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Abstract

Large Language Models (LLMs) are increasingly deployed in real-world systems, with 1

Retrieval-Augmented Generation (RAG) a dominant production workload. Yet LLM de- 2

ployments are energy-intensive, as inference accounts for over 90% of the model lifecycle 3

in cloud workloads. We show that RAG workflows with near-identical accuracy can differ 4

drastically in energy consumption—a property we call workflow fungibility. For example, 5

pairing Llama3-8B with stronger retrievers matches the accuracy of Llama3-70B while using 6

over 5× less energy. To study this effect, we profile retrieval and generation configurations 7

across FinanceBench and FRAMES, mapping the joint accuracy–energy landscape. Our 8

results reveal configurations within ≤ 3% accuracy that differ by up to 20.2× in energy, 9

exposing large hidden opportunities for efficiency. We further demonstrate that lightweight 10

regressors can predict accuracy from a small set of configuration knobs, enabling prediction- 11

guided pruning of the design space. These findings establish workflow fungibility as a key 12

lever for sustainable RAG, and point toward systematic, energy-aware configuration as a 13

critical direction for retrieval-based LLM systems. 14

1 Introduction 15

The shift to using Large Language Models (LLMs) as a modular component in real-world systems 16

marks a new deployment paradigm [1–5]. Retrieval Augmented AI Systems, which we broadly 17

refer to as RAG, is a representative and widely-deployed LLM system that powers enterprise search, 18

customer support, and knowledge-intensive applications across industry [6–10]. Yet, this rapidly 19

growing deployment faces a grand challenge: unsustainable energy consumption. With LLM 20

inference constituting over 90% of the model lifecycle in major cloud workloads [11], test-time 21

scaling with LLMs creates immense energy demands that threaten both economic viability and 22

environmental sustainability. 23

To reduce AI energy consumption, we exploit RAG’s modular architecture. RAG systems do not 24

prescribe a specific pipeline, but are rather a method for solving knowledge-intensive tasks with 25

many algorithmic choices for components such as retrievers, rerankers, generation model, query 26

reformulation, and so on. As we show in Section 2.2, different configurations of these components 27

can deliver nearly identical accuracy while consuming vastly different amounts of energy. For 28

instance, the right choice of retriever can enable a system with Llama3-8B to match the accuracy 29

of Llama3-70B while using 5.42× fewer average energy per query (energy breakdown shown in 30

Appendix C). This insight, which we term workflow fungibility, demonstrates that careful RAG 31

configuration can unlock massive energy savings without degrading task quality. 32

As a first step toward exploiting workflow fungibility in RAG, we study the atomic units of the 33

pipeline—retrieval and generation—and empirically map their joint accuracy–energy landscape 34

across representative configurations. Varying the retriever, retrieval depth k, and the generator LLM 35

reveals many configurations with near-identical accuracy but multi-× differences in per-query energy. 36

This reframes the objective from finding a single “best” pipeline to navigating a set of near-optimal 37
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Figure 1: Accuracy–energy tradeoffs for FinanceBench. Each point represents an unique RAG
configuration (retriever, retrieval depth, generator), with circles denoting Llama3-8B and squares
denoting Llama3-70B as generators. Color encodes embedding model choice for retrieval. Same
color and shape represent varying k (depth). The x-axis reports per-query energy (J), while the y-axis
reports average RAG accuracy reported by LLM-as-a-Judge with Llama3-70b. The red curve traces
the Pareto frontier. We highlight four configuration pairs that differ by less than 3% accuracy but by
3.4-20.2x difference in per-query energy, showing the optimization opportunities hidden in RAG.

pipelines under energy constraints. On FinanceBench and FRAMES, we find configurations within38

≤3% accuracy that differ by up to 20.2× in energy.39

However, systematically exploiting workflow fungibility for accuracy–energy optimization is chal-40

lenging due to an exponentially large search space. To make such navigation practical, we train41

lightweight models that predict downstream answer accuracy from a few configuration knobs (re-42

triever, k, LLM). Coupled with measured energy, these predictions allow practitioners to shortlist43

energy-efficient candidates near the empirical Pareto frontier without exhaustive profiling. As proof44

of concept that we can use ML solution towards the challenge of wide configuration space, we train a45

random forest model that effectively predict optimal configurations with RMSE under 0.05. This46

result demonstrates an opportunity to systematically optimize RAG for accuracy-energy trade-off.47

Recent systems improve RAG efficiency but do not navigate the full configuration space or treat48

energy as a first-class objective. Hermes [12] accelerates retrieval but leaves end-to-end configuration49

open. METIS [13] selects from a small set of options (e.g., synthesis method, number of chunks, in-50

termediate length) via a simple rule-based mapping from an LLM-generated query profile. Execution51

frameworks like Murakkab [14] and HedraRAG [15] schedule predefined workflows and assume52

extensive profiling is available. In short, existing approaches rely on profiling narrow configuration53

families and do not scale to the combinatorial space. We instead extend the search with ML-based54

accuracy prediction and pair it with component-level energy profiles, enabling prediction-guided55

pruning toward energy-aware configuration.56

Our contributions include:57

1. Workflow fungibility: RAG configurations can achieve similar accuracy with up to 20.2×58

differences in energy.59

2. Accuracy–energy profiling: We map the joint landscape of retrievers, depths, and generators on60

FinanceBench and FRAMES.61

3. Prediction-guided search: Lightweight regressors accurately predict accuracy from configuration62

knobs, enabling efficient pruning.63

4. Sustainable RAG: Electro is the first step toward end-to-end energy-aware optimization in64

compound LLM systems.65

2 Workflow Fungibility: Design Space Exploration66

To systematically optimize energy efficiency in RAG, we must first understand how different con-67

figurations behave across their vast design space. This section characterizes the RAG pipeline and68
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establishes our key insight: multiple workflows can achieve near-identical accuracy with drasti- 69

cally different energy consumption. Through systematic profiling across benchmarks, we show 70

that workflow fungibility—the interchangeability of components without loss of accuracy—offers 71

orders-of-magnitude opportunities for energy savings. 72

2.1 The Design Space 73

In practice, retrieval-augmented AI systems for knowledge-intensive and Q&A tasks (which we 74

refer to collectively as RAG) comprise many stages with no fixed scope of components, composed 75

to fit application needs. Common techniques include query reformulation; dense, sparse, hybrid, 76

or web-augmented retrieval; retrieval-depth control (top-k, dynamic k); reranking (cross-encoder 77

or LLM-based); context construction (chunking, deduplication); context compression (summariza- 78

tion/filtering); and generation policies (model/routing, decoding, response caching). 79

As a first step toward this problem, we focus on two components that dominate the accuracy–energy 80

trade space: Retrieval and Generation. Even for a minimal retriever→generator pipeline, combinato- 81

rial choices across these knobs yield hundreds of configurations with distinct accuracy and energy 82

footprints, motivating a need for systematic exploration. 83

2.2 Discovering Workflow Fungibility 84

Setup. We profile RAG configurations on two knowledge-intensive Q&A benchmarks with increasing 85

level of task difficulty: FinanceBench and FRAMES. Our design space spans five embedding models, 86

retrieval depths (k ∈ {1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}), and two generators (Llama3-8B, 87

Llama3-70B). We use a FAISS HNSW index and drive the system with a Poisson load generator 88

while monitoring GPU power via nvidia-smi to compute per-query energy (J). 89

Findings. Fig. 1 illustrates the core insight of workflow fungibility. Configurations that differ by 90

less than 3% in accuracy often vary by orders of magnitude in energy, revealing large hidden system 91

efficiency opportunities. Generator choice dominates this tradeoff: Llama3-70B configurations 92

consistently incur much higher energy, while Llama3-8B paired with stronger retrievers can match its 93

accuracy at a fraction of the cost. Retrieval depth further shapes the curve: larger k inflates energy 94

without guaranteed accuracy gains, and in some cases even reduces performance. We provide the 95

trade-off space result for FRAMES in Appx. A and component-level energy analysis in Appx. C. 96

These findings reinforce two insights. First, there is no single “best” RAG pipeline. The efficient 97

choice depends on accuracy targets and energy constraints. Second, current compound AI systems 98

miss massive energy reduction opportunities underscores the need for systematic, accuracy–energy 99

aware exploration of the RAG design space. 100

3 Towards Prediction-Guided Navigation of the RAG Design Space 101

To systematically exploit workflow fungibility for RAG pipelines, exhaustive profiling is infeasible 102

due to the exponentially growing configuration space. The challenge is then to find an energy-efficient 103

configuration while maintaining the task quality without sweeping through the entire design space. 104

A promising direction towards this challenge is prediction-guided navigation. Energy consumption 105

of a RAG configuration can be approximated by aggregating the profiled energy of its individual 106

components, so the main difficulty lies in predicting downstream accuracy. Accuracy does not follow 107

simple trends across knobs: as shown in Section 2, changes in retrieval depth or embedding model 108

can have nonlinear effects. Thus, the central task for systematic optimization is to build models that 109

estimate accuracy efficiently, and then cross-reference these predictions with component-level energy 110

profiles to identify Pareto-efficient configurations. 111

Our key idea is to use lightweight models that predict downstream performance from configuration 112

features. Our results demonstrate that even simple regressors can approximate downstream accuracy 113

with high fidelity, establishing prediction-guided methods as a feasible first step toward scalable, 114

energy-aware configuration of RAG pipelines. 115
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3.1 Performance Predictor116

Given the vast configuration space of compound AI systems, exhaustive exploration is prohibitively117

expensive. Even modest RAG pipelines combine multiple retrievers, retrieval depths, and large118

language models, resulting in thousands of potential configurations. Rather than exhaustively119

evaluating each combination directly, a promising approach is to predict system performance from120

a subset of configuration features, thereby narrowing the search space. As an initial step, we train121

lightweight regressors to predict downstream accuracy from three knobs: retriever type, number of122

retrieved documents (k), and choice of LLM. Our design space includes two LLMs, five retrievers, and123

12 retrieval depths (full spec in Appendix B). We evaluate predictions using 10-fold cross-validation124

on FinanceBench and FRAMES.125

To contextualize results, we compare against a random baseline that assigns performance values at126

random. Unsurprisingly, this baseline performs poorly on both FinanceBench and Frames.

Table 1: Accuracy prediction Performance.

Model FinanceBench Frames

RMSE MAE RMSE MAE

Random 0.4405 0.3535 0.4874 0.4016
DecisionTree 0.0494 0.0323 0.0122 0.0098
KNN 0.0490 0.0318 0.0098 0.0078
Linear Regression 0.0527 0.0404 0.0116 0.0094
MLP 0.0500 0.0365 0.0115 0.0090
Random Forest 0.0470 0.0303 0.0101 0.0083
SVR 0.0721 0.0660 0.0507 0.0437
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Figure 2: Feature importance comparison.

127

Across all models, we observe substantial improvements over random guessing shown in Table 1.128

Decision Trees, KNN, Random Forests, and MLP regressors consistently achieve strong performance,129

with Random Forests reaching the best predictive accuracy on both datasets. Even Linear Regression130

reduce error significantly, showing that much of the mapping from configuration to performance can131

be captured by simple linear trends.132

Our modeling results also reveal insights beyond prediction accuracy. Feature importance analysis133

(Fig. 2) shows that different components matter for different tasks. For FinanceBench, retrieval type134

dominates, followed by number of retrieved items (k); in Frames, the choice of LLM emerges as the135

most critical predictor of accuracy, followed by retrieval type features, with k playing a smaller role.136

This divergence highlights that the most influential factors are task-dependent. Optimizers that treat137

all knobs equally risk wasting profiling effort on parameters with marginal impact. These findings138

establish predictive modeling as a practical first step toward scalable configuration optimization,139

reducing the cost of exploring large design spaces while preserving accuracy.140

4 Discussion and Ongoing Work141

With workflow fungibility established and prediction-guided navigation shown feasible, we are142

building toward a novel framework that unifies these two steps: systematic profiling to expose the143

accuracy–energy landscape, and lightweight prediction to efficiently traverse it. Together, these144

capabilities form the foundation for automatic configuration of RAG pipelines under energy and145

quality constraints.146

This work represents the first step in a larger, ongoing project on efficient and sustainable Retrieval-147

Augmented AI systems. Moving forward, we are extending our approach with runtime adaptation148

that dynamically adjusts configurations under changing workloads, expanding profiling to broader149

domains and tasks, and developing new search algorithms for navigating massive design spaces.150

A natural next direction is to move beyond accuracy prediction to directly predict for optimal151

configuration for a given task. Together, these directions point toward a future where LLM-based152

retrieval pipelines can automatically self-configure for both efficiency and quality, making large-scale153

LLM deployment to be both effective and sustainable.154
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Appendix 223

A FRAMES Result 224
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Figure 3: Accuracy–energy tradeoffs for FRAMES. Each point represents an unique RAG configu-
ration (retriever, retrieval depth, generator), with circles denoting Llama3-8B and squares denoting
Llama3-70B as generators. Color encodes embedding model choice for retrieval. Same color and
shape represent varying k (depth). The x-axis reports per-query energy (J), while the y-axis reports
average RAG accuracy reported by LLM-as-a-Judge with Llama3-70b. The red curve traces the
Pareto frontier.

B Performance Predictor Setup 225

Table 2: Configuration design space modeled in Electro for Performance Predictor.
Component Options
Generation Model Llama-3.1-8B-Instruct, Llama-3.3-70B-Instruct
Retriever (Embedding Model) bm25, hybrid, wiki-gte-multilingual, wiki-e5-small,

wiki-snowflake-arctic-s, wiki-inf-retriever-v1-1.5b
Retrieval Depth (k) {1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

C RAG Energy Component-Level Analysis 226
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Figure 4: Average energy per query on FinanceBench breakdown by RAG component. The grey bars
denote various embedding model for retrieval.

Figure 5: Performance and quality distribution on FinanceBench with breakdown by model. The
generation model greatly affects both energy consumption and accuracy: larger models achieve higher
accuracy but demand significantly more energy.
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