
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS QUANTIZATION-AWARE TRAINING
FOR ULTRA-LOW-BIT REASONING LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable performance across
diverse reasoning tasks, yet their deployment is hindered by prohibitive computa-
tional and memory costs. Quantization-aware training (QAT) enables ultra-low-
bit compression (< 4 bits per weight), but existing QAT methods often degrade
reasoning capability, partly because complex knowledge structures are introduced
during the post-training process in LLMs. In this paper, through a systematic
investigation of how quantization affects different data domains, we find that its
impact on pre-training and reasoning capabilities differs. Building on this insight,
we propose a novel two-stage QAT pipeline specifically designed for reasoning
LLMs. In the first stage, we quantize the model using mixed-domain calibra-
tion data to preserve essential capabilities across domains; in the second stage,
we fine-tune the quantized model with a teacher-guided reward-rectification loss
to restore reasoning capability. We first demonstrate that mixed-domain calibra-
tion outperforms single-domain calibration at maximum 2.74% improvement on
average over six tasks including reasoning and pre-trained tasks. Following ex-
periments on five reasoning benchmarks show that our 2-bit-quantized Qwen3-8B
outperforms post-training quantization (PTQ) baselines by 50.45% on average.
Moreover, compared to ultra-low-bit-specialized models such as BitNet-2B4T,
our pipeline achieves about 2% higher mathematical-reasoning accuracy using
only 968M training tokens.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across various tasks,
including mathematics (Shao et al., 2024; Wang et al.; Yang et al., 2024), coding (Hui et al., 2024;
Roziere et al., 2023), and knowledge-intensive question answering (Lu et al., 2022). However, their
prohibitive computational and memory requirements pose significant challenges for deployment in
inference. One promising direction for reducing these inference costs is weight quantization (Zhou
et al., 2024; Lang et al., 2024), which employs low-bit widths for model weights. Among var-
ious quantization methods, quantization-aware training (QAT), which fine-tunes the model with
quantized weights, is especially effective for ultra-low-bit widths (< 4 bits) (Wang et al., 2023;
Ma et al., 2024; Xu et al., 2024), enabling us to deploy lightweight and fast LLMs. For example,
2-bit quantized LLMs via QAT can achieve performance comparable to their pre-quantized fp16
counterparts (Ma et al., 2024; Kaushal et al., 2024; Liu et al., 2025c).

Despite the promising performance of QAT, existing approaches suffer from severe performance
degradation on reasoning benchmarks (Du et al., 2024), such as mathematics, and instruction-
following tasks (Lee et al., 2025). We hypothesize that this degradation arises from the complex
knowledge structures introduced during post-training. The post-training process is an extensive pro-
cess that includes supervised fine-tuning (Wei et al., 2021) and preference optimization (Ouyang
et al., 2022; Rafailov et al., 2023), introducing new reasoning capabilities with existing common-
sense knowledge acquired during pre-training. While it creates heterogeneous knowledge structures,
it remains unclear how quantization affects the model’s performance on reasoning capabilities and
pre-trained commonsense knowledge.

To address this gap, we conduct a systematic investigation of how quantization impacts different
knowledge domains in post-training LLMs. Our analysis reveals that quantization creates inherent
trade-offs between commonsense knowledge preservation and reasoning capability retention, where
different domains exhibit varying sensitivity to quantization. Specifically, while performance on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Instruction-Tuned LLM
(Full-Precision)

FP16

Existing QAT Pipeline for Instruction-Tuned LLMs

10

-11
Quantized weights

-11

-10
Fine-Tuned weights

(Quantized)

Quantization
(1st stage)

Supervised
Fine-Tuning
(2nd stage)

Pre-Training Data
(Subset)

Calibration Data

Reasoning Task
Problem: A train
travels 120 km in

2hours. What is the
train’s average speed?
Think step by step.

Inference

Our Proposed QAT Pipeline

11

-11
Quantized weights

-10

1-1
Fine-Tuned weights

(Quantized)

Quantization
(1st stage)

RL-Inspired
Fine-Tuning
(2nd stage)

Pre-Training Data
(Subset)

Calibration Data

Reasoning Data
(Code, Math, etc.)

</>
123

Calibration Data

Reasoning Data
(Code, Math, etc.)

</>
123

Strong Reasoning Ability

Quantized LLM
(Ultra Low-Bit)

INT2

I’m stumped…

Weak Reasoning Ability

Quantized LLM
(Ultra Low-Bit)

INT2

I’ve got this!
First, …

Strong Reasoning Ability

0.50.1

-0.21.3
Original Weights 𝑾

Inference

Figure 1: Comparison of the existing QAT pipeline with the proposed pipeline.

commonsense knowledge benchmarks remains relatively stable even with quantization using out-
of-domain data, reasoning capabilities exhibit significant sensitivity to quantization data, suggesting
that different domains have distinct requirements for effective quantization.

Based on this analysis, we introduce a quantization framework specifically designed for post-trained
LLMs that address diverse knowledge domains through a novel two-stage pipeline. Following our
observation, our quantization framework is designed to dedicate computational resources to maintain
reasoning capability, with minimal efforts to preserve general knowledge. Specifically, the first stage
carries out block-wise quantization with mixed-domain calibration. This mixed-domain calibration
preserves essential reasoning capabilities that are difficult to restore, while also maintaining com-
monsense knowledge. Subsequently, we perform end-to-end fine-tuning with reinforcement learn-
ing inspired objectives to enhance reasoning capability. This unified framework enables extremely
low-bit quantization of post-trained LLMs with minimal reasoning performance degradation.

Extensive experiments on five reasoning benchmarks demonstrate the effectiveness of our approach.
Our method achieves significant improvements over existing post-training quantization methods
for reasoning LLMs. Specifically, our 2-bit quantized Qwen3-8B outperforms other quantization
methods by 50.45% on average. Notably, even when compared to specialized ternary LLMs like
BitNet-2B4T, our 2-bit model with 1.7B parameters demonstrates superior mathematical reasoning
performance with substantially reduced training costs—achieving 2.5% improvement using only
40K training sequences.

Our contributions can be summarized as follows:

• We empirically demonstrate how quantization differently affects commonsense knowledge ac-
quired during pre-training and reasoning capabilities developed in post-training. Our results
highlight the importance of designing mixed calibration data to effectively preserve both of them.

• We propose two-stage quantization pipeline for post-trained LLMs that combines mixed-domain
calibration and RL-inspired fine-tuning to preserve reasoning capabilities while achieving ex-
tremely low-bit quantization.

• We demonstrate that our approach achieves state-of-the-art (SOTA) performance on multiple
reasoning benchmarks with both 2-bit and 3-bit quantization.

2 PRELIMINARIES

This section outlines the weight quantization and recent quantization-aware training (QAT) pipeline.

Weight Quantization: Weight quantization maps the model weights to low-bit width counter-
parts. Given a full-precision weight w ∈ R, we obtain its dequantized approximation w′ via

q := clamp
(
⌊w/s⌉+ z, 0, 2N − 1

)
, w′ := s (q − z) ,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Performance for general (green • and purple •)
and mathematical (orange •, blue ■, and red ■) tasks
on the reasoning data ratio.

Pre-training Code Math Science
Dataset Domain

(b) t-SNE visualization of the activations in the 14th
Transformer block, where colors denote dataset do-
mains.

Figure 2: Impact of data-domain composition on Qwen3-1.7B. In the ultra-low-bit quantized model,
replacing a part of the calibration data drawn from the pre-training data (FineWeb-Edu) with reason-
ing data (OpenThoughts3-1.2M) leaves general-task accuracy unchanged while improving reasoning
accuracy (left). In the full-precision model, t-SNE of the model’s activations shows tight clusters for
pre-training inputs but wide dispersion for reasoning inputs (right).

where s > 0 is the scale factor, z ∈ R is the zero point, and N is the target bit width. ⌊·⌉ represents
the nearest integer function (i.e., the round function), and clamp(x, a, b) clamps input x to the
interval [a, b]. Since the scale s and zero point z are shared across groups of weights (e.g., an entire
matrix, a channel, or a block), each weight is represented only by an N -bit code q, with s and z
stored once per group, achieving a low-bit width per-weight representation.

Weight quantization approaches are mainly categorized into two strategies: 1) post-training quanti-
zation (PTQ), which converts pre-trained model weights to low-bit widths without retraining; and
2) quantization aware training (QAT), which quantizes and fine-tunes the weights simultaneously.
PTQ can quickly quantize weights with small or even without calibration data, while it struggles
with ultra-low-bit quantization. In contrast, QAT can flexibly fine-tune the full-precision weights w,
scaling factor s, and zero point z, achieving performance comparable to the full-precision model in
ultra-low-bit scenarios.

Quantization-Aware Training Pipeline: As illustrated in the top panel of Figure 1, existing
QAT pipelines generally comprise two stages: 1) an initial quantization stage; and 2) a fine-tuning
stage. The first stage initializes the quantized weights that serve as the starting point for the sub-
sequent stage. Some methods omit this step, whereas the latest state-of-the-art (SOTA) QAT ap-
proaches (Chen et al., 2024; Du et al., 2024) have demonstrated that quantizing weights using a
subset of the pre-training dataset as calibration data enables stable fine-tuning during the subsequent
stage. In the second stage, the weights quantized in the first stage are fine-tuned by minimizing a
training objective. All parameters (i.e., weights, scale, zero point) or some of them are fine-tuned,
and this paper fine-tunes only the scale, following one of the SOTA QAT approaches, EfficientQAT.
Also, the training objective is typically either a self-supervised pre-training loss (Liu et al., 2025c;
Chen et al., 2024) or a knowledge-distillation loss (Du et al., 2024; Lee et al., 2025).

3 REASONING-ORIENTED TWO-STAGE QUANTIZATION AWARE TRAINING

This section proposes a novel QAT pipeline that enables the preservation of reasoning capabilities
after ultra-low-bit quantization. We first analyze the impact of quantization on various knowledge
domains, and based on these findings, we introduce the reasoning-oriented QAT pipeline.

3.1 QUANTIZATION IMPACTS ACROSS KNOWLEDGE DOMAINS

This section analyzes how domain selection for calibration data affects the overall model per-
formance. Existing quantization approaches mainly perform quantization with either pre-training

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

data (Liu et al., 2025c; Chen et al., 2024), or domain-specific data, such as mathematics (Liu et al.,
2025a). While previous work has selected calibration data tailored to specific target tasks, the cross-
task implications of such task-specific calibration choices remain largely unexplored.

To investigate the effect of domain selection for calibration data, we analyze the impact of select-
ing different calibration datasets on performance across multiple tasks and knowledge domains. As
shown in the results of Qwen3-1.7B quantized to 3-bits by EfficientQAT (Chen et al., 2024) (Fig-
ure 2a), the tasks can be broadly grouped into two trends: 1) tasks for which performance improves
as the amount of reasoning data increases; and 2) tasks for which performance remains almost
constant regardless of the amount of reasoning data. Notably, all tasks in the first category are rep-
resented in the reasoning dataset, i.e., code (blue), mathematical tasks (orange), scientific questions
and answers (red). These results indicate that reasoning data tends to suffer from domain shift, while
tasks related to commonsense knowledge are less sensitive to calibration datasets. On the other hand,
common tasks also demonstrate performance degradation when calibrated with pure reasoning data,
suggesting the importance of dataset diversity even for tasks that appear less sensitive to calibration
choices.

These distinct trends happen as the intermediate distributions between pre-trained data and reasoning
data differ, as shown in Figure 2b. The distributional mismatch leads to suboptimal quantization
performance when calibrating on single-domain data, resulting in higher quantization errors for
tasks that require domain-specific representations.

3.2 PROPOSED METHOD

We now introduce the novel QAT pipeline for ultra-low-bit reasoning LLMs.

Knowledge Domain Selection in Calibration data: We first focus on the mixing ratio of the
knowledge domain in calibration data. The results in Section 3.1 illustrate the importance of select-
ing appropriate calibration data when a QAT pipeline is applied to post-trained LLMs. In particular,
it is important to mix pre-training data and reasoning data in an appropriate ratio. Building on these
findings, we propose using novel calibration data in the first stage of the QAT pipeline. This data is
composed of 80% reasoning-focused data and 20% pre-training data, designed to bias the calibration
process toward reasoning while retaining coverage of pre-training distributions.

Supervised Fine-Tuning With Reward Rectification Loss: We secondly aim at the fine-tuning
stage. Quantization of the first stage using proposed calibration data mixed with pre-training data
preserves the fundamental capabilities of the LLM, enabling us to focus on enhancing reasoning
capabilities during the fine-tuning stage. A straightforward approach to enhance reasoning ability
is to perform supervised fine-tuning using reasoning data, but such training does not effectively
generalize into reasoning data (Chu et al., 2025). Employing reinforcement learning could improve
generalization on reasoning data, but online text generation incurs auto-regressive text generations,
resulting in huge training overhead. To balance training efficiency and generalization on unseen
data, we employ reweighted rectification (Wu et al., 2025) for supervised fine-tuning to make the
objective function reinforcement-like.

Reward rectification is scaling factors for the loss function in supervised fine-tuning. Given the
datasets D = {x, y∗} and the supervised fine-tuning loss LSFT(θ), reward rectification loss L(θ)
dynamically reweights the supervised loss as follows:

L(θ) = LSFT(θ) · sg(1/w),

where w is the dynamic reweighting factor and sg(·) denotes the stop-gradient operator.

This formulation can be viewed as bridging supervised fine-tuning and reinforcement learning. In
particular, choosing w = 1/πθ(y | x) yields a gradient equivalent to an on-policy policy-gradient
update with the reward function:

r(x, y) = 1[y = y∗],

where πθ(y | x) is the model’s conditional probability of generating an output y given an input x
under parameters θ. This dynamic re-weighting can avoid over-concentration on low-probability
reference tokens, improving generalization despite not using additional sampling or reward func-
tions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Accuracy comparison for different calibration data on 6 benchmarks. Higher values are
better. We define the group size as 128. Mixed data contains 80% of reasoning data and 20% of
pre-training data.

Reasoning Tasks Pre-trained Tasks

Model
(Qwen3)

Bit
Width

Dataset
Type

MATH-
500

Live
Code
Bench

GPQA-
Diamond

MMLU-
Redux CSR IFEVAL Avg.

1.7B

w3
Pre-training 59.53 16.36 25.42 64.16 57.96 58.60 47.01
Reasoning 81.33 29.35 26.60 63.58 55.82 59.52 52.70
Mixed 80.20 29.32 25.42 65.76 56.71 59.70 52.85

w2
Pre-training 0.13 0.00 0.00 0.00 50.75 13.86 10.79
Reasoning 20.60 0.09 7.58 19.93 44.77 25.51 19.75
Mixed 18.68 0.47 7.58 28.92 49.11 24.58 21.56

4B

w3
Pre-training 81.80 35.42 41.92 77.98 63.94 71.16 62.04
Reasoning 90.90 46.89 42.76 78.55 63.71 71.72 65.76
Mixed 90.70 46.85 45.45 78.91 63.97 74.86 66.79

w2
Pre-training 2.73 0.00 6.23 26.89 59.34 17.74 18.82
Reasoning 33.80 5.78 11.62 46.26 53.41 32.90 30.63
Mixed 22.60 5.12 14.14 51.20 55.89 31.05 30.00

8B

w3
Pre-training 87.00 37.25 41.66 82.60 69.19 76.34 65.67
Reasoning 91.80 53.84 51.52 81.75 68.14 75.79 70.47
Mixed 92.40 51.75 48.99 83.33 69.16 81.15 71.13

w2
Pre-training 5.33 0.28 4.55 41.72 63.35 19.41 22.44
Reasoning 42.27 8.15 10.44 51.40 55.05 35.86 33.86
Mixed 40.00 7.30 11.11 57.11 60.81 43.25 36.60

While the original reward rectification uses the student model’s own probability πθ(y | x) for
reweighting, in the QAT, the quantized model’s distribution becomes less reliable due to precision
loss. Using the quantized model’s own probabilities for reweighting could amplify these errors.

Therefore, we leverage the teacher model’s probability πt(y
∗|x) as a more reliable reference for

the reweighting factor. This teacher-guided approach ensures that the reweighting process is based
on the target distribution we aim to recover, rather than the potentially corrupted distribution of the
quantized model.

Thus, we introduce teacher-guided reward rectification loss L(θ), where the teacher model πt con-
trols the scale of supervised loss function. Given the teacher probability with labeled data πt(y

∗ | x),
teacher guided reward rectification loss can be represented as:

Lt(θ) = LSFT(θ) · sg(πt(y
∗|x)).

Intuitively, this formulation represents that the supervised loss values are amplified when the prob-
ability of the quantized model for the label is smaller than that of the teacher probability. When the
distribution of the quantized model becomes close to the original distribution, this scaling factor acts
as the original reward rectification.

To align the overall probabilistic distribution of the quantized model with original LLMs, we further
introduce an additional KL divergence loss. Finally, our training loss function can be represented
as:

L(θ) = αLt(θ) + βDKL

(
πT(·|x)||πS(·|x)

)
, (1)

where DKL

(
πT(·|x)||πS(·|x)

)
=

∑
y πT(y|x) log πT(y|x)

πS(y|x) is the KL divergence between the fp16
model and the quantized model, and α, β is hyperparameters that control the effects of teacher-
guided reward rectification loss and kl divergence loss.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Training: We conduct experiments on Qwen3 instruction-tuned models (Yang et al., 2025). For
block-wise calibration, we use a total 4, 096 samples with a context length of 2, 048. Calibration

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

datasets consist of 80% of sequences sampled from OpenThoughts-1.2M (Guha et al., 2025) and the
remaining 20% sampled from FineWeb-Edu (Lozhkov et al., 2024). We use different learning rates
for quantization parameters (1e-4) and weight parameters (1e-5). For 2-bit quantization, we use a
larger learning rate of 2e-5 for weights.

During supervised fine-tuning, models are with 32, 768 samples from OpenThoughts-1.2M. We
optimize all trainable parameters with the same learning rate. The learning rate for 3-bit quantization
is 1e-6, while we use a larger learning rate for 2-bit quantization, 5e-6 for the 1.7B parameter, and
1e-4 for other parameters. We use the AdamW optimizers (Loshchilov & Hutter, 2019) with the
cosine annealing learning rate decay (Loshchilov & Hutter, 2017). Models are fine-tuned with a
batch size of 64 and one epoch for 3-bit models, except for Qwen 1.7B at 2-bit which uses 3 epochs.
We filter out the top-20 probabilities for the KL loss. We set α = 0.2 and β = 1.0 in Equation (1)
unless explicitly stated otherwise.

Evaluation: We evaluate the zero-shot accuracy on five benchmarks including We evaluate the
zero-shot accuracy on five benchmarks, including MATH-500 (Lightman et al., 2023), Live Code
Bench (White et al., 2024), MMLU-Redux (Gema et al., 2024), GPQA- Diamond (Rein et al.,
2024), and IFEval (Zhou et al., 2023), using the evalscope (Team, 2024). These tasks are evaluated
in open-ended text generation. We use token-level sampling, whose tokens are sampled from the
top 20 highest tokens with a temperature of 0.6. We basically use a maximum sequence length of
32K for all benchmarks. However, we reduce the maximum sequence length to 8K on the lower-
performance models to avoid excessive text generation due to the absence of a stop token. All
evaluations are conducted three times, and we report the average accuracy.

Quantization baselines to post-trained LLMs: We compare our method with two PTQ quantiza-
tion baselines, GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024), both of which are evaluated
on reasoning benchmarks (Liu et al., 2025a). To quantize these two baselines, we follow a similar
strategy as conducted by Liu et al. (2025a). Specifically, we perform quantization using 128 sam-
ples from NuminaMath (LI et al., 2024). We reproduce these quantized models locally, except for
3 and 4 bits AWQ quantization for Qwen-8B, as reproduced performance is much inferior to the
performance claimed in the paper (Liu et al., 2025a).

4.2 DATASET EFFECTS ON OVERALL PERFORMANCE

This section evaluates our proposed calibration datasets against single-domain calibrations using
either pre-training data or reasoning data. We evaluate five benchmarks described in Section 4.1
with the additional commonsense reasoning tasks (CSR) to evaluate general knowledge of quan-
tized models. The CSR includes five subset tasks: ARC-e, ARC-c (Clark et al., 2018), PIQA (Bisk
et al., 2020), HellaSwag (Zellers et al., 2019), and WinoGrande Sakaguchi et al. (2021). Table 1
demonstrates that mixed domain calibration outperforms single-domain calibration across various
parameters in both 2-bit and 3-bit quantization settings. Compared with pre-training datasets, its
performance improvements on reasoning benchmarks, including mathematical and coding tasks, are
particularly notable. In addition, mixed data achieves comparable performance to pre-trained data
and other benchmarks in reasoning tasks. When compared with reasoning-only datasets, the per-
formance of mixed datasets on reasoning benchmarks is close, while performance in pre-trained
domain benchmarks tends to be superior. These results suggest that including a small portion of
pre-training data can be effective in maintaining commonsense knowledge. resulting in better gen-
eralization results across a wide range of tasks.

4.3 COMPARISON WITH PRIOR QUANTIZATION APPROACHES FOR REASONING

This section compares our proposal with other quantization methods, including GPTQ and AWQ.
Table 2 shows that our proposal significantly outperforms existing quantization approaches in both
2-bit and 3-bit quantization settings. The performance improvements are particularly notable in 2-
bit quantization settings. While the performance of GPTQ or AWQ quantized models is extremely
low, our quantized models not only achieve solid performance but also exhibit steadily increasing
accuracy as the number of parameters grows. This trend suggests that our quantization method
scales effectively with model size even for extremely low-bit quantization. For 3-bit quantization,
our approach dramatically improves performance, particularly on smaller models. For example, our

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comparison of quantization methods and bit-widths on Qwen3 models. Values are %
(higher is better). We define the group size as 128.

Settings Benchmarks (%) Avg.

Model Method Bit Width(W/A) MATH500 LiveCodeBench MMLU-Redux GPQA-Diamond IFEval Avg.

Qwen3-1.7B
FP (Baseline) bfloat16 89.0 53.6 74.7 38.4 70.4 65.2
GPTQ 4/16 86.3 36.9 70.2 34.3 66.2 58.8
AWQ 4/16 87.4 44.4 71.6 35.9 65.3 60.9

GPTQ 3/16 58.2 0.0 42.4 9.3 31.8 28.3
AWQ 3/16 58.0 5.8 53.5 17.5 47.7 36.5
Proposal 3/16 82.7 33.0 67.7 31.7 61.0 55.2
GPTQ 2/16 2.1 0.0 5.8 4.7 8.5 4.2
AWQ 2/16 0.0 0.0 27.3 8.1 12.3 9.5
Proposal 2/16 48.6 6.5 40.1 14.5 32.2 28.4

Qwen3-4B
FP (Baseline) bfloat16 93.6 71.2 84.3 51.5 83.6 76.8
GPTQ 4/16 93.4 66.2 82.1 50.7 81.2 74.7
AWQ 4/16 93.0 65.7 83.0 50.2 81.0 75.6

GPTQ 3/16 85.0 21.2 65.6 24.9 54.7 50.3
AWQ 3/16 88.3 37.2 74.2 33.7 71.9 61.1
Proposal 3/16 89.5 50.2 79.8 46.8 75.3 68.3
GPTQ 2/16 3.7 0.0 7.5 8.9 8.5 5.7
AWQ 2/16 0.0 0.0 0.0 0.0 11.8 2.4
Proposal 2/16 77.1 19.5 61.7 26.9 50.1 47.1

Qwen3-8B
FP (Baseline) bfloat16 94.0 73.0 87.3 61.6 86.5 80.5
GPTQ 4/16 94.6 69.6 86.8 58.1 86.9 79.2
AWQ 4/16 97.0 54.7 N/A 59.6 N/A N/A

GPTQ 3/16 92.1 39.4 79.0 46.8 76.9 66.8
AWQ 3/16 92.9 35.3 N/A 46.8 N/A N/A
Proposal 3/16 91.5 60.0 84.5 47.5 78.8 72.5
GPTQ 2/16 2.8 0.0 6.4 5.2 8.7 4.6
AWQ 2/16 0.0 0.0 5.9 3.9 10.2 4.0
Proposal 2/16 80.4 28.5 72.6 34.5 59.3 55.1

3-bit quantization of Qwen3-1.7B achieves an average accuracy of 55.20% across five tasks, which
is 18.71% higher than existing PTQ methods. These results highlight that our approach is especially
effective when model capacity is constrained, such as in cases of ultra-low bit widths or limited
parameter counts.

4.4 COMPARISON WITH QAT APPROACHES

This section compares our approach with two SOTA quantization-aware training (QAT) approaches:
BitDistiller (Du et al., 2024) and EfficientQAT (Chen et al., 2024). To ensure a fair comparison in
reasoning benchmarks, we reproduce these QAT approaches in our proposed framework. Specifi-
cally, for both methods, we perform calibration using mixed dataset, and fine-tuning with the same
number of training tokens sampled from OpenThoughts-1.2M Datasets. As shown in Table 3, our
approach achieves better performance in both 2-bit and 3-bit than two QAT baselines. These results
demonstrate that our approach offers a more effective strategy for low-bit quantization compared to
conventional QAT methods.

4.5 ABLATION STUDY
There are very few quantization-aware (QAT) training approaches that can be directly compared to
ours, as most existing methods target different evaluation settings. Instead, this section presents ab-
lation studies that compare our approach with key components derived from existing QAT methods.

Effectiveness of Block-wise Calibration: The main differences between our approach and ex-
isting methods are the use of block-wise calibration before fine-tuning and the loss function. To
analyze the effects of these two components, we either replace the loss function with conventional
cross-entropy loss, which is basically used in QAT (Liu et al., 2025c). In these experiments, we
fine-tune the 2-bit quantized Qwen-3 1.7B model for one epoch using 32K sequences with a learn-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison of SOTA quantization approaches with various bit-width on Qwen3-1.7B mod-
els.Values are % (higher is better). We define the group size as 128.

Settings Benchmarks (%) Avg.

Model Method Bit Width (W/A) MATH500 LiveCodeBench MMLU-Redux GPQA-Diamond IFEval Avg.

Qwen3-1.7B
FP (Baseline) bfloat16 89.0 53.6 74.7 38.4 70.4 65.2

EfficientQAT 3/16 80.8 29.8 66.2 30.3 60.4 53.5
BitDistiller 3/16 59.4 10.2 56.6 17.7 52.3 39.2
Proposal 3/16 82.7 33.0 67.7 31.7 61.0 55.2
EfficientQAT 2/16 24.8 0.6 29.1 12.1 25.1 18.3
BitDistiller 2/16 12.2 1.0 22.4 21.7 19.0 15.2
Proposal 2/16 48.6 6.5 40.1 14.5 32.2 28.4

Table 4: Ablation on block-wise calibration and
loss choice: “S” denotes conventional supervised
fine-tuning; “R” denotes our proposed loss; and
“C” indicates the use of block-wise calibration.

Training S R C C+S C+R

MATH-500 1.4 1.60 28.57 22.70 38.13
Live Code Bench 0.0 0.0 0.47 0.00 5.75
MMLU Redux 3.54 3.53 28.57 35.78 36.64
GPQA Diamond 6.06 6.06 7.58 14.31 14.14
IFEval 10.72 12.20 24.58 23.66 31.61

Table 5: Benchmark comparison of our pro-
posal with INT2 Qwen3 family quantized with
our proposal and BitNet b1.58 2B. We represent
Instruct Strict as IS.

Benchmark (Metric)
Qwen3
8B-int2
(Ours)

Qwen3
4B-int2
(Ours)

Qwen3
1.7B-int2

(Ours)

BitNet b1.58
2B

Training Tokens 328M 328M 968M 4T
Activation bf16 bf16 bf16 int8

MATH-500 80.13 77.13 48.60 43.40
GSM8K 88.93 81.71 57.47 58.38
IFEval (IS) 59.33 50.09 45.29 53.48

Average 76.13 69.91 50.75 51.75

ing rate of 5e-6. Table 4 summarizes the results. Here, ”S” denotes the conventional supervised
fine-tuning with cross entropy loss function, ”R” denotes the teacher-guided reward rectification
loss in Section 3.2, and ”C” means the existence of a calibration stage. Therefore, ”C+S” denotes
supervised fine-tuning after calibration. As shown in Table 4, both calibration data and proposed
loss function significantly enhance model performance. We also find that modifying the supervised
loss led to substantial improvements on reasoning benchmarks. In particular, on MATH-500, the ac-
curacy increased by 15.43% when moving from cross entropy loss to our proposed loss, and on Live
Code Bench, it increased by 5.75%. More importantly, the performance on reasoning benchmarks
degrades after conducting supervised fine-tuning with cross-entropy loss. These results indicate that
conventional QAT approaches, which rely primarily on cross-entropy loss for supervised fine-tuning,
are insufficient for post-trained LLMs.

Effectiveness of Loss Weighting: This section studies the contribution of two loss terms, the
teacher-guided reward-rectification loss and the KL-divergence loss, to overall performance. We
fine-tune a 3-bit quantized Qwen3-1.7B for a single epoch with different α and β. We evaluate
three different weighting schemes: (α, β) = (1, 0), which applies only the reward rectification loss;
(α, β) = (0, 1), which applies only the KL divergence loss; and (α, β) = (0.2, 1) (i.e., our proposed
configuration), which combines both losses with the specified weights. Table 6 demonstrates that
combining the two losses improves overall model performance. These results demonstrate that our
approach exhibits stronger gains in more aggressive quantization settings, particularly at 2-bit.

4.6 COMPARISON WITH BITNET1.58 2B4T

This section compares our quantized models with BitNet1.58 2B4T, a native ternary LLM trained
from scratch. To align the bit-width, our QAT pipeline quantizes Qwen3 models into 2 bits.

Table 5 describes the accuracies on two mathematical benchmarks including MATH-500 and
GSM8K, and IFEval. We referred to the results of BitNet1.58 2B4T from (Ma et al., 2025). As
shown in Table 5, our INT2 quantized model achieves superior mathematical performance with
lower parameter requirements and significantly fewer tokens required for the quantization process.
These results demonstrate that by designing an appropriate QAT pipeline, it is possible to leverage

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Effect of the loss function on reasoning performance. Comparison of 3-bit and 2-bit quan-
tization on Qwen3 1.7B.

Bit Width (α, β) MATH-500 Live Code Bench MMLU Redux GPQA Diamond IFEval

3
(1.0, 0.0) 78.2 28.5 66.1 21.7 60.6
(0.0, 1.0) 82.8 32.4 67.0 30.3 63.0
(0.2, 1.0) 82.7 33.0 67.7 31.7 62.1

2
(1.0, 0.0) 22.8 1.5 32.7 15.7 25.0
(0.0, 1.0) 2.2 0.0 6.6 2.0 8.0
(0.2, 1.0) 48.6 6.5 40.1 14.5 32.2

pre-trained features, leading to promising reasoning performance train high-accuracy 2-bit models
at a fraction of the training costs.

In addition, our approach demonstrates superior scalability compared to BitNet 1.58 2B4T. Because
we fine-tune pre-trained LLMs using only a limited number of sequences, we can easily produce
models with different parameter counts. This enables a flexible trade-off between performance and
resource usage, as illustrated in Table 5, which demonstrates results of several parameter variations
of our quantized models.

5 RELATED WORKS

In this section, we briefly summarize the quantization approaches. Quantization approaches can be
categorized into post-training quantization (PTQ) and quantization-aware training (QAT) depending
on whether fine-tuning is performed or not. This section deals with weight-only quantization of
large language models (LLMs) addressed in this work.

Post-training quantization (PTQ) converts full-precision weights into lower-bit counterparts with-
out relying on fine-tuning. To obtain better quantization parameters, recent methods optimize the
reconstruction problem either at the linear projection level (Frantar et al., 2022; Lin et al., 2024)
or at the transformer block level (Lee et al., 2023; Shao et al., 2023). While PTQ has achieved
strong initial success in LLMs, initial approaches still face limitations in achieving extremely low-bit
quantization without losing their performance. To overcome these challenges, research has shifted
toward more aggressive quantization, such as 3-bit or 2-bit. Some approaches target such low-bit
quantization with integer representation (Shao et al., 2023; Zhao et al., 2024; Chee et al., 2023),
demonstrating noticeable performance at these bit-widths. To further improve the trade-offs be-
tween accuracy and model size, recent approaches introduce vector quantization (Egiazarian et al.,
2024; Tseng et al., 2024; Malinovskii et al., 2024). Despite their promising performance, vector
quantization introduces substantial overhead in inference (Gong et al., 2024).

Quantization-aware training (QAT), in contrast, can enhance quantized model performance by
incorporating fine-tuning. With the additional computational cost for fine-tuning, QAT enables the
use of hardware-friendly numerical representations, such as integers, for low-bit quantization, re-
sulting in minimal overhead at inference time. There are several choices for optimization targets
for fine-tuning. LLM-QAT (Liu et al., 2023) and BitDistiller (Du et al., 2024) explore knowledge
distillation within QAT literature. BitNet b1.58 (Ma et al., 2024), Spectra (Kaushal et al., 2024), and
ParetoQ (Liu et al., 2025c) employ fine-tuning in a self-supervised manner using pre-training data.
By spending billions of tokens for fine-tuning, these approaches realize promising performance with
ternary or 2-bit. Given the substantial training costs of these approaches, recent work has focused
on improving the training efficiency of QAT approaches. EfficientQAT (Chen et al., 2024) intro-
duces two two-stage pipeline that perform end-to-end backpropagation following block-wise cali-
bration. UPQ (Lee et al., 2025) modifies the two-stage QAT pipeline to use knowledge distillation
and progressive quantization, demonstrating the promising performance on instruction-tuned LLMs.
However, most existing quantization approaches have primarily focused on pre-training LLMs, with
limited exploration of their effectiveness on complex reasoning capabilities that are crucial for mod-
ern LLM applications. In this paper, we investigate how quantization affects reasoning performance
and propose methods to preserve reasoning capabilities in quantized LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Quantization and Reasoning. Several comprehensive analyses have explored the effects of quan-
tization on reasoning capability. Li et al. (2025) and Liu et al. (2025b) demonstrate that ultra-low-
bit quantization leads to severe performance drops on reasoning benchmarks such as mathematical
tasks. Liu et al. (2025b) demonstrates that less-than-4-bit quantization leads to severe performance
drops on reasoning benchmarks such as mathematical tasks. Mekala et al. (2025) systematically
analyzes the effects of quantization on long-context reasoning tasks, demonstrating that even 4-
bit models incur substantial losses. Although these analyses reveal critical challenges for existing
quantization approaches, few studies have explored effective strategies to maintain reasoning per-
formance under such aggressive settings. However, one notable example is BitNet 2B4T (Ma et al.,
2025), which demonstrates strong performance on mathematical benchmarks with ternary LLMs
by performing quantization-aware training over four trillion tokens. In this paper, we explore a
more efficient approach for reasoning-oriented LLMs. By combining block-wise quantization with
RL-inspired fine-tuning using limited tokens, we obtain highly accurate 2- and 3-bit LLMs with
significantly fewer fine-tuning sequences.

6 CONCLUSION
This paper addresses the critical challenge of maintaining reasoning capabilities in ultra-low-bit
quantized large language models (LLMs). Through systematic analysis, we demonstrate that quan-
tization affects different knowledge domains unevenly—while pre-training knowledge remains ro-
bust, reasoning capabilities show severe degradation. Building on this insight, we develop a
novel two-stage quantization-aware training pipeline specifically designed for post-trained reason-
ing LLMs. Our approach combines mixed-domain calibration with teacher-guided reward rectifi-
cation loss to preserve and restore reasoning abilities under aggressive quantization. Experiments
across five reasoning benchmarks validate our method, with 2-bit quantized Qwen3-8B achieving
50.45% average improvement over existing approaches. Notably, our method outperforms BitNet
2B4T on mathematical reasoning while requiring dramatically fewer training resources—40K se-
quences versus 4 trillion tokens. We establish the first quantization framework specifically targeting
reasoning-oriented LLMs, providing practical solutions for efficient model compression without
sacrificing cognitive capabilities. This work provides a foundation for future developments in effi-
cient, high-performance quantized reasoning models, enabling broader deployment of sophisticated
AI systems.

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36:4396–4429, 2023.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, and Ping Luo.
Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. arXiv preprint arXiv:2402.10631,
2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Ruihao Gong, Yang Yong, Shiqiao Gu, Yushi Huang, Yunchen Zhang, Xianglong Liu, and Dacheng
Tao. Llm-qbench: A benchmark towards the best practice for post-training quantization of large
language models. CoRR, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, and Irina Rish.
Spectra: Surprising effectiveness of pretraining ternary language models at scale. arXiv preprint
arXiv:2407.12327, 2024.

Jiedong Lang, Zhehao Guo, and Shuyu Huang. A comprehensive study on quantization tech-
niques for large language models. In 2024 4th International Conference on Artificial Intelligence,
Robotics, and Communication (ICAIRC), pp. 224–231. IEEE, 2024.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable rounding
based on element-wise division for post-training quantization. In International Conference on
Machine Learning, pp. 18913–18939. PMLR, 2023.

Jung Hyun Lee, Seungjae Shin, Vinnam Kim, Jaeseong You, and An Chen. Unifying block-wise ptq
and distillation-based qat for progressive quantization toward 2-bit instruction-tuned llms. arXiv
preprint arXiv:2506.09104, 2025.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. Numinamath. [https://huggingface.
co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Zhen Li, Yupeng Su, Runming Yang, Congkai Xie, Zheng Wang, Zhongwei Xie, Ngai Wong, and
Hongxia Yang. Quantization meets reasoning: Exploring llm low-bit quantization degradation for
mathematical reasoning. arXiv preprint arXiv:2501.03035, 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87–100, 2024.

Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng YU, Chun Yuan, and
Lu Hou. Quantization hurts reasoning? an empirical study on quantized reasoning models.
In Second Conference on Language Modeling, 2025a. URL https://openreview.net/
forum?id=BM192Ps5Nv.

11

https://arxiv.org/abs/2506.04178
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=BM192Ps5Nv
https://openreview.net/forum?id=BM192Ps5Nv

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ruikang Liu, Yuxuan Sun, Manyi Zhang, Haoli Bai, Xianzhi Yu, Tiezheng Yu, Chun Yuan, and
Lu Hou. Quantization hurts reasoning? an empirical study on quantized reasoning models. arXiv
preprint arXiv:2504.04823, 2025b.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
Lisa Jin, Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit llm
quantization. arXiv preprint arXiv:2502.02631, 2025c.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Lifeng Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 1(4), 2024.

Shuming Ma, Hongyu Wang, Shaohan Huang, Xingxing Zhang, Ying Hu, Ting Song, Yan Xia, and
Furu Wei. Bitnet b1. 58 2b4t technical report. arXiv preprint arXiv:2504.12285, 2025.

Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko, Kai Yi,
Dan Alistarh, and Peter Richtarik. Pv-tuning: Beyond straight-through estimation for extreme
llm compression. Advances in Neural Information Processing Systems, 37:5074–5121, 2024.

Anmol Mekala, Anirudh Atmakuru, Yixiao Song, Marzena Karpinska, and Mohit Iyyer. Does quan-
tization affect models’ performance on long-context tasks? arXiv preprint arXiv:2505.20276,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

12

https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models, 2024. URL https://arxiv. org/abs/2402.03300, 2(3):5, 2024.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024. URL
https://arxiv. org/abs/2312.08935.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
perspective with reward rectification. arXiv preprint arXiv:2508.05629, 2025.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. Advances in Neural
Information Processing Systems, 37:66357–66382, 2024.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. Proceedings of Machine Learning and Systems, 6:196–209, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 7: Comparison of training cost and reasoning performance of Qwen3-1.7B under 3-bit and
2-bit quantization. GPU hours are measured using the H100 GPU.

2nd Step Bit Width GPU Hours MATH-500 LiveCodeBench GPQA-Diamond MMLU-Redux IFEVAL Avg.
GRPO (RL) 3 ≈220 83 31.5 25.8 66.5 55.5 52.5
Ours 3 ≈5 80.2 31.8 29.8 66.4 58.8 53.4
GRPO (RL) 2 ≈190 24.4 0.5 11.6 29.5 24.0 18.0
Ours 2 ≈5 45.0 2.7 10.6 34.9 29.2 24.5

Table 8: Comparison of first-step and fine-tuning (FT) cost along with downstream accuracy under
3-bit and 2-bit quantization on Qwen3-1.7B. We report training time normalized to a single H100
GPU.

Method Bit Width First step FT FT Epochs FT Sequences Avg. Acc.
EfficientQAT 3 ≈ 4 ≈ 22 1 32k 53.5
BitDistiller 3 ≈ 0.25 ≈ 26 1 32k 39.2
Block+GRPO 3 ≈ 4 ≈ 1180 1 32k N/A
Ours 3 ≈ 4 ≈ 23 1 32k 55.2

EfficientQAT 2 ≈ 4 ≈ 66 3 32k 18.3
BitDistiller 2 ≈ 0.25 ≈ 78 3 32k 15.2
Block+GRPO 2 ≈ 4 ≈ 1016 3 32k N/A
Ours 2 ≈ 4 ≈ 80 3 32k 28.4

A COMPARISON WITH ON-POLICY REINFORCEMENT LEARNING

While on-policy reinforcement learning incurs substantial training overhead due to its autoregres-
sive text generation, it is commonly observed that such methods can generalize well on reasoning
tasks by learning from the model’s own output distribution. Our approach, instead, doesn’t require
autoregressive text generation because it only uses sequences sampled from datasets. Given these
contrasting properties, it is important to assess whether our proposed off-policy objective can match
the generalization typically associated with on-policy methods.

To clarify this trade-off, we conduct a direct comparison between our proposal and on-policy rein-
forcement learning. Specifically, we compare GRPO (Shao et al., 2024), an SOTA on-policy RL
approach, with our off-policy loss. To ensure a fair comparison, we conduct the experiment us-
ing 6K sequences. Following DeepSeek-R1 (Guo et al., 2025), we adopt accuracy and formatting
rewards for GRPO. We filtered the OpenThoughts-1.2M dataset to retain only samples with ex-
tractable answer labels to ensure that the accuracy reward over the training dataset is well-defined
before randomly sampling 6K sequences.

As shown in Table 7, our method achieves comparable performance at 3-bit precision and outper-
forms GRPO at 2-bit precision with significantly reduced training time. These results demonstrate
that our off-policy approach is both training-efficient and particularly effective in low-bit settings.

B TRAINING TIME ANALYSIS

As observed in Section 4, our approach performs well on reasoning benchmarks. Despite this
promising performance, the overall training cost is also critical for practical quantization. This
section compares the training time in both the first and fine-tuning stages to clarify this considera-
tion.

Table 8 compares the required training time for Qwen3-1.7B with other QAT approaches. The results
demonstrate that our method achieves a favorable trade-off between accuracy and training time, par-
ticularly under aggressive low-bit quantization. Notably, in the 2-bit setting, our approach achieves
over 10% higher accuracy than EfficientQAT, while maintaining comparable training efficiency.

C ANALYSIS OF DECODING LENGTH

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 9: Generation length comparison of Qwen3 models under different quantization bit-widths.

MATH-500 GPQA-diamond LiveCodeBench
Model Bit Width Overall Correct Incorrect Overall Correct Incorrect Overall

Qwen3-1.7B 16 5905 4706 15610 6744 5561 7480 12329
Qwen3-1.7B 3 7325 5059 17247 8564 7168 9201 15309
Qwen3-1.7B 2 13803 6483 21065 14497 11539 14944 22466

Qwen3-8B 16 5513 4923 14753 7397 6252 9235 11100
Qwen3-8B 3 6296 5359 16776 10473 8730 11896 14824
Qwen3-8B 2 9966 6136 25679 15738 13833 16779 20373

Analyzing additional reasoning metrics, such as token count, is important for understanding the
qualitative behavior of quantized models. Differences in token usage induced by quantization may
reveal shifts in reasoning style or depth that are not captured by standard benchmark accuracies.
Evaluating these aspects provides a more comprehensive view of how quantization affects the rea-
soning process.

This section addresses this aspect by analyzing the decoding length across several reasoning bench-
marks. As shown in Table 9, we find that the number of thinking tokens increases as the number of
bits decreases. This increase in token length primarily arises from more frequent self-correction be-
havior. In other words, quantized models tend to revisit and validate their answers more frequently,
as illustrated in Table 10. These results indicate that quantization can introduce redundant correc-
tive reasoning. Thus, mitigating such unnecessary thought processes during QAT is important for
controlling the additional thinking tokens induced by quantization.

D FUTURE WORK

This section discusses several promising directions for further enhancing the quantized reasoning
models.

Adaptive Mixing Ratio: Adapting the dataset mixing ratio in both the first and second stages is
a promising research direction. This flexible strategy can enable more effective dataset selection
tailored to each training phase, potentially improving overall model performance. In particular,
dynamically adjusting the proportion of supervised, preference, or reasoning-heavy data may help
stabilize training and reduce overfitting to any single data source. Developing principled methods
for automatically determining these ratios could further enhance the efficiency and robustness of
quantization-aware training. Additionally, adjusting the domain proportions within the reasoning
dataset, such as increasing the ratio of code-related samples, may further enhance performance on
more complex tasks like code generation. Exploring domain-specific mixing strategies remains an
interesting avenue for future work.

Increasing Model Size: Applying our approach on over 10B models is also a promising research
direction for future research. While our current experiments focus on smaller-scale models, where
the performance degradation of quantization is more severe, our promising results suggest that the
benefits of our method may scale favorably with increased parameters. Due to the limited availability
of computational resources, it is difficult to conduct such larger-scale experiments. Nevertheless, we
believe that our approach will scale effectively to larger LLMs.

Reducing Redundant Thinking: As observed in Appendix C, quantized models introduce addi-
tional reasoning tokens. From a practical perspective, this increase in tokens reduces throughput and
requires larger KV-cache memory. Moreover, a quantitative analysis of generated samples reveals
that quantization tends not to make models think more carefully, but instead leads them to repeatedly
verify answers that were already produced. Suppressing such redundant verification behavior may
enable more efficient quantized models.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 10: Reasoning text sample from 2bit Qwen3-8B quantized by our framework. The model can
be seen revisiting its reasoning multiple times.

<think>
Okay, so I need to find the length of DE in this diagram. The problem

says that sin D is 0.7. Let me try to visualize the diagram first.
There's a right angle mark at D, E, and F, so maybe triangle D-E-F
is a right triangle? Let me check the Asymptote code.

The Asymptote code defines points D, E, F. D is at (sqrt(51), 7), E
is at (0, 7), and F is at (0, 0). Then they draw D-E-F and a right
angle mark at D, E, F. Wait, but right angles are usually marked
at a single vertex. Maybe it's a right triangle with right angle
at D? Let me think. If D is connected to E and F, and there's a
right angle mark at D, E, F, that might mean that the triangle is
right-angled at D? But then E and F would be connected. Let me
sketch mentally.

Point D is at (sqrt(51), 7), E is at (0, 7), so E is directly to the
left of D on the horizontal line y=7. Then F is at (0, 0), which
is directly below E on the vertical line x=0. So connecting D to E
to F to D forms a triangle. Let me check coordinates:

- D: (sqrt(51), 7)
- E: (0, 7)
- F: (0, 0)

So DE is from D to E. Let me compute DE first. The coordinates of D
are (sqrt(51), 7) and E is (0, 7). So the distance between D and E
is sqrt[(sqrt(51) - 0)ˆ2 + (7 - 7)ˆ2] = sqrt[(sqrt(51))ˆ2 + 0] =
sqrt(51). Wait, sqrt(51) is approximately 7.07. But the problem
says sin D is 0.7. Maybe I need to find DE using that? Wait, but
maybe the diagram is not to scale? Or maybe there's some triangle
where angle D is involved?

Wait, the Asymptote code draws D-E-F as a triangle and marks a right
angle at D, E, and F? But (... 192 words omitted)

Wait, in triangle DEF, angle at D is between DE and DF. Let me
confirm. If the right angle is (... 17 words omitted)

First, let me compute DE, EF, DF.

DE is from D to E: sqrt((sqrt(51) - 0)ˆ2 + (7 - 7)ˆ2) = sqrt(51)
7.07.

EF is from E to F: sqrt((0 - 0)ˆ2 + (7 - 0)ˆ2) = 7.

DF is from D to F: sqrt((sqrt(51) - 0)ˆ2 + (7 - 0)ˆ2) = sqrt(51 +
49) = (... 3 words omitted)

So triangle DEF has sides DE = sqrt(51), EF = 7, DF = 10. Wait, but
if the right angle is at E, then by Pythagoras, DEˆ2 + EFˆ2 should
equal DFˆ2. Let's check:

DEˆ2 + EFˆ2 = 51 + 49 = 100, which is equal to DFˆ2 = 10ˆ2 = 100.
Perfect! So (... 33 words omitted)

Wait, the problem says sin D = 0.7. So sin(angle D) = 0.7. Let me
verify if this is consistent (... 3 words omitted)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In triangle DEF, angle D is between DE and DF. So in that triangle,
sin(angle D) = opposite side / hypotenuse. Wait, opposite side to
angle D would be EF. Wait, in triangle DEF, angle at D: the side
opposite angle D is EF, which is 7. The hypotenuse is DF = 10. So
sin(angle D) = EF / DF = 7 / 10 = 0.7. Oh! That's exactly 0.7. So
that matches the problem statement. Therefore, DE is sqrt(51), but
the problem says sin D = 0.7, but DE is already given? Wait, but
the problem is asking for DE? Wait, hold on, maybe I misread the
problem?

Wait, the problem says "Suppose sin D = 0.7 in the diagram below.
What is DE?" But in the Asymptote code, DE is sqrt(51). But maybe
the diagram is not to scale? Wait, but the coordinates are given.
Let me check again. Wait, maybe the diagram is different? Wait,
the Asymptote code defines D as (sqrt(51), 7), E as (0, 7), F as
(0, 0). So DE is sqrt((sqrt(51) - 0)ˆ2 + (7 - 7)ˆ2) = sqrt(51).
So DE is sqrt(51). But then why is sin D given as 0.7? Because in
the triangle DEF, sin D is 7/10 = 0.7, so that's consistent.
Therefore, is the answer DE = sqrt(51)? But maybe the problem is
not referring to triangle DEF? Maybe there is another triangle in
the diagram? Wait, the Asymptote code draws D-E-F as a triangle,
but there's also a right angle mark at D, E, F? Wait, maybe the
diagram is different?

But regardless, if the triangle DEF is right-angled at E, with DE =
sqrt(51), EF = 7, DF = 10, then sin D is 7/10 = 0.7, which matches
the problem statement. Therefore, DE is sqrt(51). But maybe the
problem is not referring to triangle DEF? Wait, the problem says
"in the diagram below", but the Asymptote code is given. Wait,
maybe there's another triangle in the diagram? Let me check again.

But regardless, if the triangle DEF is right-angled at E, with DE =
sqrt(51), EF = 7, DF = 10, (... 52 words omitted)

Wait, the Asymptote code draws D-E-F, which is triangle DEF, and then
draws a right angle mark at D, E, (... 120 words omitted)

But regardless, the problem says sin D = 0.7, and in triangle DEF,
sin D is 0.7. Therefore, DE is (... 219 words omitted)

Alternatively, maybe the diagram is not triangle DEF, but another
triangle involving D and E? For example, maybe triangle
D-E-something (... 83 words omitted)

Wait, but the problem says "Suppose sin D = 0.7 in the diagram below.
What is DE?" If the diagram (... 41 words omitted)

pair D,E,F;
F = (0,0);
D = (sqrt(51),7);
E = (0,7);
draw(D--E--F--D);
draw(rightanglemark(D,E,F,15));
label("D",D,NE);
label("E",E,NW);
label("F",F,SW);
label("7",(E+F)/2,W);

So, in the diagram, there is a right angle at D, E, and F? Wait, no.
The rightanglemark is drawn (... 159 words omitted)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Wait, but maybe the problem is not referring to triangle DEF, but
another triangle? Let me think. The Asymptote code (... 101 words
omitted)

But maybe the problem is not about triangle DEF? Wait, if angle D is
given as sin D = 0.7, (... 96 words omitted)

Wait, let me check the problem again: "Suppose sin D = 0.7 in the
diagram below. What is DE?" So (... 86 words omitted)

Wait, let me think again. If angle D is in triangle DEF, with sin D =
0.7, and we can (... 171 words omitted)

Wait, maybe the diagram is not triangle DEF? Maybe there's a
different triangle where angle D is involved. Wait, let (... 116
words omitted)

But maybe the problem is not referring to triangle DEF? Maybe there's
another triangle where DE is the hypotenuse or (... 38 words
omitted)

Wait, but the Asymptote code draws only D-E-F. So unless there is
another point, maybe the diagram is different? Wait, (... 137
words omitted)

But in that case, we need to know EF, DF, and angle D. Wait, but if
we have sin D (... 69 words omitted)

Wait, but if we don't have other sides, how can we find DE? Wait,
unless there is a way to (... 181 words omitted)

But the problem says "in the diagram below", which is given by the
Asymptote code. Therefore, the answer is sqrt(51). (... 153 words
omitted)

Alternatively, maybe there is a misunderstanding in the problem.
Maybe the diagram is not triangle DEF, but another figure? For
(... 139 words omitted)

But maybe the problem is expecting a different approach? Let me think
again. If sin D = 0.7, and we need to find DE. If we don't have
coordinates, how would we do it? Let me consider triangle D-E-F,
with right angle at E. Then, angle D is between DE and DF. So sin
D = opposite / hypotenuse = EF / DF = 7 / 10 = 0.7. Therefore, if
we know EF = 7, DF = 10, then DE can be found via Pythagoras: DEˆ2
+ 7ˆ2 = 10ˆ2 => DEˆ2 = 100 - 49 = 51 => DE = sqrt(51). Therefore,
regardless of sin D, DE is sqrt(51). Therefore, the answer is
sqrt(51). So maybe the problem is just giving sin D to confirm
that the triangle is consistent, but the actual answer is
sqrt(51). Therefore, the answer is \boxed{\sqrt{51}}.

But let me check once more. If the problem had not given coordinates,
but only sin D = 0.7 and other information, how would we find DE?
For example, if we had a right triangle with angle D, and we know
sin D, and maybe another side, then we could find DE. But in this
case, we have a right triangle with right angle at E, so we can
use Pythagoras. So unless there is more information, the answer is
sqrt(51). Therefore, I think that is the answer.

Final Answer
\boxed{\sqrt{51}}
</think>

18

	Introduction
	Preliminaries
	Reasoning-oriented Two-stage Quantization aware training
	Quantization Impacts Across Knowledge Domains
	Proposed Method

	Experiments
	Experimental Settings
	Dataset effects on overall performance
	Comparison with prior quantization approaches blue for reasoning
	blue Comparison with QAT approaches
	Ablation Study
	Comparison with BitNet1.58 2B4T

	Related Works
	Conclusion
	blue Comparison with On-policy Reinforcement Learning
	blue Training time analysis
	blue Analysis of Decoding Length
	blue Future Work

