Towards Automatically Optimizing Retrieval
Augmented Al Systems

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Language Models (LLMs) are increasingly deployed in real-world systems, with
Retrieval-Augmented Generation (RAG) a dominant production workload. Yet LLM de-
ployments are energy-intensive, as inference accounts for over 90% of the model lifecycle
in cloud workloads. We show that RAG workflows with near-identical accuracy can differ
drastically in energy consumption—a property we call workflow fungibility. For example,
pairing Llama3-8B with stronger retrievers matches the accuracy of Llama3-70B while using
over 5x less energy. To study this effect, we profile retrieval and generation configurations
across FinanceBench and FRAMES, mapping the joint accuracy—energy landscape. Our
results reveal configurations within < 3% accuracy that differ by up to 20.2x in energy,
exposing large hidden opportunities for efficiency. We further demonstrate that lightweight
regressors can predict accuracy from a small set of configuration knobs, enabling prediction-
guided pruning of the design space. These findings establish workflow fungibility as a key
lever for sustainable RAG, and point toward systematic, energy-aware configuration as a
critical direction for retrieval-based LLM systems.

1 Introduction

The shift to using Large Language Models (LLMs) as a modular component in real-world systems
marks a new deployment paradigm [1-5]. Retrieval Augmented Al Systems, which we broadly
refer to as RAG, is a representative and widely-deployed LLM system that powers enterprise search,
customer support, and knowledge-intensive applications across industry [6—10]. Yet, this rapidly
growing deployment faces a grand challenge: unsustainable energy consumption. With LLM
inference constituting over 90% of the model lifecycle in major cloud workloads [11], test-time
scaling with LLMs creates immense energy demands that threaten both economic viability and
environmental sustainability.

To reduce Al energy consumption, we exploit RAG’s modular architecture. RAG systems do not
prescribe a specific pipeline, but are rather a method for solving knowledge-intensive tasks with
many algorithmic choices for components such as retrievers, rerankers, generation model, query
reformulation, and so on. As we show in Section 2.2, different configurations of these components
can deliver nearly identical accuracy while consuming vastly different amounts of energy. For
instance, the right choice of retriever can enable a system with Llama3-8B to match the accuracy
of Llama3-70B while using 5.42x fewer average energy per query (energy breakdown shown in
Appendix C). This insight, which we term workflow fungibility, demonstrates that careful RAG
configuration can unlock massive energy savings without degrading task quality.

As a first step toward exploiting workflow fungibility in RAG, we study the atomic units of the
pipeline—retrieval and generation—and empirically map their joint accuracy—energy landscape
across representative configurations. Varying the retriever, retrieval depth k, and the generator LLM

reveals many configurations with near-identical accuracy but multi- x differences in per-query energy.

This reframes the objective from finding a single “best” pipeline to navigating a set of near-optimal
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FinanceBench Accuracy-Energy Trade Off Space
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Figure 1: Accuracy—energy tradeoffs for FinanceBench. Each point represents an unique RAG
configuration (retriever, retrieval depth, generator), with circles denoting Llama3-8B and squares
denoting Llama3-70B as generators. Color encodes embedding model choice for retrieval. Same
color and shape represent varying k (depth). The z-axis reports per-query energy (J), while the y-axis
reports average RAG accuracy reported by LLM-as-a-Judge with Llama3-70b. The red curve traces
the Pareto frontier. We highlight four configuration pairs that differ by less than 3% accuracy but by
3.4-20.2x difference in per-query energy, showing the optimization opportunities hidden in RAG.

pipelines under energy constraints. On FinanceBench and FRAMES, we find configurations within
< 3% accuracy that differ by up to 20.2x in energy.

However, systematically exploiting workflow fungibility for accuracy—energy optimization is chal-
lenging due to an exponentially large search space. To make such navigation practical, we train
lightweight models that predict downstream answer accuracy from a few configuration knobs (re-
triever, k, LLM). Coupled with measured energy, these predictions allow practitioners to shortlist
energy-efficient candidates near the empirical Pareto frontier without exhaustive profiling. As proof
of concept that we can use ML solution towards the challenge of wide configuration space, we train a
random forest model that effectively predict optimal configurations with RMSE under 0.05. This
result demonstrates an opportunity to systematically optimize RAG for accuracy-energy trade-off.

Recent systems improve RAG efficiency but do not navigate the full configuration space or treat
energy as a first-class objective. Hermes [12] accelerates retrieval but leaves end-to-end configuration
open. METIS [13] selects from a small set of options (e.g., synthesis method, number of chunks, in-
termediate length) via a simple rule-based mapping from an LLM-generated query profile. Execution
frameworks like Murakkab [14] and HedraRAG [15] schedule predefined workflows and assume
extensive profiling is available. In short, existing approaches rely on profiling narrow configuration
families and do not scale to the combinatorial space. We instead extend the search with ML-based
accuracy prediction and pair it with component-level energy profiles, enabling prediction-guided
pruning toward energy-aware configuration.

Our contributions include:

1. Workflow fungibility: RAG configurations can achieve similar accuracy with up to 20.2x
differences in energy.

2. Accuracy-energy profiling: We map the joint landscape of retrievers, depths, and generators on
FinanceBench and FRAMES.

3. Prediction-guided search: Lightweight regressors accurately predict accuracy from configuration
knobs, enabling efficient pruning.

4. Sustainable RAG: Electro is the first step toward end-to-end energy-aware optimization in
compound LLM systems.

2  Workflow Fungibility: Design Space Exploration

To systematically optimize energy efficiency in RAG, we must first understand how different con-
figurations behave across their vast design space. This section characterizes the RAG pipeline and



establishes our key insight: multiple workflows can achieve near-identical accuracy with drasti-
cally different energy consumption. Through systematic profiling across benchmarks, we show
that workflow fungibility—the interchangeability of components without loss of accuracy—offers
orders-of-magnitude opportunities for energy savings.

2.1 The Design Space

In practice, retrieval-augmented Al systems for knowledge-intensive and Q&A tasks (which we
refer to collectively as RAG) comprise many stages with no fixed scope of components, composed
to fit application needs. Common techniques include query reformulation; dense, sparse, hybrid,
or web-augmented retrieval; retrieval-depth control (fop-k, dynamic k); reranking (cross-encoder
or LLM-based); context construction (chunking, deduplication); context compression (summariza-
tion/filtering); and generation policies (model/routing, decoding, response caching).

As a first step toward this problem, we focus on two components that dominate the accuracy—energy
trade space: Retrieval and Generation. Even for a minimal retriever— generator pipeline, combinato-
rial choices across these knobs yield hundreds of configurations with distinct accuracy and energy
footprints, motivating a need for systematic exploration.

2.2 Discovering Workflow Fungibility

Setup. We profile RAG configurations on two knowledge-intensive Q&A benchmarks with increasing
level of task difficulty: FinanceBench and FRAMES. Our design space spans five embedding models,
retrieval depths (k € {1, 3,5, 10,15, 20, 25, 30, 35, 40,45, 50}), and two generators (Llama3-8B,
Llama3-70B). We use a FAISS HNSW index and drive the system with a Poisson load generator
while monitoring GPU power via nvidia-smi to compute per-query energy (J).

Findings. Fig. 1 illustrates the core insight of workflow fungibility. Configurations that differ by
less than 3% in accuracy often vary by orders of magnitude in energy, revealing large hidden system
efficiency opportunities. Generator choice dominates this tradeoff: Llama3-70B configurations
consistently incur much higher energy, while Llama3-8B paired with stronger retrievers can match its
accuracy at a fraction of the cost. Retrieval depth further shapes the curve: larger k inflates energy
without guaranteed accuracy gains, and in some cases even reduces performance. We provide the
trade-off space result for FRAMES in Appx. A and component-level energy analysis in Appx. C.

These findings reinforce two insights. First, there is no single “best” RAG pipeline. The efficient
choice depends on accuracy targets and energy constraints. Second, current compound Al systems
miss massive energy reduction opportunities underscores the need for systematic, accuracy—energy
aware exploration of the RAG design space.

3 Towards Prediction-Guided Navigation of the RAG Design Space

To systematically exploit workflow fungibility for RAG pipelines, exhaustive profiling is infeasible
due to the exponentially growing configuration space. The challenge is then to find an energy-efficient
configuration while maintaining the task quality without sweeping through the entire design space.

A promising direction towards this challenge is prediction-guided navigation. Energy consumption
of a RAG configuration can be approximated by aggregating the profiled energy of its individual
components, so the main difficulty lies in predicting downstream accuracy. Accuracy does not follow
simple trends across knobs: as shown in Section 2, changes in retrieval depth or embedding model
can have nonlinear effects. Thus, the central task for systematic optimization is to build models that
estimate accuracy efficiently, and then cross-reference these predictions with component-level energy
profiles to identify Pareto-efficient configurations.

Our key idea is to use lightweight models that predict downstream performance from configuration
features. Our results demonstrate that even simple regressors can approximate downstream accuracy
with high fidelity, establishing prediction-guided methods as a feasible first step toward scalable,
energy-aware configuration of RAG pipelines.
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3.1 Performance Predictor

Given the vast configuration space of compound Al systems, exhaustive exploration is prohibitively
expensive. Even modest RAG pipelines combine multiple retrievers, retrieval depths, and large
language models, resulting in thousands of potential configurations. Rather than exhaustively
evaluating each combination directly, a promising approach is to predict system performance from
a subset of configuration features, thereby narrowing the search space. As an initial step, we train
lightweight regressors to predict downstream accuracy from three knobs: retriever type, number of
retrieved documents (k), and choice of LLM. Our design space includes two LLMs, five retrievers, and
12 retrieval depths (full spec in Appendix B). We evaluate predictions using 10-fold cross-validation
on FinanceBench and FRAMES.

To contextualize results, we compare against a random baseline that assigns performance values at
random. Unsurprisingly, this baseline performs poorly on both FinanceBench and Frames.

Random Forest Regressor

Table 1: Accuracy prediction Performance. 10  Fromes
[ FinanceBench
Model FinanceBench Frames § 08 T
]
RMSE MAE RMSE MAE o6
(-}
Random 0.4405 0.3535 0.4874 0.4016 E
DecisionTree 0.0494 0.0323 0.0122 0.0098 g 0.4
KNN 0.0490 0.0318 0.0098 0.0078 ®
Linear Regression  0.0527 0.0404 0.0116 0.0094 £0.2
MLP 0.0500 0.0365 0.0115 0.0090
Random Forest 0.0470 0.0303 0.0101 0.0083 0.0 ogel Retriever Depth (k)
SVR 0.0721 0.0660 0.0507 0.0437 Feature Categories

Figure 2: Feature importance comparison.

Across all models, we observe substantial improvements over random guessing shown in Table 1.
Decision Trees, KNN, Random Forests, and MLP regressors consistently achieve strong performance,
with Random Forests reaching the best predictive accuracy on both datasets. Even Linear Regression
reduce error significantly, showing that much of the mapping from configuration to performance can
be captured by simple linear trends.

Our modeling results also reveal insights beyond prediction accuracy. Feature importance analysis
(Fig. 2) shows that different components matter for different tasks. For FinanceBench, retrieval type
dominates, followed by number of retrieved items (k); in Frames, the choice of LLM emerges as the
most critical predictor of accuracy, followed by retrieval type features, with k playing a smaller role.
This divergence highlights that the most influential factors are task-dependent. Optimizers that treat
all knobs equally risk wasting profiling effort on parameters with marginal impact. These findings
establish predictive modeling as a practical first step toward scalable configuration optimization,
reducing the cost of exploring large design spaces while preserving accuracy.

4 Discussion and Ongoing Work

With workflow fungibility established and prediction-guided navigation shown feasible, we are
building toward a novel framework that unifies these two steps: systematic profiling to expose the
accuracy—energy landscape, and lightweight prediction to efficiently traverse it. Together, these
capabilities form the foundation for automatic configuration of RAG pipelines under energy and
quality constraints.

This work represents the first step in a larger, ongoing project on efficient and sustainable Retrieval-
Augmented Al systems. Moving forward, we are extending our approach with runtime adaptation
that dynamically adjusts configurations under changing workloads, expanding profiling to broader
domains and tasks, and developing new search algorithms for navigating massive design spaces.
A natural next direction is to move beyond accuracy prediction to directly predict for optimal
configuration for a given task. Together, these directions point toward a future where LLM-based
retrieval pipelines can automatically self-configure for both efficiency and quality, making large-scale
LLM deployment to be both effective and sustainable.
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Appendix

A FRAMES Result

Frames Accuracy-Energy Trade Off Space
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Figure 3: Accuracy—energy tradeoffs for FRAMES. Each point represents an unique RAG configu-
ration (retriever, retrieval depth, generator), with circles denoting Llama3-8B and squares denoting
Llama3-70B as generators. Color encodes embedding model choice for retrieval. Same color and
shape represent varying k (depth). The x-axis reports per-query energy (J), while the y-axis reports
average RAG accuracy reported by LL.M-as-a-Judge with Llama3-70b. The red curve traces the

Pareto frontier.

B Performance Predictor Setup 225

Table 2: Configuration design space modeled in Electro for Performance Predictor.

Component

Options

Generation Model
Retriever (Embedding Model)

Retrieval Depth (k)

Llama-3.1-8B-Instruct, Llama-3.3-70B-Instruct
bm?25, hybrid, wiki-gte-multilingual, wiki-e5-small,
wiki-snowflake-arctic-s, wiki-inf-retriever-v1-1.5b
{1, 3,5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

C RAG Energy Component-Level Analysis 226
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