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ABSTRACT

Fair representation learning encodes user data to ensure fairness and utility, regard-
less of the downstream application. However, learning individually fair represen-
tations, i.e., guaranteeing that similar individuals are treated similarly, remains
challenging in high-dimensional settings such as computer vision. In this work, we
introduce LASSI, the first representation learning method for certifying individual
fairness of high-dimensional data. Our key insight is to leverage recent advances
in generative modeling to capture the set of similar individuals in the generative
latent space. This allows learning an individually fair representation where similar
individuals are mapped close together, by using adversarial training to minimize
the distance between the representations of similar individuals. Finally, we employ
randomized smoothing to provably map similar individuals close together, in turn
ensuring that local robustness verification of the downstream application results
in end-to-end fairness certification. Our experimental evaluation on challenging
real-world image data demonstrates that our method increases certified individual
fairness by more than 60%, without significantly affecting task utility.

1 INTRODUCTION

Deep learning models are increasingly being deployed in important domains such as credit scor-
ing (Khandani et al., 2010), crime risk assessment (Brennan et al., 2009), and others. Unfortunately,
both models and datasets employed in these settings were shown to be biased (Klare et al., 2012;
Buolamwini & Gebru, 2018), causing regulators to increasingly hold organizations accountable for
the discriminatory effects of their models (EU, 2019; 2021; FTC, 2020; 2021; UN, 2021).

Fair representation learning (Zemel et al., 2013) is a promising bias mitigation approach that trans-
forms user data to prevent discrimination regardless of the downstream application, while maintaining
high task utility. The approach is highly modular (McNamara et al., 2019), with a data regulator
defining the fairness notion, a data producer learning the fair representation, and data consumers
employing the transformed data in downstream tasks. However, although recent work successfully
learned representations with fairness guarantees (Ruoss et al., 2020; Gitiaux & Rangwala, 2021), the
application to high-dimensional data, such as images, remains challenging.

Key challenge: scaling to high-dimensional data and real-world models The two central
challenges in individually fair representation learning are: (i) designing a suitable input similarity
metric (Zemel et al., 2013; Yurochkin et al., 2020), and (ii) enforcing that similar individuals are
provably treated similarly (according to the designed metric). For low-dimensional tabular data,
prior work typically measures input similarity in terms of input features (age, income, etc.), using,
e.g., logical constraints (Ruoss et al., 2020) or weighted `p-metrics (Yeom & Fredrikson, 2020).
However, for high-dimensional data, such as images, characterizing the similarity on the input-level,
e.g., by comparing pixels, is impractical. Moreover, proving that all points in the infinite set of similar
individuals receive the same outcome entails propagating this set through the model, which is out of
reach for prior approaches that rely on (mixed-integer) linear programming solvers (Ehlers, 2017;
Tjeng et al., 2019), which only scale to small networks that are not useful for high-dimensional data.

This work In this work, we introduce Latent Space Smoothing for Individually Fair Representations
(LASSI), a method which addresses both of these challenges. A high-level overview of our approach
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Figure 1: Overview of LASSI. The left part shows the data producer who captures the set of
individuals similar to x by interpolating along the attribute vector apale. The data producer then
uses adversarial training (Madry et al., 2018) and center smoothing (Kumar & Goldstein, 2021) to
compute a representation that provably maps all similar points into the `2-ball of radius rCS around
zCS . The right part shows the data consumer who can then certify individual fairness, i.e., prove that
all similar individuals receive the same classification outcome, of the end-to-end model by checking
whether the certified radius obtained via randomized smoothing (Cohen et al., 2019) exceeds rCS .

is shown in Fig. 1. Concretely, we use recent advances in generative modeling (Kingma & Dhariwal,
2018) to enable data regulators to define input similarity by varying some continuous attribute of the
image, such as pale skin in Fig. 1. To enforce that similar individuals are provably treated similarly,
we base our approach on smoothing: (i) the data producer uses center smoothing (Kumar & Goldstein,
2021) in order to learn a representation that provably maps similar individuals close together, and (ii)
the data consumer certifies local `2-robustness using randomized smoothing (Cohen et al., 2019),
thereby proving individual fairness of the end-to-end model.

To measure input similarity, the data producer leverages the ability of a bijective generative model
to interpolate in the latent space along the direction of the attribute vector. Consequently, the set of
similar individuals is given by a line segment (lower left of Fig. 1), corresponding via the bijection to
an elaborate curve in the input space (top middle of Fig. 1). However, this curve in the input space
cannot be easily captured by an `p-ball. Therefore, the data producer learns a representation EL ◦DG

that maps all points of the latent line segment close together by using adversarial training to minimize
the distance between similar individuals. As adversarial training does not provide guarantees on the
maximum distance, the data producer uses center smoothing (Kumar & Goldstein, 2021) to adjust
the representation such that the smoothed encoder ̂EL ◦DG provably maps all similar points into an
`2-ball of radius rCS around a center zCS with high probability (lower middle of Fig. 1). Finally,
the data consumer only needs to prove that the certified radius (violet, top right in Fig. 1) of its
smoothed classifier CL around zCS is larger than rCS to obtain an individual fairness certificate for
the end-to-end model CL ◦ ̂EL ◦DG ◦ EG.

Our experimental evaluation on real-world image classification tasks shows that our method sig-
nificantly increases the number of individuals for which we can certify individual fairness by up
to 68% compared to the baseline. We also use a procedurally generated dataset to confirm that
certificates obtained using the generative model are sound and transfer to the ground truth dataset.

Main contributions Our main contributions are:

• A novel input similarity metric for high-dimensional data via latent space interpolation.
• A scalable representation learning method with individual fairness certification for real-world

models operating on high-dimensional data via randomized smoothing.
• An efficient implementation and an exhaustive evaluation of our method on a variety of

real-world image classification tasks. We will release our code and all pretrained models.
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2 RELATED WORK

In this work, we consider individual fairness, which requires that similar individuals be treated
similarly (Dwork et al., 2012). In contrast, group fairness enforces that specific classification statistics
are equal across different groups of the population (Dwork et al., 2012; Hardt et al., 2016). While
both fairness notions are desirable, they also both suffer from certain shortcomings. For instance,
models satisfying group fairness may still discriminate against individuals (Dwork et al., 2012) or
subgroups (Kearns et al., 2018). In contrast, the central challenge limiting practical adoption of
individual fairness is the lack of a widely accepted similarity metric (Yurochkin et al., 2020). While
recent work has made progress in developing similarity metrics for tabular data (Wang et al., 2019a;
Mukherjee et al., 2020; Maity et al., 2021; Yurochkin & Sun, 2021; Ilvento, 2020), defining a concise
similarity for high-dimensional data remains challenging and is a key goal of our work.

Fair representation learning A wide range of methods have been proposed to learn fair represen-
tations of user data. Most of these works consider group fairness and employ techniques such as
adversarial learning (Edwards & Storkey, 2016; Madras et al., 2018; Liao et al., 2019; Kehrenberg
et al., 2020), disentanglement (Creager et al., 2019; Locatello et al., 2019; Sarhan et al., 2020),
duality (Song et al., 2019), low-rank matrix factorization (Oneto et al., 2020), and distribution align-
ment (Louizos et al., 2016; Zhao et al., 2020; Balunovic et al., 2021). Individually fair representation
learning has recently gained attention, with similarity metrics based on logical formulas (Ruoss et al.,
2020), Wasserstein distance (Lahoti et al., 2019a; Feng et al., 2019), fairness graphs (Lahoti et al.,
2019b), and weighted `p-norms (Zemel et al., 2013). Unfortunately, these approaches cannot capture
similarity between individuals for the high-dimensional data we consider in our work.

Bias in high-dimensional data A long line of work has investigated the biases of models operating
on high-dimensional data, such as images (Wang et al., 2020; Wilson et al., 2019) and text (Bolukbasi
et al., 2016; Tatman, 2017; Park et al., 2018; Liang et al., 2021), showing, e.g., that black women
obtain lower accuracy in commercial face classification (Klare et al., 2012; Buolamwini & Gebru,
2018; Raji & Buolamwini, 2019). Importantly, these models not only learn but also amplify the biases
of the training data (Zhao et al., 2017; Hendricks et al., 2018), even for balanced datasets (Wang et al.,
2019b). A key challenge for investigating and mitigating bias in high-dimensional data is that, unlike
tabular data, sensitive attributes such as gender or skin color are not directly encoded as features.
Thus, prior work often relies on generative models (Kim et al., 2018; Denton et al., 2019; Sattigeri
et al., 2019; Dash & Sharma, 2020; Balakrishnan et al., 2020; Joo & Kärkkäinen, 2020; Ramaswamy
et al., 2021; Kim et al., 2021) or computer simulations (McDuff et al., 2018) to manipulate data
attributes and check whether the perturbed instances are classified the same. However, unlike our
work, these methods only empirically test for bias and do not provide certification guarantees.

Fairness certification Regulatory agencies are increasingly holding organizations accountable for
the discriminatory effects of their machine learning models (EU, 2019; 2021; FTC, 2020; 2021; UN,
2021). Accordingly, designing algorithms with fairness guarantees has become an active area of
research (Balunovic et al., 2021; Gitiaux & Rangwala, 2021; Albarghouthi et al., 2017; Bastani et al.,
2019; Segal et al., 2021; Choi et al., 2021). However, unlike our work, most approaches for individual
fairness certification consider pretrained models and thus cannot be employed in fair representation
learning (Yeom & Fredrikson, 2020; John et al., 2020; Urban et al., 2020). In contrast, Ruoss et al.
(2020) learn individually fair representations with provable guarantees for low-dimensional tabular
data, providing a basis for our approach. However, neither the similarity notions nor the certification
methods employed by Ruoss et al. (2020) scale to the high-dimensional data we consider.

3 BACKGROUND

In this section we provide the necessary background on fair representation learning, generative
modelling, and randomized smoothing.

LCIFR The LCIFR framework (Ruoss et al., 2020) learns representations with individual fairness
guarantees for low-dimensional tabular data, ensuring that for a point x ∈ Rn all similar individuals
are treated similarly. To that end, Ruoss et al. (2020) define a family of similarity notions and leverage
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(mixed-integer) linear programming methods to propagate all similar individuals through the model.
Then, if all the points satisfying the given similarity notion obtain the same classification, LCIFR has
provably shown that individual fairness is satisfied at x. However, high-dimensional applications
remain out of reach for LCIFR since both the similarity notions and linear programming methods
are tailored to low-dimensional tabular data. Concretely, similarity is defined via logical formulas
operating on the features of x, which is infeasible for e.g., images, which cannot be compared solely
on the pixel level. Moreover, while the linear programming employed by Ruoss et al. (2020) are
known to work well for small neural networks, they do not scale to real-world computer vision
models. In this work, we thus demonstrate how to resolve these two key concerns to generalize the
high-level idea of LCIFR to real-world, high-dimensional applications.

Glow Normalizing flows, such as Glow (Kingma & Dhariwal, 2018), recently emerged as a
promising approach for generative modeling due to their exact log-likelihood evaluation, efficient
inference and synthesis, and useful latent space for downstream tasks. Unlike GANs (Goodfellow
et al., 2014) or VAEs (Kingma & Welling, 2014), normalizing flows are bijective models consisting of
an encoder EG : Rn → Rq and a decoder DG : Rq → Rn for which x = DG (EG (x)). The latent
space of Glow captures important attributes of the data, which enables latent space interpolation
such as, e.g., manipulating the skin color of a person in an image. While attribute manipulation via
latent space interpolation has also been investigated in the fairness context for GANs and VAEs (Kim
et al., 2018; Denton et al., 2019; Balakrishnan et al., 2020; Joo & Kärkkäinen, 2020; Ramaswamy
et al., 2021), the key advantage of Glow is the existence of an encoder (unlike GANs, which cannot
represent an input point in the latent space efficiently) and the bijectivity of the end-to-end model
(VAEs cannot reconstruct the input point exactly). Our key idea is to leverage Glow to define the
similarity between two images by interpolating along certain sensitive attributes in the latent space.

Randomized Smoothing Given a standard classifier, recent work (Cohen et al., 2019) constructs
smooth classifiers together with a probabilistic certification method. Cohen et al. (2019) defines the
smoothed classifier f̄ of a standard classifier f : Rm → Y by

f̄(x) := arg max
c

Pε∼N (0,σ2I)(f(x + ε) = c).

Further, Cohen et al. (2019) provide the following theorem yielding robustness certificates:
Theorem 3.1 (from (Cohen et al., 2019)). Suppose cA ∈ Y , pA, pB ∈ [0, 1]. If

Pε(f(x + ε) = cA) ≥ pA ≥ pB ≥ max
c 6=cA

Pε(f(x + ε) = cB),

then f̄(x + δ) = cA for all δ satisfying ‖δ‖2 ≤ R with R := σ
2 (Φ−1(pA)− Φ−1(pB)).

Since calculating the above quantities algebraically is not feasible in cases where f is a large neural
network, the quantities cA and Pε(f(x + ε) = cA) have to be estimated by sampling, resulting in a
1− αs confidence to lower bound pA. Thus, the overall certificate holds with confidence 1− αs.
Recently, Kumar & Goldstein (2021) presented a method to smooth vector valued functions. This is
particularly useful in our setting to certify a smoothed version of the encoder f = EL ◦DG. The
smoothed function f̄ evaluated at x returns the center of the minimum enclosing ball covering at least
1/2 the probability mass of f(x+N (0, σ2I)). As evaluating f̄ directly is infeasible, we evaluate
a proxy f̂ relying on sampling and approximation: Specifically, f̂(x) evaluates to the center z̃ of a
relaxed version of a minimum enclosing ball containing at least half the points in Z = {zi}ni=1 where
zi ∼ f(x+N (0, σ2I)). The robustness certificate results from the following theorem:
Theorem 3.2 (adapted from (Kumar & Goldstein, 2021)). With probability at least 1− αc we have,

∀x′ s.t. ‖x− x′‖2 ≤ ε, ‖f̂(x)− f̂(x′)‖2 ≤ rCS .

Here, rCS depends on the given ε, αc and on a quantile of the distances ‖f̂(x)− zi‖2 for zi ∈ Z.

4 INDIVIDUALLY FAIR REPRESENTATIONS OF HIGH-DIMENSIONAL DATA

In this section we first define the set of individuals similar to x (Section 4.1). We then describe our
approach for learning individually fair representations of these individuals (Section 4.2) and finally
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demonstrate how we can certify individual fairness for them (Section 4.3). We emphasize that our
approach is general, but for presentational purposes we focus on the case where x is an image.

4.1 SIMILARITY VIA GENERATIVE MODEL

zG

zG − εapale

zG + εapale

apaleSamples

Decoder DG

x

Figure 2: Similarity

We consider two individuals x and x′ to be similar if they differ only
in their sensitive attributes, e.g., skin color, and all the other attributes
are the same. However, such semantic attributes cannot be conveniently
captured directly in the input (pixel) space of the data, so we leverage the
latent space of a generative model G. Our first step is to compute a vector
a associated with the attribute, such that interpolating along the direction
of a in the latent space, and reconstructing back to the input space results
in a meaningful semantic transformation of that attribute. This in itself is
an active research area with various approaches for computing a (Higgins
et al., 2017; Denton et al., 2019).

Individual similarity via Glow In this work, we propose to use
Glow (Kingma & Dhariwal, 2018) to define individual fairness using
its latent space. Let zG = EG(x) be the latent code of x in the generative
model latent space. We calculate the average latent vectors zG,pos for sam-
ples with the attribute and zG,neg for samples without the attribute, and set
the attribute vector to the difference between them: a = zG,pos− zG,neg .
As observed by Kingma & Dhariwal (2018), moving in the direction of a
in the latent space increases the presence of the attribute and interpolating
in the opposite direction decreases its strength. Once we haveG and a, we define the set of individuals
similar to x in the latent space of G to be Sl (x) = {zG + t · a | t ∈ [−ε, ε]} (see top of Fig. 2).
Here, ε defines the maximum perturbation level, which we can apply to the attribute. Together with
G and a, it is considered to be a part of the similarity specification. Crucially, the similarity set Sl
contains an infinite number of points but is compactly represented in the latent space of G in the form
of the line segment ranging from zG− ε ·a to zG+ ε ·a. In contrast, the same set represented directly
in the input space of the data, Si (x) := {DG (z) | z ∈ Sl (x)}, i.e., obtained by propagating the
latent representations in Sl (x) through the decoder of the generative model, cannot be abstracted
conveniently without leveraging any kind of latent information (see bottom of Fig. 2). Moreover,
our approach for constructing Sl (x) can also be extended to multiple sensitive attributes by simply
interpolating along their attribute vectors simultaneously.

4.2 LEARNING INDIVIDUALLY FAIR REPRESENTATIONS

Assuming that the generative modelG = DG ◦EG is pretrained and given, in this section we describe
the training of the encoder EL : Rn → Rk, which together with G, is part of the data producer of
our end-to-end model. EL will be trained separately from the data consumer, the classifier CL, the
training of which is explained in the next section.

Adversarial loss We encourage similar treatment for all points in Si (x) by training EL such that
the data producer maps all points in Si (x) close to each other in Rk. This can be achieved by training
EL to minimize the loss function

Ladv (x) = max
z′∈Sl(x)

‖ (EL ◦DG) (zG)− (EL ◦DG) (z′) ‖2.

Minimizing Ladv (x) is a min-max optimization problem and adversarial training (Madry et al.,
2018) has been demonstrated to work well in such setups. Since the underlying domain of the inner
maximization problem is simply the line segment Sl (x), we perform a random adversarial attack
in which we sample k points zi ∼ U (Sl (x)) uniformly at random from Sl (x) and approximate
Ladv (x) ≈ maxki=1 ‖ (EL ◦DG) (zG)− (EL ◦DG) (zi) ‖2.

Classification loss To learn representations useful for downstream tasks, we train EL jointly with
an auxiliary classifier CauxL to predict a ground-truth target label y by having an additional term in
the loss function:

Lcls (x, y) = cross_entropy
(

(CauxL ◦ EL ◦DG) (zG) , y
)
.
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Contrastive loss We observe that, in theory, we can make Ladv arbitrarily small while preserving
Lcls by multiplying the output of EL and dividing the input of CL by a large constant. This
effectively pushes all points (EL ◦DG) (z) close to each other regardless of their ground-truth class
y. To prevent this from happening and to promote better separability of the classes, we consider a
modification of the contrastive loss (Chopra et al., 2005). Denoting d (xi,xj) = ‖ (EL ◦G) (xi)−
(EL ◦G) (xj) ‖2, we define the contrastive loss over a batch

Lcontr (x, y) =
∑
i<j

I [yi = yj ] max (0, d (xi,xj)− δ) + I [yi 6= yj ] max (0, 2δ − d (xi,xj))

where I [·] is indicator function and δ is a hyperparameter. This loss term effectively penalizes pairs of
inputs from the same class which are encoded further than δ from each other and pairs from different
classes which are encoded closer than 2δ from each other. In the end, EL is trained by solving

arg min
EL, Caux

L

E(x,y)∼D [Lcls (x, y) + λ1Ladv (x) + λ2Lcontr (x, y)]

with λ1 and λ2 being hyperparameters balancing the adversarial and contrastive loss terms.

4.3 CERTIFYING INDIVIDUAL FAIRNESS VIA LATENT SPACE SMOOTHING

zG

zG − εapale

zG + εapale

t′

apaleSamples

Decoder DG

LASSI EL

zCS

rCS
zL

Figure 3: Center-
smoothing

At this point we have a pretrained generative model G = DG ◦ EG, which
allows us to compute the attribute vector a. Sl (x) and in turn Si (x) are
defined based on a and the maximum perturbation level ε. Assume that we
have trained EL as discussed above, as well as CL, the training of which is
described at the end of this section. The goal now is to construct an end-to-end
model P for which we can certify individual fairness of the form

∀x′ ∈ Si (x) . P (x) = P (x′)

for a given input x. We denote zG = EG (x) and define the function f (t) =
EL (DG (zG + t · a)) with t ∈ R. We apply the center smoothing procedure
presented by Kumar & Goldstein (2021) to obtain the smoothed version of f ,
namely f̂ . Instantiating Theorem 3.2 to f̂ with ε tells us that for t = 0, with
probability at least 1−αc we have that ∀t′ s.t. ‖t− t′‖ ≤ ε, ‖f̂(t)− f̂(t′)‖2 ≤
rCS (see Fig. 3). We obtain the center smoothing radius rCS computed for
t = 0 and then by expanding back the definition of f (with t = 0) the guarantee
we have is that with probability at least 1− αc

∀t′ ∈ [−ε, ε] .
∥∥∥ ̂(EL ◦DG) (zG)− ̂(EL ◦DG) (zG + t′ · a)

∥∥∥
2
≤ rcs (1)

⇐⇒ ∀z ∈ Sl (x) .
∥∥∥ ̂(EL ◦DG) (zG)− ̂(EL ◦DG) (z)

∥∥∥
2
≤ rcs (2)

Moreover, center smoothing provides us an estimate of the center zCS = ̂(EL ◦DG) (zG). On the
other hand, by smoothing the classifier CL, Theorem 3.1 gives us a radius R and certifies that with
probability 1− αs the prediction CL (zCS + δ) is the same for all δ s.t. ‖δ‖2 ≤ R. Combining this
with Eq. (2), we derive that if rCS ≤ R, then

∀z ∈ Sl (x) . CL
( ̂(EL ◦DG) (zG)

)
= CL

( ̂(EL ◦DG) (z)
)

Taking into account the bijectivity of Glow, ∀x′ ∈ Si (x) . EG (x′) ∈ Sl (x), we obtain Theorem 4.1
stating that our end-to-end model is provably individually fair.
Theorem 4.1 (Informally). If neither center smoothing nor randomized smoothing abstain during the
computation of the smoothed model P = CL ◦ ̂(EL ◦DG) ◦EG with input x, and rCS ≤ R, then P
is certifiably individually fair for x w.r.t. the similarity set Si(x) with probability 1− αc − αs.

The procedure for certifying individual fairness is summarized in Algorithm 1. We note that the
certificate obtained by the function CERTIFY is probabilistic – it holds with probability at least
1−αc−αs (being conservative here, as the abstentions of the center and the classification smoothing
might not be independent) to account for the fact that the center smoothing and the classification
smoothing give probabilistic certificates as well.
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Algorithm 1 Certifying the individual fairness of CL ◦ ̂(EL ◦DG) ◦ EG for the input x.

function CERTIFY(EG, DG, EL, CL, x)
zCS = ̂(EL ◦DG)

(
EG (x)

)
and rCS from center smoothing (Kumar & Goldstein, 2021)

if center smoothing abstained then return ABSTAIN
Do classification smoothing (Cohen et al., 2019) to obtain the certified radius R around zCS for

which the classification stays the same
if rCS ≤ R then return CERTIFIED
else return NOT CERTIFIED

(a) Varying Pale_Skin attribute. (b) Varying Young attribute.

Figure 4: Points from the similarity set Si (x) for various x, as reconstructed by our Glow model.
Central images are reconstructions of the original inputs. The variations go uniformly (from left to
right) in the range of t ∈ [−ε, ε].

Training CL Since we will be applying smoothing over the classifier CL, following Cohen et al.
(2019), once we have trained EL, we train CL separately by adding isotropic Gaussian noise to its
inputs during the training process. The inputs of CL here are the outputs of EL ◦ DG ◦ EG. We
do not smooth the pipeline at this step as it is computationally expensive and because the distance
between the smoothed and the unsmoothed outputs is generally small (Kumar & Goldstein, 2021).

5 EXPERIMENTAL EVALUATION

In this section we perform experimental evaluation of LASSI on several image classification tasks.

Experimental Setup We demonstrate the effectiveness of our approach on a real world dataset
consisting of faces of celebrities, CelebA (Liu et al., 2015), annotated with the presence or absence
of 40 face attributes. Following the setup of Kingma & Dhariwal (2018), we pretrain a Glow model
with a number of flows K = 32, number of blocks L = 4 and additive coupling on 64×64 rescaled
versions of the images. We select Pale_Skin and Young as our sensitive attributes, and we want
to train a model which is certifiably individually fair for perturbations of these two sensitive attributes.
We compute corresponding attribute vectors, apale and ayoung, as discussed in Section 4.1. We set the
maximum perturbation level in the latent space, used to define individual fairness, to ε = 1. Fig. 4
provides examples of images from the Si (x) similarity sets for various original inputs x. We consider
the binary classification task of predicting the Smiling attribute.

We train the LASSI encoder EL as described in Section 4.2. To show the scalability of our method,
we use the ResNet-18 (He et al., 2016) architecture for EL. We provide the following ablations: a
standard representation learning baseline (λ1 = λ2 = 0), training with adversarial loss (λ1 = 0.1,
λ2 = 0), and training with both adversarial and contrastive losses (λ1 = 0.1, λ2 = 0.1, δ = 10).
For each encoder EL, we train CL with random Gaussian noise augmentation N

(
0, σ2

clsI
)

where
σcls ∈ {1, 2.5, 5, 10, 25, 50}. At inference time, computing P includes performing center smoothing
for ̂EL ◦DG. We tried 3 different values for the standard deviation σenc ∈ {0.5, 0.75, 1} of the
Gaussian noise used in center smoothing and picked the one which maximizes the certified fairness
of the baselines, σenc = 0.75, and which we use in the rest of the CelebA experiments. We execute
center smoothing with αc = 0.01 and randomized smoothing with αs = 0.001. We will release our
code, pretrained models and scripts to reproduce the results presented in this paper.
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Table 1: Evaluation of LASSI on CelebA dataset, showing that LASSI significantly increases certified
individual fairness compared to the baseline without affecting the classification accuracy.

Attribute Method σcls Accuracy (%) Certified Fairness (%)

Pale_Skin
Baseline 10 93.59 10.90
LASSI + Adversarial 1 91.03 55.77
LASSI + Adv + Contrastive 10 90.38 78.85

Young
Baseline 10 91.67 17.31
LASSI + Adversarial 1 91.67 66.03
LASSI + Adv + Contrastive 10 91.67 80.77

Pale_Skin + Young
Baseline 10 91.67 7.05
LASSI + Adversarial 1 92.95 48.72
LASSI + Adv + Contrastive 10 88.46 65.38

Results We show the results in Table 1, measured on a subset of 156 samples from CelebA’s test
set. For an input point x, we are interested if our end-to-end model P classifies x correctly and if it
is individually fair for x w.r.t. the similarity set Si (x), i.e., whether we can provably certify that all
points in Si (x) are classified the same by P . For each input sample x, we consider the prediction to
be accurate if P (x) matches the ground-truth label. P is considered to be individually fair for x if
the CERTIFY method from Algorithm 1 returns CERTIFIED. We report the value for the σcls which
maximizes the individual fairness without major sacrifice in accuracy (note that the constant function
trivially has 100% individual fairness).

We observe that adversarial training significantly improves the certified fairness, compared to the
baseline, at the cost of a minor drop in accuracy. The results are further improved by combining
adversarial training with our proposed contrastive loss, confirming our intuition from Section 4.2.
The baseline obtains its highest certified fairness for a relatively large values of σcls. This is the
case because by default nothing enforces the points from Si (x) to be mapped closely together in the
output space of EL (i.e., the input of CL), and we need a big σcls to obtain a certified radius R of CL
which exceeds rCS . However, as we increase σcls too much, the smoothed classifier CL becomes
more and more uncertain and begins to abstain more.

The combination of adversarial training and contrastive loss also obtains its best certified fairness for
a value of σcls bigger than that for adversarial training only. This is likely because the adversarial loss
in itself pushes not only the points from Si (x) close together but also possibly decreases the distance
between points from different classes (in the EL output space). This issue is partially alleviated by
the contrastive loss which enables us to keep increasing σcls and still certify more.

We also performed an experiment which combines the two sensitive attributes
Pale_Skin and Young together by defining the similarity set as Sl (x) ={
EG (x) + t1 · apale + t2 · ayoung |

√
t21 + t22 ≤ ε

}
, i.e., (t1, t2) is at most ε away from the

origin. Results in Table 1 show that LASSI also successfully enforces individual fairness in this case.

Performance As performing center smoothing for ̂EL ◦DG is costly, we perform evaluation on a
subset of the test set. Center smoothing involves not only propagating through the large generative
model DG, but doing so for each random sample needed by the center smoothing to produce the final
output. Certifying a single sample takes around 64 seconds after parallelizing the center smoothing
procedure over 4 GeForce RTX 2080 Ti GPUs. On the other hand, we are capable of handling large
networks, such as ResNet, which are out of reach for the prior work such as Ruoss et al. (2020).

Certification with disentangled ground truth data We showed that LASSI successfully learns
representations with certified individual fairness for high-dimensional data (see Table 1). However,
as we leverage generative models to capture the similarity between inputs, we now demonstrate that
that the fairness certificates obtained using the generative model transfer to ground truth data. Since
the CelebA does not contain images of the same individual with different attributes, e.g., the same
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Table 2: Evaluation on the 3D shapes. Certification using the generative model transfers to ground
truth data as the certification rate and percentage of unfair ground truth data sum up below 100%.

Attribute Target Method Accuracy (%) Certified Fairness (%) Unfair (%)

Orientation Object_Hue
Baseline 92.67 0 44.67
LASSI + Avd + Contrastive 100 88 0

(a) original

(b) interpolated

Figure 5: A sample shape at 15 different ground truth orientations (original) and the corresponding re-
constructions obtained from interpolating along the generative model’s attribute vector (interpolated).

individual with different skin colors, we use the 3D Shapes dataset (Burgess & Kim, 2018), which
consists of images of 3D shapes that are procedurally generated from 6 independent latent factors:
floor hue, wall hue, object hue, scale, and orientation. The 3D shapes dataset is
typically used to investigate disentanglement properties of unsupervised learning methods (e.g., in
the context of fairness (Locatello et al., 2019)). Our goal is to show that the attribute vector learned
by Glow captures a given latent factor, and thus certification with respect to the similarity set defined
via interpolation along that attribute vector will result in certification of the ground truth data. To that
end, we consider orientation as the continuous sensitive attribute, for which we have 15 similar
ground truth data points, i.e., the same shape at 15 different orientations (fixing all other factors).
Thus, our certification transfers to ground truth data if for every certified data point from the test set,
all 15 similar ground truth data points obtain the same classification. Indeed, Table 2 shows that the
percentage of unfair ground truth data points is always below certification rate. Moreover, Fig. 5
illustrates that interpolation along Glow’s attribute vector closely mimics the ground truth data.

6 CONCLUSION

We defined image similarity with respect to a generative model via attribute manipulation, allowing us
to capture complex image manipulations such as changing the age or skin color, which are otherwise
difficult to characterize. Further, we were able to scale certified representation learning for individual
fairness to real world high dimensional datasets by using randomized smoothing based techniques.
Our extensive evaluation yields promising results and illustrates the practicality of our approach.

ETHICS STATEMENT

Certified individual fairness is important for the application of machine learning systems in real world
applications and required by regulators. As this work certifies individual fairness with respect to a
generative model approximating the ground truth, potential biases encoded in the generative model
can prevail and skew certification. However, quality advancements in generative models can directly
translate into stronger guarantees of our method. This work enables a certified fair application of
models making use of rich, high dimensional data.
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Figure 6: Sampled shapes at 15 different ground truth orientations. The original (above) and the
corresponding reconstructions (below) obtained from interpolating along the generative model’s
attribute vector are grouped together.

A SIMILAR INDIVIDUALS

We provide more examples of points from the similarity set Si (x) for various inputs x randomly
drawn from our evaluation test set. Fig. 6 illustrates the quality of the interpolation along the attribute
vector with respect to the ground trouth. Fig. 7 and Fig. 8 visualize variations in the Pale_Skin
attribute on CelebA, whereas Fig. 9 and Fig. 10 visualize variations of the Young attribute. The
middle images in the figures correspond to reconstructions of the original inputs. The perturbations
range equally from the [−1, 1] range (going from left to right).
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Figure 7: Varying the sensitive attribute Pale_Skin.
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Figure 8: Varying the sensitive attribute Pale_Skin.
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Figure 9: Varying the sensitive attribute Young.
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Figure 10: Varying the sensitive attribute Young.
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