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Abstract
Stochastic natural gradient variational inference
(NGVI) is a popular posterior inference method
with applications in various probabilistic models.
Despite its wide usage, little is known about the
non-asymptotic convergence rate in the stochastic
setting. We aim to lessen this gap and provide a
better understanding. For conjugate likelihoods,
we prove the first O( 1

T ) non-asymptotic conver-
gence rate of stochastic NGVI. The complexity is
no worse than stochastic gradient descent (a.k.a.
black-box variational inference) and the rate likely
has better constant dependency that leads to faster
convergence in practice. For non-conjugate like-
lihoods, we show that stochastic NGVI with the
canonical parameterization implicitly optimizes a
non-convex objective. Thus, a global convergence
rate of O( 1

T ) is unlikely without some significant
new understanding of optimizing the ELBO using
natural gradients.

1. Introduction
Given a prior p(z) and a likelihood p(y | z), variational
inference (VI) approximates the posterior p(z | y) by op-
timizing the evidence lower bound (ELBO) in a family of
variational distributions (Blei et al., 2017). Natural gradient
variational inference (NGVI), in particular, optimizes the
ELBO by natural gradient descent (NGD) (Amari, 1998).
Different from (standard) gradient descent that follows the
steepest descent direction induced by the Euclidean dis-
tance, NGD follows the steepest descent direction induced
by the KL divergence (Honkela & Valpola, 2004; Hensman
et al., 2012; Hoffman et al., 2013). The folk wisdom is that
the KL divergence is a better “metric” to compare distribu-
tions and thus NGD is believed to be superior than gradient
descent, a.k.a. black-box variational inference (Ranganath

1Department of Computer and Information Science, University
of Pennsylvania, Philadelphia, United States. Correspondence to:
Kaiwen Wu <kaiwenwu@seas.upenn.edu>, Jacob R. Gardner
<jacobrg@seas.upenn.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

et al., 2014). Indeed, NGVI as well as its variants em-
pirically outperforms gradient descent in many cases, and
thus enjoys applications in a wide range of probabilistic
models. Here, we name a few exmaples: latent Dirichlet
allocation topic models (Hoffman et al., 2013), Bayesian
neural networks (Khan et al., 2018; Osawa et al., 2019), and
large-scale Gaussian processes (Hensman et al., 2013; 2015;
Salimbeni et al., 2018).

Despite its wide usage, a non-asymptotic convergence rate
of NGVI in the stochastic setting is absent, even for simple
conjugate likelihoods. A few convergence arguments exist
in the literature, but none of them applies to any practical
uses of NGVI. For example, Hoffman et al. (2013) have a
convergence argument 1 by assuming the Fisher information
matrix has eigenvalues bounded from below (by a positive
constant) throughout the natural gradient updates. Khan
et al. (2016) analyze a variant of NGVI based on Bregman
proximal gradient descent by assuming the (KL) divergence
is α-strongly convex, a condition that generally does not
hold (at least for the KL divergence). Besides, Khan et al.
(2016) did not obtain a complexity bound in the stochastic
setting—they only showed convergence to a region around
stationary points. Note that these assumptions do not hold in
the entire domain, provably. Even if they hold in a subset of
the domain, the constants in these assumptions are difficult
to estimate, and might even be arbitrarily bad as the posterior
distribution p(z | y) contracts.2

This work aims to lessen this gap and obtain a “clean” anal-
ysis, with minimal assumptions, that is applicable to some
practical uses of stochastic NGVI. For the sake of gener-
ality, existing analyses have to use assumptions that does
not hold in practice. Therefore, we pursue the opposite
direction of generality—the basic setting of conjugate likeli-
hoods, for which we establish the first O( 1

T ) non-asymptotic
convergence rate of stochastic natural gradient variational
inference. This rate has the same complexity as the conver-
gence rate of stochastic projected (and proximal) gradient
descent recently studied by Domke (2020); Domke et al.
(2023); Kim et al. (2023). This, along with our experi-
ments, implies that NGVI ultimately may share the same

1Hoffman et al. (2013) did not give a convergence proof besides
a reference to Bottou (1998).

2For instance, the Fisher information matrix gets increasingly
close to singular as the covariance of the posterior p(z | y) shrinks.
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complexity with other first-order methods. The empirical
observation that NGVI is faster than stochastic gradient de-
scent is likely due to a better constant dependency in the big
O notation. Indeed, as we will see later, our convergence
rate of stochastic NGVI is independent of the objective’s
condition number and the distance from the initialization to
the optimum. Nevertheless, the constant improvement may
play a huge difference in practice.

Although our convergence rate for stochastic NGVI assumes
conjugate likelihoods, it is already applicable to some prac-
tical uses, including large-scale Bayesian linear regression
and variational parameter learning in stochastic variational
Gaussian processes (Hensman et al., 2013; 2015; Salimbeni
et al., 2018). Indeed, we will show that all assumptions are
strictly satisfied in practice and the constant in the conver-
gence rate can be bounded explicitly using statistics from
the training data.

For non-conjugate likelihoods, we show that the “canonical”
implementation of stochastic NGVI implicitly optimizes a
non-convex objective even when the likelihoods are simple
log-concave distributions. Hence, the convergence behavior
of stochastic NGVI with non-conjugate likelihoods is more
nuanced, which might partially explain why the theoretical
understanding of stochastic NGVI is lacking throughout the
years. This lack of convexity implies that proving a global
convergence rate of O( 1

T ) for non-conjugate likelihoods
may require new properties of the ELBO, e.g., the Polyak-
Łojasiewicz inequality (Polyak et al., 1963; Lojasiewicz,
1963), in order to explain the empirical success of stochastic
NGVI for non-conjugate likelihoods (e.g., Hoffman et al.,
2013; Salimbeni et al., 2018).

2. Background
Notation. We use ∥·∥ to denote the vector Euclidean norm.
For matrices, the same symbol ∥·∥ is overloaded to denote
the spectral norm. ∥·∥F denotes the Frobenius norm. ⟨·, ·⟩
denotes an inner product, whose domain is inferred from
its arguments. Let DKL(·, ·) denote the Kullback–Leibler
divergence between distributions. Sd++ (and Sd+) represents
the collection of all d×d symmetric positive (semi-)definite
matrices. Let ≻ (and ⪰) be the partial order induced by
Sd++ (and Sd+), i.e., A ≻ B if and only if A−B ∈ Sd++.

2.1. Variational Inference with Exponential Families

Suppose we have a prior p(z) on latent variables z and a
likelihood p(y | z) on observations y. Variational inference
(VI) aims to find the best approximation of the posterior
p(z | y) inside a variational family Q by minimizing the
Kullback–Leibler (KL) divergence

minimize
q∈Q

DKL(q(z), p(z | y)),

where q is the variational distribution. This is the equivalent
to minimizing the objective

ℓ(q) = −Eq(z)[log p(y | z)] + DKL(q(z), p(z)), (1)

which is called the negative evidence lower bound (ELBO).
Throughout the paper, we assume the variational family Q
is an exponential family (which will be defined below), and
the prior p(z) is in Q. Though, the posterior p(z | y) is
not necessarily in Q, unless the likelihood is conjugate: we
call the likelihood p(y | z) conjugate (with the prior) if and
only if p(z | y) ∈ Q. Conjugacy implies the variational
approximation is exact, so long as (1) is minimized globally.

Exponential Family. A (regular and minimal) exponential
family is a collection of distributions indexed by a canonical
parameter η in the form

q(z;η) = h(z) exp
(
⟨ϕ(z),η⟩ −A(η)

)
, (2)

where h is the base measure, ϕ is the sufficient statistic, η
is the natural parameter, and A is the log-partition function.

The set of all possible η that make q(z;η) integrable forms
an open convex set D, called the natural parameter space.
The log-partition function A : D → R is differentiable and
strictly convex on D. The associated expectation parameter
ω of q(z;η) is defined as the expected sufficient statistic:

ω = Eq(z;η)[ϕ(z)]. (3)

The set of all possible expectation parameters ω again forms
a convex set Ω, called the expectation parameter space.

The natural and expectation parameter spaces, D and Ω,
are linked by the gradients of the log-partition function A
and its convex conjugate A∗, where the differentiable and
strictly convex function A∗ : Ω → R is defined as

A∗(ω) = max
η∈D

⟨η,ω⟩ −A(η).

Indeed, the gradient maps ∇A : D → Ω and ∇A∗ : Ω → D
are inverses of each other. Namely, if η ∈ D and ω ∈ Ω
satisfy (3) representing the same distribution, then

∇A(η) = ω, ∇A∗(ω) = η. (4)

Example. A d-dimensional Gaussian distribution N (µ,Σ)
has its natural parameter η = (λ,Λ) defined on

D = {η = (λ,Λ) ∈ Rd × Rd×d : −Λ ∈ Sd++} (5)

with the parameter conversion identity λ = Σ−1µ and
Λ = − 1

2Σ
−1. The expectation parameter ω is defined on

Ω = {ω = (ξ,Ξ) ∈ Rd × Rd×d : Ξ− ξξ⊤ ∈ Sd++} (6)

with the identity ξ = µ and Ξ = Σ + µµ⊤. See §A for
more details, where we give explicit expressions for A(η),
A∗(ω), ∇A(η) and ∇A∗(ω). For more background on
exponential families, we direct readers to the monograph by
Wainwright & Jordan (2008).
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Remark 1 (Overload ℓ). Let η and ω be the natural and
expectation parameters of the same distribution q. We have

ℓ(q) = ℓ(n)(η) = ℓ(e)(ω),

where ℓ(n) and ℓ(e) are the negative ELBO as functions of
the natural and expectation parameters respectively. Tech-
nically, ℓ, ℓ(n) and ℓ(e) are different functions with different
domains and arguments. For notation simplicity, however,
we will drop the superscript when the context allows—the
superscript will be inferred from the argument.

2.2. Natural Gradient Descent for Variational Inference

Natural gradient variational inference (NGVI) optimizes the
ELBO by natural gradient descent (NGD). It iteratively up-
dates the natural parameter η of the variational distribution
by taking a steepest descent step induced by the KL diver-
gence. The yielded update rule is a preconditioned gradient
descent with the Fisher information matrix (FIM).

Definition 1 (FIM). Given a (not necessarily exponential
family) distribution q(z;η) parameterized by η, the Fisher
information matrix is defined as

F(η) = −Eq(z)[∇2
η log q(z;η)],

where ∇2 is taken w.r.t. η. In particular, for the exponential
family (2), it takes a simple form F(η) = ∇2A(η).

Definition 2 (NGD). Natural gradient descent iterates

ηt+1 = ηt − γtF(ηt)
−1∇ℓ(ηt), (7)

where γt is the step size and F(η) is the Fisher information
matrix. The FIM-preconditioned gradient F(ηt)

−1∇ℓ(ηt)
is often called the “natural” gradient.

We call the update (7) the “canonical” NGD update, as NGD
can be implemented in other parameters beyond the natural
parameter η. However, typically NGD converges the fastest
in the natural parameterization, which will be the main focus
of this paper. We will revisit other parameterizations in §5.

Explicitly inverting the FIM is inefficient, e.g., its takes
O(d6) time for a Gaussian due to its d(d + 1) × d(d + 1)
size. Fortunately, the NGD update can be implemented
without explicit FIM inversion for the exponential family
(Raskutti & Mukherjee, 2015). Let η and ω be the natural
and expectation parameters of the same distribution, hence
having the same ELBO value ℓ(n)(η) = ℓ(e)(ω). Plugging
in the identity ω = ∇A(η) as in (4), we obtain

ℓ(n)(η) = ℓ(e)(∇A(η)).

Differentiating w.r.t. η on both sides gives

∇ℓ(n)(η) = ∇2A(η) · ∇ℓ(e)(∇A(η))
= F(η)∇ℓ(e)(ω),

which implies F(η)−1∇ℓ(n)(η) = ∇ℓ(e)(ω): the natural
gradient (of the natural parameter) is simply the gradient of
the (negative) ELBO w.r.t. the expectation parameter. Thus,
the NGD update rule (7) reduces to

ηt+1 = ηt − γt∇ℓ(ωt), (8)

with no explicit FIM inversion.

2.3. Natural Gradient Descent as Mirror Descent

This section reviews the connection between NGD and
mirror descent (MD). This connection was discovered by
Raskutti & Mukherjee (2015) and later applied to variational
inference by Khan & Lin (2017); Khan et al. (2018).

Definition 3 (Bregman Divergence). Given a differentiable
and strictly convex function Φ, the associated Bregman
divergence is defined as

DΦ(a,b) = Φ(a)− Φ(b)− ⟨∇Φ(b),a− b⟩,

and we call Φ the distance generating function.

Recall that A∗, as the convex conjugate of the log-partition
function A, is differentiable and strictly convex on Ω. Thus,
it is a valid distance generating function and induces a Breg-
man divergence DA∗ on the expectation parameters. The di-
vergence is then used to define mirror descent (Nemirovskij
& Yudin, 1983), which iteratively solves regularized first-
order approximations.

Definition 4 (MD). The mirror descent update is defined as

ωt+1 = argmin
ω∈Ω

⟨∇ℓ(ωt),ω⟩+ 1

γt
DA∗(ω,ωt), (9)

where γt > 0 is the step size.

Mirror descent (MD) is a generalization of gradient descent.
If the Bregman divergence DA∗(ω,ωt) in (9) is replaced
with the squared Euclidean norm 1

2∥ω − ωt∥2, we recover
the familiar update rule ωt+1 = ωt − γt∇ℓ(ωt).

To implement MD efficiently, the minimization in (9) needs
to be solved in closed-form. Taking the derivative w.r.t. ω
on both sides and setting it equal to zero, we obtain

∇A∗(ωt+1) = ∇A∗(ωt)− γt∇ℓ(ωt). (10)

Recall ∇A∗ : Ω → D maps the expectation parameter ω of
an exponential family distribution q to its natural parameter
η, i.e., ∇A∗(ωt) = ηt for all t ≥ 0. Thus, the MD update
(10) recovers the NGD update (8) exactly.

The discussion in this section so far is summarized in the
lemma below. In particular, we will not distinguish between
NGD and MD in the rest of the paper.
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Lemma 1 (NGD = MD). Suppose the NGD update (7)
and the MD update (9) start from the same variational
distribution q0, i.e., η0 = ∇A∗(ω0). Then, we have ηt =
∇A∗(ωt) for all t ≥ 0. Namely, NGD and MD produce
exactly the same sequence of variational distributions.

We introduce a few definitions useful for later proofs. Our
results in §4 are built upon casting NGD as a special case
of MD and utilizing the recent developments of stochastic
MD for relatively smooth and relatively strongly convex
functions (Birnbaum et al., 2011; Bauschke et al., 2017; Lu
et al., 2018; Hanzely & Richtárik, 2021).

Definition 5. Let Φ be a differentiable and strictly convex
function. A function f is called β-smooth relative to Φ if

f(a) ≤ f(b) + ⟨∇f(b),a− b⟩+ βDΦ(a,b)

holds for all a,b in the domain. A function f is called
α-strongly convex relative to Φ if

f(a) ≥ f(b) + ⟨∇f(b),a− b⟩+ αDΦ(a,b)

holds for all a,b in the domain.

Relative smoothness and relative strongly convexity recover
the usual definitions of smoothness and strong convexity
when Φ(·) = 1

2∥·∥
2.

3. Stochastic Natural Gradient VI
This section discusses the implementation of natural gra-
dient variational inference in the stochastic setting. Two
types of stochasticity may arise in pratice: (a) the expected
log likelihood Eq(z)[log p(y | z)] in the ELBO (1) does not
have a closed-form for most non-conjugate likelihoods due
to the intractable integral, and thus one needs to estimate
it stochastically;3 (b) the expected log likelihood is a finite
sum over a large number of training data, and one needs to
employ mini-batch stochastic optimization, e.g., Example 1.

Care is required when implementing the update rule (8), or
equivalently the update rule (10), in the stochastic setting.
Recall that the natural parameter η ∈ D has a domain. In
the stochastic setting, implementing the update rule (8) with
stochastic gradients ∇̂ℓ(ωt) ≈ ∇ℓ(ωt) does not necessarily
guarantee that ηt+1 stays inside the domain D, in which
case NGD breaks down.

3.1. A Sufficient Condition for Valid NGD Updates

We will give a sufficient condition on the stochastic gradient
∇̂ℓ(ωt) that guarantees the natural parameter η always stays
inside the domain D. As shown in §A, the KL divergence

3Though, the expected log likelihood does have a closed-form
for some non-conjugate likelihoods. See §5 for an example.

has a closed-form gradient w.r.t. the expectation parameter:

∇ωDKL(q(z), p(z)) = η − ηp,

where η and ηp are the natural parameters of q(z) and
p(z) respectively. Thus, the stochasticity comes solely from
stochastically estimating the expected log likelihood:

∇̂ℓ(ω) = −∇̂ωEq(z)[log p(y | z)] + η − ηp.

Plugging it into the NGD update (8), we obtain

ηt+1 = (1− γt)ηt + γt
(
∇̂ωEqt(z)[log p(y | z)] + ηp

)
.

Recall that the natural parameter space D is an open convex
set. Hence, ηt+1 stays in D provided that (a) γt ∈ [0, 1] and
(b) ∇̂ωEqt(z)[log p(y | z)] + ηp ∈ D. The first condition is
satisfied if the step size γt is chosen properly. The second
condition is more complicated, but can still be satisfied by
carefully constructed stochastic gradient estimators.

3.2. Common Stochastic Gradient Estimators

This section discusses a common special case: (a) the vari-
ational family Q is the collection of all Gaussians; (b) the
prior p(z) is a Gaussian; and (c) the likelihood p(y | z) is
log-concave in z. In the following, we give two examples
of stochastic gradients. One example guarantees valid NGD
updates while the other one does not.

For Gaussians, the only constraint on the natural parameter
η = (λ,Λ) is that its second component is negative definite
Λ ≺ 0. The sufficient condition for valid stochastic NGD
updates in the previous section reduces to the following:
Remark 2. Suppose that the variational and the prior are
both Gaussians. The NGD update (8) is valid for all t ≥ 0
in the stochastic setting if (a) the step size γt ∈ [0, 1] and
(b) the stochastic gradient of the expected log likelihood

(∇̂ξ, ∇̂Ξ) = ∇̂ωEq(z) log p(y | z)

has its second component negative definite ∇̂Ξ ≺ 0.

Automatic Differentiation. For intractable expected log
likelihoods, a simple estimator for their gradients uses the
reparameterization trick (Kingma & Welling, 2013; Titsias
& Lázaro-Gredilla, 2014; Rezende et al., 2014) and auto-
matic differentiation, shown in Algorithm 1. This stochastic
gradient guarantees that ∇̂ΞEq log p(y | z) is unbiased and
symmetric (Murray, 2016), but does not guarantee ∇̂Ξ is
negative definite. A counterexample is given in §B.

Bonnet’s and Price’s Gradients. Consider the gradients
w.r.t. the mean and covariance of a Gaussian N (µ,Σ). By
the Bonnet and Price theorems (Bonnet, 1964; Price, 1958;
Opper & Archambeau, 2009), they are

∇µEq(z)[log p(x | z)] = Eq(z)[∇z log p(x | z)],

∇ΣEq(z)[log p(x | z)] = 1

2
Eq(z)[∇2

z log p(x | z)].
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Algorithm 1: Auto Differentiation Stochastic Gradient
Input: ω = (ξ,Ξ), the expectation parameter of q(z)
Output:

(
∇̂ξ, ∇̂Ξ

)
= ∇̂ωEq(z)[log p(y | z)]

1 (µ,Σ) =
(
ξ,Ξ− ξξ⊤

)
// conversion

2 C = cholesky(Σ)
3 u ∼ N (0, I)
4 z = µ+Cu // z ∼ N (µ,Σ)
5 loss = log p(y | z) // forward pass

6 loss.backward() // compute ∇̂ξ, ∇̂Ξ

Applying the chain rule through ξ = µ and Ξ = µµ⊤ +Σ,
and approximating the expectations with samples, we obtain
a stochastic gradient ∇̂ωEq(z)[log p(y | z)]:

∇̂ξ=
1

m

m∑
i=1

[∇z log p(y | zi)−∇2
z log p(y | zi)·µ]

∇̂Ξ =
1

2m

m∑
i=1

∇2
z log p(y | zi)

(11)

where zi ∼ q are i.i.d. samples from the variational distri-
bution. While the stochastic gradient ∇̂ξ in (11) coincides
with the reparameterization trick, the second line is not the
same as the stochastic gradient by automatic differentiation
in Algorithm 1: ∇̂Ξ is negative definite for all log-concave
likelihoods (concavity in z). Hence, (11) guarantees valid
stochastic NGD updates provided that γt ∈ [0, 1], and often
appears in the natural gradient variational inference litera-
ture (e.g., Khan et al., 2015; Khan & Lin, 2017; Zhang et al.,
2018; Lin et al., 2020).

Additional Discussion. The main goal of this section is to
point out the sufficient condition for valid NGD updates in
the stochastic setting, as well as its special case Remark 2.
Those observations, though simple, are prerequisites for
the convergence of stochastic NGVI in §4. Moreover, the
Bonnet and Price stochastic gradients will be used in the
experiments in §6.

We mention a few common workarounds to take advantage
of automatic differentiation, even though natively applying
automatic differentiation may break down stochastic NGD.
Numerous approximate NGD methods admit valid updates
in the stochastic settings (Khan et al., 2018; Osawa et al.,
2019; Lin et al., 2020), with some specifically addressing
the constraint on the natural parameter (Lin et al., 2020).
An alternative is to parameterize the variational distribution
with an unconstrained parameter, e.g., the mean and the
covariance square root. Refer to Salimbeni et al. (2018) for
more examples of parameterizations. As a side effect, chang-
ing the parameterization also changes the ELBO landscape
and may slow down the convergence.

4. Convergence of Stochastic NGVI
Even though NGVI is known to converge in one step for
conjugate likelihoods, it generally does not in the stochastic
setting. This section aims to establish a convergence rate
of stochastic NGVI for conjugate likelihoods. The main
techniques we will use are recent developments of stochastic
mirror descent for relatively smooth and strongly convex
functions (Lu et al., 2018; Hanzely & Richtárik, 2021).

Definition 6 (Hanzely & Richtárik, 2021). Given the step
sizes {γt}∞t=0 and the iterates {ωt}∞t=0 generated by the
updates (9), we define the gradient variance at the step t as

1

γt
E[⟨∇̂ℓ(ωt)−∇ℓ(ωt),ωt+1,∗ − ωt+1⟩ | ωt], (12)

where ωt+1,∗ = argminω∈Ω ∇ℓ(ωt)
⊤ω + 1

γt
DA∗(ω,ωt)

and the conditional expectation is taken over the random-
ness of the stochastic gradient ∇̂ℓ(ωt).

Note that the gradient variance (12) reduces to the familiar
one E∥∇̂ℓ(ωt) − ∇ℓ(ωt)∥2 for gradient descent updates
ωt+1,∗= ωt − γt∇ℓ(ωt) and ωt+1=ωt − γt∇̂ℓ(ωt). For
mirror descent, however, (12) is a generalization that does
not depend on a norm. The norm-independency is crucial
for our setting. Common stochastic mirror descent analyses
require the distance generating function Φ to be strongly
convex w.r.t. a norm and then measure the gradient variance
in the dual norm (e.g., Bubeck, 2015; Lan, 2020; Liu et al.,
2023; Nguyen et al., 2023; Fatkhullin & He, 2024). How-
ever, as shown in §A.1, the conjugate of the log-partition
function A∗ is not strongly convex w.r.t. any norms, which
prevents us from measuring the gradient variance with a
norm. The absence of strong convexity in the distance gen-
erating function A∗ may partially explain why a precise
convergence rate of stochastic natural gradient variational
inference is not developed over the years.

Lemma 2. For conjugate likelihoods, the negative ELBO
ℓ(ω) is 1-smooth 1-strongly convex relative to the convex
conjugate A∗ of the log-partition function.

The relative 1-smoothness and 1-strong convexity imply that
the negative ELBO is a well-conditioned objective. Besides,
the first-order approximation at an arbitrary ωt ∈ Ω is exact:

ℓ(ω) = ℓ(ωt) + ⟨∇ℓ(ωt),ω − ωt⟩+ DA∗(ω,ωt).

With the exact gradient ∇ℓ(ω), the mirror descent update
(9), which minimizes the first-order approximation, con-
verges in one step with the step size γt = 1. However, one-
step convergence is generally not possible in the stochas-
tic setting. Next, we present a general convergence rate
that holds for all conjugate likelihoods—the prior p(z) and
the likelihood p(y | z) are chosen such that the posterior
p(z | y) is in the same exponential family as the prior.
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Assumption 1. The stochastic gradient ∇̂ℓ(ωt)

1. respects the domain: ηt+1 ∈ D for all t ≥ 0 in (8);
2. is unbiased: E[∇̂ℓ(ωt) | ωt] = ∇ℓ(ωt);
3. has bounded variance: (12) is bounded by V > 0.

Theorem 1. Suppose the likelihood p(y | z) is conjugate
and the stochastic gradient ∇̂ℓ(ωt) satisfies Assumption 1.
Running T + 1 iterations of stochastic natural gradient
descent with γt = 2

2+t generate a point ω̄T+1 that satisfies

E[ℓ(ω̄T+1)]−min
ω∈Ω

ℓ(ω) ≤ V

T + 2
, (13)

where ω̄T+1 = 2
(T+1)(T+2)

∑T
t=0(t + 1)ωt+1. Let q̄T+1

be the variational distribution represented by ω̄T+1. Then,
the KL divergence to the true posterior q∗ is bounded by

E[DKL(q̄T+1, q
∗)] ≤ V

T + 2
. (14)

We make two observations on the rate (13). First, the rate
interpolates between stochastic and deterministic settings.
In particular, zero variance V = 0 implies convergence in
one step. Second, the convergence rate does not depend on
the distance from the initialization q0 to the true posterior
q∗. This leads to an interesting interpretation: no matter
how far away the initialization is to the true posterior, after
the first iteration ω̄1 always goes to a sublevel set whose
size only depends on the variance V . Both properties are
due to the step size schedule γt = 2

2+t , in particular γ0 = 1.
In general, linearly decreasing step sizes also guarantee
convergence, but may lose these two properties.

It is not entirely clear if the conditions in Assumption 1 hold
in practice at all. In particular, Assumption 1 requires the
gradient variance (12), defined in a non-standard form, to be
bounded. The rest of this section is devoted to this question
by a case study of a common conjugate variational inference
problem, where we show all conditions in Assumption 1
indeed hold in practice.

Example 1 (Bayesian Linear Regression). Consider

p(z) = N (0,P), p(y | X, z) = N (Xz, σ2I),

where the prior p(z) is a zero-mean Gaussian and the label
y has an independent Gaussian observation noise. The
negative ELBO can be written as a finite sum

ℓ(q) = −Eq(z)[log p(y | X, z)] + DKL(q(z), p(z))

= −
n∑

i=1

Eq(z) log p(yi | xi, z) + DKL(q(z), p(z)),

where {xi}ni=1 are the rows of X ∈ Rn×d. Without loss of
generality, we assume that the variational distribution is
initialized as a standard normal distribution q0 = N (0, I).

Data Sub-Sampling Stochastic Gradient. Each iteration
samples m data points uniformly and independently:

xi1 ,xi2 , · · · ,xim .

Each index ik is independently sampled from the uniform
distribution U [n]. The stochastic natural gradient ∇̂ℓ(ω) is

∇ω

[
− n

m

m∑
k=1

Eq log p(yik | xik , z)+DKL(q, p)

]
, (15)

where p(yik | xik , z) = N (z⊤xik , σ
2) and the expectation

Eq(z) log p(yik | xik , z) is computed in a closed-form. Each
stochastic NGD update can be computed in O(d2m), while
the closed-form posterior of Bayesian linear regression takes
O(d2n+ d3) to compute. Approximating the posterior via
stochastic NGD is more practical for large datasets. Indeed,
it is widely used in variational Gaussian processes (e.g.,
Hensman et al., 2013; Salimbeni et al., 2018) where nmight
be too large to even fit the data into the memory.

Now we verify the conditions in Assumption 1. For each
i ∈ [n], the second component ∇Ξ of the gradient(

∇ξ,∇Ξ

)
= ∇ωEq log p(yi | xi, z)

is negative definite (see §C.1). By Remark 2, the stochastic
gradient (15) indeed respects the domain D and results in
valid NGD updates, as long as 0 ≤ γt ≤ 1. It is clearly
unbiased as each data point xik is sampled uniformly. Lastly,
its variance is bounded:
Lemma 3. The stochastic gradient (15) satisfies

1

γt
E[⟨∇̂ℓ(ωt)−∇ℓ(ωt),ωt+1,∗−ωt+1⟩ | ωt] ≤ V2, (16)

where V2 = (νs1+
1
2ν

2s2+2ν2b
√
s1s2n+ν

3b2s2n
2) n2

σ4m ,
with ν = max{1, ∥P∥}, b = max1≤i≤n∥yixi∥, and the
empirical variances s1 = Ej∼U [n]

∥∥yjxj− 1
n

∑n
i=1 yixi

∥∥2.
and s2 = Ej∼U [n]

∥∥xjx
⊤
j − 1

n

∑n
i=1 xix

⊤
i

∥∥2
F

.

The constant in Lemma 3 is not necessarily tight and may
be improved. Nevertheless, it serves the purpose to show
that the gradient variance is bounded by a constant.

Application to Gaussian Process Regression. Our result
immediately applies to stochastic variational Gaussian pro-
cesses (SVGP) (Hensman et al., 2013), a popular large-scale
Gaussian process regression model. SVGP training mini-
mizes the negative ELBO of the form

−
∫
p(f | u)q(u) log p(y | f) df du+ DKL(q(u), p(u)),

where the variational distribution is q(u) with the likelihood

p(y | f) = N (y;0, σ2I),

p(f | u) = N (f ;KfuK
−1
uuu,Kff −KfuK

−1
uuKuf ),

6
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and the prior p(u) = N (u;0,Kuu). Simplify the ELBO
by removing terms independent of q(u) gives

−
∫
q(u) logN (y;KfuK

−1
uuu, σ

2I) du+DKL(q(u), p(u)).

Hence, finding the optimal variational distribution q(u) is
equivalent to Bayesian linear regression in Example 1 with
X=KfuK

−1
uu and the prior covariance P = Kuu. Even

though the optimal variational distribution q∗ has a closed-
form, computing it exactly needs to access the entire dataset.
Besides, q∗ varies after every GP hyperparameter update,
and it is expensive to compute q∗ exactly every iteration.
Thus, a popular approach is jointly minimizing the varia-
tional parameters and the hyperparameters by mini-batch
stochastic optimization. Lemma 3 together with Theorem 1
gives a convergence rate of the variational distribution in
SVGP training. The convergence rate may also find applica-
tions in some collapsed variational inference methods (e.g.,
Hensman et al., 2012), where NGD is applied to a subset of
latent variables in an conjugate exponential family.

5. ELBO Landscape
In the last section, we have seen that the (negative) ELBO
ℓ(ω), as a function of the expectation paremters ω, has good
properties when the likelihood is conjugate (see Lemma 2).
These properties are crucial for the convergence analysis.
The natural question is whether the ELBO preserves these
properties for non-conjugate likelihoods.

This section studies variational inference with a Gaussian
prior p(z), a Gaussian variational family Q, and a non-
Gaussian (i.e., non-conjugate) likelihood p(y | z). Sur-
prisingly, we show that even when the likelihood is log-
concave, the ELBO ℓ(ω) is not guaranteed to be convex in
the expectation parameter. This is in sharp contrast to the
mean-square-root parameterization (m,C), with m and C
representing the mean and the Cholesky factor respectively,
used in stochastic gradient, where the ELBO is smooth and
strongly convex (Domke, 2020).

Below we give two examples (with details in §E) where
the negative ELBO ℓ(ω) is non-convex in the expectation
parameter ω, even for simple log-concave likelihoods. To
show the objective is non-convex, all we need to do is to
find a dataset such that the negative ELBO is non-convex.

Logistic Regression. Consider an 1-dimensional Bayesian
logistic regression on the dataset {(xi, yi)}ni=1 with xi ∈
[−1, 1] and yi ∈ {−1, 1}. The prior p(w, b) on the weight
w and the bias b is a standard Gaussian distribution. The
negative ELBO ℓ(ω) is

Eq(w,b)

[
n∑

i=1

log
(
1 + exp(−yi(wxi + b))

)]
+ DKL(q, p),

where q(w, b) is a Gaussian variational distribution. Restrict
the expectation parameter ω of q on the convex subset

{ω=(0,Ξ) : Ξ = diag(s1, s2), s1 > 0, s2 > 0} ⊆ Ω,

where the first component of ω is zero and the second com-
ponent is a diagonal matrix. If ℓ(ω) was convex in ω, it
would be convex in s2 at least. Taking the second-order
derivative with respect to s2, we have

∇2
s2ℓ(ω) =

n∑
i=1

E[ψi(1− ψi)(6ψ
2
i − 6ψi + 1)] +

1

2s22
,

where ψi = ψ(wxi + b) with ψ the sigmoid function and
the expectation is taken over (w, b) ∼ qω. Note that the
expectation is negative in the limit:

lim
s1,s2→0

Eq(w,b)[ψi(1− ψi)(6ψ
2
i − 6ψi + 1)] = −1

8
.

In particular, there exists an absolute constant δ > 0 such
that when s1 = s2 = δ we have

ψi(1− ψi)(6ψ
2
i − 6ψi + 1) < − 1

16

for all 1 ≤ i ≤ n. This implies ∇2
s2ℓ(ω) < 0 when n ≥

8/δ2 for a particular ω = (0,Ξ) with Ξ = diag(δ, δ).

Poisson Regression. We choose this example because of its
analytical ELBO. Bayesian Poisson regression assumes that
y | x follows a Poisson distribution with the expectation

E[y | x] = exp(w⊤x).

The prior p(w) on the weight w is a standard Gaussian
distribution. Let ω = (ξ,Ξ) be the expectation parameter
of the Gaussian variational distribution q. The expected log
likelihood −Eq(w) log p(y | X,w) is

−y⊤Xξ +
n∑

i=1

[
exp

(
ξ⊤xi +

1

2
x⊤
i

(
Ξ− ξξ⊤

)
xi

)]
,

which is not convex in ξ. Compute the Hessian of ℓ(ω) w.r.t.
ξ and evaluate it on the subset of the domain

{ω=(ξ,Ξ) : Ξ = ξξ⊤ + 2I} ⊆ Ω.

Then, we obtain

∇2
ξℓ(ω) ⪯

n∑
i=1

(x⊤
i ξ)(x

⊤
i ξ − 2)xix

⊤
i +∇2

ξA
∗(ω).

For a fixed ω = (ξ,Ξ), there exists a dataset {(xi, yi)}ni=1

such that 0 < x⊤
i ξ < 2 for all 1 ≤ i ≤ n. Now, consider

the Hessian ∇2
ξℓ(ω) on the scaled dataset {(cxi, yi)}ni=1

evaluated at 1
cξ. As c→ ∞, we have found a dataset such

that the Hessian is negative.
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Figure 1: Mini-batch Bayesian linear regression on the Bike
dataset. Left: The KL divergence to the optimum q∗. Right:
The training negative log predictive density.

Recent work demonstrates that the negative ELBO is convex
with a log-concave likelihood if the variational distribution
is a Gaussian distribution with the mean-square-root pa-
rameterization (Domke, 2020). However, the above two
examples show that it is not the case for the expectation
parameter ω. Given that the canonical implementation of
NGD is equivalent to mirror descent in the expectation pa-
rameter space, NGD may implicitly optimize a non-convex
objective when the likelihood is non-conjugate even for
simple log-concave likelihoods.

Nonetheless, the negative ELBO does have some convenient
properties for log-concave likelihoods—it is not an arbitrary
non-convex objective.

Proposition 1. Suppose the prior and the variational family
are both Gaussians. If the likelihood p(y | z) is log-concave
in z, then the negative ELBO ℓ(ω) as a function of the expec-
tation parameter has a unique minimizer ω∗. In addition, if
the likelihood p(y | z) is differentiable in z, then ω∗ is the
unique stationary point of ℓ(ω).

Proposition 1 is not surprising, since there is a differentiable
bijection between the expectation parameterization and the
mean-square-root parameterization. The uniqueness of the
minimizer and the stationary point is derived from strongly
convexity in the mean-square-root parameterization. Thus,
stochastic NGVI may still converge to the optimum with
log-concave likelihoods despite the non-convexity.

We end this section by discussing some implications. With
non-conjugate likelihoods, the negative ELBO ℓ(ω) is not
strongly convex nor relatively strongly convex, since it is
not even convex. Strong convexity plays a crucial role
in stochastic optimization. Without it, stochastic gradient
descent has a convergence rate of O(1/

√
T ) under standard

assumptions. This rate is improved to O(1/T ) for strongly
convex functions. The fact that stochastic NGVI is implicitly
optimizing a non-convex objective implies that we may need
to resort to new properties of the ELBO to prove its O(1/T )
convergence rate for non-conjugate likelihoods, if it can
achieve this rate at all. One possibility to achieve this is the
Polyak-Łojasiewicz inequality (Karimi et al., 2016).

6. Numerical Simulation
This section presents supporting numerical simulations on
datasets from the UCI repository (Bike and Mushroom) and
MNIST (Kelly et al., 2017; LeCun et al., 1998)

6.1. Bayesian Linear Regression

Figure 1 presents Bayesian linear regression on the Bike
dataset (n = 17, 389), with a standard normal prior and a
noise σ2 = 1. The (negative) ELBO is optimized by SGD
and stochastic NGD with a mini-batch size of 1000. SGD
uses a step size schedule γt = 1

105+t , a linearly decreasing
schedule on the same order as Domke et al. (2023, Theorem
10). Stochastic NGD uses a step size schedule γt = 2

2+t
predicted by Theorem 1.

The true posterior q∗ of Bayesian linear regression has a
closed-form, which allows us to plot the optimality gap in
the KL divergence. In addition, we plot the negative predic-
tive log density (NLPD) on the training set. In the log-log
scale, the KL divergences to the optimal posterior of both
methods decrease at the same rate, with roughly the same
slope in the figure. This suggests that both methods have the
same O( 1

T ) complexity, and that stochastic NGD may be
only constant times faster than SGD. Nonetheless, stochas-
tic NGD converges very fast in the early stage. It takes
SGD thousands of iterations to catch up the progress that
stochastic NGD makes in the first few iterations, implying
that stochastic NGD has a much better constant factor in the
big O notation. Indeed, recall that the convergence rate in
Theorem 1 only depends on the stochastic gradient variance,
independent of the objective’s condition number and the
distance from the initialization to the optimum (see §4).

6.2. Non-Conjugate Likelihoods

Figure 2 shows Bayesian logistic regression on the Mush-
room dataset (n = 8124) and MNIST (a subset of 1 and 7
with n ≈ 13, 000 images). Again, stochastic NGD is faster
than SGD, but the improvement is less drastic compared
with conjugate likelihoods. This is consistent with previous
empirical observations (Salimbeni et al., 2018).

Besides faster convergence, it appears that the step size of
stochastic NGD is easier to tune in practice. In most cases,
the step size γ = 0.1 convergences smoothly. Sometimes
γ=0.1 is too large such that stochastic NGD oscillates in
the final stage (Figure 2 right panel). Simply decreasing it to
γ=0.01 leads to smooth convergence in most cases. These
observations suggest that the ELBO ℓ(ω), as a function of
the expectation parameter, might have a small smoothness
constant. Indeed, the smoothness constant is 1 for conjugate
likelihoods (recall Lemma 2). For non-conjugate likelihoods
in practice, we hypothesize its smoothness constant might
be close to 1 as well.

8
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Figure 2: Bayesian logistic regression on Mushroom and
MNIST. Labels with “(p)” use the stochastic gradient by
the Price theorem (11). Labels with “(r)” use the stochastic
gradient by the reparamerization trick.

We point out a side note that the Price stochastic gradient
(11) is a high-quality gradient estimator superior to the repa-
rameterization trick. For instance, in the special case when
the log likelihood log p(y | z) is a quadratic function in z,
e.g., p(y | z) = N (z, I), the Price stochastic gradient ∇̂Ξ is
exact and has zero variance! For general non-conjugate like-
lihoods, we expect the Price stochastic gradient has lower
variance. Indeed, SGD has a dramatic improvement by just
switching to the Price stochastic gradient.

7. Related Work
Natural gradient descent was initially proposed by Amari
(1998) as a learning algorithm for multi-layer perceptrons
that is believed to exploit the information geometry. Sub-
sequently, this method has been applied to variational in-
ference (e.g., Honkela & Valpola, 2004; Hensman et al.,
2012; Hoffman et al., 2013; Khan & Lin, 2017). Recent
new developments of natural gradient variational inference
include generalization to mixtures of exponential families
(Lin et al., 2019; Arenz et al., 2023), handling the positive
definite domain constraint (Lin et al., 2020), supporting
structured matrix parameterization (Lin et al., 2021), im-
plementation via automatic differentiation (Salimbeni et al.,
2018), adaptations to online learning (Chérief-Abdellatif
et al., 2019), and generalization to Wasserstein statistical
manifold (Chen & Li, 2020; Li & Zhao, 2023).

Outside variational inference, natural gradient descent has
been applied to training (non-Bayesian) neural networks in
supervised learning (e.g. Bernacchia et al., 2018; Song et al.,
2018; Zhang et al., 2019). Interestingly, Zhang et al. (2018)
establish a connection between training neural networks
with noisy natural gradient and variational inference. For
a comprehensive survey of this area, we direct readers to
the monograph by Martens (2020). In particular, Martens
(2020) hypothesize a O( 1

T ) asymptotic convergence rate
via an argument based on Fisher efficiency. They also gave
a non-asymptotic convergence rate of O( 1

T ) for stochastic
preconditioned gradient descent with a fixed precondition-
ing matrix and a quadratic objective.

In addition, natural gradient descent has been applied to
policy optimization in reinforcement learning, leading to
natural policy gradient (Kakade, 2001). With the connection
to mirror descent, there is a recent interest in this method
that leads to a series of analyses (e.g., Geist et al., 2019;
Shani et al., 2020; Agarwal et al., 2021; Khodadadian et al.,
2021; Xiao, 2022; Yuan et al., 2023).

The natural gradient methods applied to different machine
learning problems mentioned previously share a common
feature: the gradient direction is preconditioned with the
Fisher information matrix. Despite being coined with the
same name “natural gradient”, we point out a subtle differ-
ence in natural gradient variational inference. The distance
generating function A∗ in NGVI, namely the log-partition
function’s conjugate, is the negative differential entropy
that is non-strongly convex and non-smooth, as shown in
§A.1. In contrast, the distance generating function in natu-
ral policy gradient is the negative Shannon entropy, which
is well-known to be strongly convex w.r.t. a norm (e.g.,
Bubeck, 2015, Section 4.3). As mentioned in §4, this strong
convexity is a key condition for mirror descent analyses in
the stochastic setting. We hope our work motivates new
developments in stochastic mirror descent for non-strongly
convex non-smooth distance generating functions.

8. Conclusion
Over the years, empirical observations suggest stochastic
natural gradient descent (NGD) is faster than stochastic
gradient descent for variational inference. To understand
how fast NGD converges, we prove the first O( 1

T ) non-
asymptotic convergence rate for conjugate likelihoods. The
rate appears to be tight based on experiments, suggesting
that stochastic natural gradient variational inference (NGVI)
may be only constant times faster than stochastic gradient
descent. Nevertheless, the constant improvement could be
dramatic in practice. For non-conjugate likelihoods, we
show that “canonical” stochastic NGVI implicitly optimizes
a non-convex objective, which suggests that a O( 1

T ) rate is
unlikely without discoveries of new properties of the ELBO.
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A. Exponential Family
The following useful lemma is well-known (e.g., Nielsen & Garcia, 2009), which hints the connection between NGD and
mirror descent. For the sake of completeness, we present a proof here, which largely follows Khan & Lin (2017, Lemma 2).

Lemma 4. Let q(z) and q′(z) be distributions in the same exponential family. That is, they share the same base measure
h(z), sufficient statistics ϕ(z), and the log-partition function A(η). Let ω and ω′ be the expectation parameters of q(z) and
q′(z) respectively. Then, we have

DA∗(ω,ω′) = DA(η
′,η) = DKL(q, q

′).

where DA and DA∗ are the Bregman divergences associated with A and A∗, respectively.

Proof. The first equality is a standard property of the Bregman divergence, since η and ω are dual to each other. Only the
second equality needs a proof:

DKL(q, q
′) = Eq(z)[log q(z)− log q′(z)]

= Eq(z)[log h(z) + ⟨ϕ(z),η⟩ −A(η)]− Eq(z)[log h(z) + ⟨ϕ(z),η′⟩ −A(η′)]

=
〈
Eq(z)[ϕ(z)],η − η′〉−A(η) +A(η′)

= A(η′)−A(η)− ⟨ω,η′ − η⟩
= A(η′)−A(η)− ⟨∇A(η),η′ − η⟩
= DA(η

′,η),

where the second line uses the definition of the exponential family; the forth line uses the definition of the expectation
parameter; the fifth line uses the duality between the natural and expectation parameters (4); and the last line uses the
definition of the Bregman divergence.

Let ω and ω′ be the expectation parameters of q and q′ respectively. Lemma 4 gives a simple expression for the derivative
of DKL(q, q

′) w.r.t. the expectation parameter ω:

d

dω
DKL(q, q

′) =
d

dω
DA∗(ω,ω′)

= ∇A∗(ω)−∇A∗(ω′)

= η − η′,

where the second line is a standard property of the Bregman divergence and the third line is because ∇A∗(·) maps a
expectation parameter to its corresponding natural parameter.

A.1. Gaussian Distributions: The Log-Partition Function

This section gives an explicit expression of the log-partition function A(η) of the Gaussian distribution and its convex
conjugate A∗. In addition, we show that the convex conjugate A∗ is non-smooth and non-strongly convex.

Let q(z) = N (z;µ,Σ) be a d-dimensional Gaussian with the mean µ and the covariance Σ. Its density is of the form

q(z;η) ∝ exp
(
−1

2
(z− µ)⊤Σ−1(z− µ)− 1

2
log det(Σ)

)
= exp

(
⟨z,Σ−1µ⟩+ ⟨zz⊤,−1

2
Σ−1⟩ − 1

2
µ⊤Σ−1µ− 1

2
log det(Σ)

)
.

The sufficient statistic is the map ϕ : z 7→ (z, zz⊤). The natural parameter η = (λ,Λ) satisfies λ = Σ−1µ and
Λ = − 1

2Σ
−1. The log-partition function A(·) as a function of the mean and the covariance is

A(µ,Σ) =
1

2
µ⊤Σ−1µ+

1

2
log det(Σ).
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Plug in the relation between (µ,Σ) and the natural parameter η = (λ,Λ). We obtain an explicit expression of the
log-partition function:

A(λ,Λ) = −1

4
λ⊤Λ−1λ− 1

2
log det(−2Λ), (17)

where λ ∈ Rd and Λ ≺ 0. The convex conjugate A∗ as a function of the expectation parameter ω = (ξ,Ξ) is

A∗(ξ,Ξ) = sup
λ∈Rd,Λ⪯0

⟨ξ,λ⟩+ ⟨Ξ,Λ⟩+ 1

4
λ⊤Λ−1λ+

1

2
log det(−2Λ)

= −1

2
log det

(
Ξ− ξξ⊤

)
, (18)

where the second line solves the maximization by taking the derivative and setting it equal to zero. The constraint on the
expectation parameter (ξ,Ξ) is Ξ− ξξ⊤ ≻ 0.

Consider the restriction of A∗ on the convex set {ω=(ξ,Ξ) : ξ = 0,Ξ ≻ 0}. Clearly, A∗ is already non-strongly convex
and non-smooth in Ξ: in one dimension d2

dx2 (− log x) = 1
x2 is neither lower nor upper bounded. Since the absolute value is

the only norm (up to a constant) in one dimension, A∗ is not strongly convex w.r.t. any norms. Finally, both A and A∗ are
non-smooth and non-strongly convex due to the duality between smoothness and strong convexity.

A.2. Gaussian Distributions: Conversion between the Natural and Expectation Parameters

This section gives explicit expressions of ∇A and ∇A∗ of Gaussian distributions. These maps convert between the natural
parameter η = (λ,Λ) and the expectation parameter ω = (ξ,Ξ). Differentiating the log-partition function (17) gives

∇λA(λ,Λ) = −1

2
Λ−1λ,

∇ΛA(λ,Λ) =
1

4
Λ−1λλ⊤Λ−1 − 1

2
Λ−1.

The gradient map exactly transforms the natural parameter to the expectation parameter, in that

∇λA(λ,Λ) = ξ, ∇ΛA(λ,Λ) = Ξ.

Similarly, differentiating the conjugate A∗ (18) gives

∇ξA
∗(ξ,Ξ) =

(
Ξ− ξξ⊤

)−1
ξ,

∇ΞA
∗(ξ,Ξ) = −1

2

(
Ξ− ξξ⊤

)−1
,

which transform the expectation parameter back to the natural parameter:

∇ξA
∗(ξ,Ξ) = λ, ∇ΞA

∗(ξ,Ξ) = Λ.

For a Gaussian distribution N (µ,Σ), recall the relation between the mean/covariance and the natural parameter

λ = Σ−1µ, Λ = −1

2
Σ−1,

and the relation between the mean/covariance and the expectation parameter

ξ = µ, Ξ = Σ+ µµ⊤.

One can verify that these relations are indeed consistent with the maps ∇A(η) = ω and ∇A∗(ω) = η.
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B. Automatic Differentiation Stochastic Gradient Counterexample
This section gives a counterexample where estimating the gradient of the expected log likelihood

∇̂ΞEq(z)[log p(y | z)]

using automatic differentiation shown in Algorithm 1 does not guarantee a negative definite stochastic gradient ∇̂Ξ. For
simplicity, we use a zero-mean Gaussian q(z) = N (0,Σ) so that Ξ = Σ, and a likelihood p(y | z) = N (z, I). The
following code produces a stochastic gradient that is not negative definite approximately 50% of the time.

1 import torch
2 from torch.distributions import MultivariateNormal
3

4

5 if __name__ == "__main__":
6 d = 2
7

8 sigma = torch.eye(d).requires_grad_()
9 chol = torch.linalg.cholesky(sigma)

10

11 u = torch.randn(d)
12 z = chol @ u
13

14 dist = MultivariateNormal(z, torch.eye(d))
15 y = torch.zeros(d)
16

17 loss = dist.log_prob(y)
18 loss.backward()
19

20 print(loss.item())
21 print(sigma.grad)
22

23 # check the diagonal gradient
24 # print(-0.5 * u ** 2)
25

26 det = torch.linalg.det(sigma.grad)
27

28 if det > 0.:
29 print("not n.d.")
30 else:
31 print("......")

C. Stochastic Gradient Variance for Bayesian Linear Regression in Example 1
In this section, we restrict ourselves to Bayesian linear regression in Example 1, and establish bounds on the stochastic
gradient variance (12). Recall that the negative ELBO is a sum of the negative expected log likelihood and the KL divergence:

∇ℓ(ω) = −∇ωEq(z)[log p(y | z)] + DKL(q(z), p(z)).

As discussed in §A, the KL divergence has a simple closed-form gradient available when the variational distribution q(z)
and the prior p(z) are both in the same exponential family:

∇ωDKL(q(z), p(z)) = η − ηp.

where η and ηp are the natural parameters of q(z) and p(z), respectively. Therefore, the stochasticity solely comes from
estimating the expected log likelihood, and the stochastic gradient ∇̂ℓ(ω) admits the form

∇̂ℓ(ω) = −∇̂ωEq(z)[log p(y | z)] +∇ωDKL(q(z), p(z)).
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For now, we assume the stochastic gradient of the expected log likelihood (∇̂ξ, ∇̂Ξ) = ∇̂ωEq(z)[log p(y | z)] has its second
component ∇̂Ξ negative definite, a sufficient condition for valid stochastic NGD updates. We will show why this is the case
in the upcoming section.

The next lemma shows that the natural parameter’s second component Λt is bounded away from zero throughout the NGD
updates, if the stochastic gradient ∇̂ΞEq(z) log p(y | z) is always negative definite.

Lemma 5. For Bayesian linear regression in Example 1, suppose the stochastic gradient ∇̂ΞEqt(z) log p(y | X, z) ⪯ 0

and the step size 0 ≤ γt ≤ 1 for all t ≥ 0. Then, we have Λt ⪯ − 1
2ν I, or equivalently − 1

2Λ
−1
t ⪯ νI, throughout the NGD

updates for all t ≥ 0, where ν = max{1, ∥P∥} > 0.

Proof. We prove it by induction. The base case Λ0 = − 1
2I ⪯ − 1

2ν I satisfies the inequality trivially. For t ≥ 1, recall the
NGD update on the natural parameter

ηt+1 = (1− γt)ηt + γt
(
∇̂ωEqt(z) log p(y | z) + ηp

)
,

where ηp is the natural parameter of the prior. This yields an update on the second component of the natural parameter:

Λt+1 = (1− γt)Λt + γt
(
∇̂ΞEqt(z) log p(y | z) +Λp

)
.

By the assumption ∇̂ΞEq(z) log p(y | z) ⪯ 0, we have

Λt+1 ⪯ (1− γt)Λt + γtΛp

⪯ (1− γt) ·
(
− 1

2ν

)
· I+ γt ·

(
− 1

2ν

)
· I

= − 1

2ν
I,

where the second line uses the induction hypothesis and the fact that Λp = − 1
2P

−1 ⪯ − 1
2ν I.

The following lemma shows that the matrix inverse is a Lipschitz function in region bounded away from zero.

Lemma 6. Suppose Λ1,Λ2 ⪯ − 1
2ν I. Then, we have ∥Λ−1

1 −Λ−1
2 ∥F ≤ 4ν2∥Λ1 −Λ2∥F.

Proof. Straightforward calculation gives a proof:

∥Λ−1
1 −Λ−1

2 ∥F =
∥∥Λ−1

1 −Λ−1
2

∥∥
F

≤
∥∥Λ−1

1 (Λ1 −Λ2)Λ
−1
2

∥∥
F

≤
∥∥Λ−1

1

∥∥ · ∥Λ1 −Λ2∥F · ∥Λ−1
2 ∥

≤ 4ν2∥Λ1 −Λ2∥F,

where the third line uses the inequality ∥AB∥F ≤ ∥A∥ · ∥B∥F.

Additional Notations. Let ηt and ωt be the natural and expectation parameters of the Gaussian variational distribution qt at
the step t. Hence, we have ω = ∇A(η) and η = ∇A∗(ω). Define

ηt+1,∗ = ηt − γt∇ℓ(ωt)

as the natural parameter after a NGD update from ηt using the exact (natural) gradient ∇ℓ(ωt). Recall that

ωt+1,∗ = argmin
ω∈Ω

⟨∇ℓ(ωt),ω − ωt⟩+
1

γt
DA∗(ω,ωt)

is the expectation parameter after a mirror descent update from ωt using the exact gradient ∇ℓ(ωt). Recall the relation
ωt+1,∗ = ∇A(ηt+1,∗) based on the equivalence of NGD and mirror descent. The components of ηt+1,∗ and ωt+1,∗, i.e.

ηt+1,∗ = (λt+1,∗,Λt+1,∗), ωt+1,∗ = (ξt+1,∗,Ξt+1,∗),

are marked with “∗” in the subscript as well.
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C.1. Data Sub-Sampling Stochastic Gradient

The stochastic gradient (15) uses the following the estimate of the expected log likelihood

∇̂ωEq(z)[log p(y | z)] = ∇ω

[
n

m

m∑
k=1

Eq(z) log p(yik | xik , z)

]

= ∇ω

[
(−1) · 1

σ2

n

m

m∑
k=1

Eq(z)

[1
2
(yik − z⊤xik)

2
]]

= ∇ω

[
(−1) · 1

σ2

n

m

m∑
k=1

Eq(z)

[1
2
(z⊤xik)

2 − yikz
⊤xik +

1

2
y2ik

]]

= − 1

σ2

n

m
∇ω

[ m∑
k=1

(1
2

〈
xikx

⊤
ik
,Ξ

〉
− ⟨yikxik , ξ⟩

)]
,

where we note that the stochastic gradient’s second component ∇̂ΞEq(z)[log p(y | z)] is indeed negative definite—a
requirement for the NGD updates to stay inside the domain (recall Assumption 1). We obtain a concrete expression for the
data sub-sampling stochastic gradient ∇̂ℓ(ω) =

(
∇̂ξℓ(ω), ∇̂Ξℓ(ω)

)
as follows:

∇̂ξℓ(ωt) = − 1

σ2

n

m

m∑
k=1

yikxik + λ− λp,

∇̂Ξℓ(ωt) =
1

σ2

n

m

m∑
k=1

1

2
xikx

⊤
ik
+Λ−Λp,

where η = (λ,Λ) is the natural parameter of the variational distribution q(z) and ηp = (λp,Λp) is the natural parameter
of the prior p(z). Meanwhile the exact gradient is

∇ξℓ(ωt) = − 1

σ2

n∑
i=1

yixi + λ− λp,

∇Ξℓ(ωt) =
1

σ2

n∑
i=1

1

2
xix

⊤
i +Λ−Λp.

Roadmap. We give a brief overview before diving into the detailed proof of Lemma 3, which involves a large amount of
(somewhat tedious) calculation. Lemmas 7 and 8 give bounds on the gradient variances E

[
∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥2 | ωt

]
and E

[
∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)∥2F | ωt

]
measured in the Euclidean norm. These two bounds, however, are not quite enough

for the convergence proof, as the desired gradient variance (12) does not depend on a specific norm. Lemmas 10 and 11
bound ∥ξt+1,∗ − ξt+1∥ and ∥Ξt+1,∗ − Ξt+1∥F with ∥∇̂ξℓ(ωt) − ∇ξℓ(ωt)∥ and ∥∇̂Ξℓ(ωt) − ∇Ξℓ(ωt)∥F. Lemma 3
utilizes Lemmas 10 and 11 to reduce the gradient variance (12), a norm-independent one, to the usual gradient variance
measured in the Euclidean norm, which is readily tackled by Lemma 7 and Lemma 8.

Lemma 7. The following inequality holds:

E
[
∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥2 | ωt

]
=
n2

m

s1
σ4

where we recall that s1 = Ej∼U [n]

∥∥yjxj − 1
n

∑n
i=1 yixi

∥∥2 is the variance of yjxj .
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Proof. Straightforward calculation gives a proof:

E
[
∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥2 | ωt

]
=

1

σ4
E
∥∥∥∥ nm

m∑
k=1

yikxik −
n∑

i=1

yixi

∥∥∥∥2
=

1

σ4

n2

m2
E
∥∥∥∥ m∑
k=1

(
yikxik − 1

n

n∑
i=1

yixi

)∥∥∥∥2
=

1

σ4

n2

m
Ej∼U [n]

∥∥∥yjxj −
1

n

n∑
i=1

yixi

∥∥∥2
=
n2

m

s1
σ4

where the third line uses the fact that ik’s are independently sampled from the uniform distribution U [n].

Lemma 8. The following inequality holds:

E
[
∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)∥2F | ωt

]
=

1

4

n2

m

s2
σ4
, (19)

where we recall that s2 = Ej∼U [n]

∥∥xjx
⊤
j − 1

n

∑n
i=1 xix

⊤
i

∥∥2
F

is the variance of xjx
⊤
j .

Proof. A straightforward calculation gives a proof:

E
[
∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)∥2F | ωt

]
= E

∥∥∥1
2

n

m

m∑
k=1

xikx
⊤
ik
− 1

2

n∑
i=1

xix
⊤
i

∥∥∥2
F

=
1

4

n2

m2
E
∥∥∥ m∑
k=1

(
xikx

⊤
ik
− 1

n

n∑
i=1

xix
⊤
i

)∥∥∥2
F

=
1

4

n2

m
Ej∼U [n]

∥∥∥xjx
⊤
j − 1

n

n∑
i=1

xix
⊤
i

∥∥∥2
F

=
1

4

n2

m

s2
σ4
,

where the third line uses the fact that ik’s are sampled independently from the uniform distribution U [n].

Our proof strategy is to relate the desired gradient variance (12) with the gradient variances in Lemmas 7 and 8. To establish
the relation, we need to show the natural parameter’s first component λt and the expectation parameter’s first component ξt
are bounded throughout the NGD updates. The trick is to observe that the natural parameter’s first component λt stays in a
particular region:

Lemma 9. Define the convex set C =
{∑n

i=1 ρiyixi : ρi ≥ 0,
∑n

i=1 ρi ≤ n
}

. Then, we have λt ∈ C and λt+1,∗ ∈ C
throughout the NGD updates for all t ≥ 0.

Proof. We prove λt ∈ C by induction. The base case t = 0 holds as the initialization q0 = N (0, I) has λ0 = 0, with
coefficients ρ1 = ρ2 = · · · = ρn = 0. For t ≥ 1, recall the update from t to t+ 1:

λt+1 = (1− γt)λt + γt
(
∇̂ξEqt(z)[log p(x | z)] + λp

)
= (1− γt)λt + γt∇̂ξEqt(z)[log p(x | z)],

where the second line uses λp = 0 since the prior p(z) is a zero-mean Gaussian. Recall that the stochastic gradient of the
expected log likelihood at the step t is of the form

∇̂ξEqt(z)[log p(x | z)] = n

m

m∑
k=1

yikxik ,
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where ik’s are sampled independently and uniformly from {1, 2, · · · , n}. The stochastic gradient ∇̂ξEqt(z)[log p(x | z)] is
in the convex set C, since the sum of its coefficients is exactly n. Observe that λt+1 is a convex combination of two points
in C, and thus stays in C as well. The proof is completed by an induction.

The argument for λt+1,∗ ∈ C follows similarly, because the exact gradient of ∇ξEqt(z)[log p(x | z)] =
∑n

i=1 yixi is in the
convex set C as well.

As a result, we immediately obtain a bound on the first component of the natural parameter:

Corollary 1. We have ∥λt∥ ≤ bn and ∥λt,∗∥ ≤ bn for all t ≥ 0, where b = max1≤i≤n∥yixi∥.

Proof. Straightforward calculation gives a proof:

∥λt∥ =
∥∥∥ n∑
i=1

ρiyixi

∥∥∥ ≤
n∑

i=1

ρi∥yixi∥ ≤ bn.

The proof for λt,∗ follows the same steps.

As a result, we also obtain a bound on the first component of the expectation parameter:

Corollary 2. We have ∥ξt∥ ≤ νbn and ∥ξt,∗∥ ≤ νbn for all t ≥ 0, where b = max1≤i≤n∥yixi∥.

Proof. Recall the relation between the natural and expectation parameters: ξt = − 1
2Λ

−1
t λt. Recall that 0 ⪯ − 1

2Λ
−1
t ⪯ νI

by Lemma 5. Thus, we have ∥ξt∥ ≤ ν∥λt∥ ≤ νbn.

Lemma 10. We have ∥ξt+1,∗ − ξt+1∥ ≤ γtν∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥+ 2γtν
2bn

∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)
∥∥
F

.

Proof. Straightforward calculation gives

∥ξt+1,∗ − ξt+1∥ =
1

2
∥Λ−1

t+1λt+1 −Λ−1
t+1,∗λt+1,∗∥

=
1

2
∥Λ−1

t+1λt+1 −Λ−1
t+1λt+1,∗ +Λ−1

t+1λt+1,∗ −Λ−1
t+1,∗λt+1,∗∥

≤ 1

2
∥Λ−1

t+1(λt+1 − λt+1,∗)∥+
1

2
∥(Λ−1

t+1 −Λ−1
t+1,∗)λt+1,∗∥,

where the first line uses the relation between the natural and expectation parameters. We cope with the two terms separately.

For the first term, we have

1

2
∥Λ−1

t+1(λt+1 − λt+1,∗)∥ ≤ ν∥λt+1 − λt+1,∗∥ = γtν∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥,

where the first inequality uses − 1
2Λ

−1
t+1 ⪯ νI by Lemma 5; the second equality uses the definition of the NGD update.

For the second term, we have

1

2
∥(Λ−1

t+1 −Λ−1
t+1,∗)λt+1,∗∥ ≤ 1

2
∥Λ−1

t+1 −Λ−1
t+1,∗∥F · ∥λt+1,∗∥

≤ 2ν2 · ∥Λt+1 −Λt+1,∗∥F · ∥λt+1,∗∥

= 2γtν
2
∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)

∥∥
F
· ∥λt+1,∗∥

≤ 2γtν
2bn

∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)
∥∥
F
,

where the second line uses the Lipschitz condition in Lemma 6; the third line uses the the definition of the NGD update; the
last line uses Corollary 1. Summing the two bounds completes the proof.

Lemma 11. We have

∥Ξt+1,∗ −Ξt+1∥F ≤ 2γtν
2bn

∥∥∇̂ξℓ(ωt)−∇ξℓ(ωt)
∥∥+ (2γtν

2 + 4γtν
3b2n2)

∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)
∥∥
F
.
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Proof. Expanding the norm, we have

∥Ξt+1,∗ −Ξt+1∥F =
∥∥∥−1

2

(
Λ−1

t+1,∗ −Λ−1
t+1

)
+

(
ξt+1,∗ξ

⊤
t+1,∗ − ξt+1ξ

⊤
t+1

)∥∥∥
F

≤ 1

2

∥∥∥Λ−1
t+1,∗ −Λ−1

t+1

∥∥∥
F
+
∥∥ξt+1,∗ξ

⊤
t+1,∗ − ξt+1ξ

⊤
t+1

∥∥
F
,

where the first line uses the relation between natural and expectation parameters.

For the first term, we have

1

2

∥∥Λ−1
t+1,∗ −Λ−1

t+1

∥∥
F
≤ 2ν2

∥∥Λt+1,∗ −Λt+1

∥∥
F

≤ 2γtν
2
∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)

∥∥
F
,

where the first line uses Lemma 6; the second line uses the definition of the NGD update.

For the second term, we have∥∥ξt+1,∗ξ
⊤
t+1,∗ − ξt+1ξ

⊤
t+1

∥∥
F
=

∥∥ξt+1,∗ξ
⊤
t+1,∗ − ξt+1,∗ξ

⊤
t+1 + ξt+1,∗ξ

⊤
t+1 − ξt+1ξ

⊤
t+1

∥∥
F

≤
∥∥ξt+1,∗(ξt+1,∗ − ξt+1)

⊤∥∥
F
+
∥∥(ξt+1,∗ − ξt+1)ξ

⊤
t+1

∥∥
F

= ∥ξt+1,∗∥ · ∥ξt+1,∗ − ξt+1∥+ ∥ξt+1,∗ − ξt+1∥ · ∥ξt+1∥
≤ 2max{∥ξt+1,∗∥, ∥ξt+1∥} · ∥ξt+1,∗ − ξt+1∥
≤ 2νbn∥ξt+1,∗ − ξt+1∥

≤ 2γtν
2bn

∥∥∇̂ξℓ(ωt)−∇ξℓ(ωt)
∥∥+ 4γtν

3b2n2
∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)

∥∥
F

where the third line is because ∥ab⊤∥F = ∥a∥ · ∥b∥; the fifth line uses Corollary 2; the last line uses Lemma 10. Summing
the above two parts finishes the proof.

Now we are ready to prove the main results of this section, the variance bound of data sub-sampling stochastic gradient.

Lemma 3. The stochastic gradient (15) satisfies

1

γt
E[⟨∇̂ℓ(ωt)−∇ℓ(ωt),ωt+1,∗−ωt+1⟩ | ωt] ≤ V2, (16)

where V2 = (νs1 + 1
2ν

2s2 + 2ν2b
√
s1s2n + ν3b2s2n

2) n2

σ4m , with ν = max{1, ∥P∥}, b = max1≤i≤n∥yixi∥, and the

empirical variances s1 = Ej∼U [n]

∥∥yjxj − 1
n

∑n
i=1 yixi

∥∥2. and s2 = Ej∼U [n]

∥∥xjx
⊤
j − 1

n

∑n
i=1 xix

⊤
i

∥∥2
F

.

Proof. Expanding the inner product inside the expectation, we need to bound the expectation of〈
∇̂ξℓ(ωt)−∇ξℓ(ωt), ξt+1,∗ − ξt+1

〉
+

〈
∇̂Ξℓ(ωt)−∇Ξℓ(ωt),Ξt+1,∗ −Ξt+1

〉
.

For the first term
〈
∇̂ξℓ(ωt)−∇ξℓ(ωt), ξt+1,∗ − ξt+1

〉
, applying the Cauchy-Schwarz inequality and Lemma 10 yields〈

∇̂ξℓ(ωt)−∇ξℓ(ωt), ξt+1,∗ − ξt+1

〉
≤ ∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥ · ∥ξt+1,∗ − ξt+1∥

≤ γtν∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥2 + 2γtν
2bn∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥ · ∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)∥F.

(20)

For the second term
〈
∇̂Ξℓ(ωt)−∇Ξℓ(ωt),Ξt+1,∗ −Ξt+1

〉
, applying the Cauchy-Schwarz inequality and Lemma 11 gives〈

∇̂Ξℓ(ωt)−∇Ξℓ(ωt),Ξt+1,∗ −Ξt+1

〉
≤

∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)
∥∥
F
· ∥Ξt+1,∗ −Ξt+1∥F

≤ 2γtν
2bn

∥∥∇̂ξℓ(ωt)−∇ξℓ(ωt)
∥∥ ·

∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)
∥∥
F
+ (2γtν

2 + 4γtν
3b2n2)

∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)
∥∥2
F

(21)

Summing (20) and (21), and then applying the inequality

E
[∥∥∇̂ξℓ(ωt)−∇ξℓ(ωt)

∥∥ ·
∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)

∥∥
F

]
≤

√
E
[∥∥∇̂ξℓ(ωt)−∇ξℓ(ωt)

∥∥2]E[∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)
∥∥2
F

]
,
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where the expectations are conditioned on ωt, we obtain a bound on as follows:

E[⟨∇̂ℓ(ωt)−∇ℓ(ωt),ωt+1,∗−ωt+1⟩ | ωt] ≤ γtνE
[
∥∇̂ξℓ(ωt)−∇ξℓ(ωt)∥2 | ωt

]
+ (2γtν

2 + 4γtν
3b2n2)E

[∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)
∥∥2
F
| ωt

]
+ 4γtν

2bn

√
E
[∥∥∇̂ξℓ(ωt)−∇ξℓ(ωt)

∥∥2 | ωt

]
E
[∥∥∇̂Ξℓ(ωt)−∇Ξℓ(ωt)

∥∥2
F
| ωt

]
≤ γtν ·

n2

m

s1
σ4

+ (2γtν
2 + 4γtν

3b2n2) · 1
4

n2

m

s2
σ4

+ 4γtν
2bn · 1

2

n2

m

√
s1s2
σ4

= γtν
n2

m

s1
σ4

++
1

2
γtν

2n
2

m

s2
σ4

+ 2γtν
2b
n3

m

√
s1s2
σ4

+ γtν
3b2

n4

m

s2
σ4

=
1

σ4
γt(νs1 ++

1

2
ν2s2 + 2ν2b

√
s1s2n+ ν3b2s2n

2)
n2

m

where the second equality is due to Lemma 7 and Lemma 8. Dividing both sides by γt completes the proof.

D. Proof of the Main Theorem
Lemma 2. For conjugate likelihoods, the negative ELBO ℓ(ω) is 1-smooth 1-strongly convex relative to the convex conjugate
A∗ of the log-partition function.

Proof. Let q∗(z) = p(z | y) be the posterior. By the definition of the negative ELBO, we have ℓ(ω) = DKL(q, q
∗) + C,

where q ∈ Q is the variational distribution inside an exponential family Q parameterized by the expectation parameter ω
and C = p(y) is a constant (log evidence) that does not depend on q and ω.

Thanks to conjugacy, the posterior q∗ is of the same form as q. By Lemma 4, ℓ(ω) ∝ DKL(q, q
∗) = DA∗(ω,ω∗). Observe

that the Bregman divergence DA∗(ω,ω∗) is trivially 1-smooth and 1-strongly convex in ω relative to A∗.

Below we present the main theorem, which adapts the results by Hanzely & Richtárik (2021) to stochastic natural gradient
variational inference.

Theorem 1. Suppose the likelihood p(y | z) is conjugate and the stochastic gradient ∇̂ℓ(ωt) satisfies Assumption 1.
Running T + 1 iterations of stochastic natural gradient descent with γt = 2

2+t generate a point ω̄T+1 that satisfies

E[ℓ(ω̄T+1)]−min
ω∈Ω

ℓ(ω) ≤ V

T + 2
, (13)

where ω̄T+1 = 2
(T+1)(T+2)

∑T
t=0(t+ 1)ωt+1. Let q̄T+1 be the variational distribution represented by ω̄T+1. Then, the KL

divergence to the true posterior q∗ is bounded by

E[DKL(q̄T+1, q
∗)] ≤ V

T + 2
. (14)

Proof. By the descent lemma of Hanzely & Richtárik (2021, Lemma 5.2), we have

E[ℓ(ωt+1)]− ℓ(ω∗) ≤
( 1

γt
− 1

)
DA∗(ω∗,ωt)−

1

γt
E[DA∗(ω∗,ωt+1)] + γtV.

Plugging in γt = 2
2+t , we obtain

E[ℓ(ωt+1)]− ℓ(ω∗) ≤ 1

2
t · DA∗(ω∗,ωt)−

1

2

(
t+ 2

)
E[DA∗(ω∗,ωt+1)] + γtV.

Multiply the inequality by t+ 1 and sum from 0 to T . Then we have

T∑
t=0

(t+ 1)(ℓ(ωt+1)− ℓ(ω∗)) ≤ 1

2
V

T∑
t=0

t+ 1

t+ 2
≤ 1

2
V (T + 1).
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Dividing both sides by
∑T

t=0(t+ 1) = 1
2 (T + 1)(T + 2), and use the convexity of f , we obtain

ℓ(ω̄T+1) ≤
V

T + 2

To get the convergence rate in terms of the KL divergence, notice that

ℓ(ω̄t+1)− ℓ(ω∗) = ∇ℓ(ω∗)⊤(ωT+1 − ω∗) + DA∗(ω̄T+1,ω
∗)

= DA∗(ω̄T+1,ω
∗)

= DKL(q̄T+1, q
∗),

where the first line is due to 1-smoothness and 1-strong convexity relative to A∗; the second line is because the optimal
parameter ω∗ has zero gradient; the third line is due to Lemma 4.

E. Missing Proofs in §5
Proposition 1. Suppose the prior and the variational family are both Gaussians. If the likelihood p(y | z) is log-concave in
z, then the negative ELBO ℓ(ω) as a function of the expectation parameter has a unique minimizer ω∗. In addition, if the
likelihood p(y | z) is differentiable in z, then ω∗ is the unique stationary point of ℓ(ω).

Proof. Consider the set

Θ = {θ =
(
µ,C

)
: µ ∈ Rd,C ∈ Sd++}

which parameterizes all (non-degenerate) Gaussian distributions. Define f(θ) =
(
µ,CC⊤ + µµ⊤). Namely, f maps θ to

the expectation parameter space Ω. Thanks to the uniqueness of matrix square root, f is a bijection.

Since ℓ(mr) is strongly convex in θ, it has a unique minimizer θ∗ ∈ Θ. Define ω∗ = f(θ∗). It is clear that ω∗ ∈ Ω is the
unique minimizer of ℓ(e).

Consider the identity

ℓ(mr)(θ) = ℓ(e)(f(θ)). (22)

Taking the derivative of (22) on both sides, we have

∂

∂µ
ℓ(mr)(θ) =

∂ℓ(e)

∂ξ

∣∣∣∣
ω=f(θ)

+ 2 · ∂ℓ
(e)

∂Ξ

∣∣∣∣
ω=f(θ)

· µ

∂

∂C
ℓ(mr)(θ) = 2 · ∂ℓ

(e)

∂Ξ

∣∣∣∣
ω=f(θ)

·C,

It easy to see that ∇ℓ(mr)(θ) = 0 iff ∇ℓ(e)(f(θ)) = 0. Namely, f maps stationary points to stationary points. Since there
is only one stationary point in Θ due strong convexity, there is only one stationary point in Ω as well.

E.1. Bayesian Logistic Regression

We give a more detailed description of the non-convexity of Bayesian logistic regression. Recall that we focus on the
restriction of ℓ(ω) on the convex subset

{ω = (0,Ξ) : Ξ = diag(s1, s2), s1 > 0, s2 > 0} ⊆ Ω.

Observe that wxi + b follows a Gaussian distribution N (0, x2i s1 + s2). Therefore, we can use the Price theorem to take the
derivative w.r.t. s2. Taking the first-order derivative of ℓ(ω) w.r.t. s2, we have

∂

∂s2
ℓ(ω) =

n∑
i=1

Eq(w,b)[ψi(1− ψi)] +
1

2
− 1

2s2
,
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where we use ψi to denote ψ(wxi+ b) and ψ is the sigmoid function. Using the Price theorem again to take the second-order
derivative of ℓ(ω) w.r.t. s2, we have

∂2

∂s22
ℓ(ω) =

n∑
i=1

Eq(w,b)[ψi(1− ψi)(6ψ
2
i − 6ψi + 1)] +

1

2s22
,

Note that ∂2

∂s22
ℓ(ω) is continuous w.r.t. s1 and s2. Moreover, we have

lim
s1→0,s2→0

E[ψi(1− ψi)(6ψ
2
i − 6ψi + 1)] = −1

8
.

Therefore, there exists a small positive constant δ > 0, such that s1 = s2 = δ and

Ew∼N (0,s1),b∼N (0,s2)[ψi(1− ψi)(6ψ
2
i − 6ψi + 1)] < − 1

16
.

Crucially, δ is an absolute constant that does not depend on i. Because all −1 ≤ xi ≤ 1 are bounded, the distribution
wxi + b ∼ N (0, x2i s1 + s2) will shrink to zero as long as s1 + s2 → 0, regardless of the index i. This implies that when
s1 = s2 = δ, we have

n∑
i=1

Ew∼N (0,s1),b∼N (0,s2)[ψi(1− ψi)(6ψ
2
i − 6ψi + 1)] < − 1

16
n.

Therefore, when s1 = s2 = δ and n ≥ 8
δ2 , the second order derivative is negative

∂2

∂s22
ℓ(ω) < − 1

16
n+

1

2δ2
< 0,

which implies that the objective is non-convex in the expectation parameter.

E.2. Bayesian Poisson Regression

Bayesian Poisson regression assumes that y | x follows a Poisson distribution with the expectation

E[y | x] = exp(w⊤x),

which gives the log likelihood

log p(y | x,w) = − log y! + yw⊤x− exp(w⊤x).

We impose a Gaussian prior p(w) = N (0, I) and approximate the posterior p(w | y) using a Gaussian variational
distribution q(w). A nice property of the Bayesian Poisson regression is that its ELBO has a closed-form expression

ℓ(ω) =

n∑
i=1

Eq(w)[−yiw⊤xi + exp(w⊤xi)] + DKL

(
q, p

)
=

n∑
i=1

[
−yiξ⊤xi + exp

(
ξ⊤xi +

1

2
x⊤
i

(
Ξ− ξξ⊤

)
xi

)]
+ DA∗(ω,ω0).

The Hessian ∇2
ξℓ(ω) is

n∑
i=1

exp
(
ξ⊤xi +

1

2
x⊤
i (Ξ− ξξ⊤)xi

)(
−1 +

(
1− x⊤

i ξ
)2)

xix
⊤
i +∇2

ξA
∗(ω).

Evaluating the Hessian on the subset of the domain

{ω = (ξ,Ξ) ∈ Ω : Ξ = ξξ⊤ + 2I},

we obtain the following
n∑

i=1

exp
(
x⊤
i ξ + x⊤

i xi

)
x⊤
i ξ(x

⊤
i ξ − 2)xix

⊤
i +∇2

ξA
∗(ω).

With 0 < x⊤
i ξ < 2 for all i, which can be satisfied by constructing the dataset properly, and using exp(x⊤

i ξ + x⊤
i xi) > 1,

we can drop the exponential term. The rest of the argument follows the main paper.
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F. Experimental Details
In all experiments, SGD uses the (m,C) parameterization, where m is the Gaussian mean and C is the Cholesky factor of
the Gaussian covariance. We parameterize C as a lower triangular matrix with strictly positive diagonal entries. For SGD,
we clamp the diagonal entries of C to make sure they are no smaller than 10−10. This is effectively a projection step.

F.1. Bayesian Linear Regression

This is a Bayesian linear regression problem exactly the same as Example 1 with a standard Gaussian prior. Note that
the expected log likelihood Eq(z) log p(y | X, z) is integrated in a closed-form. The only stochasticity comes from the
mini-batch data sub-sampling. Domke et al. (2023, Theorem 7 and Theorem 10) have proved convergence for stochastic
proximal (projected) gradient descent with a step size schedule γt = min

{
µ
a ,

1
µ

2t+1
(t+1)2

}
. It is not easy to come up with a

tight estimate of the constant a. Therefore, we pick the linearly decreasing schedule 1
105+t for SGD. The reason for the

specific constant 105 in the denominator is that 10−5 is roughly the largest step size such that SGD does not diverge in its
initial stage.

F.2. Bayesian Logistic Regression

On Mushroom, the step size of SGD is tuned from {10−3, 10−4, 10−5, 10−6}, while the step size of NGD is tuned from
{5 · 10−1, 10−1, 10−2, 10−3}. On MNIST, the step size of SGD is tuned from {10−5, 10−6, 10−7}, while the step size of
NGD is tuned from {10−1, 10−2, 10−3}. Divergent curves (due to large step sizes) are not plotted in the graph. We use 10
samples from the variational distribution to estimate the stochastic gradient in every iteration.

Legends without the label “(p)” use the reparameterization trick to compute the stochastic gradient. For SGD with the label
“(p)”, we use the Price theorem as follows. First, observe the following relation between ∇C and ∇Σ:

∇CEq(z) log p(y | z) = 2 · ∇ΣEq(z)[log p(y | z)] ·C
= Eq(z)[∇2

z log p(y | z)] ·C.

To obtain a stochastic gradient estimate ∇̂CEq(z) log p(y | z), replace the expectation with sample approximation.
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