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a b s t r a c t 

Recommendation systems usually involve exploiting the relations among known features and content 

that describe items (content-based filtering) or the overlap of similar users who interacted with or rated 

the target item (collaborative filtering). To combine these two filtering approaches, current model-based 

hybrid recommendation systems typically require extensive feature engineering to construct a user pro- 

file. Statistical Relational Learning (SRL) provides a straightforward way to combine the two approaches 

through its ability to directly represent the probabilistic dependencies among the attributes of related 

objects. However, due to the large scale of the data used in real world recommendation systems, little 

research exists on applying SRL models to hybrid recommendation systems, and essentially none of that 

research has been applied to real big-data-scale systems. In this paper, we proposed a way to adapt the 

state-of-the-art in SRL approaches to construct a real hybrid job recommendation system. Furthermore, 

in order to satisfy a common requirement in recommendation systems (i.e. that false positives are more 

undesirable and therefore should be penalized more harshly than false negatives), our approach can also 

allow tuning the trade-off between the precision and recall of the system in a principled way. Our exper- 

imental results demonstrate the efficiency of our proposed approach as well as its improved performance 

on recommendation precision. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

With their rise in prominence, recommendation systems have

reatly alleviated information overload for their users by provid-

ng personalized suggestions for countless products such as mu-

ic, movies, books, housing, jobs, etc. Since the mid-1990s, not

nly new theories of recommender systems have been presented

ut their application softwares have also been developed which

nvolves various domains including e-government, e-business, e-

ommerce/e-shopping, e-learning, etc [1] . We consider a specific

ecommender system domain, that of job recommendations, and

ropose a novel method for this domain using statistical relational

earning. This domain easily scales to billions of items including

ser resumes and job postings, as well as even more data in the

orm of user interactions between these items. CareerBuilder, the

ource of the data for our experiments, operates one of the largest
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ob boards in the world. It has millions of job postings, more than

0 million actively-searchable resumes, over one billion searchable

ocuments, and receives several million searches per hour [2] . The

cale of the data is not the only interesting aspect of this domain,

owever. The job recommendations use case is inherently rela-

ional in nature, readily allowing for graph mining and relational

earning algorithms to be employed. As Fig. 1 shows, very similar

inds of relationships exist among the jobs that are applied to by

he same user and among the users who share similar preferences.

f we treat every single job post or user as an object which has

arious attributes, the probability of a match between the target

ser and a job does not only depend on the attributes of these

wo target objects (i.e. target user and target job) but also the at-

ributes of the related objects such as the patterns of the user’s

revious applied jobs, behaviors of users living in the same city or

aving the same education level. As we show in this work, richer

odeling techniques can be used to determine these relationships

aithfully. However, since most of the statistical relational learning

pproaches involve a searching space exponential to the number

f related objects, how to efficiently build a hybrid recommenda-

http://dx.doi.org/10.1016/j.knosys.2017.08.017
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Fig. 1. Job recommendation domain. 
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tion system with statistical relational learning in such a large scale

real-world problem remains a challenge in this field. 

One of the most popular recommender approaches is content-

based filtering [3] , which exploits the relations between (histori-

cally) applied-to jobs and similar features among new job opportu-

nities for consideration (with features usually derived from textual

information). An alternative recommendation approach is based on

collaborative filtering [4] , which makes use of the fact that users

who are interested in the same item generally also have similar

preferences for additional items. Clearly, using both types of infor-

mation together can potentially yield a more powerful recommen-

dation system, which is why model-based hybrid recommender

systems were developed [5] . While successful, these systems typi-

cally need extensive feature engineering to make the combination

practical. 

The hypothesis which we sought to verify empirically was that

recent advancements in the fields of machine learning and artificial

intelligence could lead to powerful and deployable recommender

systems. In particular, we assessed leveraging Statistical Relational

Learning (SRL) [6] , which combines the representation abilities of

rich formalisms such as first-order logic or relational logic with the

ability of probability theory to model uncertainty. We employed a

state-of-the-art SRL formalism for combining content-based filter-

ing and collaborative filtering. SRL can directly represent the prob-

abilistic dependencies among the attributes from different objects

that are related with each other through certain connections (in

our domain, for example, the jobs applied to by the same user or

the users who share the same skill or employer). SRL models re-

move the necessity for an extensive feature engineering process,

and they do not require learning separate recommendation models

for each individual item or user cluster, a requirement for many

standard model-based recommendation systems [4,7] . 

We propose a hybrid model combining content-based filtering

and collaborative filtering that is learned by an efficient statisti-

cal relational learning approach - Relational Functional Gradient

Boosting (RFGB) [8] . Specifically, we define the target relation as

Match ( User, Job ) which indicates that the user–job pair is a match

when the grounded relation is true, hence that job should be rec-

ommended to the target user. The task is to predict the probability

of this target relation Match ( User, Job ) 1 for users based on the in-

formation about the job postings, the user profile, the application

history, as well as application histories of users that have the sim-

ilar preferences or profiles as the target user. RFGB is a boosted

model which contains multiple relational regression trees with ad-

ditive regression values at the sink node of each path. Our hypoth-

esis is that these trees can capture many of the weak relations that

exist between the target user and the job with which he/she is

matched. 

In addition, this domain has practical requirements which must

be considered. For example, we would rather overlook some of the
1 Following standard practice inside the machine learning community, we use the 

terms relations and predicates interchangeably. 

t  

b  

t  

t  
andidate jobs that could match the users (false negatives) than

end out numerous spam emails to the users with inappropriate

ob recommendations (false positives). The cost matrix thus does

ot contain uniform cost values, but instead needs to represent a

igher cost for the user–job pairs that are false positives compared

o those that are false negatives, i.e. precision is preferred over re-

all. To incorporate such domain knowledge within the cost matrix,

e adapted the previous work from [9] , which extended RFGB by

ntroducing a penalty term into the objective function of RFGB so

hat the trade-off between the precision and recall can be tuned

uring the learning process. 

In summary, we considered the problem of matching a user

ith a job and developed a hybrid content-based filtering and col-

aborative filtering approach. We adapted a successful SRL algo-

ithm for learning features and weights and are the first to im-

lement such a system in a real-world big data context. Our algo-

ithm is capable of handling different costs for false positives and

alse negatives making it extremely attractive for deploying within

any kinds of recommendation systems, including those within

he domain upon which we tested. Our proposed approach has

hree main innovations: 1. it is the first work which employs prob-

bilistic logic models to build a real-world large-scale job recom-

endation system; 2. it is the first work which allows the recom-

ender to incorporate special domain requirements of an imbal-

nced cost matrix into the model learning process; 3. it is the first

o prove the effectiveness of statistical relational learning in com-

ining the collaborative filtering and content-based filtering with

eal-world job recommendation system data. 

. Related work 

Recommendation systems usually handle the task of estimat-

ng the relevancy or ratings of items for certain users based on

nformation about the target user–item pair as well as other re-

ated items and users. The recommendation problem is usually for-

ulated as f : U × I → R where U is the space of all users, I is the

pace of all possible items and f is the utility function that projects

ll combinations of user-item pairs to a set of predicted ratings R

hich is composed by nonnegative integers. For a certain user u ,

he recommended item would be the item with the optimal util-

ty value, i.e. u ∗
i 

= argMax i ∈ I f (u, i ) . The user space U contains the

nformation about all the users, such as their demographic char-

cteristics, while the item space I contains the feature information

f all the items, such as the genre of the music, the director of a

ovie, or the author of a book. 

Generally speaking, the goal of content-based filtering is to de-

ne recommendations based upon feature similarities between the

tems being considered and items which a user has previously

ated as interesting [10] , i.e. for the target user-item rating f ( ̂  u , ̂  i ) ,

ontent-based filtering would predict the optimal recommendation

ased on the utility functions of f ( ̂  u , I h ) which is the historical

ating information of user ˆ u on items ( I h ) similar with 

ˆ i . Given

heir origins out of the fields of information retrieval and infor-

ation filtering, most content-based filtering systems are applied

o items that are rich in textual information. From this textual in-

ormation, item features I are extracted and represented as key-

ords with respective weighting measures calculated by certain

echanisms such as the term frequency/inverse document frequency

TF/IDF) measure [11] . The feature space of the user U is then con-

tructed from the feature spaces of items that were previously

ated by that user through various keyword analysis techniques

uch as averaging approach [12] , Bayesian classifier [7] , etc. Finally,

he utility function of the target user-item pair f ( ̂  u , ̂  i ) is calculated

y some scoring heuristic such as the cosine similarity [11] be-

ween the user profile vector and the item feature vector or some

raditional machine learning models [7] . Overspecialization is one
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f the problems with content-based filtering, which includes the

ases where users either get recommendations too similar to their

reviously rated items or otherwise never get recommendations

iverse enough from the items they have already seen. Besides,

ince the model-based content-based filtering builds its recom-

endation model based on the previous rated items of the tar-

et user, it requires a significant amount of items to be rated in

dvance in order to give accurate recommendations especially for

he probabilistic machine learning models which require the num-

er of training examples at the exponential scale of the dimension

f the feature space. 

On the other hand, the goal of the collaborative filtering is

o recommend items by learning from users with similar prefer-

nces [10,13–15] i.e. for the target user-item rating f ( ̂  u , ̂  i ) , collab-

rative filtering builds its belief in the best recommendation by

earning from the utility functions of f (U s , ̂  i ) which is the rating

nformation of the user set U s that has similar preferences as the

arget user ˆ u . The commonly employed approaches fall into two

ategories: memory-based (or heuristic-based) and model-based sys-

ems. The heuristic-based approaches usually predict the ratings of

he target user-item pair by aggregating the ratings of the most

imilar users for the same item with various aggregation func-

ions such as mean, similarity weighted mean, adjusted similar-

ty weighted mean (which uses relative rating scales instead of

he absolute values to address the rating scale differences among

sers), etc. The set of most similar users and their correspond-

ng weights can be decided by calculating the correlation (such as

earson Correlation Coefficient [16] ) or distance (such as cosine-

ased [4] or mean squared difference) between the rating vec-

ors of the target user and the candidate user on common items.

hereas model-based algorithms are used to build a recommen-

ation system by training certain machine learning models [4,17–

9] based on the ratings of users that belong to the same clus-

er or class as the target user. Hence, prior research has focused

n applying statistical relational models to collaborative filtering

ystems [20–23] . Although collaborative filtering systems can solve

he overspecialization problem present in the content-based filter-

ng approach, it has its own problems as well, such as the new

ser/item problem (commonly known as the “cold start” problem)

nd the sparsity problem, which occurs when the number of users

atings on certain items is not sufficient. Hence, there are works fo-

using on enhancing collaborative filtering systems for solving such

roblems. Shambour et al. [24] proposed a G2B recommendation

-services which alleviated the sparsity and cold start problems

y employing additional domain knowledges of trust and trust

ropagation. 

There are Hybrid approaches which combine collaborative filter-

ng and content-based filtering into a unified system [5,25,26] . For

nstance Basilico et al. [5] unified content-based and collaborative

ltering by engineering the features based on various kernel func-

ions, then trained a simple linear classifier (Perceptron) in this en-

ineered feature space. 

There are some research focusing on job recommender sys-

ems. However, most of them only exploit the techniques of

ontent-based filtering [27–31] . Hong et al. [32] proposed a hy-

rid job recommender system by profiling the users based on

he historical applied jobs and behaviors of job applicants. Lu

t al. [33] proposed a directed weighted graph which represents

he content-based and interaction-based relations among users,

obs and employers with directed or bidirectional edges. It com-

utes the content-based similarity between any two profiles of ob-

ects (user, employer or job). The key difference of our model from

heirs is that the graph they used is not a machine learning model

rained from the historical data, but rather built based on known

acts of the target objects whereas our model is a first-order logic
robabilistic model trained with historical data and only partially

rounded with the related objects when it is necessary for infer-

nce on the target objects. Pacuk et al. [34] also exploited gradi-

nt boosting. But they only built a content-based filtering recom-

ender by using the standard gradient boosting. We built a hybrid

ecommender with relational functional gradient boosting, which

an capture the dependences among the features not only from

he target user-item pair but also from similar users. Besides, our

odel is a cost-sensitive learning approach which allows the tun-

ing of precision and recall in a principled way. 

The most related work to ours is [35] , where they proposed

o use Markov Logic Networks to build hybrid models combining

ontent-based filtering and collaborative filtering. Their work only

mployed one type of probabilistic logic model, which is demon-

trated later in this paper to not be the best one. Besides, it did not

onsider the special requirement of many recommendation sys-

ems, which is that precision should be preferred over recall (or at

east that the relative weights of the two should be configurable). 

. Building hybrid job recommendation systems with SRL 

odels 

Traditional machine learning algorithms make a fundamental

ssumption about the data they try to model: the training sam-

les are independent and identically distributed (i.i.d.), which is

ot typically the case in recommendation systems. In order to rep-

esent the data in a flat table, the standard model-based recom-

endation systems need an exhaustive feature engineering process

o construct the user profile by aggregating the attributes over all

he similar users who share the same background or similar prefer-

nces as the target user. The aggregation-based strategies are nec-

ssary because the standard algorithms require a regular flat table

o represent the data. However, the number of similar users related

o the target user may vary a lot among different individuals. For

xample, users with common preferences could have more simi-

ar users than the users with unique tastes. There are aggregation-

ased strategies [36] to make the feature number identical for

ll the samples when extending the feature space. However, such

trategies would inevitably lose meaningful information otherwise

ntroduce some amount of noise. 

We propose to employ SRL for the challenging task of im-

lementing a hybrid recommendation system. Specifically, we

onsider the formulation of Relational Dependency Networks

RDNs) [37] , which are approximate graphical models that are in-

erred using the machinery of Gibbs sampling. Fig. 2 shows a tem-

late model of RDNs. As can be seen, other than the attributes of

he target user A and target job B, it also captures the dependen-

ies between the target predicate Match ( A, B ) and attributes from

he similar user D and previous applied job C. The interpretation

f the learned model will be explained in more detail in Section 4 .

As an approximation of Bayesian Networks, Dependency Net-

orks (DNs) make the assumption that the joint distributions can

e approximated as the product of individual conditional proba-

ility distributions and that these conditional probability distribu-

ions are independent from each other. Since it prevents the need

or acyclicity checking, the structure and conditional probability

f each node can be optimized separately by certain local search

trategy. RDNs extend DNs to relational data and are considered as

ne of the most successful SRL models that have been applied to

eal-world problems. Hence, we propose to construct a hybrid rec-

mmendation system by learning an RDN using a state-of-the-art

earning approach–Relational Functional Gradient Boosting (RFGB) 

hich has been proven to be one of the most efficient relational

earning approaches [8] . 
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Fig. 2. Template Model of a Sample RDN. The target is Match ( UserA, JobB ) while the 

related objects are User D (introduced by the link nodes) and previous applied Job 

C. Note that D and C are first-order variables which could have multiple groundings 

for different target user–job pairs. 
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The following subsections will first introduce the basic concept

of RFGB, then cover the way we incorporate domain knowledge to

the cost matrix so the proposed hybrid recommendation system

can improve the confidence of recommended jobs. 

3.1. Relational functional gradient boosting 

When fitting a probabilistic model P ( y | x ), standard gradient as-

cent approaches start with initial parameters θ0 and iteratively

add the gradient ( �i ) of an objective function with respect to θ i .

Friedman [38] proposed an alternate approach where the objec-

tive function is represented using a regression function ψ over the

examples x , and the gradients are derived w.r.t. ψ( x ). Similar to

parametric gradient descent, after n iterations of functional gradi-

ent descent, the function parameter can be given as the sum over

all the gradient terms ψ n ( x ) = ψ 0 (x ) + �1 (x )+ ���+ �n ( x ). 

Each gradient term ( �m 

) is a set of training examples and

regression values given by the gradient w.r.t ψ m 

( x i ), i.e., <

x i , �m 

(x i ) = 

∂LL (x ) 
∂ψ m (x i ) 

> . To generalize from these regression exam-

ples, a regression function 

ˆ ψ m 

(generally regression tree) is learned

to fit to the gradients. The final model ψ m 

= ψ 0 + 

ˆ ψ 1 + · · · + 

ˆ ψ m 

is a sum over these regression trees. Functional gradient ascent is

also known as functional gradient boosting (FGB) due to this se-

quential nature of learning models. 

FGB has been applied to relational models [8,39–41] because

of its ability to learn structures and parameters of these mod-

els simultaneously. Gradients are computed for every ground-

ing/instantiation of the target first-order predicate. In our case,

the grounding Match(John, Software Engineer) of the target predi-

cate Match(User, Job) could be one example. Relational regression

trees [42] are learned to fit the ψ function over the relational re-

gression examples. Since the regression function ψ : X → (−∞ , ∞ )

is unbounded, a sigmoid function over ψ is commonly used to

represent conditional probability distributions. Thus the RFGB log-

likelihood function is: 

LL = 

∑ 

i 

log P (y i = 

ˆ y i ; X i ) = 

∑ 

i 

log 
1 

1 + exp (− ˆ y i · ψ(y i = 

ˆ y i ; X i )) 

where y i corresponds to a target grounding (a grounded instance

of the target predicate) of example i with parents X i . In our case,

the target predicate is Match(User, Job) , and the parents X would
i 
e the attributes of the target user and target job, and the jobs

reviously applied to by the target user and similar users sharing

he same preferences. ˆ y i is the true label for a user–job pair which

s 1 for a positive matching pair and 0 for a negative matching

air. The key assumption is that the conditional probability of a

arget grounding y i , given all the other predicates, is modeled as a

igmoid function. 

The gradient w.r.t. ψ(y i = ˆ y i ; X i ) is 

∂LL (x ) 

∂ψ(y i = 

ˆ y i ; X i ) 
= I( ̂  y i = Match ) − P (y i = Match ; X i ) (1)

hich is the difference between the true observation ( I is the indi-

ator function) and the current predicted probability of the match

eing true. Note the indicator function, I returns 1 for positives

nd 0 for negatives. Hence the positive gradient terms for positive

xamples push the regression values closer to ∞ and thereby the

robabilities closer to 1, whereas for negative examples, the regres-

ion values are pushed closer to −∞ and the probabilities closer to

. 

.2. Cost sensitive learning with RFGB 

Following the work of Yang et al. [9] , we propose to construct

 hybrid job recommendation system by learning a cost-sensitive

DN. 

As shown in Eq. (1) , the magnitude (absolute value) of the gra-

ient in RFGB only depends on how well the current model fits

he example. If it fits well, the probability of the positive example

iven the current model would be close to 1 (0 for negative ex-

mples), and the gradient that will be assigned to such examples

s the training weight would approach 0. If it does not, the pre-

icted probability of the example would be far from the true label

nd hence cause the boosting algorithm to attach a high weight

o that example. As a result, this method treats both false pos-

tive and false negative examples in the same way. Since most

f the relational data suffers from class imbalance, where nega-

ive instances compose a much larger part of the training sam-

les compared with positive instances, the negative outliers would

asily dominate the classification boundary after a few iterations.

o, Yang et al. [9] proposed a cost-sensitive relational learning ap-

roach which is able to address these issues and model the target

ask more faithfully. This is achieved by adding a term to the ob-

ective function that penalizes false positives and false negatives

ifferently. They defined the cost function as: 

( ̂  y i , y i ) = α I( ̂  y i = 1 ∧ y i = 0) + βI( ̂  y i = 0 ∧ y i = 1) , 

here ˆ y i is the true label of the i th instance and y i is the pre-

icted label. I( ̂  y i = 1 ∧ y i = 0) is 1 for false negatives (in our case,

he matching user–job pair that is predicted as mis-matching) and

( ̂  y i = 0 ∧ y i = 1) is 1 for false positives (in our case, the mis-

atching user–job pair that is classified as matching). This cost

unction was hence being introduced into the normalization term

f the objective function as: 

og J = 

∑ 

i 

[ 

ψ(y i ; X i ) − log 
∑ 

y ′ 
i 

exp 

(
ψ(y ′ i ; X i ) + c( ̂  y i , y 

′ 
i ) 
)] 

Thus, in addition to simple log-likelihood of the examples, the

lgorithm also takes into account these additional costs. 

Then, the gradient of the objective function w.r.t ψ(y i = 1 ; X i )

an be calculated by: 

= I( ̂  y = Match ) − λP (y = Match ; X ) . (2)
i i i 
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Table 1 

Cost Matrix. 

Actual Class 

True False 

Predicted Class True 0 I( ̂ y i = 1) − P(y i =1 ;X i ) 
P (y ′ =1 ;X i )+ P (y ′ =0 ;X i ) ·e −β

False I( ̂ y i = 1) − P(y i =1 ;X i ) 
P (y ′ =1 ;X i )+ P (y ′ =0 ;X i ) ·e α 0 
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Table 2 

Feature Space. 

Variable Name SkillID ClassID Distance 

Num of Instances 8534 1867 4 

Variable Name CityName CompanyID JobTitle 

Num of Instances 22,137 1,154,623 823,733 
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F or matching User − Job pairs : 
1 

P (y ′ = Match ; X i ) + P (y ′ = M isM atch ; X i ) · e α

F or mis − matching User − Job pairs : 

e β

P (y ′ = Match ; X i ) · e β + P (y ′ = M isM atch ; X i ) 

(3) 

As shown above, the cost function c( ̂  y i , y i ) is controlled by α
hen a potentially matching job being ruled out by the recom-

ender, while being controlled by β when a mis-matching job be-

ng recommended. The cost matrix of our approach can be formally

efined as ( Table 1 ). 

As the cost matrix shows, the influence of false negative and

alse positive examples on the final learned model can be directly

ontrolled by tuning the parameters α and β respectively. 

Now, consider the special requirement on the cost matrix in

ost job recommendation systems, which is that we would rather

iss certain candidate jobs which to some extent match the target

ser than send out recommendations that are not appropriate to

he target user. In other words, we prefer high precision as long as

he recall maintains above such a reasonable value that the system

ould not return zero recommendation for the target user. 

Since α is the parameter controlling the weights of false

egative examples, we simply assign it as 0 which makes λ =
 / 

∑ 

y ′ [ P (y ′ ; X i )] = 1 for misclassified positive examples. As a re-

ult, the gradient of the positive examples is the same as it was in

he original RFGB settings. 

For the false positive examples, we use a harsher penalty on

hem, so that the algorithm would put more effort into classifying

hem correctly in the next iteration. According to Eq. (3) , when it

s a negative example ( ̂  y i = 0 ), we have 

= 

1 

P (y ′ = Match ; X i ) + P (y ′ = M isM atch ; X i ) · e −β
. 

s β → ∞ , e −β → 0 , hence λ → 1 / P (y i = Match ; X i ) , so 

= 0 − λP (y i = Match ; X i ) → −1 

This means that the gradient is pushed closer to its maximum

agnitude | − 1 | , no matter how close the predicted probability is

o the true label. On the other hand, when β → −∞ , λ→ 0, hence

→ 0, which means that the gradients are pushed closer to their

inimum value of 0. In summary, if α < 0 ( β < 0 ), the algorithm is

ore tolerant of misclassified positive (negative) examples. Alternately,

f α > 0 ( β > 0 ), the algorithm penalizes misclassified positive (nega-

ive) examples even more than standard RFGB. So, in our experiment,

e set β > 0, which amounts to putting a large cost on the false

ositive examples. 

The proposed approach is shown in Fig. 3 . We iterate through

 steps and in each iteration, we generate examples based on the

ost-sensitive gradients. We learn a relational regression tree to fit

he examples using FitRelRegressionTree which is added to the

urrent model. We limit our trees to have maximum L leaves and

reedily pick the best node to expand. For generating the regres-

ion examples ( GenSoftMEgs function), we iterate through all the

xamples (N in the algorithm). For each example, we calculate the
robability of the example being true based on the current model.

e then calculate the parameter λ for positive and negative ex-

mples respectively based on the set values of parameters α and

, which are then used to calculate gradients based on Eq. (2) . The

xample and its gradient are added to the set of regression exam-

les, S . 

In job recommendation systems, the major goal is typically not

o have misclassified negative examples (false positive). As a result,

e need to eliminate the noise/outliers in negative examples as

uch as possible. Most algorithms generate negative examples by

andomly drawing objects from two related variables, and the pair

hat is not known as positively-related based on the given facts is

ssumed to be a negative pair. However, in our case, if we ran-

omly draw instances from User and Job , and assume it is a nega-

ive example if that grounded user never applied to that grounded

ob, it could introduce a lot of noise into the data since not ap-

lying does not necessarily indicate the job not matching the user.

or example, it could simply be due to the fact that the job has

ever been seen by the user. Hence, instead of generating nega-

ive instances following a “closed-world assumption”, as most of

he relational approaches did, we instead generated the negative

xamples by extracting the jobs that were sent to the user as rec-

mmendations but were not applied to by the user. In this way,

e can guarantee that this User–Job pair is indeed not matching. 

. Experiments 

We extracted 4 months of user job application history and ac-

ive job posting records and evaluated our proposed model on that

ata. Our goal was to investigate whether our proposed model can

fficiently construct a hybrid recommendation system with cost-

ensitive requirements by explicitly addressing the following ques-

ions: 

(Q1) How does combining collaborative filtering improve the per-

formance compared with content-based filtering alone? 

(Q2) Can the proposed cost-sensitive SRL learning approach re-

duce false positive prediction without sacrificing too much

on other evaluation measurements? 

To answer these questions, we extracted 9 attributes from user

esumes as well as job postings, which are defined as first-order

redicates: JobSkill(JobID, SkillID), UserSkill(UserID, SkillID), JobClass 

JobID, ClassID), UserClass(UserID, ClassID), PreAppliedJob(UserID, Jo- 

ID), UserJobDis(UserID, JobID, Distance) , 

UserCity(UserID, CityName), MostRecentCompany(UserID, Compa- 

yID), MostRecentJobTitle(UserID, JobTitle) . 

There are 707,820 total job postings in our sample set, and the

umber of possible instances the first order variables can take is

hown in the Table 2 . 
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1: function SoftRFGB(Data)

2: for 1 ≤ m ≤ M do � Iterate through M gradient steps

3: S :=GenSoftMEgs(Data; Fm−1) � Generate examples

4: Δm :=FitRelRegressTree(S) � Relational Tree learner

5: Fm := Fm−1 + Δm � Update model

6: end for

7: end function

8: function GenSoftMEgs(Data, F ) � Example generator

9: S := ∅
10: for 1 ≤ i ≤ N do � Iterate over all examples

11: Compute P (yi = 1|xi) � Probability of the example being true

12: if ŷi = 1 then

13: λ = 1 � Compute parameter λ for positive examples

14: else

15: λ = 1/[P (yi = 1|xi) + P (yi = 0|xi) · e−β ]

16: � Compute parameter λ for negative examples

17: end if

18: Δ(yi;xi) := I(ŷi = 1) − λP (yi = 1|xi) � Cost of current example

19: S := S ∪ [(yi), Δ(yi;xi))] � Update relational regression examples

20: end for

21: return �S Return regression examples

22: end function

23: function FitRelRegressionTree(S) � Relational tree Learner

24: Tree := createTree(P (X))

25: Beam := {root(Tree)}
26: while numLeaves(Tree) ≤ L do

27: Node := popBack(Beam) � Node w/ worst score

28: C := createChildren(Node) � Create children

29: BN := popFront(Sort(C, S)) � Node w/ best score

30: addNode(Tree, Node, BN) � Replace Node with BN

31: insert(Beam, BN.left, BN.left.score) � Insert branch

32: insert(Beam, BN.right, BN.right.score)

33: end while

34: return Tree

35: end function

Fig. 3. Cost-sensitive RFGB. 



S. Yang et al. / Knowledge-Based Systems 136 (2017) 37–45 43 

Table 3 

Domains. 

JobTitle Training Test 

pos neg facts pos neg facts 

Retail Sales Consultant 224 6973 13,340,875 53 1055 8,786,938 

Case Manager 387 35,348 13,537,324 87 5804 8,815,216 

District Manager 358 16,014 13,396,635 87 3521 8,798,522 

Table 4 

Results. 

Job Title Approach FPR FNR Precision Recall Accuracy AUC-ROC 

Retail Content-based Filtering (CF) 0.537 0.321 0.060 0.679 0.473 0.628 

Sales Cost-sensitive CF ( α0 β2) 0.040 0.868 0.143 0.132 0.921 0.649 

Consultant Hybrid Recommender (HR) 0.516 0 0.089 1.0 0.509 0.776 

Cost-sensitive HR ( α0 β2) 0.045 0.906 0.096 0.094 0.914 0.755 

Cost-sensitive HR ( α0 β1) 0.113 0.623 0.144 0.377 0.863 0.772 

Case Content-based Filtering (CF) 0.220 0.184 0.053 0.816 0.781 0.861 

Manager Cost-sensitive CF ( α0 β2) 0.084 0.609 0.066 0.391 0.909 0.847 

Hybrid Recommender (HR) 0.239 0 0.059 1.0 0.765 0.911 

Cost-sensitive HR ( α0 β2) 0.037 0.736 0.096 0.264 0.952 0.911 

District Content-based Filtering (CF) 0.427 0.195 0.045 0.805 0.579 0.746 

Manager Cost-sensitive CF ( α0 β2) 0.017 0.920 0.104 0.080 0.961 0.745 

Hybrid Recommender (HR) 0.439 0 0.053 1.0 0.572 0.817 

Cost-sensitive HR ( α0 β2) 0.013 0.977 0.042 0.023 0.964 0.812 

Cost-sensitive HR ( α0 β1) 0.068 0.678 0.104 0.322 0.917 0.825 

 

u  

u  

t  

u  

a  

i  

j  

j  

f  

3  

P  

i  

i  

i  

t

 

t

C  

i  

U  

f  

t

 

c  

T

 

n  

c  

c  

p  

1  

n  

e  

p  

j  

n  

a  

c  

o  

a  

c  

i

a  

i  

n

 

l  

h  

t  

i  

u  

h  

c  

f  

a

 

w  

p  

w  

t  

H  

a  

g  

b  

a  

c  

w  

t  

r  

p  

d  

t  

i  

c

 

a  

h  
Information on the JobClass and UserClass are extracted based

pon the work of Javed et al. [43] . The other features related to

sers are UserSkill, UserCity, MostRecentCompany and MostRecen-

JobTitle which are either extracted from the user’s resume or the

ser’s profile document, whereas the job feature JobSkill represents

 desired skill extracted from the job posting. Predicate UserJobDis

ndicates the distance between the user (first argument) and the

ob (second argument), which is calculated based on the user and

ob locations extracted from respective documents. The UserJobDis

eature is discretized into 4 classes (1: < 15 mile; 2: [15 miles,

0 miles); 3: [30 miles, 60 miles]; 4: > 60 miles). The predicate

reAppliedJob defines the previous applied jobs and serves as an

ndependent predicate which indicates whether the target user is

n a cold start scenario, as well as act as a bridge which introduces

nto the searching space the attributes of other jobs related to the

arget user during the learning process. 

To incorporate collaborative filtering, we use three addi-

ional first-order predicates: CommSkill(UserID1, UserID2), Comm- 

lass (UserID1, UserID2) and CommCity(UserID1, UserID2) which are

nduced from the given groundings of the predicates UserSkill,

serClass and UserCity and also serve as bridges which introduce

eatures of other users who share the similar background with the

arget user. 

The performance of our model is evaluated in 3 different user

lasses, each of which has its data scale description shown in

able 3 . 

As Natarajan et al. discovered in their work [8] , limiting the

umber of leaves in each tree and learning a set of small trees

an improve the learning efficiency as well as prevent overfitting

ompared with learning a single complex tree. To choose the ap-

ropriate number of trees, we sampled a smaller tuning set of just

00 examples. Our tuning set results showed that choosing the

umber of trees beyond 20 did not improve performance. How-

ver, between 10 and 20 trees the performance had significant im-

rovement. This is similar to the original observation of Natara-

an et al. [8] and hence, we followed their discoveries and set the

umber of iterations M as 20 and maximum number of leaves L

s 8. The results are shown in Table 4 . For each of these user

lasses, we experimented with our proposed model using first-
rder predicates for the content-based filtering alone (denoted

s CF in Table 4 ), as well as the first-order predicates for both

ontent-based filtering and collaborative filtering (denoted as HR

n Table 4 ). We also tried different settings of the parameters α
nd β (denoted in the parentheses following the algorithm names

n Table 4 )for both scenarios in order to evaluate their effective-

ess on reducing the false positive prediction. 

As the table shows, although the two approaches show simi-

ar performance on False Positive Rate, Precision, and Accuracy, the

ybrid recommendation system improves a lot on the False Nega-

ive Rate, Recall and AUC-ROC compared with content-based filter-

ng alone, especially on the Recall (reached 1.0 for all three of the

ser classes). So, question (Q1) can be answered affirmatively. The

ybrid recommendation system improves upon the performance of

ontent-based filtering alone, by taking into consideration the in-

ormation of similar users who have the same expertise or location

s the target user. 

The first column of Table 4 shows the False Positive Rate which

e want to reduce. As the numbers shown, the cost-sensitive ap-

roach greatly decreases the FPR compared with prior research

hich does not consider the domain preferences on the cost ma-

rix. It also significantly improves the accuracy at the same time.

ence, question (Q2) can also be answered affirmatively. Note that,

lthough it seems that recall has been considerably sacrificed, our

oal here is not to capture all the matching jobs for the target user,

ut instead to increase the confidence on the recommendations we

re giving to our users. Since we may have hundreds of millions of

andidate jobs in the data pool, we can usually guarantee that we

ill have a sufficient number of recommendations even with rela-

ively low recall. Moreover, our proposed system can satisfy various

equirements on the trade-off of precision and recall for different

ractical consideration by tuning the parameters α and β . If one

oes not want the recall too low, in order to guarantee the quan-

ity of recommendations, one can simply decrease the value of β;

f one does not want the precision too low, in order to improve the

ustomer satisfaction, one can just increase the value of β . 

Fig. 4 shows a sample regression tree learned from Case Man-

ger users. The left most path can be interpreted as: if we

ave the information on record about the UserCity, UserSkill and
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Fig. 4. Sample Regression Tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MostRecentJobTitle of the target user A (in other words, the target

user does not suffer from the cold start problem), and there is an-

other user G who lives in the same city and applied for the same

job as user A before, and if user G applied for the target job B , then

the probability for the target user A to apply to the target job B (in

other words the probability for the user–job pair to be matching)

is P (Match (A, B ) = 1) = 

1 
1+ e −0 . 827 ≈ 0 . 696 . 

It is worth mentioning that we also tried to experiment with

Markov Logic Networks on the same data with Alchemy2 [44] .

However, it failed after continuously running for three months due

to the large scale of our data. This underscores one of the ma-

jor contributions of this research in applying statistical relational

learning to building a hybrid recommendation model in a real-

world large-scale job recommendation domain. 

5. Conclusion 

We proposed an efficient statistical relational learning approach

to construct a hybrid job recommendation system which can also

satisfy the unique cost requirements regarding precision and re-

call in this specific domain. The experiment results show the abil-

ity of our model to reduce the rate of inappropriate job recom-

mendations. Our contribution includes: (i). we are the first to ap-

ply statistical relational learning models to a real-world large-scale

job recommendation system; (ii). our proposed model has not only

been proved to be the most efficient SRL learning approach, but

also demonstrated its ability to further reduce false positive pre-

dictions; (iii). the experiment results reveal a promising direction

for future hybrid recommendation systems– with proper utilization

of first-order predicates, an SRL-model-based hybrid recommenda-

tion system can not only prevent the necessity for exhaustive fea-

ture engineering or pre-clustering, but can also provide a robust

way to solve the cold-start problem. 
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