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Abstract

Product images (e.g., a phone) can be used to
elicit a diverse set of consumer-reported features
expressed through language, including surface-
level perceptual attributes (e.g., “white”) and
more complex ones, like perceived utility (e.g.,
“battery”). The cognitive complexity of elicited
language reveals the nature of cognitive processes
and the context required to understand them; cog-
nitive complexity also predicts consumers’ subse-
quent choices. This work offers an approach for
measuring and validating the cognitive complex-
ity of human language elicited by product images,
providing a tool for understanding the cognitive
processes of human as well as virtual respondents
simulated by Large Language Models (LLMs).
We also introduce a large dataset that includes
diverse descriptive labels for product images, in-
cluding human-rated complexity. We demonstrate
that human-rated cognitive complexity can be ap-
proximated using a set of natural language models
that, combined, roughly capture the complexity
construct. Moreover, this approach is minimally
supervised and scalable, even in use cases with
limited human assessment of complexity. The
dataset will be made public1.

1. Introduction
Language can reveal how context shapes the way consumers
evaluate products, signaling the range of psychological pro-
cesses underlying their assessments. Previous work has
shown how models of language capture stimulus feature
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processing using properties like concreteness, or the degree
to which a word refers to a perceptible entity in mind (Brys-
baert et al., 2014; Charbonnier & Wartena, 2019), while
other models use language to infer a person’s psychologi-
cal state by quantifying factors such as sentiment (Zhang
& Qian, 2020), emotion (Demszky et al., 2020), and per-
sonality (Flekova & Gurevych, 2015). Such models have
not yet elucidated how the complexity of thought processes
influences choice. We examine cognitive complexity, or
the additional context needed outside of an eliciting vi-
sual stimulus to understand or explain human-generated
language (Hakimi et al., 2023), as a means for inferring the
relationship between thoughts and actions. For example,
when viewing a specific product image, such as a red car,
some might focus on the dominant perceptible feature—the
color red—while others may comment on more seemingly
“complex” features shaped both by perception and projected
utility and experiences, like “engine.” Both words are con-
crete but involve different levels of complexity in processing
visual stimuli.

In this light, a measure of cognitive complexity should make
individual variability in language generation and associated
underlying preferences more interpretable because it quan-
tifies a shared, underlying structure between idiosyncratic
representations. For example, given the same product image
stimulus, two people might describe very different evoked
memories; although the contents of these descriptions may
differ greatly in other natural language measures, both sets
of text would have high complexity. By leveraging shared
features of the processes that generated these descriptions,
we can more accurately and effectively predict subsequent
behaviors (e.g., choices, language use) both for the two
individuals and the population as a whole. Indeed, previ-
ous work demonstrated that cognitive complexity explains
unique variance in preferences and improves choice predic-
tion (Hakimi et al., 2023). Because cognitive complexity
captures the process through which a stimulus can potenti-
ate emergent psychological phenomena—i.e., thoughts and
behaviors that are not intrinsic to the stimulus itself—it can
also be used to infer whether the language was generated
by a human or an LLM imitating a human. For example, an
observed discrepancy between human- and LLM-generated
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responses in the distribution of cognitive complexity scores
for certain visual stimuli can be used to filter out unquali-
fied subjects or data (Veselovsky et al., 2023), e.g., subjects
who submit machine-generated responses to a survey that
requires human responses. Similarly, distributional align-
ment can also be used to evaluate an LLM’s performance in
generating language with human-like cognitive complexity.

Here, we validate a computational measure of cognitive
complexity by interrogating its relationship with human rat-
ings as well as related natural language constructs. Because
cognitive complexity is a multidimensional construct (Con-
way III et al., 2014; Glaze et al., 2018), we evaluate the
putative informational content of the “additional context”
needed for understanding by testing the relationship between
cognitive complexity and four related constructs—visibility,
semantics, uniqueness, and concreteness—that have been re-
liably encoded using validated vision and language models.
Further, to verify how well cognitive complexity aligns with
human judgments, we first elicit user-generated text labels
for product images (as (Hakimi et al., 2023)) then compare
computed to human-rated measures. This work presents the
first large and diverse dataset collected to understand the
cognitive complexity of product image descriptions.

Our contributions include: (1) the first dataset with 4000+
product images across 14 categories and 45,609 human-
generated text labels and complexity ratings for computing
cognitive complexity, and (2) the use of relevant vision and
language models to characterize and approximate the cogni-
tive complexity of language elicited by product images.

2. Related Work
Images provide information that shapes the cognitive pro-
cess (Cavanagh, 2011; Marr, 2010). Hence, what is visible
to people may influence the cognitive complexity of their
reactions. Recent work on joint text and vision embeddings
has emphasized the strong ties between vision and language
semantics for cognitive understanding in such diverse do-
mains as hate speech recognition (Kiela et al., 2020) and
noun property prediction (Yang et al., 2022). Such work
may lead to improved models that exploit unimodal priors.

Besides visibility and semantics, constructs built on lan-
guage itself such as readability and uniqueness of words can
influence text simplification (Maddela & Xu, 2018). Con-
creteness of words that were rated by humans (Brysbaert
et al., 2014; Iliev & Axelrod, 2016) or measured by learned
word embeddings (Charbonnier & Wartena, 2019; Wartena,
2022) has been used to measure abstractness. (Hessel et al.,
2018) explored word concreteness in four image datasets by
looking at the image clustering structure. (Ramakrishnan
& Deniz, 2021) found that GPT word embeddings captured
all information in brain imaging data for concreteness pre-

expensive

nap

black

European

Product Image Labels
leather

Do not 
agree at all

Slightly 
agree

Somewhat 
agree

Moderately 
agree

Strongly 
agree

Phase 1: 
List words you think of when seeing the 
product in the image.

Phase 2: 
Rate the statement for each of the following 
words: “This word needs more context beyond 
what is in the image to explain or understand”

Ratings

Figure 1. Data collection paradigm.

Category images labels vocab. complexity
furniture 2,174 23,210 3,278 1.75 ±0.94

decor 1,054 10,481 2,664 1.77 ±0.95
car 181 2,925 741 1.90 ±0.95

bed/bath 239 2,686 871 1.76 ±0.96
all 4,093 45,609 6,583 1.77 ±0.94

Table 1. Dataset with product image and label counts as well as
vocabulary size and complexity ratings (mean±sd) for the largest
four product categories. See all 14 categories in Appendix Table 5.

diction based on logistic regression models. However, the
granularity of word concreteness is not grounded in a partic-
ular image. Cognitive complexity differs in that it assumes
a joint vision-language representation: the complexity of a
word is specific to the image it describes because reactions
to different images vary. Moreover, cognitive complexity
is a large theoretic construct (Conway III et al., 2014) that
overlaps with multiple constructs as discussed above.

3. Data Elicitation
In a series of studies, language was used to assess humans’
representation of and preferences for a variety of real con-
sumer products, either cars2 or items from the Amazon
Berkeley Object (ABO) dataset (Hakimi et al., 2023; Collins
et al., 2022). The complexity of these responses to product
images was then evaluated by separate human raters.

In Phase 1 (Fig. 1), 3,009 crowdsourced (Amazon Mechani-
cal Turk, 2022) labelers were shown a product image and
asked to “list words you think of when seeing the product
in the image.” Each labeler was shown 16 images sampled
from diverse product categories, and listed 5 to 20 text labels
for each image. Note that the image background was sub-
tracted and the images with text printed on products were
removed to eliminate bias. Overall 45,609 text labels for
4,093 images were collected. Data statistics are reported in
Table 1 and Appendix.

As in prior work (Conway III et al., 2014; Brysbaert et al.,
2014), human ratings are a reasonable proxy of ground

2Car images are licensed by EVOX (EVOX).
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truth representing human intuition and are used to verify
subjective measures. Hence, in Phase 2 (Fig. 1, we asked a
separate group of participants (Prolific.co, 2022) to rate the
complexity of the previously elicited text labels, allowing
for the estimation of ground truth that could be used to
evaluate each model.

Raters were not explicitly asked to rate the ”complexity”
of the words, since pilot results indicated that participants
were confused by the ambiguity of determining whether a
word was ”complex” and often shifted how they interpreted
the definition of ”complex”. Thus, raters were asked to in-
stead determine whether product images provided sufficient
context to interpret the generated words.

For each product image and an associated set of 5-20 text
labels, 1,210 raters assessed whether ”this word needs more
context beyond what is in the image to explain or under-
stand” using a unipolar, 5-point Likert-style scale: ”Do not
agree at all” (0) to ”Strongly agree” (4), which are converted
to the complexity ratings (0-4). At least three (but not all)
raters rated each label.

4. Approximating Cognitive Complexity
Because cognitive complexity is a broad psychological con-
struct that likely includes multiple sub-constructs, we tri-
angulate it using the five models described below. We hy-
pothesized that these relevant, quantifiable constructs could
be used together to approximate the complexity. We list
hypotheses for each construct in italics.

Visibility as Complexity. Visual features that can be rec-
ognized at a glance, e.g., a primary color, may drive less
complex cognitive processes while less visually salient fea-
tures may be more complex. We therefore leveraged text
used to visually describe product images as a reference
corpus to represent what people can intuitively see and
recognize. A reference corpus for a product image is gener-
ated by a transformer-based image-to-text generation model
OFA (Wang et al., 2022). It is trained by visual description
datasets such as MSCOCO (Chen et al., 2015) and generates
multiple caption-like outputs using beam search to expand
the most possible words with variability. Because annotators
for MSCOCO were asked to describe all the important parts
of the scene, and not to describe things beyond the scene, the
training datasets and approach force the generated descrip-
tions to be visually perceived intuitively. We formulate the
complexity score of a text label lm elicited by an image In,
namely the complexity based on visibility (V) construct, as
Θv(lm, In) = 1− f(lm, Dn), where visibility f(·) means
the number of sentences containing lm divided by the total
number of sentences in the reference visual descriptions Dn

of In. Negating f(·) inverts its relationship with the score
Θv , i.e. the lower visibility, the higher complexity.

Semantics as Complexity. Semantic intuition also influ-
ences complexity of elicited language such as the com-
prehension of language referring to the target product im-
age, which is relevant to the semantic relationships be-
tween product images and elicited language. We leverage a
text and image embedding space based on CLIP (Radford
et al., 2021) to measure the semantic relationship. Given
a product image In and a text label lm, we encode the
input to the joint embedding space and compute the co-
sine similarity. The complexity score is formulated as
Θs(lm, In) = 1 − cos(ET (lm), EX(In)), where ET and
EX are the text and image encoders, repectively. A text
label is assigned with a higher complexity Θs if it is more
semantically distant to the image stimulus (less similarity).

Uniqueness as Complexity. In addition to word features
(e.g., length), we consider corpus-based word frequency
(Maddela & Xu, 2018) to reflect word complexity. We
sort the text labels into multiple corpora by the product
categories of their corresponding product image stimulus.
We then calculate the term frequency of a text label in its
corpora. The complexity Θu of a text label is higher if it is
less frequently used to describe product images of the same
category, thus being more unique.

Concreteness as Complexity. We use concreteness ratings
collected by (Brysbaert et al., 2014) for 40,000 English
lemmas as a lookup table B to derive the concreteness cm
of each text label lm elicited by the product images. The
complexity score is formulated as Θc(lm) = b− cm, where
b is set to the maximum score in B. The concreteness cm has
an inverse relationship with Θc, i.e., the lower concreteness,
the higher complexity.

5. Experiments
Our experiments are designed to investigate (1) how well
the cognitive complexity approximated by the models aligns
with human judgments and (2) whether the models are com-
plementary to each other. In Table 2, we use the dataset
introduced in Sec. 3 for evaluation. We also present results
for a subset of this dataset in Table 3, where product-label
pairs obtained higher agreement (correlation > 0.75) among
multiple human raters, to reveal the influence of agreement
on the results. Due to space limitations, the results for all
14 categories are reported in Appendix.

5.1. How Well Do the Models Align with Humans?

While human ratings do not comprehensively represent the
ground truth, they can be used to test the alignment of a
model with human thoughts. Here, we calculate the Spear-
man correlation between the complexity rated by humans
and as measured by models based on different constructs to
verify our hypotheses in Sec. 4.
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Models furn. deco. car bed all
Θv .230 .247 .281 .239 .225
Θs .247 .219 .252 .247 .228
Θu .175 .177 .207 .230 .168
Θc .180 .178 .171 .208 .160
Θv,s .258 .252 .266 .259 .250
Θv,s,u .267 .270 .272 .276 .261
Θv,s,u,c .273 .276 .316 .294 .271

Table 2. Correlation with human ratings of complexity. Results for
all 14 categories in Table 6 and 7 in Appendix.

Models furn. deco. car bed all
Θv .391 .441 4̇71 .513 .418
Θs .425 .375 .497 .520 .414
Θu .293 .287 .355 .466 .260
Θc .277 .278 .190 .404 .267
Θv,s .436 .443 .509 .550 .433
Θv,s,u .459 .458 .531 .611 .456
Θv,s,u,c .454 .462 .543 .614 .472

Table 3. Correlation with human ratings of complexity (the subset
with high agreement among raters). Results for all 14 categories
in Table 8 and 9 in Appendix.

The results in Table 2 and 3 suggest that models of visibility,
semantics, uniqueness, and concreteness are correlated with
human judgments as we hypothesize (hypotheses are in ital-
ics in Sec. 4) The visibility and semantics constructs are
top performers, perhaps because the two models use both
text and image for the measurement, while other models
measure complexity purely using a label or its metadata.
This suggests that an image stimulus itself might provide
meaningful information for computing cognitive complex-
ity.

Data also suggest that the alignment between each construct
and human judgment varies across different product cat-
egories. For example, the visibility construct best aligns
with humans for decor while semantics alignment is better
aligned for furniture. As shown in Fig. 2, the proposed
constructs can help dive into different facets for efficient
sense-making. A combination of multiple constructs may
help generalize the measurement to various products. Note
that significant individual differences (Hakimi et al., 2023)
suggest variance in the driving psychological factors sup-
porting cognitive complexity. As such, high correlations
with any sub-construct are unlikely.

5.2. Are the Models Complementary?

We want to verify whether the models of constructs offer
complementary information for measuring cognitive com-
plexity. First, we compute the partial correlation between

Constructs Θv Θs Θu Θc

visibility (Θv) 1 - - -
semantics (Θs) .343 1 - -

uniqueness (Θu) .352 .070 1 -
concreteness (Θc) .283 .168 .040 1

Table 4. Partial Correlation between the models for measuring
complexity based on different constructs

Labels H V S U C
ladder 2 1 1 1 1
white 1 2 2 3 3
black 4 3 5 2 4
short 3 4 4 4 5
floor 5 5 3 5 2

Labels H V S U C
rug 1 1 1 1 2
gray 2 2 3 4 3
design 4 4 4 2 4
cute 5 5 5 5 5
floor 3 3 2 3 1

(a) (b)

Figure 2. Ranking cognitive complexity (low to high) of text labels
elicited by product images, rated by human (H) and measured by
the models of individual constructs

every two constructs while the rest of the constructs are the
controlling variables. Table 4 shows that some constructs
have very low correlations such as uniqueness vs. concrete-
ness. Visibility Θv that is measured based on what people
visually perceived has higher correlations with other con-
structs as all these models consider perceptual information
in different ways. However, all pairs of constructs are far
from identical and with each construct providing unique
information.

The bottom part of Table 3 presents the correlations between
combinations of top-performing models of constructs and
human judgments. A combination takes the weighted sum
of scores predicted by each construct, where the weight is
empirically determined by their individual correlation with
human judgment. In most cases, the listed combinations
align with humans better than individual constructs. Adding
more positively correlated constructs in combination usually
increases the correlation with human judgments, probably
because parts of the non-overlapped information are com-
plementary. The findings are consistent with experiments
based on the whole dataset in Table 2.

6. Discussion and Conclusion
Human cognition is complex and diverse. While LLMs have
reached or surpassed human in several knowledge-based
tasks, there remain many challenges to approximating the
kind of human cognitive complexity that characterizes sub-
jective experience and behaviors such as elicited responses
to products. As a further step to triangulate complexity com-
putationally, we propose grounding cognitive complexity
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in the language elicited by product images and characterize
the constructs that might be predictive of this new measure.
The data elicitation for cognitive complexity is more com-
plicated than typical image annotations. First, it requires
sampling a diverse population of participants, in this case,
representing consumers. Second, it increases the labeling ef-
fort from the size of language data O(N) to the size of pairs
of language and image data O(N ×M ). Hence, we foresee
the cost of obtaining huge training data is nontrivial and
attempt to investigate whether the foundational models, e.g.,
OFA (Wang et al., 2022), CLIP (Radford et al., 2021), help
compute cognitive complexity and generalize the measure
to domains that are essentially different from the presented
elicitation framework. Future work includes fine-tuning
strategies to optimize the combination of constructs for bet-
ter prediction power and broader use of measuring cognitive
complexity in feedback to consumer products or other visual
stimuli, and in responses synthesized by LLMs.
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A. Appendix
A.1. Dataset

Data statistics of a full list of product categories are reported in Table 5.

Category products labels vocab. complexity
furn. 2,174 23,210 3,278 1.75 ±0.94
deco. 1,054 10,481 2,664 1.77 ±0.95
car 181 2,925 741 1.90 ±0.95
bed 239 2,686 871 1.76 ±0.96

outd. 155 2,167 880 1.77 ±0.94
stor. 130 1,560 693 1.80 ±0.93
acce. 29 452 282 1.89 ±0.98
home. 23 382 278 1.78 ±0.98
heat. 21 377 184 1.69 ±1.00
pers. 23 344 227 1.93 ±0.90
spor. 23 324 161 1.74 ±0.94
elec. 17 310 193 1.90 ±0.95
kitc. 13 241 166 1.80 ±0.92
offi. 11 150 119 1.71 ±0.98
all 4,093 45,609 6,583 1.77 ±0.94

Table 5. Dataset counts for the products, labels and vocabulary size. Key: furn:furniture; deco:decor; car:car, bed:bed bath; outd:outdoor;
stor:storage organization; acce:accessories; home:home improvement; heat:heating cooling; pers:personal electronic devices; spor:sports
fitness; elec:home electronics; kitc:kitchen; offi:office

A.2. Experiment Results

The experiments results for a full list of product categories are presented in Table 6, 7, 8 and 9.

Models furn. deco. car bed outd. stor. acce. home heat.
Θv .230 .247 .281 .239 .166 .177 .205 .297 .301
Θs .247 .219 .252 .247 .227 .176 .267 .238 .264
Θr .042 .060 .131 .055 .038 .007 .027 -.109 .159
Θu .175 .177 .207 .230 .174 .131 .136 .247 .290
Θc .180 .178 .171 .208 .163 .121 .129 .116 .218
Θv,s .258 .252 .266 .259 .221 .185 .279 .295 .305
Θv,s,u .267 .270 .272 .276 .236 .204 .277 .376 .267
Θv,s,u,c .273 .276 .316 .294 .242 .199 .275 .294 .347

Table 6. Correlation with human ratings of complexity (the whole dataset)
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Models pers. spor. elec. kitc. offi. all
Θv .236 .139 .164 .242 .224 .225
Θs .291 .128 .126 .250 .258 .228
Θr .100 -.029 .041 .089 .073 .049
Θu .173 .090 .061 .155 .109 .168
Θc .160 -.047 .122 .170 .354 .160
Θv,s .315 .136 .127 .275 .329 .250
Θv,s,u .316 .153 .129 .278 .329 .261
Θv,s,u,c .324 .132 .152 .272 .397 .271

Table 7. (Continued with Table 6) Correlation with human ratings of complexity (the whole dataset)

Models furn. deco. car bed outd. stor. acce. home heat.
Θv .391 .441 4̇71 .513 .222 .381 .128 .499 .425
Θs .425 .375 .497 .520 .178 .390 .471 .343 .384
Θr .064 .129 .119 .031 -.032 -.135 .051 -.192 -.033
Θu .293 .287 .355 .466 .164 .356 .097 .258 .234
Θc .277 .278 .190 .404 .101 .337 -.040 .388 -.058
Θv,s .436 .443 .509 .550 .219 .416 .413 .425 .415
Θv,s,u .459 .458 .531 .611 .234 .494 .367 .443 .417
Θv,s,u,c .454 .462 .543 .614 .225 .514 .280 .475 .371

Table 8. Correlation with human ratings of complexity (the subset with high rater agreement, correlation > 0.75)

Models pers. spor. elec. kitc. offi. all
Θv .447 .657 -.187 .724 .740 .418
Θs .447 .515 .004 .630 .621 .414
Θr .648 -.031 .220 .267 -.167 .067
Θu -.787 .501 -.260 .464 .535 .260
Θc .894 -.240 .017 .425 .774 .267
Θv,s .447 .581 -.25 .677 .784 .433
Θv,s,u .447 .713 -.242 .662 .784 .456
Θv,s,u,c .783 .591 -.180 .652 .827 .472

Table 9. (Continued with Table 8) Correlation with human ratings of complexity (the subset with high rater agreement, correlation > 0.75)
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