428

7.1 Evaluation Metrics 429

We follow the model evaluation scheme from the 430

(Lovelace et al., 2022). To evaluate the qual- 431

ity of our model we use Perplexity (ppl), cal- 432

culated with GPT-2 Large (Radford et al., 2019). 433

To measure the diversity of the generated text 434

we utilize the diversity metric proposed in (Su 435

et al., 2022). We calculate it as div(y) = 436∏4
n=2

|# of unique n-grams in y|
|# of n-grams in y| , where y is a set 437

of generated texts. To ensure that the model does 438

not reproduce the training dataset during the genera- 439

tion we evaluate the Memorization (mem). We cal- 440

culate it as the proportion of generated 4-grams that 441

are found in the training set. As Perplexity tends to 442

be small for the texts with repetitions, we also use 443

MAUVE Score (Pillutla et al., 2021) to estimate 444

the quality of text. MAUVE is a language model- 445

based metric that measures the distance between 446

the distributions of generated and reference texts 447

using divergence frontiers. We leave all MAUVE 448

hyperparameters at the default values presented in 449

the original paper. 450

1All the datasets we use in this work are publicly available
under a creative commons or an open source license.
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Encoder ppl ↓ mem ↓ div ↑ mauve ↑
BERT emb 48.9.36 .371.003 .324.002 .600.016
BERT 34.1.66 .412.005 .304.006 .707.024
T5 47.7.66 .361.001 .330.001 .475.008

Table 1: Comparison of diffusion encoders.

To calculate all the metrics, we generate 1000451

texts. For MAUVE, we sample 1000 reference452

texts from the test set. We repeat this procedure 5453

times and report the mean and standard deviation454

of the obtained results in meanstd notation.455

7.2 Model setup456

The training of our diffusion model is conducted457

within the latent space of BERT encodings, as it has458

shown the best performance among all encoders.459

We employ a 3-layer transformer for the decoder460

and train it to reconstruct z0 from zt, where t ∈461

U [0, 0.15]. A comprehensive analysis of various462

decoder modifications is presented in Section 7.4463

and Appendix B. The diffusion model is the 12-464

layer transformer with dimensionality of 768. By465

default we train it with tan-9 noise scheduler.466

7.3 Effect of Diffusion Encoder467

We compare latent spaces of BERT (Devlin et al.,468

2019) (bert-base-cased) and T5 (Raffel et al.,469

2020) (t5-base) encodings, as well as BERT em-470

beddings, to ascertain the optimal choice for the471

diffusion model. In this experiment, we train diffu-472

sion models with the same set of hyperparameters473

across all diffusion encoders. We train the decoders474

according to the scheme described in Section 7.2.475

The results of this comparison are presented in Ta-476

ble 1 and they show a clear advantage of the latent477

space derived from BERT encodings. div and mem478

for T5 encoder and BERT embeddings are better,479

because their generated texts include words that do480

not fit the context. The text samples are presented481

Table 9 of Appendix H. This confirms our hypothe-482

sis that encodings are better suited for the training483

of a diffusion model.484

7.4 Effect of Decoder485

To confirm the hypothesis about the importance of486

the decoder architecture and its training scheme, we487

compare an MLP decoder consisting of two linear488

layers with a 3-layer transformer. We corrupt the489

decoder input z0 by transforming it into zt, using490

the diffusion forward process with t ∈ U [0, 0.15].491

We choose this method, because it brings the de-492

coder input closer to the diffusion output. A more493

Decoder ppl ↓ mem ↓ div ↑ mauve ↑
MLP 607.115.6 .332.003 .400.004 .004.00

+ Cor(z0) 36.21.8 .415.005 .301.006 .650.03
Transformer 40.4.86 .408.005 .308.006 .568.02

+ Cor(z0) 34.1.66 .412.005 .304.006 .707.02

Table 2: Comparison of decoders for encoding-based
diffusion model.

detailed analysis of corruption techniques is pre- 494

sented in the Appendix B. To keep the experiment 495

fair, we apply all decoders to the same generated 496

latents. The results of the experiment are shown 497

in Table 2. The MLP decoder achieves the worst 498

text quality, because it overfits on the special token 499

embeddings and fails to decode them from the gen- 500

erated latents. Examples of the generated samples 501

are shown in Appendix H. Corruption of the input 502

helps to avoid overfitting. At the same time, incor- 503

porating contextual information into the decoder 504

increases the quality even more 505

7.5 Effect of self-conditioning 506

We conduct a series of experiments to understand 507

how self-conditioning affects the diffusion model. 508

In Figure 2, we compare the quality of the mod- 509

els with and without self-conditioning for dif- 510

ferent number of denoising steps. The results 511

show that while the quality of the model with- 512

out self-conditioning increases as the number of 513

steps increases, the quality of the model with self- 514

conditioning reaches a maximum at a value of 50 515

steps in terms of MAUVE, after which it starts to 516

drop. Nevertheless, at the highest point model with 517

self-conditioning surpasses the model without it 518

according to both MAUVE and perplexity. 519

We explain this drop in generation quality with 520

mismatch between diffusion model inputs at train 521

and inference stages. To confirm our hypothesis, 522

we calculated the mean-squared norm (magnitude) 523

of the values of each latent ẑt0 in a mini-batch pre- 524

dicted by the diffusion model during generation 525

(i.e. 1
N ·d·m∥ẑt0∥22, where N is a batch size, d is a 526

dimension and m is a sequence length). We plot 527

this magnitude with respect to timestep for gen- 528

erations with different number of steps as well as 529

for the predictions z̄t0 from the training stage. The 530

results are presented in Figure 3. They indicate that 531

self-conditioning significantly increases the predic- 532

tion magnitude as the number of steps increases. 533

This can be explained by the following: during 534

training, the model learns to use self-conditioning 535

to approximate z0 more accurately. Consequently, 536
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processes with different amount of steps.

self-conditioning increases the model’s confidence,537

which is directly related to prediction magnitude.538

During the generation process, the model takes539

its own prediction, which has an increased mag-540

nitude, as an input at each step and increases it541

further. Therefore, the increase in magnitude de-542

pends directly on the number of generation steps.543

Eventually, this leads to a mismatch between the544

predictions fed into the model during training and545

generation. In the Appendix C, we provide a more546

detailed discussion of this phenomenon. It is worth547

noting that the smallest mismatch is observed for548

the trajectory of 50 generation steps, which corre-549

sponds to the best quality.550

7.6 Effect of Noise scheduler551

We compare our noise scheduler tan-d with previ-552

ously used cosine and sqrt (visualized in Appendix553

D) and present the quantitative results in Table 3.554

We use the same decoder and optimal amount of555

generation steps for each scheduler. In Figure 4, we556

evaluate the difficulty of recovering a data sample557

from noised latent zt for diffusion model trained558

with different noise schedulers. We measure the559

reconstruction loss 1
N ·d·m∥z0 − z̄t0∥22 and accuracy560

of token prediction for every timestep.561

While the sqrt noise scheduler adds significantly562
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Text reconstruction accuracy

Figure 4: Comparison of noise schedulers.
Noise

Scheduler ppl ↓ mem ↓ div ↑ mauve ↑
cosine 393.2127.6 .262.004 .474.006 .098.011
sqrt 127.229.3 .264.004 .434.004 .364.041
tan-7 34.4.77 .395.004 .320.002 .688.023
tan-9 34.1.66 .412.005 .304.006 .707.024

tan-11 31.9.31 .428.004 .288.003 .694.026
tan-13 35.5.62 .406.003 .298.002 .676.031

Table 3: Comparison of noise schedulers.

more amount of noise in the initial timesteps than 563

cosine one, the rate of noise addition decreases for 564

the subsequent timesteps. As a result, the denoising 565

task becomes insufficiently hard for the timesteps 566

t ∈ [0, 0.5], which should lead to a decrease in 567

their contribution to the generation process. This 568

can be seen from the reconstruction accuracy. In 569

contrast, tan-d noise scheduler adds more noise 570

consistently across all timesteps, leading to a more 571

challenging training task and improved generation 572

performance. 573

Based on these observations, we conclude that 574

in order to improve the efficiently of the denoising 575

process, it is essential to increase the amount of 576

added noise within all timesteps. However, it is 577

important to strike a balance as adding excessive 578

noise can negatively impact performance. In our 579

experiments, tan-9 produces the best result in terms 580

of mauve keeping the mem and div reasonable. 581

As a rule of thumb, the noise schedule should 582

be such that the diffusion model recovers approx- 583

imately the same amount of information at each 584

timestep. Otherwise, some of the them will not 585

contribute to the denoising process enough. 586

8 Seq2Seq Experiments 587

We conduct experiments to validate the effective- 588

ness of the proposed method on two different tasks, 589

against ten AR (⋆), non-diffusion NAR (◦) and 590

diffusion NAR (†) baselines. 591

Metrics For evaluation of paraphrasing task, we 592

adopt the setting of SeqDiffuSeq (Yuan et al., 2022) 593
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Method Sampling R-L ↑ BS ↑ B-4 ↑
DiffuSeq†

Random

52.7 82.4 —
SeqDiffuSeq† — 82.9 23.3
TEncDM† (BERT) 56.4 83.0 30.4
TEncDM† (T5) 52.4 81.6 26.4
DiffuSeq†

MBR-10

58.8 83.7 24.1
SeqDiffuSeq† — 84.0 24.3
TEncDM (BERT)† 58.1 84.0 31.8
TEncDM (T5)† 53.5 82.3 27.4
GPT2-small FT⋆

Nucleus 52.1 82.5 19.8
Transformer-base⋆ 57.5 83.8 27.2

Table 4: Seq2Seq evaluation results of AR and Diffu-
sion methods on QQP. We calculate ROUGE-L (R-L),
BERTScore (BS) and BLEU-4 (B-4).

Method Sampling ROUGE-1/2/L ↑ BS ↑
NAT⋄

—

24.0 / 3.9 / 20.3

—iNAT⋄ 24.0 / 4.0 / 20.3
CMLM⋄ 23.8 / 3.6 / 20.2
LevT⋄ 24.8 / 4.2 / 20.8
DiffuSeq† Random 18.9 / 1.3 / 13.6 46.8
TEncDM (BERT)† Random 32.2 / 10.8 / 25.7 69.5
TEncDM (T5)† Random 32.4 / 10.9 / 25.7 68.8
DiffuSeq† MBR-5 19.3 / 1.7 / 14.1 46.9
TEncDM (BERT)† MBR-5 32.8 / 11.2 / 26.2 69.8
TEncDM (T5)† MBR-5 32.9 / 11.4 / 26.5 69.2
GENIE† MBR-50 29.3 / 8.3 / 24.7 —
AR-Diffusion† MBR-50 31.7 / 10.1 / 24.7 —
Transformer-base⋆ Nucleus 30.5 / 10.4 / 24.2 —

Table 5: Seq2Seq evaluation results of NAR, AR and
Diffusion methods on XSum. BS is a BERTScore.

and calculate ROUGE-L (Lin, 2004), BERTScore594

(Zhang et al., 2019) and BLEU-4. In addition, we595

follow the approach of Wu et al. (2023) and report596

ROUGE-1/2 for summarization task.597

Baselines We include three groups of baselines.598

The first group comprises of classical AR baselines:599

Transformer (Vaswani et al., 2017b) and finetuned600

GPT-2 (Radford et al., 2019). We also compare601

against NAR methods: NAT (Gu et al., 2017), iNAT602

(Lee et al., 2018), CMLM (Ghazvininejad et al.,603

2019), LevT (Gu et al., 2019). Besides, we com-604

pare the approach to other diffusion-based meth-605

ods: DiffuSeq (Gong et al., 2023), SeqDiffuSeq606

(Yuan et al., 2022), GENIE (Lin et al., 2023), AR-607

diffusion (Wu et al., 2023).608

Results We report our comparison on QQP and609

XSum in Table 4 and Table 5, respectively. We610

took the results of NAR and AR approaches from611

the corresponding papers (Qi et al., 2021; Wu et al.,612

2023; Yuan et al., 2022).613

We use BERT as diffusion encoder and exper-614

iment with two conditional encoders: BERT and615

T5. We observe that both encoders are effective for616

XSum and QQP datasets, but using BERT leads to617

a better quality on QQP across all metrics and on 618

XSum these encoders performs similarly. 619

The comparison with other methods clearly 620

demonstrate that TEncDM outperforms the exist- 621

ing non-diffusion NAR approaches across all met- 622

rics. Furthermore, TEncDM surpasses diffusion 623

and AR approaches by a large margin on summa- 624

rization task. It also achieves consistent improve- 625

ments over diffusion models on QQP with random 626

candidate sampling. 627

Recent works (Li et al., 2022; Wu et al., 2023) 628

utilize Minimum Bayes Risk (MBR) (Kumar and 629

Byrne, 2004) decoding to select the best sample. 630

For fair comparison, we also employ MBR decod- 631

ing with the same number of candidates. As we 632

can see from Table 5, TEncDM significantly out- 633

performs diffusion baselines with even less number 634

of candidates on XSum. At the same time, Table 4 635

shows that the results on QQP are comparable with 636

other models. 637

9 Limitations 638

There are two limitations that warrant further inves- 639

tigation. First, while the quality of the model can 640

be improved by training diffusion encoder, decoder 641

and denoising model simultaneously, we avoid do- 642

ing so in order to avoid overcomplicating the ap- 643

proach. Second, samples from the latent space 644

have a high dimensionality that depends on the se- 645

quence length, making the training of our method 646

significantly slower as the length increases. This 647

problem can probably be eliminated by training 648

the autoencoder, which is a great direction for the 649

further research. 650

10 Conclusion 651

In this work, we explore key details of the diffusion 652

pipeline for text generation. We propose TEncDM 653

which trains the diffusion model inside the latent 654

space of language encoder model. In order to im- 655

prove text generation performance, we analyse the 656

effect of self-conditioning and conclude that it in- 657

creases the magnitudes of model’s predictions and 658

results in reducing of generation steps. We also 659

propose an efficient decoder that boosts the diffu- 660

sion model performance. The extensive ablation on 661

ROCStories proves the impact of proposed design 662

choices. TEncDM outperforms recent diffusion 663

models, non-autoregressive and classical autore- 664

gressive methods thorough experiments on down- 665

stream tasks. 666
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A Decoder for embedding-based model898

We show that our proposed decoder is robust not899

only for encoding-based diffusion model, but also900

for embedding-based one. In Table 6, we compare901

our decoder described in Section 7.2 with the com-902

monly used rounding to the closest embedding. It903

is easy to see that our decoder improve the text904

quality according to MAUVE. Also, it hugely im-905

proves Memorization and Diversity. Low value of906

Perplexity for the rounding method comes from the907

low diversity and it does not imply the high quality908

of the generated samples.909

Decoder ppl ↓ mem ↓ div ↑ mauve ↑
Rounding 32.4.41 .437.007 .252.005 .421.043
Transformer

+ Cor(z0) 48.9.36 .371.003 .324.002 .600.016

Table 6: Decoders for the BERT embedding-based
model.

B Corruption for decoder training910

Decoder is trained to map the latents ẑ0 generated911

by the diffusion into text. These latents might be912

inaccurate and the decoder must take this into ac-913

count in order to produce the best possible text.914

Therefore, we make the training task harder for the915

decoder by corrupting the input latents z0 in order916

to mimic an imprecision of ẑ0.917

In this section, we experiment with two corrup-918

tion techniques:919

1. Replacing z0 with zt by the diffusion forward920

process, Cor(z0) =
√
αtz0 +

√
(1− αt)ε =921

zt.922

2. Adding a random Gaussian noise to decoder923

input, Cor(z0) = z0 + σε, where ε ∈924

N (0, 1).925

The both techniques introduce the random noise926

into the decoder input. However, the first one at-927

tempt to mimic the samples from the diffusion928

model denoising trajectory. We implement it by929

randomly sampling the timestep from the range 930

t ∈ [0, tmax] and calculating the corresponding zt. 931

In Figure 6, we show the text generation quality 932

in terms of Perplexity and MAUVE Score with re- 933

spect to tmax. In Figure 5, we present the similar 934

result for the second decoder training technique 935

with varying noise strength σ. To make the compar- 936

ison fair we apply all decoders to the same latents 937

produced be the diffusion model. Both plots sug- 938

gest that there is an optimal amount of noise that 939

should be added. However, the first technique re- 940

sults in a better performance. 941

Figure 5: The dependence between the generation qual-
ity and the maximum amount of noise added to the
latents during the decoder training.
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Figure 6: The dependence between the generation qual-
ity and the maximum amount of noise in zt during the
decoder training.

C Self-conditioning increases prediction 942

magnitude 943

We show that self-conditioning tend to increase 944

the magnitude of values of model’s output by con- 945

ducting the following experiment. We sample zt 946
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using the diffusion forward process and predict947

z̃t0 = ẑθ(zt, t, z̃
t
0) from it several times. Each time948

we feed the model its previous prediction and do949

not change zt and timestep t. In Figure 7, we plot950

the trajectories of prediction magnitude obtained951

by this repeated prediction scheme for different952

timesteps t. The results show that the prediction953

magnitude grows at each step, even though we954

change only the sample, which we provide to a955

model using the self-conditioning. This allows956

us to conclude that self-conditioning is indeed re-957

sponsible for the increase in prediction magnitude,958

which is reflected in the inference behaviour of the959

model.960
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Figure 7: The effect of repeatedly predicting z̃t0 without
deviating from the noisy latent zt on the magnitude of
that prediction.

D Noise Schedulers961
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Figure 8: Visualizing different noise schedulers
√
αt.

E Implementation details962

We train our models using 4 A100 GPUs. The train-963

ing takes approximately 10 hours for ROCStories,964

10 hours for QQP and 30 hours for XSum.965

ROCStories XSum QQP
Diffusion Trainable Params 101M
Decoder Trainable Params 44M
Transformer Layers 12
Transformer Dim 768
Self-Attention Heads 12
Optimizer AdamW
Learning Rate 2e-4 4e-4 4e-4
(β1, β2) (0.9, 0.980)
Batch Size 512
Warmup Steps 500
Learning Rate Sch Constant
Weight Decay 0.01
Gradient Clipping 1
EMA Decay 0.9999
Training Steps 100k 50k 100k
Max Seq Length 80 64 64
Max Context Length – 256 32

Table 7: Training details for TEncDM across different
datasets.

F Dataset Statistics 966

ROCStories The dataset consists of 98,161 in- 967

stances. 93,161 instances are held out for training, 968

1,000 instances for validation, 4,000 instances for 969

testing. 970

XSum The dataset is used for summarization task 971

and it contains 204k BBC articles, which are pro- 972

vided as document and summary pairs and covered 973

wide range of topics (Sports, Politics, etc.). It has 974

204,045 training instances, 11,332 validation in- 975

stances, and 11,334 test instances. 976

QQP The subset of QQP dataset, proposed in 977

(Gong et al., 2023), consists of 144k question pairs 978

from the Quora platform that are paraphrases of 979

each other. It has 144,715 training instances, 2,048 980

validation instances, and 2,500 test instances. 981

G Comparison with GPT2 982

We compare our diffusion model with fine-tuned 983

GPT2-small (Radford et al., 2019) on an un- 984

conditional generation task using ROCStories 985

(Mostafazadeh et al., 2016) dataset. We use the 986

Nucleus sampling with p = 0.9 for the GPT gen- 987

eration, as is produced the best results. Both mod- 988

els have similar amount of parameters (124M for 989

GPT2 and 145M for TEncDM). The result of the 990

comparison is presented in Table 8 and it shows 991

that GPT2 has a higher MAUVE, but it also tends 992

to memorise the training data set more and has a 993

lower diversity. The perplexity comparison is un- 994

fair as it is computed with the GPT2-large model, 995

which behaves similarly to GPT2-small. Given that 996

the GPT2 is pre-trained and TEncDM was trained 997
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from scratch, we can conclude that both models998

perform at about the same level.999

Decoder ppl ↓ mem ↓ div ↑ mauve ↑
GPT2-small FT 15.5.11 .519.004 .269.003 .739.031
TEncDM 34.1.66 .412.005 .304.006 .707.024

Table 8: Comparison on unconditional generation (ROC-
Stories).

H Generation examples1000
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BERT enc
with
MLP
decoder

##ocks A man wanted to go swimming. They packed up the boat,
and drove to the beach. They found a nice spot by the water. They
swam for hours, remorving the scenery. At the end of the trip, they
had to go home. chantingctic Widow leopard paranoidntialivatingolar chanting
Xiaocticntlymurananteurboopectatorctictleshalanadonantnantnadonantavesmura

##mps Heather wanted to bake a cake. She grabbed some ingredients and
put the cake in the oven. Her alarm rang, but didn’t go off. To her dismay
the cake was on fire! The cake was so mess that she forgot to turn off the
oven. putmpsmuravatednantpectatoraves Wan emitted chantingmura leopardmura leopardave

sputvatednantavesnant Widownantnantavesshing
##eur Rita was always bullied in school. But every time time she

stood up, she was bullied. Rita was too young. But as the bully
grew, she improved. After school, Rita was no longer bullied. fraction
Signlatingbeknantbekaveslaxivatingmpsivatingmpspectatoromoomonadoavespectatoravessh

ingavesmpsolarivatingutavatedivating Widowoveavesriotmpsmps
BERT emb
with
Transformer
decoder

Last week my brother brought my skateboard with me. He started using the skateboard
after half an hour long. I bit my leg and started to fall out of my foot . My brother got

into the piece. He was able to scolded me and take me to the hospital.

Liz was in the kitchen watching watching TV. She heard a sharp s Henk. She picked it
up and ran downstairs to grab what her sandwich was. She quickly grabbed a hot cheese
from her sandwich. She put the sandwich on the stove and turned it down the plate .

Larry and his girlfriend were making family dinner last night. After a long time, they
decided to make lasagna. They made the meat mix and tested the bread. They had to cut
the meat off the pizza . It lit up as soon as it was done.

BERT enc
with
Transformer
decoder

Emily wanted her nails become pink. She took some nailolish from a grocery store and
thought it looked horrible. She tried everything to get rid of it. It ended up making a ton of
mess. Emily had to throw the mess all out.

Bianca was at a local tennis party. She was having a good time with her friends. Suddenly
she realized that she had lost her wallet! She searched for an hour to no avail. Luckily she
found it there and was glad that she didn’t lose it.

Ally wakes up one morning feeling very well. Ally realizes she has a pregnancy test.
Ally decides she will go to the doctor to get her test. Ally is shocked when the results show
that she is pregnant. Ally is very excited when her pregnancy test is confirmed .

T5 enc
with
Transformer
decoder

Jack had a dog that he loved named Frankt. He was a big Shepherd who had
lotss barkles and collar. One day, Jack left Fredt at his house and didn t find him.

After three days, Ft’s owner found out. bought a searches. The next day, his owner
found Frankt in the house.

The kids climbed outside with the gun. They wanted to shooting their neighbor’ to gun .

They fell on a higher of a mountain . mom tried to carry the rifle for them. It was too
heavy to carry from the kids.

Shera and her weddingrs were packing a box of pictures. Shera du searched through

each box for the favorite picture. Finally it was time stamped the numbers. Shera put

the pictures in the box in front of the machine..a is, it took of lot time to up the number
right.

Table 9: Examples of generated texts for different models.
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