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Abstract

Image generation has shown remarkable results in generating high-fidelity realistic
images, in particular with the advancement of diffusion-based models. However,
the prevalence of AI-generated images may have side effects for the machine
learning community that are not clearly identified. Meanwhile, the success of
deep learning in computer vision is driven by the massive dataset collected on
the Internet. The extensive quantity of synthetic data being added to the Inter-
net would become an obstacle for future researchers to collect “clean” datasets
without AI-generated content. Prior research has shown that using datasets con-
taminated by synthetic images may result in performance degradation when used
for training. In this paper, we investigate the potential impact of contaminated
datasets on Online Continual Learning (CL) research. We experimentally show
that contaminated datasets might hinder the training of existing online CL methods.
Also, we propose Entropy Selection with Real-synthetic similarity Maximization
(ESRM), a method to alleviate the performance deterioration caused by synthetic
images when training online CL models. Experiments show that our method can
significantly alleviate performance deterioration, especially when the contamina-
tion is severe. For reproducibility, the source code of our work is available at
https://github.com/maorong-wang/ESRM.

1 Introduction
Continual Learning (CL) [10, 31, 41, 12] solves the problem of learning from a sequence of ever-
emerging machine-learning tasks without forgetting previously learned knowledge. Defined by
learning manners, CL can be classified into two categories [4]: offline CL and online CL. In offline
CL (i.e. conventional CL), the learners can access the training dataset on current task multiple times
before proceeding to the next task. In online CL, the training data also comes in a continual data
stream, and the continual learner only sees the training data once. Besides learning manners, there are
also three typical CL settings [38]: Task-Incremental Learning (TIL), Domain-Incremental Learning
(DIL), and Class-Incremental Learning (CIL). In this paper, we investigate the more challenging CIL
setting in the online CL manner.

Image generation with deep generative models has shown remarkable success. Thanks to denoising
diffusion models [19, 34], Internet users are capable of generating high-fidelity and realistic images
within several seconds. Despite the astonishing quality of those images to human eyes, research
has shown that AI-generated content may be harmful when used to train machine learning models,
leading to potential performance deterioration [18, 28], bias amplification [8], loss of diversity [28],
etc.
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Recently, it has become a trend for researchers to collect datasets from the Internet, and synthetic
data contamination would become a potential threat to the CL community. Moreover, the online CL
is particularly affected as assessing the soundness of data in the online scenario is impractical. In this
work, we first aim to investigate how this new form of dataset contamination might affect the existing
Online CL methods. Then, we empirically observe the characteristics of synthetic data when used to
train online CL models and form four observations of synthetic data properties in online CL, which
might be of interest to the community. Moreover, we investigate synthetic data properties and exhibit
specific differences in terms of entropy and representations when compared to real data. Guided
by these properties, we propose Entropy Selection with Real-synthetic similarity Maximization
(ESRM), a method to alleviate the performance degradation caused by the synthetic contamination.
As a replay-based method, ESRM consists of two key components: Entropy Selection (ES) and
Real-synthetic similarity Maximization (RM). ES selects more realistic samples in the memory buffer
to alleviate catastrophic forgetting. RM is a contrastive learning based optimization strategy, that
aims to alleviate the performance artifact caused by synthetic data contamination.

The major contribution of this paper can be summarized as follows:

• We investigate the potential impact of synthetic data contamination on existing online CL
methods and outline four observations regarding the properties of synthetic data in continual
scenarios.

• We propose ESRM, a method to alleviate the performance deterioration caused by synthetic
data contamination.

• Comprehensive experiments show that ESRM can successfully mitigate the performance
deterioration caused by synthetic contamination, especially when the contamination is
severe.

2 Related Work
Synthetic data contamination. Recently, diffusion models [19, 34] have achieved high-fidelity
image generation and surpassed GANs in terms of image quality and diversity. Likewise, text-to-
image generation based on diffusion models can generate astonishing images that faithfully follow
the users’ text instructions. Furthermore, these generative models demonstrate excellent extrapolation
capabilities (i.e., meaningfully combining concepts that would be nearly impossible to combine in
reality), such as “a photo of an astronaut riding a house”. Various generative models are open-sourced
to the public, and users can use these models to generate realistic images in seconds. However,
while people are appreciating the new format of art and flooding the Internet with fabulous images,
such synthetic images are difficult to differentiate from the real ones. Therefore, these generated
images are becoming a potential source of contamination for the future datasets collected from the
Internet. Research has proven that synthetic data contamination may lead to a significant performance
drop when supervising machine learning models in non-continual scenarios [18, 28]. Also, training
deep models with such a contaminated dataset may give rise to bias amplification [8] and loss of
diversity [28]. To tackle the issue caused by the synthetic contamination, researchers have proposed
different strategies to detect the synthetic data with deep learning based detectors [30, 27]. However,
the challenge brought by synthetic data contamination to the CL community is exclusive, and it is
even more problematic in the online scenario since it is almost impossible to assess the quality of the
training data, due to the unique challenge brought by the online setting.

Continual Learning. The mainstream CL strategies can be classified into four categories:
regularization-based, parameter-isolation-based, prompt-based, and replay-based. Regularization-
based methods [7, 26, 1, 23, 46] design and apply extra regularization terms to balance the learn-
ing and forgetting of CL learners. Parameter-isolation-based methods [14, 36, 37, 35, 3] tackle
the CL problem by allocating task-specific parameters. Prompt-based methods [44, 43] take the
idea of prompt learning and use prompt pools against catastrophic forgetting. Replay-based meth-
ods [33, 5, 6, 16, 17, 45] store a small portion of historical data with a memory buffer. Among
all of the strategies, replay-based methods have prevailed in Online CL with better performance
and simplicity. Early work [33] proposed Experience Replay (ER), suggesting using a random
replay buffer to alleviate catastrophic forgetting. Dark Experience Replay (DER++) [5] proposes to
store the logits in the memory buffer and leverage the stored logits as dark knowledge to extend ER.
ER-ACE [6] is a variant of ER with asymmetric cross-entropy loss. OCM [16] alleviates catastrophic
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Figure 1: Overview of proposed ESRM framework for online CL. The proposed ESRM framework
has two main components: Entropy Selection (ES) and Real-synthetic similarity Maximization (RM).
Motivated by Obs. 2 and Obs. 3, ES is a buffer management strategy designed to use entropy as a
criterion to select more real samples in the memory buffer, thereby alleviating catastrophic forgetting
and performance degradation caused by the contamination. RM aims to bridge the embedding gap
between synthetic and real data, as noted in Obs. 4, using a contrastive learning technique.

forgetting by maximizing the mutual information between current and past representations. GSA [17]
addresses the cross-task class discrimination problem with gradient self-adaption. OnPro [45] solves
the shortcut learning problem with online prototype learning. In this paper, these methods are used as
baselines to assess the impact of synthetic data contamination.

3 Preliminary
3.1 Synthetic dataset generation

To simulate a dataset contaminated with synthetic data, we employed five diffusion-based models to
generate synthetic counterparts of the original datasets. These twin datasets contain the same number
of images and the same classes, while all images are synthetic. The models used in generation include
Stable Diffusion XL [34], Stable Diffusion v1.4, Stable Diffusion v2.1, VQDM [15], and GLIDE [29].
The synthetic data contamination was simulated across four benchmark datasets used in online CL,
including CIFAR-10 [24], CIFAR-100 [24], TinyImageNet [25], and ImageNet-100 [13, 20].

The generation of synthetic twin datasets is guided by the category names of the original dataset. For
each class, we devised a simple yet effective prompt. For instance, for the class “helicopter”, we
employed the prompt “an image of a helicopter”. After the generation by the diffusion model, we
adjusted the image size to match that of the original dataset.

In the experiments, we design two different settings: a) all the synthetic twin datasets are generated
from Stable Diffusion XL, one of the state-of-the-art generative models; and b) Synthetic images are
generated with the aforementioned five diffusion models, with each model contributing 20% to the
synthetic dataset.

For setting a), we denote the generated dataset as SDXL-C10, SDXL-C100, SDXL-Tiny, and SDXL-
In100, respectively, while for setting b), we denote the generated dataset as Mix-C10, Mix-C100, and
Mix-Tiny. Some examples of generated images and more detailed information about the synthetic
twin dataset generation can be found in Appendix D.2. Notably, the generation results in Fig. 10
reveal the lack of diversity for synthetic data compared with the real data.

3.2 Simulation of synthetic data contamination

To simulate the contamination by the synthetic data, we substitute a portion P of the original dataset
with its synthetic twin, where P is the contamination ratio. We designate these contaminated datasets
using specific notations. For example, we denote the CIFAR-100 contaminated by SDXL-C100 as
C100/SDXL. More details about the simulation of contamination are included in Appendix D.3. In
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(a) ER (b) OnPro

Figure 2: The entropy distribution of the training
dataset produced by ER and OnPro on In-100/SDXL
(P = 50%) at the end of the training.

(a) ER (b) OnPro

Figure 3: T-SNE visualization of the mem-
ory data at the end of training on In-
100/SDXL (P = 50%). For clarity, only
the first 10 classes are visualized.

the following sections, we will investigate the effect of synthetic contamination with these simulated
datasets.

4 Synthetic Data Contamination in Online CL
In this section, we explore the potential impact of synthetic data contamination on the existing online
CL methods and exhibit specific properties of synthetic data.

4.1 Contamination as a cause of performance degradation

When dealing with synthetic data contamination, it is crucial to measure the impact of such con-
tamination on existing methods. In that sense, we train ResNet-18 models in the online continual
setting on the contaminated dataset C10/SDXL, C100/SDXL, Tiny/SDXL, and In-100/SDXL with
representative online CL methods. We observed that as the contamination ratio P increases, the
performance of all existing methods drops significantly, as shown in Table 2. Detailed information
about the experiment settings can be found in Sec. 6. With such experiments, we can form the
following observation:

Observation 1 As a source of potential contamination, synthetic data is harmful to the performance
of existing online CL methods. Performance degradation increases as contamination becomes more
severe.

4.2 Detecting synthetic data matters

Method Memory strategy P = 70%
Acc. ↑

P = 80%
Acc. ↑

ER
Real Only 38.44±0.90 38.13±1.34

Random 32.82±1.62 31.33±1.33

Synthetic Only 22.45±1.88 22.01±1.35

Table 1: The performance of ER with different
memory strategies on C100/SDXL dataset, with
different contamination ratio P .

Replay-based methods are characterized by the
existence of a replay buffer, which helps allevi-
ate forgetting and implicitly improves network
plasticity [42]. The quality of data in the re-
play buffer intuitively influences network per-
formance. Motivated by Obs. 1, we hypothesize
that the presence of synthetic data in the replay
buffer might degrade performance. We trained
ER on the C100/SDXL dataset, with extra in-
formation on the samples’ synthetic status (i.e.,
whether the image is real or synthetic). We em-
ployed two memory strategies: storing only real data in the replay buffer and storing only synthetic
data. The results showed in Table 1 indicate that knowing the synthetic status and storing only real
data in the replay buffer can achieve performance on par with the no-contamination scenario, even
at high contamination ratios. For instance, at a contamination ratio of P = 80%, ER achieves an
accuracy of 38.13% on C100/SDXL when only real images are stored in the replay buffer. This result
is comparable to the accuracy achieved when training on the clean CIFAR-100 dataset (38.70%),
which contains four times more real data. These findings also demonstrate the potential of synthetic
models to enhance performance through data generation and augmentation in an online continual
learning scenario.
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Observation 2 The memory buffer plays a key role in replay-based methods, and storing real
samples in the memory buffer is effective against performance degradation caused by contamination.

4.3 Synthetic data properties

Lower entropy distribution. One noteworthy characteristic of synthetic data is its lower entropy
distribution compared to real data, as observed from the perspective of continual learners. Fig. 2
shows the entropy distribution produced by a representative method ER and a state-of-the-art method
OnPro when trained on the contaminated dataset. The values in the histogram are calculated at the
end of the training on the whole training dataset (In-100/SDXL, P = 50%). From the figure, we can
spot a salient distribution difference between synthetic data and real data. Moreover, the synthetic
samples have a peak in entropy distribution close to 0. Extra entropy histogram with other baselines
can be found in Appendix C.1. Thus, we conclude with another finding:

Observation 3 Compared with real data, synthetic data entropy tends to be lower.

Feature gap in the embedding space. We find another intriguing property of synthetic data in the
feature embeddings. Fig. 3 shows the t-SNE [39] visualization of the memory data produced by ER
and OnPro on the In-100/SDXL dataset. For clarity, we only visualize the embeddings of the first
10 classes. With the synthetic data contamination, the features of the synthetic samples are better
clustered than the real data. The pattern of the clustering of synthetic data indicates the ease of
classification, which is on par with the limited diversity of synthetic data (cf. Fig. 10), and the low
entropy distribution (cf. Obs. 3). Moreover, the embeddings of real data are inferior and fail to align
with the superior embeddings of synthetic samples, which explains the performance degradation
of inference on real test datasets. Extra visualization produced by other baselines is illustrated in
Appendix C.2.

Observation 4 With the limited diversity of synthetic data, the synthetic data are better clustered
than the real data, leading to a misalignment in the embedding space between synthetic samples
and real samples. Such misalignment likely contributes to performance deterioration.

5 Proposed Method
Fig. 1 presents the main framework of our proposed ESRM to alleviate the performance degradation
caused by synthetic data contamination. In this section, we introduce the two components of ESRM:
Entropy Selection (ES) and Real-synthetic similarity Maximization (RM). Then, we explain the
whole ESRM framework.

5.1 Entropy selection

Figure 4: Overview of the proposed En-
tropy Selection strategy. The color of the
samples indicates the class, and the num-
ber in the samples represents the entropy
predicted by the learner.

The introduced ES aims to select more representative sam-
ples in the memory buffer. For replay-based methods,
having high-quality samples in the memory buffer helps
alleviate forgetting and achieve better overall performance.
As per Obs. 2, selecting real images into the memory buffer
can provide more representative and reliable features and
therefore lead to better performance. Motivated by this,
we propose ES, a memory management strategy. Guided
by Obs. 3 (synthetic data has lower entropy distributions),
the core idea of ES is to select more real samples in the
memory buffer based on the entropy distribution of the
current batch.

At the beginning of the training, ES initializes an empty
buffer. When a new batch comes, ES drops 50% of the
batch samples with lower entropy, and stores the remaining samples, along with their entropy of the
prediction. Once the buffer is full, as shown in Fig. 4, ES takes four steps to replace the elements
in the buffer. Firstly, ES drops 50% of low entropy samples in the incoming batch. Then, ES uses
Reservoir Sampling [21, 40] to decide whether to keep or discard the remaining incoming samples. If
Reservoir Sampling decides to keep the incoming sample, it will nominate a buffer sample. After that,
ES checks the class of the nominated sample and chooses a sample of the same class with the lowest

5



entropy in the memory buffer. And finally, ES replaces the chosen memory sample with the incoming
sample, along with its entropy. Moreover, all entropy values in the memory buffer are updated by the
current model’s prediction at the end of each task. The pseudo-code of ES is given in Appendix B.

5.2 Real-synthetic similarity maximization

Prior to introducing the loss function of RM, we present the network structures of our ESRM. As
shown in Fig. 1, the continual learner consists of three components: a feature extractor f , a projection
head g, and a classifier ϕ. The output dimension of the projection head g is set to 128. For each
sample x from incoming data stream Xnew, the projected embedding z can be formulated as:

z = g(f(x)). (1)

As per Obs. 4, the gap in the embedding space might be a cause for the performance degradation in the
contamination setting. To tackle this issue, we propose RM. The main idea of RM is to maximize the
cosine similarity between the features of real and synthetic data. Motivated by the seminal supervised
contrastive loss [22], we propose our variant RM loss.

RM aims to maximize the similarity between two groups of data X1 and X2. We define the loss to
match the similarity of samples in group X1 to group X2 as:

LM (X1, X2) =
∑
i∈I1

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

d∈I2
exp(zi · zd/τ)

, (2)

where I1 = {i : xi ∈ X1}, I2 = {d : xd ∈ X2} are the set of the indices of X1, X2, respectively.
And P (i) = {p ∈ X2 : yp = yi} is the set of the indices of positive samples in group X2, which
share the same class with xi. τ is the temperature hyperparameter which is set to 0.07. Since
LM (X1, X2) only optimize samples in the group X1, in the optimization, it is used together with
LM (X2, X1). Due to RM aims to maximize the inter-group similarity between the X1 group and the
X2 group, we do not need to perform augmentations as shown in similar work, such as SimCLR [9]
and SupCon [22]. Intuitively, the way to handle the similarity matrix is illustrated in Fig.1.

For an incoming batch Xnew, we use entropy criteria to split it into two groups Xnew
+ and Xnew

− of
the same size. Group Xnew

+ includes 50% of the samples with the highest entropy, and as per Obs. 3,
tend to contain more real images. On the contrary, group Xnew

− contains low entropy samples which
tend to be synthetic. To alleviate the gap in feature embeddings mentioned in Obs. 4, we maximize
the inter-group similarity between Xnew

+ and Xnew
− with LM (Xnew

+ , Xnew
− ) and LM (Xnew

− , Xnew
+ ).

Moreover, to align the holistic feature embeddings between the stream data Xnew and memory data
Xmem, we also applied LM (Xnew, Xmem) and LM (Xmem, Xnew) in the loss function.

Thus, the proposed RM to alleviate the feature gap in Obs. 4 can be achieved by employing LRM :

LRM = LM (Xnew
+ , Xnew

− )+LM (Xnew
− , Xnew

+ )+LM (Xnew, Xmem)+LM (Xmem, Xnew). (3)

5.3 Overall framework of ESRM

The overall framework of ESRM is shown in Fig. 1. Besides ES and RM, following [42], ESRM
employs a self-distillation technique to alleviate the overconfidence problem of the replay-based
methods. For the combined batch X = (Xnew, Xmem), we apply the self-distillation as:

LSDC = DKL(ϕ(f(X))/t, ϕ(f(aug(X)))/t), (4)

where DKL(·) is the Kullback-Leibler divergence, t is another temperature hyperparameter which is
set to 4, ϕ(f(aug(X))) is the fixed copy of ϕ(f(aug(X))), without gradient propagation, and aug(·)
is the data augmentation used in the training process, with detailed information in Appendix D.5.

Thus, the total loss of ESRM can be formulated as:

LESRM = LCE + λ1LSDC + λ2LRM , (5)

where LCE = CE(ϕ(f(X)), y) + CE(ϕ(f(aug(X))), y) is the cross-entropy loss, and λ1, λ2 are
the balancing hyperparamteres. We set λ1 = 1 and λ2 = 0.5 after a small hyperparameter search as
illustrated in the Appendix D.6.
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Dataset CIFAR10 C10/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 63.93±2.40 60.40±1.54(-3.53) 57.07±3.64(-6.86) 54.18±3.42(-9.75) 50.69±3.56(-13.24) 47.39±2.76(-16.54)
DER++ 64.31±2.63 60.24±2.02(-4.07) 56.11±2.99(-8.20) 51.62±3.28(-12.69) 44.43±3.00(-19.88) 40.46±2.92(-23.85)
ERACE 60.19±2.51 56.17±2.08(-4.02) 50.70±2.66(-9.49) 46.86±4.61(-13.33) 41.86±2.40(-18.33) 37.56±2.46(-22.63)
OCM 72.66±1.61 69.70±1.52(-2.96) 66.68±1.69(-5.98) 63.79±1.57(-8.87) 60.41±1.36(-12.25) 57.07±1.42(-15.59)
GSA 66.91±1.57 63.47±1.89(-3.44) 59.44±2.33(-7.47) 56.60±2.63(-10.31) 49.93±2.97(-16.98) 45.77±2.60(-21.14)
OnPro 74.87±1.58 72.46±1.36(-2.41) 68.79±1.17(-6.08) 66.07±1.23(-8.80) 62.37±1.70(-12.50) 56.41±2.59(-18.46)
ESRM 67.35±1.14 67.95±0.88(0.6) 67.47±1.43(0.12) 66.81±1.59(-0.54) 64.59±1.59(-2.76) 60.04±2.29(-7.31)
Dataset CIFAR100 C100/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 38.70±1.45 36.37±1.39(-2.33) 32.82±1.62(-5.88) 31.33±1.33(-7.37) 27.09±1.02(-11.61) 25.56±1.23(-13.14)
DER++ 37.62±2.30 32.35±2.72(-5.27) 28.32±2.45(-9.30) 25.57±2.44(-12.05) 19.56±1.88(-18.06) 16.00±1.64(-21.62)
ERACE 39.82±1.37 34.15±1.33(-5.67) 28.16±1.37(-11.66) 25.13±1.30(-14.69) 19.37±1.49(-20.45) 16.14±1.29(-23.68)
OCM 42.01±1.07 40.21±1.15(-1.80) 37.54±1.36(-4.47) 34.78±1.32(-7.23) 31.40±1.51(-10.61) 28.84±1.28(-13.17)
GSA 42.27±1.53 39.21±1.13(-3.06) 35.21±1.62(-7.06) 32.64±1.84(-9.63) 27.62±1.15(-14.65) 23.88±1.61(-18.39)
OnPro 41.47±1.09 39.26±0.72(-2.21) 35.64±0.60(-5.83) 33.20±0.70(-8.27) 30.20±0.84(-11.27) 26.77±1.19(-14.70)
ESRM 47.72±0.87 46.57±0.92(-1.15) 45.92±0.42(-1.80) 44.48±0.41(-3.24) 40.99±0.70(-6.73) 37.45±0.56(-10.27)
Dataset Tiny Tiny/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 25.06±1.81 18.03±1.69(-7.03) 13.59±1.86(-11.47) 11.29±1.46(-13.77) 6.38±0.89(-18.68) 3.88±0.65(-21.18)
DER++ 19.40±3.71 12.55±2.26(-6.85) 9.71±1.41(-9.69) 7.46±1.45(-11.94) 4.49±0.83(-14.91) 2.81±0.41(-16.59)
ERACE 26.38±1.03 17.04±0.88(-9.34) 11.23±0.69(-15.15) 7.83±1.16(-18.55) 4.09±0.58(-22.29) 2.54±0.55(-23.84)
OCM 31.94±1.44 25.21±0.65(-6.73) 20.14±1.16(-11.80) 16.16±0.64(-15.78) 10.35±0.58(-21.59) 5.37±0.63(-26.57)
GSA 25.34±1.01 15.59±2.29(-9.75) 12.55±1.65(-12.79) 9.31±1.20(-16.03) 5.95±0.83(-19.39) 3.87±0.55(-21.47)
OnPro 26.38±2.18 16.92±1.22(-9.46) 13.23±1.26(-13.15) 8.82±1.26(-17.56) 4.80±1.12(-21.58) 2.68±0.58(-23.70)
ESRM 32.15±1.20 29.36±0.53(-2.79) 27.81±1.02(-4.34) 25.7±1.16(-6.45) 19.09±1.57(-13.06) 13.02±0.79(-19.13)

Dataset In-100 In-100/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 33.35±1.84 30.49±0.91(-2.81) 26.47±0.64(-6.83) 23.61±0.68(-9.69) 21.09±0.61(-12.21) 18.54±0.92(-14.76)
DER++ 34.89±2.27 29.98±4.35(-4.77) 26.84±1.72(-7.91) 23.72±2.10(-11.03) 20.57±1.67(-14.18) 17.52±2.06(-17.23)
ERACE 38.43±1.45 32.96±1.55(-5.41) 28.99±0.73(-9.38) 25.28±0.77(-13.09) 20.51±1.13(-17.86) 16.91±0.64(-21.46)
OCM 26.70±2.36 26.43±0.53(-0.27) 23.70±1.11(-3.00) 23.61±2.00(-3.09) 22.21±1.09(-4.49) 20.56±1.20(-6.14)
GSA 40.85±1.04 37.35±1.23(-3.68) 32.34±1.30(-8.69) 29.47±0.44(-11.56) 25.15±0.74(-15.88) 21.89±0.25(-19.14)
OnPro 38.47±1.13 36.17±2.70(-2.58) 34.04±2.51(-4.71) 33.01±1.07(-5.74) 29.34±2.00(-9.41) 25.14±1.26(-13.61)
ESRM 39.72±1.05 39.64±0.76(-0.08) 39.62±0.90(-0.10) 39.53±0.83(-0.19) 36.58±0.80(-3.14) 32.86±0.99(-6.86)

Table 2: Average Accuracy (%; higher is better) on four benchmark datasets with different contami-
nation ratios P . Numbers in parentheses indicate the performance degradation due to contamination
compared to the clean setting. The average and deviation over five runs are reported for ImageNet-100
and 10 runs for other datasets.

6 Experiments

6.1 Experiment setup

Datasets. In the experiments, we used four benchmark datasets in evaluation, including CIFAR-
10/100, TinyImageNet, and ImageNet-100. All of the datasets are split into tasks containing non-
overlapping classes. The details about the task split are available in Appendix D.1.

Baselines. We evaluate the effectiveness of ESRM against six representative and state-of-the-art
baselines, including ER [33], DER++ [5], ERACE [6], OCM [16], GSA [17], and OnPro [45].

Implementation details. We use full-width ResNet-18 (not pre-trained) as the backbone for all
experiments. For a fair comparison, we conduct a hyperparameter search on CIFAR-100 (Memory
Size = 5K) and apply the same hyperparameter to all settings. Stream batch size is set to 10 and
memory batch size is set to 64. We do not use multiple updates trick for incoming batches as
detailed in [2]. Detailed information about task allocation, hyperparameter search protocol, and data
augmentation can be found in Appendix D.

Buffer size. For CIFAR-10 and CIFAR-100 experiments, the buffer size is set to 1,000 and 5,000,
respectively. For the harder TinyImageNet experiments, the buffer size is set to 10,000. The buffer
size of ImageNet-100 is set to 5,000. Appendix C.5 demonstrates more experiments with different
memory buffer sizes.

7



Dataset In-100 In-100/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 53.87±1.27 52.12±1.03 48.38±0.79 45.21±1.24 39.24±1.58 35.27±0.93

DER++ 61.14±2.38 56.99±1.85 53.56±2.86 50.26±2.06 44.08±1.89 37.92±2.19

ERACE 49.25±1.94 43.83±0.76 37.92±1.49 33.51±0.85 26.78±1.14 22.70±0.75

OCM 22.78±1.62 19.37±0.28 19.81±0.53 19.43±0.77 20.44±0.25 18.98±1.44

GSA 61.83±1.72 58.15±1.99 53.63±0.46 49.55±1.25 42.35±0.38 36.16±0.90

OnPro 39.28±0.84 38.98±3.16 40.07±1.72 38.45±2.80 36.45±1.51 32.94±1.33

ESRM 74.85±0.61 71.25±0.74 66.51±0.39 62.16±0.39 55.30±0.50 50.41±0.97

Table 3: Learning Accuracy (%; higher is better) on In-100/SDXL with various contamination ratio
P .

Dataset In-100 In-100/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 39.38±3.51 42.20±1.70 45.95±1.52 48.38±2.10 47.12±1.74 47.83±2.26

DER++ 42.26±5.72 48.35±8.20 51.00±5.01 53.73±4.78 54.28±5.20 54.93±6.77

ERACE 24.21±2.17 25.22±3.29 24.23±2.29 26.10±3.97 26.26±4.28 28.80±3.92

OCM 4.67±1.66 4.38±2.16 5.96±3.12 4.86±1.62 6.45±1.78 6.52±1.31
GSA 35.51±2.12 37.50±1.72 40.79±3.08 41.72±0.94 41.83±2.04 40.55±0.56

OnPro 15.96±2.23 23.12±4.69 22.87±3.14 23.89±1.70 24.72±1.80 28.17±2.93

ESRM 49.79±1.61 46.02±1.19 40.83±1.29 36.90±1.74 34.61±1.82 35.40±2.38

Table 4: Relative Forgetting (%; lower is better) on In-100/SDXL with various contamination ratio P .

Memory strategy P = 70%
Acc. ↑

P = 80%
Acc. ↑

Real Only (Idealized) 47.43±0.62 46.85±0.76

ES (Ours) 45.92±0.42 44.48±0.41

Random 44.84±0.80 42.62±0.87

Synthetic Only (Worst) 25.91±0.79 24.74±0.91

Table 5: Comparison of different memory strate-
gies on C100/SDXL dataset, with different con-
tamination ratio P .

Method P = 70%
Acc. ↑

P = 80%
Acc. ↑

Baseline 42.61±0.84 41.22±0.65

w/o LSDC 44.30±0.78 42.59±0.69

w/o LRM 44.03±0.73 42.32±0.52

ESRM 45.92±0.42 44.48±0.41

Table 6: Ablation of loss functions on
C100/SDXL dataset, with different contamina-
tion ratio P . “Baseline” indicates ES+LCE .

6.2 Results and analysis

Final Average Accuracy. Table 2 shows the final average accuracy of learners trained with four
datasets, including C10/SDXL, C100/SDXL, Tiny/SDXL, and In-100/SDXL, with different contami-
nation ratios P . More results on C10/Mix, C100/Mix, and Tiny/Mix are given in Appendix C.3. For
the six baselines, we can notice a significant performance drop when synthetic data contamination
appears. Notably, when the contamination is severe (contamination ratio P ≥ 70%), the performance
degradation is significant. Also, it can be observed that ESRM is less impacted by synthetic data
contamination. For most datasets and contamination ratio P , the ESRM performance drop is the
lowest of the compared methods. This is remarkably true for large values of P .

Apart from the robustness against synthetic data contamination, the absolute performance of ESRM
is also attractive. In most cases, ESRM outperforms the baseline methods by a large margin. More
interestingly, for some datasets, such as CIFAR-100 and ImageNet-100, even with an extreme
contamination ratio, ESRM can still achieve a substantial performance, while the performance of
most baseline methods is unsatisfactory.

Plasticity and Stability Metrics. We measure the model’s plasticity and stability with Learning
Accuracy (LA) [32] and Relative Forgetting (RF) [42], respectively. As shown in Table 3 and 4,
for baseline methods, both plasticity and stability performance are hindered by synthetic data
contamination. From the model plasticity perspective, ESRM alleviates the problem with a larger
plasticity. For the model stability, ESRM solves the problem of stability degradation with the presence
of contamination. It is notable that with RM loss and self-distillation loss, ESRM implicitly trades
off some model stability in favor of plasticity. Plasticity and stability performance on other datasets
are available in Appendix C.4.

Domain-Incremental Learning Results. While Class-Incremental Learning (CIL) setting is the
standard evaluation protocol in online CL, we also evaluated the performance of ESRM in Domain-
Incremental Learning (DIL) scenarios. We conducted the experiment with the 20 coarse labels of the
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Dataset DIL-CIFAR20 DIL-C20/SDXL

Ratio P 0% 50% 70% 80%

ER 53.56±1.42 51.91±1.63(-1.65) 49.61±0.76(-3.95) 47.25±0.73(-6.31)
DER++ 56.43±0.65 52.46±1.19(-3.97) 48.73±1.50(-7.70) 44.60±1.79(-11.83)
OCM 56.02±1.17 53.87±0.57(-2.15) 52.69±0.93(-3.33) 50.57±0.80(-5.45)
GSA 53.67±2.60 51.54±1.76(-2.13) 47.16±1.76(-6.51) 45.55±1.17(-8.12)
OnPro 31.81±1.21 30.43±0.72(-1.38) 29.19±0.82(-2.62) 27.79±0.86(-4.02)
Ours 64.27±0.46 63.35±0.70(-0.92) 61.86±0.54(-2.41) 59.94±0.71(-4.33)

Table 7: Final Average Accuracy (%; higher is better) on DIL-C20/SDXL dataset. Numbers in
parentheses indicate the performance degradation due to synthetic contamination compared to the
clean setting. The average and deviation over 10 runs are reported.

Figure 5: T-SNE visualization of memory
data produced by ESRM at the end of training
on the In-100/SDXL (P = 50%) dataset. For
clarity, only the first 10 classes are visualized.

Figure 6: The percentage of synthetic data in the
memory buffer throughout the training of ESRM
on the In-100/SDXL dataset with different contam-
ination ratios (P ). The average value of 5 runs is
plotted.

CIFAR-100 dataset. Since the 100 classes in CIFAR-100 are grouped into 20 superclasses with 5 fine-
grained classes for each superclass, we split the CIFAR-100 dataset with 5 domain increment steps.
For each step, we feed the model with the training data of a fine-grained class from each superclass.
Because the model only classifies 20 coarse labels, we refer to this dataset as DIL-CIFAR20. Similar
to the simulated CIFAR100/SDXL dataset, we replace the images in the DIL-CIFAR20 dataset with
its Stable Diffusion XL generated counterpart with a contamination ratio P, as per the protocol in
Sec. 3.2.

Table 7 shows the final average accuracy with different contamination ratios. Notably, we adapted the
CIL-specifically designed components in OnPro and GSA to the DIL scenario, and the performance
suffered a decent loss. We did not report ERACE results because its Asymmetric Cross Entropy (ACE)
loss converges to standard cross-entropy loss in the DIL scenario, making it equivalent to vanilla
ER. The experimental results show that ESRM can yield robust performance against domain shift in
the DIL setting, under different synthetic contamination situations, which validates the efficiency of
ESRM under DIL settings.

6.3 Ablation studies

Effect of ES. To evaluate the effect of ES, we substitute ES with three different memory strategies:
random sampling, storing real data only, and storing synthetic data only. Note that storing real or
synthetic data requires knowing the ground truth of an image’s synthetic status, which is not practical
in realistic settings. Additionally, storing only real data is an idealized case for memory management,
while storing only synthetic data represents the worst-case scenario. As shown in Table 5, both
ES and random reservoir sampling [21, 40] outperform the worst-case scenario by a large margin.
Moreover, ES outperforms the random sampling significantly.

Effects of loss terms. We also conduct experiments to verify the effects of loss terms in Eq. 5. As
shown in Table 6, Both LSDC and LRM can benefit the final average accuracy of the classification.
Furthermore, the combination of the two loss terms can further improve the final accuracy, validating
that both terms complement each other.
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7 Discussions

Figure 7: The ROC curve of
the model trained with ESRM
on the In-100/SDXL dataset
(P = 50%) in predicting the
synthetic status of samples in
the training dataset. Real sam-
ples are regarded as positives
and synthetic samples as nega-
tives.

The alleviation of feature misalignment. As mentioned in Obs. 4,
baseline methods suffer performance degradation due to the mis-
alignment between the inferior feature embedding of real images and
the superior feature embedding of synthetic samples. Fig. 5 presents
the t-SNE visualization of memory data at the end of training of
ESRM on the In-100/SDXL dataset. Similar to Fig. 3, only the first
10 classes are visualized for clarity. Compared to ER and OnPro,
the embeddings of synthetic and real samples in ESRM are better
aligned, facilitated by the RM.

Training dynamics of memory buffer. To intuitively demonstrate
the effect of ES, we visualized the percentage of synthetic data in
the memory buffer throughout the whole training process. Fig. 6
displays the curve of the percentage of synthetic data in the memory
buffer when the model is trained with ESRM on In-100/SDXL with
different contamination ratios P . To generate this curve, we checked
the memory buffer every 10 iterations. As shown in the figure, the
percentage of synthetic data is close to the contamination ratio P
in the early stages of training. As training progresses, the amount
of synthetic data decreases. This trend intuitively illustrates the
effect of ES in selecting real samples. Furthermore, we take a model
trained with ESRM at the end of training and use the model’s entropy
as the criterion to categorize the synthetic status of samples in the training dataset and generate an
ROC curve, as shown in Fig. 7. We regard real data as positive and use models trained with ESRM on
In-100/SDXL (P = 50%) to categorize the samples in the training set. The AUC of the ROC curve
is 0.7098, showing the effect of the entropy criterion in discriminating real and synthetic samples.

8 Conclusion
With the widespread availability of advanced generative models, the prevalence of AI-generated
images appears inevitable, posing a potential challenge for researchers attempting to collect datasets
devoid of AI-generated content from the Internet. In this paper, we examine the potential side effects
of AI-powered image generation on the continual learning community. First, we experimentally
demonstrate that synthetic data has become a potential source of data pollution. We spot a catastrophic
performance loss when the contaminated datasets are used to train continual learning models. Based
on our experiments, we identify and summarize four typical characteristics of synthetic data when
involved in the training of continual learners. Additionally, we propose ESRM, a method designed to
alleviate performance deterioration, maintaining satisfactory performance even with highly contami-
nated datasets. Lastly, we hope our work highlights the need for improved regulation and systematic
control over generated data, such as watermarking AI-generated content before publication. Internet
data is a valuable resource accumulated over decades. We believe ensuring the integrity of Internet
data is crucial for the future soundness of AI development.
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Algorithm 1 PyTorch-like pseudo-code of ES.
# model: continual learning model.
# criteria(): loss function as in Eq. 5.
# n_seen_so_far: count of images seen by the buffer.
# random(): function returns random values in (0,1).
# buffer_labels: 1D Tensor of size [buffer_size] storing the labels.
# buffer_ent: 1D Tensor of size [buffer_size] storing the entropy values.
# update_ent(): Update all entropy values in the buffer.

n_seen_so_far = 0
for t in tasks:

for img, label in dataloader:
# train the network with stream data
model.train()
mem_img, mem_label = mem_sample()
c_img, c_label = concat((img, mem_img), (label, mem_label)) # combined batch
loss = criteria(model(aug(c_img)), c_label) # Eq. 5.
loss.backward()
optimizer.step()

# ES updates
# calculate the entropy criteria of stream data
model.eval()
logits = model(img)
prob = softmax(logits)
entropy = -torch.sum(prob * torch.log(prob))

# update buffer
threshold = torch.quantile(entropy, 0.5) # Step 1 in ES
stream_img = img[entropy > threshold]
stream_label = label[entropy > threshold]
stream_entropy = entropy[entropy > threshold]

for x, y, ent in zip(stream_img, stream_label, stream_ent):
nominate = int(random()*(n_seen_so_far + 1)) # Step 2 in ES
if n_seen_so_far < buffer_size: # if the buffer is not full

nominate = n_seen_so_far
replace_data(nominate, x, y, ent)
n_seen_so_far += 1

elif nominate < buffer_size:
nominate_class = buffer_labels[nominate] # Step 3 in ES
idx = buffer_ent[buffer_labels == nominate_class].argmin()
replace_data(idx, x, y, ent) # Step 4 in ES
n_seen_so_far += 1

update_ent()

A Limitations
The paper investigates the potential impact of synthetic data contamination on online CL research
and proposes a method to alleviate side effects caused by the contamination. Nevertheless, our
research has some limitations. Firstly, in the evaluation, we only use five generative models, including
Stable Diffusion v1.4, Stable Diffusion v2.1, Stable Diffusion XL, VQDM, and GLIDE. Other
excellent commercial generative works, such as Midjourney and DALL-E, are not included in the
data generation. With limited computation/resources, we could not exhaust all generative methods.

Secondly, the way we produce the generated dataset is simple: we use prompts like “an image of a
<class_name>” in the generation. In reality, the users’ prompts are usually more diverse. Some works
use LLMs to simulate more realistic prompts, where we leave a further in-depth analysis for future
research.

B Pseudo code for ES
The PyTorch-like pseudo code showing how the ES updates the memory buffer is shown in Alg. 1.
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(a) ER (b) DER++ (c) ERACE (d) OCM

(e) GSA (f) OnPro (g) ESRM

Figure 8: The entropy distribution of the training set produced by all methods on In-100/SDXL
P = 50% at the end of the training.

(a) ER (b) DER++ (c) ERACE (d) OCM

(e) GSA (f) OnPro (g) ESRM

Figure 9: T-SNE visualization of the memory data at the end of training on In-100/SDXL (P = 50%).
For clarity, only the first 10 classes are visualized.

C Extra Experiments

C.1 Entropy distribution of other baselines

As mentioned in Sec. 4, we show the entropy distribution produced by other baselines, when trained
on In-100/SDXL (P = 50%). Fig. 8 illustrates the entropy distribution histogram, which is calculated
at the end of the training on the whole contaminated dataset. Similar to the result in Fig. 2, the entropy
distribution of the synthetic data is saliently lower than the entropy distribution of the real data.

15



Dataset CIFAR10 C10/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 63.93±2.40 61.74±2.36(-2.19) 57.54±2.04(-6.39) 57.18±2.51(-6.75) 53.71±2.32(-10.22) 52.21±2.92(-11.72)
DER++ 64.31±2.63 61.62±2.57(-2.69) 59.64±4.24(-4.67) 57.31±3.36(-7.00) 53.28±4.10(-11.03) 51.68±3.16(-12.63)
ERACE 60.19±2.51 58.21±2.38(-1.98) 55.01±2.59(-5.18) 51.15±3.45(-9.04) 49.16±3.10(-11.03) 47.74±2.45(-12.45)
OCM 72.66±1.61 70.13±1.38(-2.53) 66.62±1.69(-6.04) 65.08±1.63(-7.58) 62.86±1.39(-9.80) 61.60±1.99(-11.06)
GSA 66.91±1.57 63.05±2.02(-3.86) 62.45±1.52(-4.46) 60.94±1.50(-5.97) 57.51±2.58(-9.40) 55.84±1.43(-11.07)
OnPro 74.87±1.58 72.45±1.97(-2.42) 69.79±1.78(-5.08) 67.13±1.41(-7.74) 64.23±1.17(-10.64) 63.63±0.85(-11.24)
ESRM 67.35±1.14 68.04±1.33(0.69) 67.60±1.16(0.25) 66.73±1.03(-0.62) 64.74±0.88(-2.61) 64.38±1.60(-2.97)
Dataset CIFAR100 C100/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 38.70±1.45 36.54±1.40(-2.16) 33.82±1.13(-4.88) 32.33±0.77(-6.37) 30.24±0.80(-8.46) 28.36±1.22(-10.34)
DER++ 37.62±2.30 35.38±2.65(-2.24) 31.58±1.91(-6.04) 29.71±2.19(-7.91) 26.75±1.51(-10.87) 24.78±1.17(-12.84)
ERACE 39.82±1.37 35.65±1.04(-4.17) 31.44±2.28(-8.38) 29.21±1.30(-10.61) 26.24±1.17(-13.58) 23.42±1.41(-16.4)
OCM 42.01±1.07 39.78±0.94(-2.23) 37.19±1.19(-4.82) 35.51±1.58(-6.50) 33.37±1.04(-8.64) 32.01±0.63(-10.00)
GSA 42.27±1.53 39.88±1.54(-2.39) 36.72±0.68(-5.55) 34.27±1.59(-8.00) 31.83±1.42(-10.44) 30.17±1.61(-12.10)
OnPro 41.47±1.09 38.78±1.27(-2.69) 36.53±0.63(-4.94) 34.48±0.58(-6.99) 32.08±1.07(-9.39) 31.06±1.71(-10.41)
ESRM 47.72±0.87 45.58±0.88(-2.14) 44.02±0.65(-3.70) 43.81±0.95(-3.91) 41.10±0.71(-6.62) 38.13±0.48(-9.59)
Dataset Tiny Tiny/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 25.06±1.81 17.28±1.88(-7.78) 13.52±1.49(-11.54) 10.26±1.40(-14.80) 6.73±0.96(-18.33) 3.46±0.68(-21.60)
DER++ 19.40±3.71 13.86±2.44(-5.54) 10.56±0.72(-8.84) 7.35±1.78(-12.05) 3.66±0.61(-15.74) 1.59±0.46(-17.81)
ERACE 26.38±1.03 18.70±1.23(-7.68) 13.99±0.81(-12.39) 10.35±1.03(-16.03) 5.62±0.67(-20.76) 3.01±0.47(-23.37)
OCM 31.94±1.44 24.14±1.17(-7.80) 19.18±1.18(-12.76) 15.06±0.83(-16.88) 8.82±0.93(-23.12) 4.28±0.76(-27.66)
GSA 25.34±1.01 17.11±1.40(-8.23) 13.49±1.65(-11.85) 10.02±0.96(-15.32) 6.00±0.86(-19.34) 3.26±0.68(-22.08)
OnPro 26.38±2.18 17.03±1.67(-9.35) 11.84±1.42(-14.54) 8.82±1.24(-17.56) 3.79±0.61(-22.59) 1.72±0.62(-24.66)
ESRM 32.15±1.20 27.37±1.24(-4.78) 25.65±1.12(-6.50) 23.52±1.24(-8.63) 17.29±1.16(-14.86) 11.50±0.74(-20.65)

Table 8: Average Accuracy (%; higher is better) on four benchmark datasets with different contami-
nation ratios P . Numbers in parentheses indicate the performance degradation due to contamination
compared to the clean setting. The average and deviation over 10 runs are reported.

C.2 T-SNE visualization of other baselines

We show additional experiments of t-SNE visualization of memory data produced by other baseline
methods. As shown in Fig. 9, we visualize the memory embeddings of different baselines on the
In-100/SDXL (P = 50%) dataset. For clarity, we only visualize the first 10 classes. Similar to the
results in Fig. 3, the synthetic data are better clustered compared with the real data. This proves the
Obs. 4.

C.3 Performance on C10/Mix, C100/Mix and Tiny/Mix Dataset

As mentioned in Sec. 6, we would like to include the experiment results on C10/Mix, C100/Mix,
and Tiny/Mix datasets. The final average accuracy of different methods on the dataset is included
in Table 8. Similar to the results in Table 2, ESRM has less performance degradation and better
performance in most cases.

C.4 Plasticity and stability performance on other datasets

As mentioned in Sec. 6.2, the plasticity and stability metrics of methods on other datasets are
demonstrated in Table 9 and 10. Similar to the results in Table 3 and 4, in most settings, the plasticity
metric (LA) and stability metric (RF) of baseline methods drop with an increased contamination
ratio P . For the model plasticity, ESRM alleviates the issue with a larger plasticity. From a stability
perspective, ESRM addresses the issue of stability degradation with the presence of contamination.

C.5 The impact of buffer size.

In Sec. 6.2, we evaluate the effectiveness of ESRM in a limited buffer size setting. To evaluate
our methods’ scalability against different buffer sizes M and contamination ratio P , we compare
the accuracy of different methods on C100/SDXL with different buffer sizes M , as shown in
Table 11. Similar to the results in Table 2, ESRM can obtain better performance when the dataset is
contaminated with synthetic data.
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Dataset CIFAR10 C10/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 80.05±3.24 79.56±2.51 74.76±3.04 74.15±3.80 72.69±3.02 69.60±4.38

DER++ 78.35±1.88 74.51±3.63 71.33±4.16 67.68±4.23 62.96±2.89 60.45±3.05

ERACE 60.64±3.24 57.16±3.18 49.61±5.13 46.44±5.47 43.70±3.48 40.94±4.11

OCM 79.84±3.01 79.25±2.28 76.43±3.26 76.03±3.39 74.41±2.51 71.11±1.94

GSA 77.28±3.11 74.72±3.39 69.10±2.65 66.51±3.92 60.17±4.53 56.57±7.26

OnPro 84.87±2.55 83.12±3.30 82.98±1.75 79.81±2.82 77.99±2.88 73.39±3.26

ESRM 91.36±1.25 88.19±1.05 85.57±1.59 83.32±1.70 79.48±2.09 76.09±3.10

Dataset CIFAR100 C100/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 50.47±1.31 48.60±1.77 46.08±1.69 43.19±1.28 39.66±1.47 37.21±1.49

DER++ 55.91±3.80 50.80±2.52 46.42±2.86 43.17±2.72 36.79±3.14 31.44±2.20

ERACE 41.29±1.72 35.83±0.47 30.06±1.22 26.56±1.24 21.70±1.64 18.10±0.68

OCM 43.56±1.56 43.30±1.86 40.59±1.52 38.62±1.94 35.73±1.57 33.93±1.81

GSA 50.76±1.64 48.30±2.28 43.70±2.17 40.49±1.75 34.29±1.48 30.92±1.56

OnPro 41.98±1.44 41.58±1.85 39.36±1.36 36.99±1.87 33.95±1.61 30.97±1.81

ESRM 70.85±0.95 67.07±0.77 62.83±0.64 59.45±1.00 54.33±0.52 49.89±0.78

Dataset Tiny Tiny/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 64.44±1.27 56.76±1.23 51.90±1.95 47.26±0.94 36.63±1.39 24.89±1.23

DER++ 70.28±2.42 64.84±1.48 61.25±2.79 58.82±1.92 54.52±1.88 49.59±1.56

ERACE 4.60±0.88 3.50±0.45 3.00±0.50 2.80±0.68 2.24±0.35 1.96±0.34

OCM 14.91±2.23 9.34±1.27 7.49±1.12 6.65±0.94 5.43±1.04 4.56±0.89

GSA 14.95±0.52 8.67±1.38 6.68±0.62 5.06±0.61 3.19±0.82 2.37±0.36

OnPro 15.82±1.04 11.18±1.40 9.45±1.62 8.68±0.72 8.30±1.30 6.75±1.36

ESRM 81.47±0.58 73.76±0.44 66.65±0.64 60.88±0.96 50.58±1.15 38.43±0.91

Dataset CIFAR10 C10/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 80.05±3.24 77.03±3.53 75.06±3.60 74.57±3.31 72.41±3.11 71.68±3.89

DER++ 78.35±1.88 75.53±2.35 74.16±3.44 70.95±2.93 69.57±2.82 67.31±2.27

ERACE 60.64±3.24 57.57±4.67 52.87±3.40 49.89±4.71 49.55±4.95 46.53±4.00

OCM 79.84±3.01 78.75±3.58 76.91±2.67 75.78±2.84 73.60±2.72 72.36±2.44

GSA 77.28±3.11 72.38±2.99 72.11±3.74 69.66±2.58 64.43±4.81 60.80±4.32

OnPro 84.87±2.55 82.96±2.97 80.94±2.79 79.00±2.31 76.94±2.75 76.17±3.31

ESRM 91.36±1.25 88.81±1.49 85.98±1.44 84.60±1.96 82.62±0.82 81.11±1.58

Dataset CIFAR100 C100/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 50.47±1.31 48.64±1.91 45.45±1.37 43.30±1.20 41.36±1.29 39.28±1.74

DER++ 55.91±3.80 54.30±3.50 50.02±1.74 47.44±2.68 43.39±1.61 41.68±2.21

ERACE 41.29±1.72 37.41±1.00 33.96±1.31 31.89±1.16 28.65±1.07 26.62±0.89

OCM 43.56±1.56 42.41±2.05 39.26±1.65 38.16±1.90 37.45±1.48 36.16±1.47

GSA 50.76±1.64 48.07±1.31 45.37±1.44 42.83±1.59 39.65±1.21 37.85±1.41

OnPro 41.98±1.44 41.62±1.46 39.24±1.53 36.95±1.60 36.02±1.01 34.94±1.11

ESRM 70.85±0.95 67.53±1.08 64.04±0.91 61.34±1.01 57.57±0.73 54.76±0.75

Dataset Tiny Tiny/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 64.44±1.27 55.16±1.06 50.39±2.59 44.24±2.08 32.22±1.74 22.06±1.74

DER++ 70.28±2.42 64.64±1.19 62.77±2.16 60.53±2.12 53.28±2.80 46.38±2.73

ERACE 4.60±0.88 3.04±0.75 2.63±0.55 2.29±0.48 1.87±0.37 1.86±0.25

OCM 14.91±2.23 8.58±1.20 6.18±1.17 4.72±1.03 4.01±0.75 3.42±0.63

GSA 14.95±0.52 8.66±1.18 6.53±1.00 4.90±0.66 2.84±0.58 2.06±0.49

OnPro 15.82±1.04 9.83±1.06 7.92±1.22 6.89±1.13 5.62±0.85 4.32±1.28

ESRM 81.47±0.58 74.50±0.59 66.60±1.00 60.56±0.75 48.22±1.16 34.33±1.12

Table 9: Learning Accuracy (%; higher is better) on contaminated datasets with various contamination
ratio P .
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Dataset CIFAR10 C10/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 20.30±4.50 23.47±3.80 23.56±5.66 25.71±5.14 29.74±5.20 30.08±6.21

DER++ 17.36±2.62 18.64±3.57 19.65±2.64 21.46±3.63 25.74±4.63 28.72±4.44

ERACE 9.59±2.12 10.69±1.30 13.97±3.22 15.83±4.33 15.70±3.72 20.51±2.05

OCM 10.43±2.51 12.44±1.72 13.43±3.90 16.39±3.01 18.21±2.95 18.68±3.39

GSA 16.25±2.62 17.41±2.92 16.50±3.44 17.10±4.02 21.34±5.05 21.12±7.01

OnPro 12.07±3.19 13.05±2.64 15.65±2.96 16.88±2.16 19.12±4.23 21.94±5.57

ESRM 26.12±2.05 23.03±2.16 21.27±1.96 20.24±2.42 20.52±2.70 23.99±3.23

Dataset CIFAR100 C100/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 23.86±2.73 26.06±4.53 28.51±3.56 27.34±3.41 31.48±2.95 30.91±3.12

DER++ 33.11±4.58 35.73±5.20 38.56±4.77 39.97±5.72 46.20±4.12 47.89±5.86

ERACE 9.81±1.72 12.26±1.91 13.86±2.75 14.15±3.64 18.54±5.33 19.61±5.17

OCM 8.35±2.07 10.46±2.62 10.93±3.57 12.61±1.80 15.41±2.48 17.60±3.00

GSA 19.62±2.73 21.56±3.38 22.69±2.95 23.05±4.13 23.45±3.00 25.38±4.53

OnPro 11.91±1.87 13.28±2.40 15.99±1.99 16.58±2.13 17.01±2.50 18.78±3.58

ESRM 32.67±1.46 30.75±1.48 26.93±1.33 25.24±1.64 24.53±1.04 24.85±1.77

Dataset Tiny Tiny/SDXL

Ratio P 0% 50% 70% 80% 90% 95%

ER 61.84±2.65 69.08±3.09 74.91±3.41 76.94±2.89 83.45±2.34 86.34±2.27

DER++ 72.51±5.53 80.83±3.51 84.35±2.27 87.53±2.58 91.88±2.09 94.46±0.72

ERACE 36.40±2.74 44.92±2.49 54.44±3.07 62.57±5.27 76.19±3.48 78.71±4.21

OCM 32.25±1.44 37.15±1.73 43.82±2.82 49.69±2.54 58.53±2.89 73.77±4.01

GSA 44.78±2.76 55.72±5.38 58.39±3.46 64.32±3.04 71.39±3.42 76.41±4.15

OnPro 42.81±4.63 52.63±4.17 56.83±3.74 65.18±3.77 75.11±5.65 80.98±1.55

ESRM 61.53±1.36 61.35±0.66 59.79±1.82 59.55±2.17 65.44±2.72 71.04±2.10

Dataset CIFAR10 C10/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 20.30±4.50 20.20±3.16 22.77±4.62 22.05±5.46 25.60±3.91 26.89±4.03

DER++ 17.36±2.62 17.76±2.03 19.10±3.82 18.49±3.86 21.71±7.22 20.94±4.21

ERACE 9.59±2.12 10.67±2.66 11.61±2.12 13.58±4.21 14.09±4.70 12.06±2.61

OCM 10.43±2.51 11.04±2.82 12.89±3.58 14.24±3.79 15.01±2.95 15.15±2.33

GSA 16.25±2.62 15.33±4.76 16.34±3.71 16.28±3.63 15.94±2.53 16.46±2.97

OnPro 12.07±3.19 12.72±2.70 12.93±3.08 13.39±3.11 14.36±2.92 14.49±3.65

ESRM 26.12±2.05 23.75±2.39 21.81±2.53 21.83±2.24 22.77±1.15 23.48±2.78

Dataset CIFAR100 C100/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 23.86±2.73 25.47±3.32 25.92±3.13 25.18±2.30 26.70±2.79 27.95±3.58

DER++ 33.11±4.58 34.53±3.63 36.41±3.53 36.96±4.55 37.83±2.08 39.97±2.38

ERACE 9.81±1.72 11.32±1.66 14.62±3.75 15.33±3.12 16.16±3.43 18.34±3.36

OCM 8.35±2.07 9.87±2.31 9.98±2.21 11.12±3.01 13.87±3.72 14.54±3.62

GSA 19.62±2.73 20.00±1.83 20.71±1.27 22.26±2.97 22.06±3.03 22.01±4.44

OnPro 11.91±1.87 14.28±2.69 13.79±1.32 14.50±2.16 15.71±3.13 16.36±4.01

ESRM 32.67±1.46 32.72±1.77 31.34±1.26 30.19±2.04 29.94±1.34 30.19±1.70

Dataset Tiny Tiny/Mix

Ratio P 0% 50% 70% 80% 90% 95%

ER 61.84±2.65 69.86±3.33 74.38±2.97 77.56±3.09 81.40±3.07 87.49±3.14

DER++ 72.51±5.53 78.64±4.06 83.17±1.41 87.87±3.32 93.01±1.55 96.49±1.26

ERACE 36.40±2.74 43.29±2.72 48.53±3.15 55.66±3.50 66.81±3.03 74.77±3.71

OCM 32.25±1.44 38.31±2.25 45.04±3.00 49.95±2.56 61.10±1.94 74.39±4.50

GSA 44.78±2.76 51.89±4.09 57.09±5.29 63.64±4.54 71.41±3.71 81.18±4.13

OnPro 42.81±4.63 52.02±3.70 58.82±3.49 63.49±4.40 76.68±3.02 82.61±6.06

ESRM 61.53±1.36 64.21±1.54 62.78±1.66 62.82±2.15 67.37±2.25 71.86±2.36

Table 10: Relative Forgetting (%; lower is better) on contaminated datasets with various contamination
ratio P .
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Dataset C100(M=1k) C100/SDXL (M=1k)

Ratio P 0% 50% 70% 80% 90% 95%

ER 24.92±1.33 23.25±0.98(-1.67) 22.18±1.58(-2.74) 20.63±1.27(-4.29) 18.96±1.54(-5.96) 17.79±0.97(-7.13)
DER++ 25.86±2.43 21.92±1.36(-3.94) 19.47±1.14(-6.39) 16.69±1.65(-9.17) 13.60±1.06(-12.26) 11.15±1.31(-14.71)
ERACE 28.22±1.09 23.96±0.92(-4.26) 19.38±0.78(-8.84) 17.71±0.90(-10.51) 13.85±0.71(-14.37) 11.94±0.43(-16.28)
OCM 28.02±0.74 26.54±1.02(-1.48) 24.94±1.07(-3.08) 24.17±1.03(-3.85) 22.12±0.64(-5.90) 20.65±1.08(-7.37)
GSA 28.15±1.59 26.20±1.47(-1.95) 23.52±1.14(-4.63) 22.90±0.91(-5.25) 19.20±1.27(-8.95) 16.89±1.37(-11.26)
OnPro 26.92±1.31 26.31±1.30(-0.61) 24.85±0.94(-2.07) 23.10±1.34(-3.82) 20.98±1.02(-5.94) 19.77±1.49(-7.15)
ESRM 27.14±0.79 26.57±1.10(-0.57) 26.17±0.91(-0.97) 25.05±0.50(-2.09) 24.43±0.91(-2.71) 23.35±1.17(-3.79)
Dataset C100(M=2k) C100/SDXL (M=2K)

Ratio P 0% 50% 70% 80% 90% 95%

ER 32.07±1.51 30.24±1.15(-1.83) 27.38±1.41(-4.69) 25.95±1.22(-6.12) 23.68±1.14(-8.39) 21.79±0.65(-10.28)
DER++ 33.37±2.11 27.95±2.12(-5.42) 24.60±1.53(-8.77) 21.07±1.89(-12.30) 17.39±1.06(-15.98) 14.15±1.52(-19.22)
ERACE 34.30±1.49 28.69±1.71(-5.61) 24.01±1.14(-10.29) 21.23±0.84(-13.07) 16.47±0.95(-17.83) 13.25±1.68(-21.05)
OCM 35.69±1.36 32.39±1.09(-3.30) 31.15±0.84(-4.54) 28.38±1.28(-7.31) 26.76±0.79(-8.93) 24.75±0.67(-10.94)
GSA 35.31±1.47 32.72±1.33(-2.59) 28.97±1.23(-6.34) 26.87±1.03(-8.44) 23.42±1.17(-11.89) 19.80±1.32(-15.51)
OnPro 33.52±0.80 31.33±0.75(-2.19) 30.02±1.01(-3.50) 27.90±0.85(-5.62) 24.38±0.69(-9.14) 22.58±1.18(-10.94)
ESRM 36.25±0.79 34.55±1.33(-1.70) 34.13±1.03(-2.12) 33.77±1.08(-2.48) 31.70±0.86(-4.55) 29.21±0.91(-7.04)

Table 11: Final Average Accuracy (%; higher is better) on C100/SDXL dataset with different memory
size M and contamination ratio P . Numbers in parentheses indicate the performance degradation due
to contamination compared to the clean setting. The average and deviation over 10 runs are reported.

Figure 10: Random sampled images from class “n01558993” (Robin) in SDXL-In100 and original
ImageNet-100 dataset. For clarity, we have cropped some backgrounds and resized the vanilla
ImageNet-100 samples.

D Implementation Details

D.1 Dataset.

As discussed in Sec. 3, we used four benchmark datasets in evaluation, including CIFAR-10/100,
TinyImageNet, and ImageNet-100. In the experiments, all of the datasets are split into tasks containing
non-overlapping classes. The details about the task split are as follows:

CIFAR-10 [24] has ten classes with 50,000 training images and 10,000 test images. The image is
32× 32 in size. The dataset is split into five disjoint tasks with two classes per task.

CIFAR-100 [24] has 100 classes with 50,000 training samples and 10,000 test samples. Image size
is 32× 32. It is split into 10 disjoint tasks with 10 classes per task.

TinyImageNet [25] has 200 classes, 100,000 training samples, and 10,000 test samples. Image size
is 64× 64. The dataset is split into 100 non-overlapping tasks with two classes per task.

ImageNet-100 [20] is a subset of ImageNet-1k [13] dataset. It consists of 100 classes. We follow [11]
for the class selection. We do not perform image resizing in generating ImageNet-100 from the
original ImageNet-1k dataset. The dataset is split into 10 disjoint classes with 10 classes per task.

D.2 Details about synthetic dataset generation.

Image size of SDXL-IN100. In the synthetic dataset generation, we manually adjust the size of
generated images to match that of the original dataset. For the ImageNet-100 dataset, since the image
size is not fixed, we resize the generated images to 224× 224, to align with the training protocols.
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Generative Model Diffusion Steps Upsample(Refiner) Steps Guidance Scale

SD1.4 50 N/A 7.5
SD2.1 50 N/A 7.5
SDXL 40 40 5.0
VQDM 100 N/A 7.5
GLIDE 100 27 3.0

Table 12: Hyperparameters used in image generation.

Class-wise distribution of sources for Mix-C10/C100/Tiny dataset. In the main manuscript, we
mentioned that the dataset of setting b) in Sec. 3.1 is generated from five synthetic models: Stable
Diffusion v1.4, Stable Diffusion v2.1, Stable Diffusion XL, VQDM, and GLIDE. Each method
contributes 20% of the dataset in setting b). In our implementation, we ensure that this distribution is
consistent across all classes in the dataset, so that each class has an equal number of images from
each generation model.

Hyperparameters used in image generation. For Stable Diffusion and VQDM, we use source
code and model snapshots from huggingface, as mentioned in Table 14. For Glide experiments, we
use the official implementation and the released model snapshots. Following the recommendation,
we use the refiner in Stable Diffusion XL and the upsampler in GLIDE. The diffusion steps and
guidance scale hyperparameters we used are shown in Table 12. For other hyperparameters, we
follow the recommendations from Huggingface and GLIDE’s official implementation. We use the
prompt "An image of a class_name." as the text guidance to generate the image and interpolate the
generated image to the size of the target dataset (32 for CIFAR, 64 for TinyImageNet, and 224 for
ImageNet-100).

Samples from the generated datasets. Fig. 10 shows some samples from class “n01558993”
(Robin) in the SDXL-In100 dataset along with the samples from the original dataset. We can notice a
significant loss of diversity in the samples from SDXL-In100.

D.3 Details about synthetic contamination simulation.

As mentioned in Sec. 3.2, we generate synthetic twins of benchmark datasets and substitute a
fixed portion P of the original datasets with their synthetic counterparts. Similar to the class-wise
distribution of Mix-C10/C100/Tiny, we also conduct the mixture class-wise. For datasets in setting
a), we assure that the contamination ratio in each class is also P . For datasets in setting b), while
maintaining a consistent class-wise contamination ratio, we also ensure that each individual synthetic
model contributes 20% of the contamination in each class.

D.4 Task sequence.

In some work, the authors use a fixed task sequence for fair comparison. However, the final
performance is largely affected by the task order. For fair comparison, we randomly assign the class
to tasks and shuffle the sequence of tasks with 10 fixed random seeds. This ensures the evaluation is
not biased to task difficulty.

D.5 Data augmentation.

Data augmentation is effective in boosting the training of online continual learners. Methods may
benefit differently from different augmentation intensities, and some methods may favor simpler
augmentations instead of complicated ones. For a fair comparison, it is vital to ensure all methods
are in their optimal performance. Thus, we introduce two different augmentation strategies:

1. Partial strategy. The partial augmentation is a weaker version of augmentation, consisting of
random cropping with p = 0.5, followed by random horizontal flip with p = 0.5.

2. Full strategy. The full augmentation strategy is a stronger version of augmentation. The full
augmentation strategy is a superset of its partial counterpart, which consists of random cropping,
random horizontal flip, color jitter, and random grayscale. The parameters for color jitter are set to
(0.4, 0.4, 0.4, 0.1) with p = 0.8. The probability of random grayscale is set to p = 0.2.
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We define the data augmentation strategy of each method with a hyperparameter search, as detailed
in Appendix D.6.

D.6 Hyperparameter search protocol.

For hyperparameters in all of the methods (except DER++ on TinyImageNet), we conduct a hyperpa-
rameter search on the clean CIFAR-100 dataset with a memory size of 5,000, and apply the same
hyperparameter to all of the other settings. The exhaustive list of the hyperparameter search is shown
in Table 13.

Special treatment for DER++. DER++ encounters a catastrophic performance defect (close to 0)
when trained on the TinyImageNet dataset using an optimizer with momentum. Thus, we applied
another hyperparameter search for DER++ on TinyImageNet and found the SGD optimizer (without
Momentum) gives reasonable performance. All the experiments of DER++ on TinyImageNet are
conducted using these new hyperparameters.

D.7 Hardware and computation.

All of the experiments are conducted on NVIDIA A100 GPUs. The average training time of each
method on CIFAR-100 (Memory size = 5k), ImageNet-100 (Memory size = 5k), and TinyImageNet
(Memory size = 10k) is shown in Fig. 11. The training efficiency is much faster than OCM and
OnPro, while on par with the most efficient method.

D.8 Useful source code links.

For continual learning baselines, we use the codebase listed in Table 14 to reimplement baseline
methods. For image generation methods, we use the Diffuser library from Hugging Face for Stable
Diffusion and VQDM experiments, and we use the codebase in Table 14 for GLIDE.

Figure 11: The average training time of each method trained on CIFAR-100 (M=5k), IN-100 (M=5k),
and TinyImageNet (M=10k) dataset. For better readability, the values are plotted on the logarithm
scale. The numbers are averaged from 10 runs.
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Method HP Values

ER

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

DER++

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]
alpha [0.1, 0.2, 0.5, 1.0]
beta [0.5, 1.0]

ER-ACE

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

OCM

optimizer [AdamW]
lr [0.001]

weight decay [1e-4]
aug. strat. [partial, full]

GSA

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

OnPro

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

ESRM

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]
λ1 [0.1, 0.2, 0.5, 1, 2, 5]
λ2 [0.1, 0.2, 0.5, 1, 2, 5]

Table 13: Exhaustive list of hyperparameters searched on CIFAR-100.

Baseline Links

ER & ER-ACE https://github.com/pclucas14/AML
DER++ https://github.com/aimagelab/mammoth
OCM https://github.com/gydpku/OCM
GSA https://github.com/gydpku/GSA

OnPro https://github.com/weilllllls/OnPro

Stable Diffusion & VQDM https://github.com/huggingface/diffusers
GLIDE https://github.com/openai/glide-text2im

Table 14: Baselines and their source code URLs.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the main claims made in both the abstract and introduction can accurately
reflect the paper’s contribution.
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation section is included in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The source code of our work, along with the result of the hyperparameter
search are included in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is included in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main experimental setting is included in the paper, and all of the details
are included in the source code in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed information is included in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The Code of Ethics is fully respected and obeyed in our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the used assets in the appendix. The licenses of existing assets
are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
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Justification: We have a Readme file along with our source code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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