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ABSTRACT

When answering complex questions, people can seamlessly combine information
from visual, textual and tabular sources. While interest in models that reason over
multiple pieces of evidence has surged in recent years, there has been relatively little
work on question answering models that reason across multiple modalities. In this
paper, we present MULTIMODALQA (MMQA): a challenging question answering
dataset that requires joint reasoning over text, tables and images. We create MMQA
using a new framework for generating complex multi-modal questions at scale,
harvesting tables from Wikipedia, and attaching images and text paragraphs using
entities that appear in each table. We then define a formal language that allows
us to take questions that can be answered from a single modality, and combine
them to generate cross-modal questions. Last, crowdsourcing workers take these
automatically generated questions and rephrase them into more fluent language.
We create 29,918 questions through this procedure, and empirically demonstrate
the necessity of a multi-modal multi-hop approach to solve our task: our multi-hop
model, ImplicitDecomp, achieves an average F1 of 51.7 over cross-modal questions,
substantially outperforming a strong baseline that achieves 38.2 F1, but still lags
significantly behind human performance, which is at 90.1 F1.

1 INTRODUCTION

When presented with complex questions, people often do not know in advance what source(s) of
information are relevant for answering it. In general scenarios, these sources can encompass multiple
modalities, be it paragraphs of text, structured tables, images or combinations of those. For instance,
a user might ponder “When was the famous painting with two touching fingers completed?”, if
she cannot remember the exact name of the painting. Answering this question is made possible by
integrating information across both the textual and visual modalities.

Recently, there has been substantial interest in question answering (QA) models that reason over
multiple pieces of evidence (multi-hop questions (Yang et al., 2018; Talmor & Berant, 2018; Welbl
et al., 2017)). In most prior work, the question is phrased in natural language and the answer is in a
context, which may be a paragraph (Rajpurkar, 2016), a table (Pasupat & Liang, 2015), or an image
(Antol et al., 2015). However, there has been relatively little work on answering questions that require
integrating information across modalities. Hannan et al. (2020) created MANYMODALQA: a dataset
where the context for each question includes information from multiple modalities. However, the
answer to each question can be derived from a single modality only, and no cross-modality reasoning
is needed. Thus, the task is focused on identifying the relevant modality. Recently, Chen et al.
(2020b) presented HYBRIDQA, a dataset that requires reasoning over tabular and textual data. While
HYBRIDQA requires cross-modal reasoning, it does not require visual inference, limiting the types
of questions that can be represented (See Table 1 for a comparison between the datasets).

∗ The authors contributed equally
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Figure 1: Example of a MMQA question, answer and context. In green are the text modality question and answer,
and in red the image modality. The table is used to perform the year comparison between the answers of the text
and image question parts.

In this work, we present MMQA, the first large-scale (29,918 examples) QA dataset that requires
integrating information across free text, semi-structured tables, and images, where 35.7% of the
questions require cross-modality reasoning. Figure 1 shows an example question: “Which B.Piazza
title came earlier: the movie S. Stallon’s son starred in, or the movie with half of a lady’s face
on the poster?”. Answering this question entails (i) decomposing the question into a sequence of
simpler questions, (ii) determining the modalities for the simpler questions and answering them, i.e.,
information on the poster is in an image, the information on “S. Stallon’s son” is in free text, and the
years of the movies are in the table, (iii) combining the information from the simpler questions to
compute the answer: “Tell Me that you love me, Junie Moon”.

Our methodology for creating MMQA involves three high-level steps. (a) Context construction: we
harvest tables from Wikipedia, and connect each table to images and paragraphs that appear in existing
Reading Comprehension (RC) datasets (Kwiatkowski et al., 2019; Clark et al., 2019; Yang et al.,
2018); (b) Question generation: Following past work (Talmor & Berant, 2018), we use the linked
structure of the context to automatically generate questions that require multiple reasoning operations
(composition, conjunction, comparison) across modalities in pseudo-language ; (c) Paraphrasing: we
use crowdsourcing workers to paraphrase the pseudo-language questions into more fluent English.

Dataset Size Full- Uses Multi-
wiki images hop

MANYMODALQA 10K 7 3 7

HYBRIDQA 70K 7 7 3

MULTIMODALQA 30K 3 3 3

Table 1: A comparison of MULTIMODALQA to MANY-
MODALQA and HYBRIDQA. We compare dataset size,
use of images, and whether the dataset supports multi-
hop questions and an open-domain full-wiki setup.

To tackle MMQA, we introduce ImplicitDecomp,
a new model that predicts a program that spec-
ifies the required reasoning steps over different
modalities, and executes the program with dedi-
cated text, table, and image models. ImplicitDe-
comp performs multi-hop multimodal reasoning
without the need for an explicit decomposition
of the question.

We empirically evaluate MMQA by compar-
ing ImplicitDecomp to strong baselines that do
not perform cross-modal reasoning and to hu-
man performance. We find that on multimodal
questions, ImplicitDecomp improves F1 from
38.2→ 51.7 over a single-hop approach. Humans are able to reach 90.1 F1, significantly outperform-
ing our best model. Because automatic evaluation is non-trivial, we also manually analyze human
performance and find humans correctly answer 94.5% of the questions in MMQA. Finally, our dataset
can be used in an open-domain setup over all of Wikipedia. In this setup, the F1 of humans is 84.8.
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To summarize, our key contributions are:

• MMQA: a dataset with 29,918 questions and answers, 35.7% of which require cross-modal
reasoning.

• A methodology for generating multimodal questions over text, tables and images at scale.
• ImplicitDecomp, A model for implicitly decomposing multimodal questions, which improves on a

single-hop model by 13.5 absolute F1 points on questions requiring cross-modal reasoning.
• Our dataset and code are available at https://allenai.github.io/multimodalqa.

2 DATASET GENERATION

Our goal is to develop a method that allows generating complex questions over multiple modalities
at scale. An overview of the methodology is captured in Figure 2. We first select a Wikipedia table
as an anchor, to which we add images and texts paragraphs and obtain a context. Single modality
questions are generated based on these contexts, and used to automatically create multimodal, multi-
hop questions. AMT workers rephrase the questions into natural language, and finally distractor
paragraphs and images are selected for each question. We now elaborate on the 6 steps of the process.

Figure 2: An overview of MMQA dataset generation process.

2.1 Wikipedia tables as anchors The 01-01-2020 English Wikipedia dump contains roughly 3M
tables. We extracted all tables and selected those that meet the following criteria: (a) The tables
contain 10-25 rows (b) At least 3 images are associated with the table. This results in a total of 700k
tables. (see supp. material for more information). These tables are the anchors of our contexts, which
we enrich with images and text for multimodal question generation. A key element of the tables are
Wikipedia Entities (WikiEntities) that appear in them, i.e., concepts linked to other Wikipedia entries.
We use them to connect different modalities, bridge questions, and solve ambiguities (details below).

2.2 Connecting Images and Text to Tables Images. We consider two cases: (a) in-table images
and (b) images from pages of linked WikiEntities. In the former, the images are featured inside the
table cells. In the latter, the table contains a column of WikiEntities that potentially have images, e.g.
a table describing the filmography of an actor often contains a column of film names, which may
have posters in their respective pages. To associate entities with their representative image, we map
entities and their profile images in their Wikipedia pages. Overall, we obtain 57,713 images, with
889 in-table images and 56,824 WikiEntities images. Text. We build on texts from contexts appearing
in existing reading comprehension datasets. We elaborate on this process next.

2.3 Generating Single-Modality Questions Tables. We generate pseudo-language table questions
in the following form “In [table title] of [Wikipedia page title] which cells in [column X] have the
[value Y] in [column Z]?”. We additionally support numeric computations over columns classified
as dates or numbers, such as min and max values, e.g., “In [Doubles] of [WCT Tournament of
Champions], what was the MOST RECENT [Year](s) where the [Location] was [Forest Hills]”.

Images. We use crowdsourcing to generate single-modality questions about images. We generated
two types of image questions, based on the images we retrieved from the previous step: (i) questions
over a single image, (ii) questions over a list of images.

When generating single-image questions, we show Amazon Mechanical Turk (AMT) crowd workers
an image alongside its WikiEntity, and ask them to phrase a question about the image with the entity
being the focus of the question. E.g, if the entity is “Roger Federer”, a potential question is “What’s
the hair color of Roger Federer?”. For questions to have meaning in an open-domain setting, we
primed AMT workers to ask questions that correspond to “stable” features, i.e., features that are
unlikely to change in different images and are thus appropriate in an open-domain setting.
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Type Q&A %
TextQ What was the territorial capital of the territory opposing Ohio 31.0

in the Toledo War? Detroit
TableQ Does the German state Baden-Wurttemberg or Thuringia have more 18.3

residents? Baden-Württemberg
ImageQ What weapon is the statue in Nottingham holding? bow 8.9
Compose(TextQ,TableQ) At what age did the Cleveland Cavaliers player with 6190 7.8

rebounds enter the NBA? 19
ImageListQ What is the common name of the bush warbler in Thailand that has an 6.1

orange stripe above its eye? Chestnut-crowned bush warbler
Compose(TableQ,ImageListQ) The film that starred Chris Ellison where a man was holding a 5.4

newspaper on the poster, was released what year? 1988
Compose(ImageQ,TableQ) On the poster for the TV show in which Tom Mison played Dorian 4.5

Crane, what kind of structure can be seen behind the two men? castle
Compare(Compose(TableQ,ImageQ),TableQ) Which manufacturer has fewer wins at the First Data 500: Buick or the 3.5

brand with a cross for a logo? Buick
Compose(TableQ,TextQ) On what date did the original artist who sang Sweet Child of Mine have 3.2

a concert at US Bank Stadium? July 30, 2017
Intersect(TableQ,TextQ) Who was the artist for Damon Fox in 2006 who also sings "You got the 2.6

moves like Jagger"? Christina Aguilera
Compose(TextQ,ImageListQ) On the poster for the movie based on the book "Act like a Lady, Think Like 2.4

a Man," how many people are there in total? nine
Intersect(ImageListQ,TableQ) What covers of the Chandler Canterbury films from 2009 has more than 2.3

one person? Powder Blue Balls Out, Gary the Tennis Coach, After.Life
Compare(TableQ,Compose(TableQ,TextQ)) Did Chelsea or club that sings You’ll Never Walk Alone rank higher in 2.1

Deloitte Football Money League 2007? Chelsea
Compose(ImageQ,TextQ) Did Gary Oldman take part in the movie whose poster features two men 1.0

holding handguns, and which had Mark L. Smith as a writer? no
Compare(Compose(TableQ,ImageQ), Was the film that features a giant eye on its poster or the first Wolverine 0.8
Compose(TableQ,TextQ)) movie the earlier film that Scott Silver worked on? Requiem for a Dream
Intersect(ImageListQ,TextQ) What common law state with an eagle on the flag has an institution 0.2

in the North region of Division II of the NCCAA? Iowa

Table 2: All 16 compositional templates in MMQA with an example and their relative frequency.

For questions with a list of images, we use images that appear in the same column of a table. To
generate these questions, AMT workers were given the images and asked to phrase a binary question
about a distinctive feature of the entities that a subset of the images share. E.g., given a list of statues,
the worker could ask “Which of the statues features a horse?” This process results in 2,764 single
image questions and 7,773 list image questions that are later used to create multimodal questions.

Text. To obtain questions answerable over text paragraphs we build on existing reading comprehension
datasets: Natural Questions (NQ) (Kwiatkowski et al., 2019) consists of about 300K questions issued
to the Google search engine. This dataset mostly contains simple questions where a single paragraph
suffices to answer each question. BoolQ (Clark et al., 2019) contains 15, 942 yes/no questions,
gathered using the same pipeline as NQ. HotpotQA (Yang et al., 2018) contains 112K training
questions, where crowd workers were shown pairs of related Wikipedia paragraphs and were asked to
author questions that require multi-hop reasoning over the paragraphs.

To use questions from the above datasets as building blocks for multi-hop multimodal questions, we
unified them into a corpus that consists of triples of (i) a text question, (ii) an answer and (iii) 1-2
gold paragraphs from Wikipedia. We link a question to a table, by matching WikiEntities in the table
to entities in the text of the question (see supplementary material for further details). Overall, we
retrieved 6,644 questions from NQ, 1,246 from BoolQ and 4,733 from HotpotQA.

2.4 Generating multimodal complex questions We present an automatic method for creating at
scale multimodal compositional questions (i,e., questions that require answering a sequence of sub-
questions to conclude the final answer). Our first step is to introduce a formal language that allows to
combine questions answerable from a single modality. Below we introduce the logical operations
that allow to generate such pseudo-language (PL) questions, while keeping a formal representation of
how they were constructed. In Table 2, we illustrate this process with all 16 different compositional
templates used for question generation. We now describe our logical operations.

Logical Operations Functions in our formal language take arguments and return a PL partial question,
as well as answers that can be a list of one or more strings, or a list of one or more WikiEntities. All
operations have access to the full context. In addition, we prepend a prefix containing the Wikipedia
table name and page title—e.g. “In the Filmography of Brad Pitt,”—to all our PL questions to support
an open-domain QA setup. Our set of logical operations are:
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1. TABLEQ: Returns a question from the table questions generated in §2.3, as well as a list of
WikiEntities or a list of strings as answers.

2. TEXTQ: Returns a text corpus question (see §2.3) and a list of WikiEntities or strings as answers.
3. IMAGEQ: Returns a question about a single image associated with a WikiEntity and a single token

answer from a fixed vocabulary (see §2.3).
4. IMAGELISTQ: Returns a question about a list of images and a list of WikiEntities corresponding

to the images that answer the question (see §2.3).
5. COMPOSE(·, ·): Takes a PL question containing a single WikiEntity as a first argument, and a

PL question that produces that WikiEntity as the output answer as its second argument. E.g.,
COMPOSE(“Where was Barack Obama born?”,“Who was the 44th president of the USA?”). The
function replaces the WikiEntity in the first-argument PL question with the second-argument PL
question and returns the resulting PL question (“Where was the 44th president of the USA born?”).

6. INTERSECT(·, ·): Takes two PL questions that return lists of more than one WikiEntity, and returns
their intersection as the answer. The resulting PL question is of the form “PL1 and PL2” omitting
PL2’s first word (“Who was born in Hawaii and is the parent of Sasha Obama?”).

7. COMPARE(·, ·): Takes two PL questions each returning one WikiEntity that can be linked to one
cell in the table, denoted by Ans1, Ans2. We first choose a numeric or date column in the table, if
such exists. We then compare the values of this column corresponding to the rows of Ans1 and
Ans2. Depending on the comparison outcome, output one of (Ans1, Ans2) as the operation answer.
The PL question created is of the form “What has compare-op numeric-column-name, PL1 or
PL2?” omitting PL1 and PL2’s first word. E.g. “What has most recent creation year, the rocket of
Appolo program, or the rocket of Gemini program?”

2.5 Paraphrasing using AMT We used English-speaking AMT workers to paraphrase automatically-
generated PL questions into natural language (NL). Each question was paraphrased by 1 worker and
validated by 1-3 other workers. To avoid annotator bias (Geva et al., 2019), the number of annotators
who worked on both the training and evaluation set was kept to a minimum. We also deployed a
feedback mechanism, where workers receive a bonus if a baseline model correctly answered the
question after their first paraphrasing attempt, but incorrectly after they refined the paraphrase. See
supp. material for print-screens of the AMT annotator interface.

To generate diversity, workers got a bonus if the normalized edit distance of a paraphrase compared
to the PL question was higher than 0.7. A total of 971 workers were involved, and 29,918 examples
were produced with an average cost of 0.33$ per question. We split the dataset into 23,817 training,
2,441 development (dev.), and 3,660 test set examples. Context components in the dev. and test sets
are disjoint, and were constructed from a disjoint set of single-modality questions.

A shortcoming of our method for automatically generating examples is that the question distribution
does not come from a “natural” source. We argue that developing models that are capable of
performing reasoning over multiple modalities is an important direction and MMQA provides an
opportunity to develop and evaluate such models. Moreover, this method allows to control the
compositional questions created, proving effective in creating a cheap and scalable dataset.

2.6 Adding distractors to the context Images. Questions from the IMAGELISTQ operator require
reasoning over a list of images from the same column, and hence do not require additional distrac-
tors. For IMAGEQ questions (single-image), we randomly add images that are associated with the
WikiEntities that appear in the table, setting a maximum of 15 distractors per question.

Text. We used DPR (Karpukhin et al., 2020), a neural information retrieval model, to retrieve
distractors for all questions. Each context includes exactly 10 paragraphs, where 1-2 are gold
paragraphs and the rest are distractors. Specifically, we encode the first 2 paragraphs of each
Wikipedia article with the DPR encoder, and use as distractors the paragraphs with the highest dot
product between their encoding and the question encoding. We do not allow: (a) an overlap between
the distractors in the training and evaluation sets, (b) distractors originating from the gold article, (c)
distractors containing an exact match to the gold answer.

To summarize, each of our examples contains a question, an answer, the formal representation of the
PL question (ignored by our models), and all distractors and gold context for all modalities. This
renders MMQA useful for both open-domain multimodal QA, as well as context-dependant QA.
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Figure 3: Domain diversity in MMQA. The area of each color corresponds to the topic frequency in the dataset.

3 DATASET ANALYSIS

To highlight the diversity of MMQA we analyze its key statistics, domains, and lexical richness.

Measurement Value

# Distinct Questions 29,918
Train multimodal questions 34.6%
Dev.+test multimodal questions 40.1%
Train compositional questions 58.8%
Dev.+test compositional questions 62.3%
Average question length (words) 18.2
Average # of answers per question 1.16
List answers 7.4%
List answers per intermediate question 18.9%
Average answer length (words) 2.1
# of distinct words in questions 49,649
# of distinct words in answers 20,820
# of distinct context tables 11,022

Table 3: Key statistics for MMQA.

Key Statistics MMQA contains 29, 918 questions, and
their main statistics are in Table 3. Since we focus on
multimodality, we upsample the number of multimodal
questions in the dev. and test sets compared to the training
set. Also, about 60% of the questions in MMQA are com-
positional. Questions are relatively long (18.2 words), but
answers tend to be short (2.1 words). The answer for each
question can be a single answer or a list of answers. While
list answers comprise only 7.4% of the data, when consid-
ering compositional questions that contain an intermediate
question within them, the proportion of list answers in
intermediate questions is higher (18.9%).

Domain Diversity Figure 3 shows a sample of questions
from MMQA categorized to different domains. While
entertainment categories occupy a large portion of our dataset (Films 36%, TV 19%), we observe
questions represent a wide variety of topics.

Lexical Richness Workers received a bonus when substantially modifying the PL questions. We
observe that the average normalized edit distance between the NL questions and the PL questions is
high (0.7), that NL questions are shorter (avg. length of 20.02 vs. 22.16 words for PL questions),
and use a richer vocabulary (#unique words 39, 319 vs 37, 108).

4 MODELS

Here we present our baseline models. We first train models that interact with a single modality given
a question (§4.1), and use those as building blocks in our multimodal approaches (§4.2). We denote
the question by Q, context paragraphs by P , Table by T and context images by I.
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4.1 SINGLE-MODALITY QA MODULES

Text QA Module Following prior work (Min et al., 2019a; Asai et al., 2020), our text QA module
takes as input a question Q and a paragraph p ∈ P and answers Q by selecting a span in each
paragraph p independently, predicting the start and end positions (Devlin et al., 2019). Additionally,
the model returns four scores for for every paragraph p corresponding to: if the answer is (i) a span
in p; (ii) “yes”; (iii) “no”; or (iv ) not in p. At inference time, the model selects the paragraph that
has the lowest score for iv – the answer is not the paragraph. Our model is based on a pre-trained
RoBERTa-large model (Liu et al., 2019), fine-tuned on MMQA.

Table QA Module Following prior work (Herzig et al., 2020), our table QA module takes as input
the question Q and the table T , and selects a subset of the table cells and an aggregation operation
to compute the final answer. Specifically, we linearize the table T by rows, with column names
prepended to the corresponding cells (Chen et al., 2019). For example, this converts the table in
Figure 1 to the following text: “Row 1: year is 1957; title is a dangerous age; role is David. Row 2...”.
Next, we concatenate the question to the linearized table, and encode them using RoBERTa-large. We
then pass the contextualized representation of every token in the table cell to a linear classifier that
computes the probability of the token being selected. The score for a cell is the average of its tokens.
Cells with probability > 0.5 are selected. Finally, another linear multi-class classifier predicts an
aggregation operation from SUM, MEAN, COUNT, YES, NO, and NONE. Aggregation operations are
applied on the selected cells, YES and NO operations output “yes” or “no”, and the NONE operation
outputs all selected cells.

Image QA Module Questions with visual information are handled by a multimodal transformer that
processes the text question and pre-computed image features. For a question Q and a set of images
I, we feed the model the question and the visual features Φ(i) extracted from each image i ∈ I,
along with the name of the WikiEntity associated with the image. For each image and question, the
model predicts an answer from a fixed vocabulary determined by the answers in the training set and 3
special tokens: ydtr, yp and yn. In questions where the expected answer is a phrase (e.g., ImageQ), we
return the answer from the image where p(ydtr) is lowest (similar to text QA). In questions where the
expected answer is a subset of the images (e.g., Compose(TableQ,ImageQ)), we return all images
where p(yp) > p(yn). Our model is based on the pre-trained model VILBERT-MT1 (Lu et al., 2020).
Visual features are extracted by a vision network Φ, comprised of a Faster R-CNN (Ren et al., 2015)
pre-trained on Visual Genome (Krishna et al., 2017).

4.2 MULTIMODALITY QA MODELS

We turn to models that interact with multiple modalities.

Multi-Hop Implicit Decomposition (ImplicitDecomp) Our dataset is designed to test reasoning
across modalities. As a first attempt towards this goal, we introduce a 2-hop implicit decomposition
baseline, capable of combining information scattered across modalities (illustrated in Figure 4).

We first train a question-type classifier, based on RoBERTa-large, that takes a question Q as input,
and predicts one of the 16 possible question types (Table 2). The question type can be viewed as a
program, specifying the relevant modalities, their order, and the logical operations. For example, if
the question type is Compose(TextQ,TableQ), the first hop should be conducted on the table T , and the
second hop on the paragraphs P . In each hop, we feed the model with the question Q, the question
type, the hop number, and the context of the corresponding modality. The model automatically
identifies which part of the question is relevant at the current hop and does not explicitly decompose
the question into sub-questions (hence the name implicit decomposition). In the second hop, answers
from the first hop are also given as input so that the model can leverage this information and conduct
cross-modal reasoning to output the final answer. For all single-modality question types (such as
TextQ and TableQ), the model uses only the first hop to get the answer.

Single-Hop Routing (AutoRouting) A simple approach for answering questions without cross-modal
reasoning is to first determine the modality where the answer is expected to occur, and then run
the corresponding single-modality module. We use the aforementioned question type classifier to

1The multi-task version of VILBERT is used, since it was shown in Lu et al. (2020) that fine-tuning
task-specific models from the multi-task model is generally beneficial for performance on single tasks.
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determine the modality where the answer will appear, route the question and the context for the
predicted modality into the corresponding module, and use the output as the final answer.

Figure 4: ImplicitDecomp: Modules with
the same color share parameters. In this
example, the text QA module is activated
to produce the 1st-hop answer, and this
intermediate answer is fed into the Image
QA model to produce the final answer.
Question type ([Q Type]) is determined
by a separate classifier.

Question-only and Context-only baselines We run the
question-only and context-only baselines, suggested by
Kaushik & Lipton (2018). Our question-only baseline is
BART-large (Lewis et al., 2019): a sequence-to-sequence
model that directly generates the answer given the question.
For the context-only baseline, we first predict the question
type using the classifier described above to pick a target mod-
ule. We then feed the relevant context to the target module,
replacing the question with an empty string.

4.3 TRAINING AND SUPERVISION

Our dataset provides rich supervision including not only the
final answer but also question types and intermediate results.
Therefore, we can train the pipeline modules in a supervised
fashion. Specifically, we train the question type classifier
using a cross entropy loss w.r.t the gold question type. For
AutoRouting, each QA module is trained with the subset
of samples whose final answer can be extracted from the
corresponding modality. For ImplicitDecomp, only one model
is trained per modality, which is used to answer both the first-hop and second-hop questions. The
question-only and context-only baselines are trained in the corresponding format.

5 EXPERIMENTS

We evaluate models in three different setups: (1) questions that require a single modality to answer
(Single Modality); (2) questions that require reasoning over multiple modalities (Multi Modality);
(3) and all questions (All). Our evaluation metrics need to support lists of answers, and thus we use
average F1 and Exact Match (EM), as described in Dua et al. (2019), where answers on the gold and
predicted lists are aligned. Human performance is estimated with 9 expert annotators, who answered
145 questions. Test results are are reported using a single run (one random seed).

Single Modality Mutli Modality All
EM F1 EM F1 EM F1

Question-only2 14.2 17.0 16.9 19.5 15.3 18.0
Context-only 8.0 10.2 6.6 8.5 7.4 9.5
AutoRouting 48.9 57.1 32.0 38.2 42.1 49.5
ImplicitDecomp 51.1 58.8 46.5 51.7 49.3 55.9
Human 87.9 92.5 84.8 90.1 86.2 91.2

Table 4: Test set results

We show results in Table 4.2 Implic-
itDecomp achieves significantly higher
performance (55.9 F1) compared to the
other baselines, but lower than human
performance (91.2 F1 with provided con-
text, and 84.8 F1 in the open-domain set-
ting over all of Wikipedia), suggesting
ample room for improvement. On the
Multi Modality subset, ImplicitDecomp
substantially improves performance compared to AutoRouting (38.2 → 51.7), emphasizing the
superiority of our approach on multi-hop questions, while on single-hop questions this gap is smaller.

Since automatic evaluation of performance is non-trivial in our setup, we also manually evaluate
human performance. In 94.5% of the cases, answers are either identical or semantically equivalent to
the gold answer, 0.7% have an error in the question, and 4.8% are human errors. Human errors are
owing to the length of the context, resulting in human fatigue (which models do not suffer from).

Analysis To demonstrate that ImplicitDecomp indeed performs multi-hop reasoning, successfully
answering intermediate questions, we analyze ImplicitDecomp predictions for multimodal questions
generated using the Compose, Compare and Intersect operations (Table 5). For these questions, we
find that when the 1st-hop answer is correct, the model achieves an F1 of 63.9, whereas when the
1st-hop prediction is incorrect, the F1 drops to 37.4. This suggests that the model relies on the 1st-hop

2We conjecture that the higher performance exhibited by the question-only baseline compared to the context-
only baseline is due to the fact that in comparison questions the model needs to choose one answer from two
candidates, of which one usually appears in the question, allowing the model to obtain 50% accuracy by guessing.
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Type Question 1st-hop prediction Final prediction 1st-hop F1 F1

Compose What part did Kym Karath play in the TV show Lassie Kathy Vaughn 62.3 50.8
whose poster features a dog?

Compare Which video game was Wes Johnson involved in earlier: Hammer & Sickle Hammer & Sickle 55.7 61.1
Fallout 4 or the game whose cover shows a gun-wielding man?

Intersect Which album, released in December of 2011, has a man wearing TY.O, Back to Love 33.5 55.1
sunglasses on its cover, and was released under the RCA label? Back to Love

Table 5: Examples where ImplicitDecomp correctly answers both the intermediate and the entire question, and a
breakdown of the 1st-hop F1 and final F1 for the three logical operations: Compose, Compare, and Intersect.

answer, effectively performing multi-hop reasoning. Last, our question type classifier obtains a high
accuracy of 91.5% on the test set.

To test whether the compositional questions created are indeed multi-hop, we conducted a qualitative
analysis over 50 questions as suggested by (Min et al., 2019b). We find that 6% are of the Weak
Distractors category, that is, questions such as “What year... ” when there is only one year appearing
in the context, making the question easy. 2% have Redundant evidence, that is, questions such as

“Which Donald Trump TV show has ...” where there is only one TV show starring Donald Trump,
making the rest of the question redundant. The remaining 92% indeed require multi-hop reasoning.

6 RELATED WORK

Visual question answering—i.e., the task of answering questions about images—has been widely
explored in previous work (Antol et al., 2015; Zhang et al., 2016; Goyal et al., 2017; Johnson et al.,
2017; Hudson & Manning, 2019; Zellers et al., 2019; Singh et al., 2019; Methani et al., 2020), ranging
from synthetic images to scientific plots. Our work differs significantly from those, by including
more complex, multi-hop questions that require reasoning over text, tables and images. Currently,
the most successful paradigm in VQA is fine-tuning models pre-trained on large amounts of image
captioning data (Tan & Bansal, 2019; Lu et al., 2019; 2020; Su et al., 2020; Chen et al., 2020c; Li
et al., 2020), an approach we follow for answering image-related questions.

MANYMODALQA (Hannan et al., 2020) move beyond directing the question to an image-only
context, to choosing between an image, a text, and a table. Their work focuses on routing the question
to the correct context modality. Our question-type classifier, based on RoBERTa-large reaches an
accuracy of 91.4% on our 16 possible question types, showing that the main challenge in MMQA is
reasoning over the context rather than identifying the question type.

HYBRIDQA (Chen et al., 2020b) presents a cross-modality reasoning challenge over tabular and
textual data. A fundamental difference is that our setup offers cross-modality reasoning over images
as well. In addition, our approach is cheaper to annotate since it requires only paraphrasing, and the
question type distribution is more controllable (we offer 16 major question types vs. 6 in HYBRIDQA).
Moreover, our text passages are chosen using the question, answer and table, while in HYBRIDQA
only WikiEntities from the table are used to find text passages.

The model proposed in HYBRIDQA introduces a heuristic for linking the text passage to the table
cells, which may lead to performance degradation. Conversely, our model uses (automatically-
annotated) intermediate multi-hop answers, to perform reasoning and linking implicitly over the
full table and text, which should lead to more robust reasoning, in particular when reasoning over
multiple table cells, as well as for narrative tracking and co-reference over the full text. In parallel to
this work, a new open-domain variant of HYBRIDQA has been released by Chen et al. (2020a).

7 CONCLUSION

We present MMQA, a new QA dataset that contains 29,918 examples, 35.7% of which require cross-
modality reasoning. We describe a novel framework for generating complex multimodal questions at
scale, and showcase the diversity and multimodal properties of the resulting dataset. We evaluate
MMQA using a variety of models, and confirm that the best model exploits the multimodality of the
dataset and takes into account multi-hop reasoning via implicit decomposition. However, human
performance substantially exceeds the best model, establishing the need for further research involving
multiple modalities in question answering systems, which we hope that our work will drive.
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