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Abstract
Large language models have recently succeeded
in various code generation tasks but still strug-
gle with generating task plans for complex, real-
world problems that need detailed, context-aware
planning and execution. This work aims to en-
hance these models’ accuracy in generating task
plans from natural language instructions. These
tasks plans, represented as python code, use cus-
tom functions to accomplish the user’s request
as specified in natural language. The task plans
are multi-step, often include loops, and are ex-
ecuted in a python runtime environment. Our
approach uses case-based reasoning to perform
dynamic few-shot prompting to improve the large
language models ability to accurately follow plan-
ning prompts. We compare the effectiveness of
dynamic prompting with static three-shot and
zero-shot prompting approaches finding that dy-
namic prompting improves the accuracy of the
generated code. Additionally, we identify and
discuss seven types of failures in code generation.

1. Introduction
Large language models (LLMs) have demonstrated success
on a variety of tasks such as copywriting and marketing
(Christou et al., 2024), natural language processing (Chowd-
hery et al., 2023), and code generation (Liu et al., 2024).
While LLMs are proficient in generating human-quality out-
puts, they lack in accuracy and context-specific generation
needed specifically for coding tasks. These limitations are
partly due to inherent issues such as the inability to access
up-to-date information on recent events (Lazaridou et al.,
2022), a tendency to hallucinate facts (Maynez et al., 2020;
Ji et al., 2023), and lack of long-term memory (Hatalis et al.,
2024). Additionally, natural language prompts describing
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tasks are inherently ambiguous, leading to numerous pos-
sible interpretations and inconsistencies in the generated
code.

In this work we address the problem of generating multi-
step task plans represented as python source code, using
base Python and custom functions provided to the LLM
at runtime. Data from one function call often serves as
input for subsequent function calls. Additionally, loops and
if-statements are also required to fulfill the original task
prompt.

To solve this problem, we introduce a case-based rea-
soning (CBR) approach that maintains a case-base of
<problem,solution> pairs. When a user prompt is given to
the system, the most similar cases are retrieved and given
to the LLM as guidance to writing a new task plan. CBR is
a 5 step problem solving framework: (1) Given a problem,
retrieve similar past problems and their corresponding solu-
tions, (2) Adapt a new solution based on these past pairs, (3)
Review the output directly or collect user feedback, and (4)
Retain the solution as a new case if successful, otherwise
start over and modify the retrieve step (Watson & Marir,
1994).

CBR can be considered a lazy form of problem solving (Aha,
1997). Common statistical machine learning approaches,
which are greedy, take all the training data, compute a model,
and freeze that model for all future inputs; however CBR
waits until it sees a new problem, retrieves the most similar
past problem, solution pairs, and then adapts those past solu-
tions for the current problem. Traditionally, the adaptation
step (2) is difficult, and in this work we use the LLM to
perform the adaptation. A key benefit of CBR is its ability
to immediately apply new knowledge by adding a single
case to the case base.

The contributions of this work are: (1) a CBR approach to
dynamic prompting for code generation, (2) a classification
of seven failure types in LLM code generation, and (3) an
empirical evaluation of our CBR approach against zero-
shot and static three-shot approaches. The paper begins
with an introduction to the problem of LLMs’ limitations in
task planning through code generation and presents the CBR
approach as a solution, along with background on generative
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AI techniques and related work. It then details our CBR
dynamic prompting approach, describes the empirical setup
and results, and concludes with a discussion of limitations
and future work suggestions.

2. Background
Generative AI approaches to generating Python code have
garnered significant attention in recent years, with several pi-
oneering studies contributing to this field. Chen et al. (2021)
introduced Codex, showcasing its capabilities in generating
Python code from natural language descriptions. Feng et al.
(2020) presented CodeBERT, which demonstrated the effec-
tiveness of a pre-trained model for understanding and gener-
ating programming languages. Ahmad et al. (2021) intro-
duced PLBART, a model specifically designed for program-
ming language tasks. Fried et al. (2022) presented InCoder
highlighting its ability to infill and synthesize code based on
natural language descriptions. Nijkamp et al. (2022) intro-
duced CodeGen focusing on multi-turn program synthesis.
In this paper we specifically look at the task of generat-
ing task plans with custom functions in python that will be
executed in a python runtime environment, as opposed to
calling functions one at a time during conversations, like the
OpenAI assistants API.1

LLMs increasingly integrate tool usage for enhanced capa-
bilities and adaptability. ToolFormer (Schick et al., 2024)
dynamically decides when to employ external tools during
training, enabling access to APIs and databases for real-time
information and task execution beyond pre-trained knowl-
edge. However, it lacks sequential tool usage. Similarly, the
Gorilla model improves LLMs’ API interactions, using a
retriever-aware training approach accesses comprehensive
API datasets for more accurate API calls in response to nat-
ural language queries (Patil et al., 2023). WebGPT enables
LLMs to access and interact with web pages for up-to-date
information and accurate responses (Nakano et al., 2021).
Additionally, (Smith et al., 2023) explore the synergy be-
tween human input and automated tool use in conversational
AI. The primary difference between these tool use LLMs
is that they are designed to call tools one step at a time
(or multiple one-step calls in parallel) rather than produce
python code that uses these tools sequentially.

LLMs also struggle with understanding specific project re-
quirements like variable scopes, dependencies, and custom
functions and libraries, especially in intricate programming
tasks demanding deep domain understanding. Although
trained on vast datasets, LLMs may lack the contextual
knowledge needed for specific tasks, leading to syntacti-
cally correct but functionally incorrect code. Xu et al. (2022)
highlight that existing benchmarks often do not include sce-

1https://platform.openai.com/docs/assistants/overview

narios involving custom functions, failing to capture the
complexities of real-world programming tasks involving
bespoke tools and libraries.

2.1. Prompt Engineering Approaches

Few-shot prompting is a prompt engineering technique to
enable in-context learning for LLMs that significantly en-
hance their performance. This method involves providing
the model with a small number of explicit examples that
demonstrate the desired output format, structure, or task. By
leveraging these well-crafted examples, few-shot prompting
enables LLMs to perform a wide range of tasks not seen dur-
ing initial pre-training or fine-tuning phases (Brown et al.,
2020; Ma et al., 2024). The technique’s effectiveness lies
in guiding the model to generate appropriate responses by
inferring required structure and style from the examples.
For instance, when presented with a few sample sentences
showcasing a specific writing style or format, an LLM can
grasp the underlying patterns and generate new content that
adheres to the same style or format.

Dynamic few-shot prompting addresses the limitations of
static few-shot prompting by adapting to the specific require-
ments of each task, providing the most relevant examples
to guide the model’s output. Jie & Lu (2023) show that for
general program generation that dynamic prompting using
past, correct programs improved code generation and rea-
soning over code and math problems. However, their study
didn’t explore the use of custom functions within larger
systems. Dynamic prompting is particularly important in
scenarios involving custom tools and functions, where static
examples may not adequately cover the variations and in-
tricacies of the task. Similarly, in the conversational AI
domain, the Few-shot Bot (FSB) employs prompt-based
few-shot learning to handle diverse conversational skills
without extensive retraining, demonstrating the versatility
of few-shot techniques across various applications (Madotto
et al., 2021).

Chain of Thought (CoT) prompting enhances problem-
solving in large language models by modeling intermedi-
ate reasoning steps, improving performance on complex
tasks like numerical reasoning (Wei et al., 2022). The Tree
of Thoughts (ToT) framework advances this by allowing
models to explore multiple reasoning paths and dynami-
cally evaluate different solutions, significantly enhancing
decision-making compared to CoT’s linear thought process
(Yao et al., 2024). Both techniques rely solely on internal
model computations and do not incorporate external data
during the reasoning process.

Separately, Retrieval Augmented Generation (RAG) in-
volves embedding the original prompt and searching a
database to retrieve relevant data before processing (Lewis
et al., 2020), effectively augmenting the prompt with exter-
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nal information, unlike CoT and ToT. Our CBR performs
retrieval of cases using embedding search, similar to RAG.

Figure 1. Case-based Reasoning with a LLM for Case Adaptation

3. CBR for Dynamic Few Shot Prompting
Figure 1 depicts our case-based reasoning dynamic few-
shot prompting approach responding to user’s task requests.
Starting with the user’s prompt, past cases are retrieved
based on cosine similarity between prompt embeddings.
Those cases’ solutions are then appended to the user’s
prompt before being passed to the LLM, which generates
new python code. This python code is then executed and
the outputs are sent to the user. If the user provides positive
feedback, this case is stored for future re-use in the case
base. Positive feedback stores the case for reuse, while neg-
ative feedback temporarily affects retrieved cases’ weights
before a new retrieval step begins.

A case in the case base contains the following:

Task Prompt: This is a description of the task to be done,
like what a user would request.

Task Plan: This is a natural language description of the
steps to be carried out. This plan provides additional
context for the python code.

Python Code: This is a working segment of python code
that can be directly executed to achieve the task.

4. Experimental Setup
We conduct an evaluation of our dynamic few-shot prompt-
ing approach against a static version and a zero-shot version.
For each version we test using GPT 4 (specifically gpt-4)
chat completion APIs2. The zero-shot code generation API
call is given a prompt with a description of the tools and
the description of the task from the user, but no examples.
For the static version, we randomly picked 3 cases from our
case base (out of 41) to provide for every API call along
with the user’s task at the end. For the dynamic version,
we use OpenAI text-embedding-ada-002 embeddings to re-
trieve cases using the test prompt and the prompt portion of
the case. These prompts are given in Appendix B. We set
temperature=0 for all API calls.

The test set is comprised of 30 user request prompts (Ap-
pendix A) that are representative of user requests on our
commercial GoCharlie.ai platform regarding web search,
content creation, and image creation. The custom functions
that are made available to the LLM to use in creating task
plans are the following (see the prompts in Appendix B for
the full definitions):

save outputs(...) Returns a result to the user.

add context(...) Saves content to be used by later custom
function calls.

get user uploaded file data(...) Retrieve file data con-
tents from a user uploaded file.

generate content(...) Perform a writing task such as writ-
ing a blog or social media post.

generate image(...) Create an AI generated image using
the given prompt.

search tool(...) Call an external search engine, such as
Google.

scrape url(...) Extract the natural english language text
from a webpage.

5. Results
We manually evaluated Python code results to determine
success or failure reasons. Figure 2 summarizes overall
performance. Dynamic few-shot prompting surpasses static
few-shot and zero-shot, though the gap between static and
dynamic is smaller than expected. This may stem from our
test set’s limitations (Appendix A), lacking diverse prompts
such as those involving user uploaded files.

2https://platform.openai.com/docs/api-reference/chat
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Approach FCE MNFC FCOO EPDBF MAFCO DNFOP FCFCO Total Failures

Zero-Shot GPT-4 - 3.33 13.33 3.33 3.33 3.33 - 30.00
Static 3-Shot GPT-4 - - - - 20.00 - 3.33 23.33
Dynamic 3-Shot GPT-4 3.33 3.33 - - 13.33 - - 20.00

Table 1. Percentage of failures by type. FCE: Function Call Error, MNFC: Missing Needed Function Call, FCOO: Function Calls Out of
Order, EPDBF: Error Passing Data Between Functions, MAFCO: Make Assumption on Function Call Output, DNFOP: Does Not Follow
Original Prompt, FCFCO: Failure to Check Function Call Output, Total Failures: Total number of failures for each approach

Figure 2. Percentage of Correct Code Generations

Unlike other benchmark evaluations, we do not have clear
numeric measures to evaluate whether the generated code
was good enough for the user. Generated code may be
syntactically correct but fail to align with the user’s intent
or utilize tools properly. After manual evaluation, we have
categorized failures into seven categories:

Function Call Error (FCE): This failure arises from im-
proper function calls. For instance, if a function like
save outputs expects image filenames as arguments,
the LLM might incorrectly pass text content instead.

Missing Needed Function Call (MNFC): This failure oc-
curs when a required function call is absent in the gen-
erated code, such as neglecting to perform a necessary
web search.

Function Calls Out of Order (FCOO): This failure hap-
pens when function calls occur in an incorrect se-
quence. For instance, if add context() isn’t called be-
fore another function that requires that context.

Error Passing Data Between Functions (EPDBF): This
failure occurs when the output of one function isn’t
used for another function. For example, not using web
search results when writing content, and instead only
writing content from a prompt.

Makes Assumptions on Function Call Output (MAFCO):
This failure happens when the LLM incorrectly as-
sumes the format of output data from a function

call. For example, assuming that the title from
generate blog() will end with a period and attempting
to retrieve it by splitting on a period.

Does Not Follow Original Prompt (DNFOP): This fail-
ure happens when the generated code incorrectly as-
sumes the intent of the prompt (possibly due to a lack
of context from the user). For instance, assuming that
a product description requires an AI-generated image
attachment (which is incorrect).

Failure to Check Function Call Output (FCFCO):
This failure arises when the generated code lacks
checks on function outputs before utilization. For
instance, when user-uploaded data returns a list, but
the generated code fails to verify if the list is empty in
cases where the user didn’t upload anything.

Table 1 shows failure percentages by type and approach,
revealing notable differences. Zero-shot method showed
highest “Function Calls Out of Order” errors, while both
static and dynamic few-shot had more “Making Assump-
tions on Function Call Output” errors, with dynamic few-
shot showing fewer errors than static. These results indicate
potential for dynamic few-shot prompting as a promising
approach.

6. Conclusion
Our integration of case-based reasoning for dynamic few-
shot prompting improves code generation accuracy over
static three-shot and zero-shot methods, notably in mini-
mizing seven common code generation errors. As LLMs
expand into more complex domains, methods such as case
base reasoning to improve prompts are increasingly valu-
able. However, their efficacy relies heavily on the careful
curation of the case bases with human feedback to avoid
misleading the LLM.

Future work should focus on extending dynamic prompting
to other tasks and refining case-based reasoning for broader
problem handling. Advanced case retrieval methods be-
yond simple embeddings retrieval are also necessary for
improved accuracy. These advancements hold promise for
more reliable code-generating models, enhancing automated
assistance in software development and technical fields.
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A. Evaluation Prompts Test Set
These prompts are representative of user requests on the GoCharlie.ai platform, and we use them as the test set in this paper
to evaluate python code generation.

1. ”Generate an image a cat floating in outer space”

2. ”Create 2 posts for instagram linkedin twitter and facebook about my product
https://www.etsy.com/listing/1503986620/magic-card-template-for-laser-engraving?”

3. ”Analyze the current state of microchips in cell phones and its trends challenges and opportunities including relevant
data and statistics. Provide a list of key players and a short and long-term industry forecast and explain any potential
impact of current events or future developments.”

4. ”Offer a detailed review of Discord for Etsy shop selling DnD dice.”

5. ”My business is a Dry Cleaner in Eastern Market Washington DC. Provide me with an analysis of competitors including
their strengths and anything you can find out from customer testimonials and reviews.”

6. ”I’m a realtor please create a series of social media posts for facebook about this listing
https://www.zillow.com/homedetails/5322-S-Big-Lake-Rd-Wasilla-AK-99623/249629577 zpid/”

7. ”Generate a list of 5 LinkedIn articles to write for bitcoin mining and choose one to make a blog about”

8. ”Turn the facebook post at this https://www.facebook.com/groups/pythondev/ into a series of tweets about my commu-
nity”

9. ”Tell me a joke about dogs. Include a meme.”

10. ”Create a social media post that targets surfers and explains how our product https://windy.app/ can help them.”

11. ”You are an expert social media manager. I want you to create a schedule for social media posts over one month
starting from July 1st. The frequency of posting will be daily. My business is called PencilsPlus and we sell premium
mechanical pencils. For each post include the day it will be published a heading body text and include relevant hashtags.
The tone of voice we use is friendly. For each post also include a suggestion for an image that we can use that could be
found on a stock image service.”

12. ”Create the back story of a local pizza restaurant started by two brothers. Based off of this make a story make instagram
and twitter captions pull stock images that matches the story and create a meme.”

13. ”Create instagram and pinterest posts and a blog post based off this link: https://www.homedepot.com/p/Artika-
Imperium-9-Light-Black-and-Gold-Modern-Sputnik-Geometric-Cage-Chandelier-Light-Fixture-for-Dining-Room-
or-Kitchen-CHMP-HD2BG/324526141”

14. ”Create a blog post with an inspiring message that promotes our product https://www.thehumansolution.com/ergonomic-
mouse.html. Focus on how the product can help people overcome a challenge or make their lives easier. Add emojis.
Add a clinical tone.”

15. ”Analyze the website https://www.nytimes.com and provide a summary of the top 5 news stories including key details
and implications.”

16. ”Generate an image of a robot dancing in a field of sunflowers and create a series of social media posts about the
importance of finding joy in unexpected places.”

17. ”Research the current state of renewable energy adoption worldwide including relevant data trends and challenges.
Provide a list of key players and a short and long-term industry forecast.”

18. ”Create a detailed review of Trello for a small business owner looking to improve their project management processes.”

19. ”I run a vegan bakery in Portland Oregon. Provide me with an analysis of local competitors including their strengths
and weaknesses based on customer reviews and testimonials.”

7
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20. ”I’m a fitness coach please create a series of Instagram posts about this product: https://www.nike.com/t/air-zoom-
pegasus-39-mens-road-running-shoes-2Dc8l9”

21. ”Generate a list of 5 blog post ideas related to sustainable fashion and choose one to write a detailed outline for.”

22. ”Turn the most recent tweet from @NASAClimate into a series of Facebook posts about the importance of addressing
climate change.”

23. ”Tell me a joke about cats. Include a relevant GIF.”

24. ”Create a social media post that targets new parents and explains how our product https://www.babysense.com can help
them monitor their baby’s sleep.”

25. ”You are an expert content strategist. I want you to create a content calendar for blog posts over three months starting
from September 1st. The frequency of posting will be weekly. My business is called GreenThumb and we sell organic
gardening supplies. For each post include the week it will be published a title a brief description and relevant keywords.
The tone of voice we use is informative and encouraging.”

26. ”Create the origin story of a sustainable fashion brand founded by three college friends. Based on this write a press
release generate Instagram and Twitter captions find stock images that match the story and create a meme.”

27. ”Create Pinterest posts and a detailed product description based on this link: https://www.patagonia.com/product/mens-
better-sweater-fleece-jacket/25528.html”

28. ”Write a blog post with a humorous tone that showcases our product https://www.squattypotty.com. Focus on how the
product can make a mundane task more enjoyable. Add relevant puns and a touch of irreverence.”

29. ”Create a comprehensive blog post about the benefits of practicing yoga for stress relief. Use the search engine to find
relevant scientific studies and expert opinions to support your points. Generate a list of 5 simple yoga poses that can
be done at home or in the office and provide step-by-step instructions for each pose. Create 2-3 images that visually
demonstrate these poses and integrate them into the blog post. Additionally generate a short guided meditation script
that readers can use to further reduce stress. Finally create social media posts for Instagram Facebook and Twitter to
promote the blog post using relevant hashtags and compelling visuals.”

30. ”You are a travel blogger who has just returned from a trip to Bali Indonesia. Write a detailed blog post about your
experience highlighting the best attractions restaurants and hidden gems you discovered during your visit. Use the
search engine to find high-quality images of the locations you mention and integrate them throughout the post. Create a
’Top 5’ list of must-see places in Bali and provide a brief description of each. Generate an infographic that showcases
interesting facts and statistics about Bali’s culture history and tourism industry. Finally create a series of Instagram
posts and stories that give your followers a behind-the-scenes look at your trip using the images you found and relevant
hashtags to increase engagement.”

B. Static Prompts
These are the static prompts used in our evaluation. These prompts are appended with a test prompt when given to the LLM
for chat completion.

B.1. Zero-shot static prompt

I will ask you to perform a task. Your job is to devise a plan to execute that
\ task, followed by writing a Python function calling a series of tools
\ to execute that task. You can ONLY use the tools listed and ignore
\ tasks that cannot be solved with the given tools. Do NOT assume any
\ other functions. You must always return a Python function.

Tools:

- util
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Description: a utilities class instance used to save context for other
\ api tools (listed below) and to save outputs

to the user. The following functions are all within the util class.
- util.save_outputs(primary_content: str, primary_type: str,

\ attached_files: [str]) -> None
Description: saves the content and attached files so the user

\ will receive it as an output; remember that images
\ should always go in attached files, even if
\ primary_content is empty.

Inputs:
primary_content (str): main text content.
primary_type (str): the type the content is like blog, email,

\ etc.
attached_files (list): a list of attached files to the

\ primary content (note: images should always be
\ given in this list and not as the primary_content).

Output: None

- util.add_context(content: str, context_type: str) -> None
Description: stores the content as context for the next api tools

\ to use. By adding context with this
function, the next api tools that are called with already have

\ access to the content.
Inputs:

content (str): content, such as relevant text, to be used as
\ context to improve other api tools.

context_type (str): optional, the type of content being added
\ which must be one of the following options only:
- ’transcriptions’ for video and audio links,
- ’search_results’ for search engine results,
- ’website’ for scraped website content,

Output: None

- util.get_user_uploaded_file_data(file_data_type: str) -> [str]
Description: retrieve data that has been already processed from the

\ user, given the type of data
Inputs:

file_data_type (str): only one of
- ’transcriptions’,
- ’image_captions’,
- ’documents’

Output: a list of strings of text data, one string per file

- util.generate_content(prompt: str, content_type: str) - > str
Description: generates text content given a prompt and content type.
Inputs:

prompt (str): a description of the content we want to create.
content_type (str): one of the following options only ’text’, ’

\ blog’, ’facebook’, ’instagram’, ’twitter’, ’linkedin’.
Output: a string of the generated text content.

- util.generate_image(prompt: str, image_type: str) -> str
Description: generates an image based on a description and type of

\ image.
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Inputs:
prompt (str): a description of what kind of image we want.
image_type (str): one of the following options only ’ai_generated

\ ’, ’logo’, ’meme’, ’gif’.
Output: an image filename as a string

- util.search_tool(prompt: str, search_type: str, n: int) -> str
Description: Google or news search based on a query prompt. It will

\ only return links and descriptions, not images.
Inputs:

prompt (str): query we want to search.
search_type (str): one of the following options ’google’, ’news’.
n (int): an optional input of the number of search results we

\ want.
Output (str): text search results with the format "URL, Name, Content

\ "

- util.scrape_url(url: str) -> str
Description: scrape the text from a website. This can also scrape

\ watch youtube videos.
Inputs:

url (str): a valid url.
Output: the text content from the url

Here is the user’s task. Write only python code and nothing else, so that I can
\ copy and paste it and then immediately run it (don’t use markdown or
\ any other non-python text before or after the python code, this is very
\ important). Make sure that the python code is in a single function
\ named ’function’ that takes only the util variable.:

B.2. 3-shot static prompt

I will ask you to perform a task. Your job is to devise a plan to execute that
\ task, followed by writing a Python function calling a series of tools
\ to execute that task. You can ONLY use the tools listed and ignore
\ tasks that cannot be solved with the given tools. Do NOT assume any
\ other functions. You must always return a Python function.

Tools:

- util
Description: a utilities class instance used to save context for other

\ api tools (listed below) and to save outputs
to the user. The following functions are all within the util class.
- util.save_outputs(primary_content: str, primary_type: str,

\ attached_files: [str]) -> None
Description: saves the content and attached files so the user

\ will receive it as an output; remember that images
\ should always go in attached files, even if
\ primary_content is empty.

Inputs:
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primary_content (str): main text content.
primary_type (str): the type the content is like blog, email,

\ etc.
attached_files (list): a list of attached files to the

\ primary content (note: images should always be
\ given in this list and not as the primary_content).

Output: None

- util.add_context(content: str, context_type: str) -> None
Description: stores the content as context for the next api tools

\ to use. By adding context with this
function, the next api tools that are called with already have

\ access to the content.
Inputs:

content (str): content, such as relevant text, to be used as
\ context to improve other api tools.

context_type (str): optional, the type of content being added
\ which must be one of the following options only:
- ’transcriptions’ for video and audio links,
- ’search_results’ for search engine results,
- ’website’ for scraped website content,

Output: None

- util.get_user_uploaded_file_data(file_data_type: str) -> [str]
Description: retrieve data that has been already processed from the

\ user, given the type of data
Inputs:

file_data_type (str): only one of
- ’transcriptions’,
- ’image_captions’,
- ’documents’

Output: a list of strings of text data, one string per file

- util.generate_content(prompt: str, content_type: str) - > str
Description: generates text content given a prompt and content type.
Inputs:

prompt (str): a description of the content we want to create.
content_type (str): one of the following options only ’text’, ’

\ blog’, ’facebook’, ’instagram’, ’twitter’, ’linkedin’.
Output: a string of the generated text content.

- util.generate_image(prompt: str, image_type: str) -> str
Description: generates an image based on a description and type of

\ image.
Inputs:

prompt (str): a description of what kind of image we want.
image_type (str): one of the following options only ’ai_generated

\ ’, ’logo’, ’meme’, ’gif’.
Output: an image filename as a string

- util.search_tool(prompt: str, search_type: str, n: int) -> str
Description: Google or news search based on a query prompt. It will

\ only return links and descriptions, not images.
Inputs:
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prompt (str): query we want to search.
search_type (str): one of the following options ’google’, ’news’.
n (int): an optional input of the number of search results we

\ want.
Output (str): text search results with the format "URL, Name, Content

\ "

- util.scrape_url(url: str) -> str
Description: scrape the text from a website. This can also scrape

\ watch youtube videos.
Inputs:

url (str): a valid url.
Output: the text content from the url

Task: What are the top 10 sites about AI?
Plan:
1. Search for "AI" on Google and retrieve the top 10 search results.
2. Return the list of search results as the answer.
Code:
def function(util):

prompt = "AI"
search_type = ’search’
n = 10
search_results = util.search_tool(prompt=prompt, search_type=search_type, n=n

\ )
util.add_context(search_results)

prompt = "List the top 10 sites on AI with brief summary."
content_type = "text"
answer = util.generate_content(prompt=prompt, content_type=content_type)

util.save_outputs(primary_content=answer, primary_type=’answer’)

return util
<|#####|>
Task: Search the latest news in Generative AI and summarize it in bullet points.

\ Then, create a blog brief for me.
Plan:
1. Use the search tool to find the latest news in Generative AI.
2. Analyze the text content and generate bullet points summarizing the news.
3. Save the bullet points as outputs.
4. Generate a blog brief based on the bullet points.
5. Save the blog brief as an output.
Code:
def function(util):

prompt = ’latest news in Generative AI’
search_type = ’news’
n = 5
search_results = util.search_tool(prompt=prompt, search_type=search_type, n=n

\ )
util.add_context(search_results)

prompt = "Summarize the news in Generative AI in bullet points. Cite sources
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\ ."
content_type = "Text"
bullet_points = util.generate_content(prompt=prompt, content_type=

\ content_type)
util.add_context(bullet_points)

util.save_outputs(primary_content=bullet_points, primary_type=’bullet_points
\ ’)

prompt = "From the bullet point News in Generative AI, write a blog breif."
content_type = ’blog_brief’
blog_brief = util.generate_content(prompt=prompt, content_type=content_type)

util.save_outputs(primary_content=blog_brief, primary_type=’blog_brief’)

return util
<|#####|>
Task: Make two tweets based off of this video https://www.youtube.com/watch?v=

\ jEeWiTGMWCw
Plan:
1. Scrape the youtube video url to get the transcription.
2. Save the transcription text as context.
3. Write the first tweet.
4. Save the first tweet.
5. Write the second tweet.
6. Save the second tweet.
Code:
def function(util):

url = "https://www.youtube.com/watch?v=jEeWiTGMWCw"
transcribed_text = util.scrape_url(url=url)
util.add_context(transcribed_text)

prompt = ’Write a tweet based on the video transcription’
content_type = ’twitter’

tweet1 = util.generate_content(prompt=prompt, content_type=content_type)
util.save_outputs(primary_content=tweet1, primary_type=’tweet’)

tweet2 = util.generate_content(prompt=prompt, content_type=content_type)
util.save_outputs(primary_content=tweet2, primary_type=’tweet’)

return util
<|#####|>
Task: Offer a detailed review of Discord for Etsy shop selling DnD dice.
Plan:
1.
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