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Abstract

Modern computer vision pipelines handle large
images in one of two sub-optimal ways: down-
sampling or cropping. These two methods incur
significant losses in the amount of information
and context present in an image. There are many
downstream applications in which global context
matters as much as high frequency details, such
as in real-world satellite imagery; in such cases re-
searchers have to make the uncomfortable choice
of which information to discard. We introduce x7,
a simple framework for vision transformers which
effectively aggregates global context with local
details and can model large images end-to-end on
contemporary GPUs. We select a set of bench-
mark datasets across classic vision tasks which
accurately reflect a vision model’s ability to under-
stand truly large images and incorporate fine de-
tails over large scales and assess our method’s im-
provement on them. x7 is a streaming, two-stage
architecture that adapts existing vision backbones
and long sequence language models to effectively
model large images without quadratic memory
growth. We are able to increase accuracy by up to
8.6% on challenging classification tasks and F}
score by 11.6 on context-dependent segmentation
on images as large as 29,000 x 29,000 pixels.

Code and pre-trained weights are available at
https://github.com/bair-climate-initiative/xT.

1. Introduction

As camera technology has advanced, images have been
getting increasingly larger over the past decade. Images
captured by sensors on smartphones now capture images
at 4K resolution (roughly 8.3M pixels) while professional
DSLR cameras capture images at 8K resolution. Elsewhere,
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Figure 1: xT allows large images to be modeled end-to-end
on contemporary GPUs without compromising on high
frequency features or global context.
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sensors on satellites and microscopes capture images with
over a billion pixels.

Modern computer vision pipelines are limited by the mem-
ory in the systems they are trained upon, resulting in the
creation of models that only operate on small images. Com-
puter vision practitioners limit the size of images in two
less-than-ideal ways: down-sampling or cropping. While
these simple operations produce powerful models when mea-
sured against typical computer vision benchmarks, the loss
of high frequency information or global context is limited
for many real-world tasks.

Consider a video feed of a football game. Captured natively
in 8K resolution, a model attempting to answer the question
of where a player on the left side of the screen will pass
the ball to on the right side of screen will not be able to
reason over the entire image in one pass. The image, the
downstream model, and all intermediate tensors cannot fit
in the memory of modern, large VRAM GPUs. A common
approach is to process the image by treating it as individual
“windows”, each fed through the model without sharing
context, resulting in sub-optimal performance.

We introduce x7, a streaming, two-stage framework by
which myopic vision backbones can effectively integrate
local and global context over large images without incurring
quadratic memory growth. In particular, we tackle both
issues of increasing GPU memory utilization and the inte-
gration of context across very large images. We achieve this
by introducing token hierarchies to state-of-the-art vision
backbones (Liu et al., 2021; Ryali et al., 2023) and imbuing
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Figure 2: Overview of our methodology. x7 provides a way for existing vision backbones trained on small images to work
effectively with large images. The key is our nested tokenization of large images at multiple levels: at the region level as

input R°, ..., R® (R, ..., R + 8 for readability) for the region encoders, and then at the patch level R}, ..

/L' . .
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the encoders to understand local details. The image regions then undergo independent, hierarchical encoding, by passing
through a vision backbone that serves as a region encoder. Hierarchical region encoders result in down-sampled features
which, when combined with context encoders, allows us to process more regions at once than typically possible. One such
context encoder, Transformer-XL, is illustrated in Stage 2. It recurrently processes previous prior sequence tokens using
cross attention, extending its context range significantly with depth. The resulting sequence has assimilated both local and

global context and is finally fed to a task-specific decoder.

the resulting local features with global context through the
use of long-sequence models, such as Transformer-XL and
Mamba (Dai et al., 2019; Gu & Dao, 2023), obtained from
the field of natural language processing. x7" matches and
beats the performance of competitive large image architec-
tures on multiple downstream tasks that require large visual
contexts such as segmentation, detection, and classification.
We demonstrate results on a variety of downstream tasks
and achieve up to an 8.6% gain in accuracy on classification
tasks and an 11.6 increase in F} score on context-dependent
segmentation.

2. Related Works

Modeling large images Many prior works have attempted
to model large images. These approaches fall into one of two
buckets: 1) multi-pass hierarchical or cascading approaches
and 2) sliding windows combined with some suppression
mechanism. Dalal and Triggs famously utilized a sliding
window approach for robust object recognition in their work
on histograms of oriented gradients (Dalal & Triggs, 2005).
R-CNN (Girshick et al., 2014) classified proposals gener-
ated by selective search in a cascade, resulting in a slow,
albeit effective detector that worked for large images. Gader-
mayr, et. al. (Gadermayr et al., 2019) proposed a cascading
convolutional neural network (CNN) where regions of inter-
est (Rol) are first segmented using low resolution imagery.
These Rol are used to refine the segmentation mask using
high resolution imagery. (Zhang et al., 2021) implement a
multi-scale vision transformer architecture which outputs
a feature pyramid combined with a linear attention mecha-
nism.

As demonstrated by prior work, there are inherent benefits to

using hierarchical backbones when attempting to represent
multi-scale features, so all of our experiments are done with
them. The xT framework is agnostic to the style of vision
backbone used for feature extraction.

Assessing global understanding Methods that aim to
improve the handling of high-resolution or large images
rarely benchmark their methods on real-world, large image
datasets. For example, both (Zhang et al., 2021) and (Yang
et al., 2022) are ViT architectures with non-global attention
to better model large images. However, both works experi-
ment on datasets such as ImageNet which is comprised of
images of 224 x 224 pixels large.

Other evaluation methods rely on naive data processing
techniques such as cropping medium-sized images from
Cityscapes into smaller chunks and independently stitching
the outputs together (Gu et al., 2021), or center-cropping
a 224 x 224 patch from a larger (yet objectively small)
ImageNet image (Wang et al., 2021). Ultimately, these
approaches are sensitive to changes in test-time resolution,
though representation learning methods exist to rectify this
issue (Reed et al., 2023).

Real-world classification and segmentation datasets that are
heavily dependent on their surroundings, or in cases where
the object that needs to be modeled is a small fraction of
the overall image, would benefit from better integration of
global context. Myopic vision encoders which utilize a
windowing approach may fail at large objects in detection
tasks as objects will span multiple windows.

We evaluate on real-world datasets such as xView3-
SAR (Paolo et al., 2022), a dataset where the average
image is 29,400 x 24,400 pixels large, and iNaturalist
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2018 (Van Horn et al., 2018), where the entire 800 x 800
image is utilized at once for evaluation. We also evaluate on
the standard Cityscapes dataset for direct comparison on a
common vision benchmark.

Learning global context Convolutional neural networks
operate over images in sliding windows defined by the
size of the kernels used for convolution. However, con-
volutions do not inherently aggregate information from sur-
rounding windows. Following seminal work by Hubel and
Wiesel (Hubel & Wiesel, 1962) and Koenderink and Van
Doorn (Koenderink & Van Doorn, 1999) on feature pooling
in the visual cortex, LeCun, et. al. (LeCun et al., 1989)
introduced “average pooling” into CNNs as a context aggre-
gation mechanism. Dilated convolutions as implemented
by Yu and Kolun (Yu & Koltun, 2016) further increased the
receptive field of CNNs.

Some models treat memory as an explicit, external compo-
nent of the model. Neural Turing machines and memory
networks (Graves et al., 2014; Weston et al., 2015) learn
an access mechanism to read/write from a fixed-size mem-
ory matrix that is external to the backbone itself. More
recently, MeMViT (Wu et al., 2022) extends this concept
to sequences of images by caching and compressing activa-
tions from prior sequences with attention as a learned access
mechanism.

Transformers and vision transformers (Vaswani et al., 2017,
Dosovitskiy et al., 2020), consisting of stacked attention lay-
ers (Bahdanau et al., 2016), are able to maintain context over
a fixed number of tokens. Prior works attempt to address
limitations in attention via approaches such as factorization
and adaptive masking (Child et al., 2019; Sukhbaatar et al.,
2019). Notably, the Transformer-XL (Dai et al., 2019) ef-
ficiently passes context over a large number of tokens by
recycling state over recurring input segments.

Recurrent neural networks (RNNs) (Hopfield, 1982; Rumel-
hart & McClelland, 1987) addressed context over long se-
quences by recurrently passing hidden states over a fixed
set of time steps but suffered from catastrophic foreget-
ting (Hochreiter, 1991). Subsequent work on long short-
term memory (Hochreiter & Schmidhuber, 1997) tack-
led this issue via gating. Structured state space models
(SSMs) (Gu et al., 2022) have re-emerged recently as a vi-
able successor to RNNs. Of the SSM family of models, the
Mamba (Gu & Dao, 2023) architecture presents a selection
mechanisms for state spaces allowing it to generalize to
large sequence lengths.

xT is a streaming, two-stage architecture in which a pow-
erful vision backbones extracts features from regions of a
large image in batches. These features are streamed to a
shallow context encoder which integrates global context
across local features, effectively increasing the receptive

field of the vision backbone across the entire image while
staying within memory and parameter limits.

3. Background

In this section, we briefly summarize the needed background
for methods used in our work.

3.1. Long-Context Models as Context Encoders

xT utilizes long-context models originally designed for text
in order to mix information across large images. These
methods extend the context length beyond the typical limit
of transformers. Below we briefly review two techniques
which we build upon as our context encoders: Transformer-
XL (Dai et al., 2019) and Mamba (Gu & Dao, 2023).

Transformer-XL uses recurrence to pass prior informa-
tion to future windows via prior hidden states. This effect
propagates through depth, so an N-layer transformer capa-
ble of taking a length L sequence can be easily extended to
handle a sequence of length NV L.

Each hidden state h? of layer n for sequence 7 is computed
from the previous layer hidden states h” ] and h? ' as

T—

h} = [SG(hZ}) o b}

T
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h?' = Transformer(q”, k7, v’) ()

where SG stands for a stop gradient. This is the same as
the original Transformer, except that the keys and values
k. v? are computed using the previous sequence’s hidden
state h” ] in addition to the current sequence’s hidden
state h”~! using cross attention. This mechanism allows
for the recurrence of the hidden states h” across layers.
The application of a stop gradient between sequences lets
information be propagated without suffering the memory

costs incurred with full sequence backpropagation.

State Space Models State space models (Gu et al., 2022;
Nguyen et al., 2022) have been re-discovered recently as
a potential replacement for transformers in long-sequence
modeling. These models can be formulated as ordinary
differential equations of the form

%’5) = Ah(t) + Ba(t)
y(t) = Ch(t) + Da(t) @)

where z(t) € R is the input signal and y(¢) € R is the
output signal. Practically, this is computed through a dis-
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cretization of the ODE via the zero-order hold (ZOH) rule:

= exp(AA)
B = (AA) " (exp(AA) —I)-AB
h(t) = Ahy_1 + By 3)
yr = Chy 4)

Mamba (Gu & Dao, 2023) is a new state space model that
introduces a selective scan mechanism that allows time-
varying parameterizations. Mamba theoretically carries con-
text across very long sequences without any loss in accuracy
and is implemented efficiently using custom CUDA kernels.

3.2. Linear attention mechanism

A standard transformer block with multi-headed self atten-
tion requires quadratic memory with respect to sequence
length L for fully global context. This is not ideal in the face
of limited GPU memory. HyperAttention (Han et al., 2023)
is an attention mechanism with near-linear complexity with
respect to sequence length. It reduces the complexity of
naive attention by first finding large entries of the atten-
tion matrix using Locality Sensitive Hashing (LSH). These
dominant entries, combined with another randomly sampled
subset from the matrix, are then used to approximate output
of naive attention. This approach is particular helpful when
the long range context correspondences are sparse.

4. Methodology

Our goal for xT is to demonstrate a simple framework for
allowing existing methods to process large images in a mem-
ory efficient and context-preserving manner. We achieve
this through a streaming, two-stage architecture. First, im-
ages are tokenized in a multi-stage hierarchy (Section 4.1)
into regions. These regions are encoded by a powerful, but
myopic, vision encoder in batches (at worst case, in serial)
(Section 4.2), resulting in a set of local features for the en-
tire image. A lightweight context encoder then integrates
information across all local features, culminating in a fea-
ture vector which contains contextualized global semantics
over the entire image (Section 4.3). This feature vector is
then used for task-specific decoding. Our overall pipeline is
illustrated in Figure 2.

4.1. Nested Tokenization

Given a large input image of shape aH x SW, we first
subdivide the image into H x W regions so that our region
encoder can adequately process them. Each region R’ is
further patchified into P patches, R}, ..., R%_, by the
region encoder backbone in order to extract features for
each region. The regions are non-overlapping and zero-
padded in instances when the region size, H x W, does not
evenly divide the image size.

Typically our images and regions are square, SO we use a
simplified notation to denote our pipeline parameters. We
refer to a pipeline which receives images of size aR X aR
and subdivides them into R x R regions as an «R/ R setup.
Standard setups are 512/256, or 4096/512, in which we
split our image into 2 x 2 and 8 X 8 tiles respectively.

4.2. Region Encoder

The region encoder is any vision model which has been
previously trained on small images small images H x W,
usually 224 x 224 or 256 x 256. The region encoder in-
dependently generates feature maps for each region R} p.
In our experiments, we utilize vision transformers which
output a shorter sequence length than which is input to them.
These sequence lengths are less than the equivalent length
produced by isotropic ViTs (Dosovitskiy et al., 2020). In
this setup, we are able to effectively handle images with
an increased number of regions, as our sequence length is
reduced by 4 x or greater. However, we also demonstrate
the effectiveness of xT" with a CNN-based encoder in the
Appendix.

We stream regions through the region encoder in batches
when GPU memory allows. However, either when the image
is too large such that all of its constituent regions cannot
fit into GPU memory, or when the regions themselves are
too large, we process the image sequentially. The features
generated from this process contain information limited to
each region and are concatenated in row-major order to form
a sequence.

4.3. Context Encoder

The context encoder is a lightweight sequence-to-sequence
model that is able to effectively attend to long sequences. In
xT, the context encoder plays the key role of disaggregating
global context across local features extracted using the re-
gion encoder. Critically, we constrain the context encoder
to have a near-linear memory and time cost. This design
allows xT to “see” many other regions of the large image
which otherwise would not be feasible with the naive usage
of a vision model. x7”’s usage of a context encoder signifi-
cantly extends the receptive field of existing vision models
with a marginal increase in memory cost and the number of
parameters.

Our method acts primarily in two settings: when our se-
quence of region features fits entirely within the context
encoder’s context length, and when it does not. In the first,
we simply process everything at once. We use standard 2D
positional embeddings which are added to the nested region
features.

We experiment with three context encoders with linear “at-
tention” mechanisms: a LLaMA-style (Touvron et al., 2023)
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architecture using HyperAttention (referred to as Hyper),
and Mamba. These two settings are called (xT) Hyper and
(xT) Mamba, where (xT) is an operator joining the choice
of region encoder with context encoder.

When our input sequence does not fit in the entire context
length, we need to additionally compress our regions to
maintain contextual information for future regions. We
experiment with a derivative of Transformer-XL that utilizes
HyperAttention, a form of linear attention, and absolute
positional embeddings instead. We denote this setting as
(xT) XL. At the time of writing, Mamba does not have an
efficient kernel for implementing an XL-style recurrence,
so we cannot apply Mamba to this setting.

Effective Receptive Field Calculations Vision models
used as-is are able to have an effective receptive field across
the entire image but have zero reception on large images as
they simply run out of memory. We aim to demonstrate the
effective receptive field of xT’s two-stage architecture. In
summary, the receptive field of xT is global but with minor
aliasing artifacts due to an effective convolution over the
image with the region encoder.

We provide calculations of the effective receptive field for
the Swin (xT) XL setup. This is further ablated in Sec-
tion 7.1.

In the context encoder, we concatenate the features of C
regions into one “chunk” as our features are both smaller
than the inputs from the hierarchical regional encoder. The
Transformer-XL context encoder additionally has reduced
attention memory requirements from using HyperAttention,
further improving the number of regions that fit into one
“chunk”. Each region attends to all other regions in this
chunk, and they also have access to the previous chunk’s
hidden states for more context flow through the model. Con-
text scales as a function of depth in Transformer-XL.

Consequently, we can calculate the context enhancement
we achieve beyond just a standard model query on a small
image. If we use a region encoder with input size R (typi-
cally 256) and receive a large image of size R X SR, then
we will have a total of a8 regions available for our con-
text encoder. Then we increase our context from increased
chunk sizes by a factor of C', and also increase it from our
recurrent memory by a factor of IV, the depth of the context
model. These values are calculated in Table 1 and further
visualized in Figure 4.

In total, our context is multiplied by a3 NC. However, note
that there is a trade-off between 5 and C, as increasing the
size of our input image limits the chunk sizes that we can
create from the region features.

Model | Input (px) | Region (px) | XL Layers | Context
Swin-B 256 256 - 65,536
Swin-B 512 512 - 65,536
Swin-B (xT) XL 512 256 1 131,072
Swin-B (xT) XL 512 256 2 196,608
Swin-B (xT) XL 4096 256 2 786,432

Table 1: The effective context length (in pixels) is calculated
for Swin-B versus Swin-B (xT) XL. Context is fixed for
Swin while it grows as a function of region size and the
number of Transformer-XL layers for Swin (xT) XL.

5. Experiments

Settings We aim to demonstrate the efficacy of xT across
the most common vision tasks: classification, detection,
and segmentation. To do so, we pick a representative and
challenging benchmark dataset in each domain for experi-
mentation.

We focus on iNaturalist 2018 (Van Horn et al., 2018) for
classification, xView3-SAR (Paolo et al., 2022) for segmen-
tation, and Cityscapes (Cordts et al., 2016) for detection.
Since iNaturalist 2018 is a massive dataset, we focus on the
Reptilia super-class, the most challenging subset available
in the benchmark (Van Horn et al., 2018). xView3-SAR is
a difficult segmentation dataset for two reasons: it is com-
prised of extremely large images that are 29,400 x 24,400
pixels large on average, and the objects in the dataset are
heavily influenced by their non-local surroundings. Lastly,
Cityscapes is used for evaluation of detection and to serve
as a common baseline across prior work.

Metrics We measure top-1 accuracy for classification. For
detection, we measure mean average precision (mAP) along
with mAPge. MAP g 18 Of specific interest since large
objects in large images cross multiple region boundaries,
resulting in a challenging training and evaluation problem.
Segmentation is measured in two ways: aggregate F score
for segmentation of any object in the image, and close-to-
shore F score for objects that are “close to the shoreline”.
xView3-SAR is comprised of synthetic aperture radar im-
ages which demonstrate unique artifacts around busy areas
not found in typical vision benchmarks. Particularly, ob-
jects within 2km of the shoreline are impacted heavily by a
shoreline that may not be visible in crops around the object.

5.1. Classification

We utilize the SwinV2 (Liu et al., 2022) and Hiera (Ryali
et al., 2023) families of hierarchical vision models as the re-
gion encoders for the classification experiments. All variants
of Swin—tiny, small, base, and large—are pretrained on
the ImageNet-1k (Russakovsky et al., 2015) dataset. Both
Hiera-B and Hiera-B+ are initialized with MAE (He et al.,
2022) pre-trained/ImageNet-1k fine-tuned weights. Two
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Model Top-1 Acc Size(s) | Param Mem (GB)
Swin-T 53.76 256 31IM 0.30
Swin-T (xT) Hyper 52.93 256/256 | 47T 0.31
Swin-T (xT) Hyper 60.56 512/256 | 47M 0.29
Swin-T (xT) XL 58.92 512/256 | 47M 0.17
Swin-T (xT) Mamba 61.97 512/256 44M 0.29
Swin-S 58.45 256 | 52M 0.46
Swin-S (xT) Hyper 57.04 256/256 69M 0.46
Swin-S (xT) Hyper 63.62 512/256 6OM 0.46
Swin-S (xT) XL 62.68 512/256 | 69M 0.23
Swin-S (xT) Mamba* - = = s
Hiera-B 48.60 224 54M 0.26
Hiera-B+ 50.47 224 | 73M 0.33
Hiera-B (xT) Hyper 57.20 448/224 | 70M 0.21
Swin-B 58.57 256 | 92M 0.50
Swin-B (xT) Hyper 55.52 256/256 | 107TM 0.61
Swin-B (xT) Hyper 64.08 512/256 | 107M 0.74
Swin-B (xT) XL 62.09 512/256 | 107M 0.39
Swin-B (xT) Mamba 63.73 512/256 | 103M 0.58
Swin-L 68.78 256 | 206M 0.84
Swin-L (xT) Hyper 67.84 256/256 | 215M 1.06
Swin-L (xT) Hyper 72.42 512/256 | 215M 1.03
Swin-L (xT) XL 73.47 512/256 | 215M 0.53
Swin-L (xT) Mamba 73.36 512/256 | 212M 1.03

Table 2: Comparison to prior methods on iNaturalist
Reptilia Classification. Our methods improve on prior
works significantly, showing that previous methods still fail
to integrate global context. Memory is per base region
size, which is fixed for each comparison. *Custom Mamba
CUDA kernels are incompatible with Swin-S at this time.

layers of Hyper or four layers of Mamba are used as the
context encoder, intialized randomly.

We train end-to-end on the Reptilia subset of iNaturalist
2018 for 100 epochs using the AdamW optimizer (5; =
0.9, B2 = 0999, ¢ = 1 x 1079) using cosine learning
rate decay schedule. Swin-T, Swin-S, Hiera-B/+, and their
xT variants use a base learning rate of 1 x 10~* while Swin-
B, Swin-L, and their x7 variants use a base learning rate of
1 x 1072, xT’s nested tokenization scheme is represented as
two values, e.g. 512/256, where the first value is the size of
the regions extracted from the input image and the second
value is the input size expected by the region encoder.

Table 2 contains results for variants of Swin, Hiera, and their
xT variants on iNaturalist-Reptilia. Particularly, we demon-
strate x7’s results as a function of region/input size and
type of context encoder. xT outperforms their comparable
baselines by up to 8.6% in top-1 accuracy.

We show in Figure 3 that xT sets a new accuracy-parameter
frontier when compared against existing methods.

5.2. Segmentation on xView3-SAR

We evaluate xT on the xView3-SAR (Paolo et al., 2022)
dataset, a large, real-world dataset of satellite imagery for
the task of detecting dark vessels. The average image size is
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Figure 3: xT improves upon the accuracy-parameter
frontier of existing methods for high-resolution classifi-
cation on iNaturalist using nested tokenization on top of
the origin architecture for larger context. See Table 2 for
detailed comparisons.

29,400 x 24, 400 pixels large, so accurate detections require
using long-range geospatial context to make decisions. We
calculate two metrics on xView3-SAR: the aggregate and
overall detection I} scores which reflect general task profi-
ciency, and of most importance, the close-to-shore detection
F, which requires detecting vessels close to the shore by
using predominant shoreline information.

We adopt the same setup as prior methods (Seferbekov,
2022), tackling the problem as a segmentation and regres-
sion problem using a standard encoder-decoder architecture
for dense prediction. In our case, we adopt Swin Trans-
former v2 (Liu et al., 2022) pretrained on ImageNet-1k
as our region encoder and use a UNet-style decoder (Ron-
neberger et al., 2015). We regress the centers of objects as
Gaussians and vessels as binary masks.

We test Swin-T, Swin-S, and Swin-B, and their x7-variants
using Transformer-XL as a context encoder with N = 4
layers. The models are trained over encoder input sizes
of 512 and 1024, which xT effectively boosts to 4096. At
inference time, we take overlapping crops of the same size
across the image and combine our predictions with post-
processing. We sweep our models over learning rates of
{3x1075,107%,3x107%,1073,3 x 1073} using AdamW
(with the same hyperparameters as in Section 5.1) and report
the validation numbers in Table 3.

While prior works tackle xView3 using smaller models like
CNN:gs, ours opts to adapt transformers for the task, which is
an under-unexplored space for the type of images present.
Therefore, larger models are not always better, as observed
in Table 3. However, xT always outperforms the corre-
sponding non-context model, beating baselines by up to
13.4 points on the overall F} detection score and 6.0 points
on the close-to-shore F} score, signaling x7”’s ability to im-
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Model ShoreT Aggt Fj Scoref | Param Meml] | Input Size(s)
Swin-T 50.0 47.6 67.8 32.4 1.24 512
Swin-T 51.6 532 76.8 32.4 5.30 1024
Swin-T (xT) XL 475 494 81.2 36.9 0.47 4096/512
Swin-T (xT) XL 56.0 54.8 78.2 36.9 1.65 4096/1024
Swin-S 46.1 449 67.7 53.7 1.84 512
Swin-S 412 438 71.0 53.7 7.24 1024
Swin-S (xT) XL 50.2 48.1 75.3 58.3 0.54 4096/512
Swin-S (xT) XL 528 55.1 78.8 58.3 2.24 4096/1024
Swin-B 502 51.6 72.1 92.7 2.36 512
Swin-B 544 547 75.8 92.7 9.65 1024
Swin-B (xT) XL 524 515 76.4 97.4 0.70 4096/512
Swin-B (xT) XL 51.0 5038 772 97.4 2.82 4096/1024

Table 3: Comparison to prior methods on xView3-SAR
detection. We evaluate our methods on xView3-SAR, a
dataset for dark vessel detection from satellite imagery. Our
method improves on prior state of the art hierarchical trans-
formers significantly while introducing few extra parameters
and using less memory per region due to our efficient con-
text encoder. This shows that prior works, expectedly, are
unable to model long range visual contexts.

Model | mAP | Input Size(s)
Swin-B-DetINO OOM 2048
Swin-B-DetINO (xT) XL | 43.0 2048/512

Table 4: Comparison with Swin-B on the Cityscapes ob-
ject detection task. Swin-B is unable to model Cityscapes
images in their entirety within the memory of an 80GB
A100.

prove models on large context tasks. Due to our streaming,
two-stage architecture with nested tokenization, the mem-
ory utilized per region is much lower as we see multiple
regions at once per pass while only introducing 5 — 10%
more parameters, .

5.3. Object Detection

We use SwinV2 (Liu et al., 2022) as the backbone and adopt
DetINO (Zhang et al., 2022) for the detection head. We
follow the standard COCO (Lin et al., 2015) 1x training
schedule and train on Cityscapes for 12 epochs with the
AdamW optimizer (81 = 0.9, B2 = 0.999) and a learning
rate of 1 x 1073, The learning rate for the SwinV2 backbone
is scaled by a factor of 0.1. The input is first padded to the
nearest multiple of chip size first, and then chipped in the
same way as Section 5.1. Each region is then processed by
the region encoder independently. The outputs from Swin
encoder are concatenated to form a global feature map of
the entire image, which is then processed by the context
encoder. The resulting sequence is passed to the DetINO
detection head.

We report mAP for our detection experiments. These exper-
iments are relatively brief—naive usage of the Swin back-
bone results in out-of-memory errors for the large 1,024 x
2,048 images found in Cityscapes. Conversely, xT is able to

model the images with ease.

6. Ablations

In this section, we ablate our design choices based on iNatu-
ralist classification, particularly around our context encoder.
The settings that we keep constant are that x7 is run on
512/256 inputs, where we chunk our four regions together
to create one sequence into our context encoder. As this usu-
ally fits in memory, we have no need to perform cross-chunk
contextualizing as we do in xView.

6.1. Context Encoder Architecture

We tested ViT, Hyper, and Mamba as context encoders in the
course of our classification experiments. These results are
detailed Table 5a. iNaturalist 2018 resizes their images to
800 x 800 pixels for training. These images can be modeled
comfortably by ViT and benefit from full self-attention.
However, both Hyper and Mamba both perform better than
ViT as context encoders with the added benefit of having a
much larger capacity for scale.

While Mamba has less parameters than both ViT and
Hyper—up to 8% fewer parameters for Swin-T (xT) Mamba
than for Swin-T (xT) Hyper—this difference disappears as
the region encoder increases in size as seen in Table 2. Fur-
thermore, the decrease in parameters ultimately has an in-
significant impact on the peak memory usage of the overall
xT model.

6.2. Context Encoder Depth

Crucial to our design is how deep our context encoder should
be, as our goal is to keep it as lightweight as possible so its
overhead is minimal. We find that an acceptable increase in
parameters keeps the number of layers to either 1 or 2. As
shown in Table 5b, larger region encoders generally benefit
from having deeper context encoders. The accuracy is the
greatest when the depth is 2 for the largest model, and the
trade-off is acceptable for the smallest model, being within
1 accuracy point, so we choose depth 2 as our default.

6.3. Resolution Size Matters

We revisit the central assumption of our work, which is if
high resolution is essential for understanding. In Table Sc,
we emphasize our results on iNaturalist which prove pre-
cisely that models previously did not take advantage of such
context, and now do with x7. Comparing the Swin-T/L 256
run with Swin-T/L 256/256, which is our method taking in
no context, our model actually does worse with extra param-
eters, likely due to non-functional parameters interfering
with the model’s learning. However, once we increase our
input image size by 4x to 512/256, our model is immedi-
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model depth acc .
1 36,38 model size acc  params
C(?ntext acc param mem Swin-T 5 85j09 236 33.76 3IM
ViT 6326 107TM 0.73 TR Swin-T 256/256 52.93 47M
Hyper  64.08 10/M 0.74 Swin-S . 512/256 60.56  47M
Mamba 63.73 103M 0.58 2 8803 356 €378 306M
. 1 ) :
SwinB gg gg Swin-L 256/256 67.84 215M
2 512/256 72.42 215M
Swinl | 9167
(a) Context Encoder Backbone. 2 94.48

ViT and Hyper perform similarly
without cross chunk context, while
Mamba performs most efficiently.

(b) Context Encoder Depth. Larger region
encoders benefit from deeper context encoders.
We choose N = 2 for our default depth.

(c) Resolution Matters. x7T" does worse
than region encoder-only given no context,
but performs much better with multiple re-
gions while using the same # of parameters.

Table 5: Ablating xT design choices. We highlight our defaults in blue and bold the best numbers.

Swin-B (xT) Hyper /512

1333 x 1333

2800 x 2800

e R B2
3 E L bl A et W E

Figure 4: Effective receptive fields of Swin-B and Swin-
B (xT) Hyper. The center feature from the last layer of
region encoder is used to assess sensitivity to areas across
the image. Darker green signifies greater sensitivity.

ately able to take advantage of the context with no increase
in parameters, boosting accuracy up by 4.6%-7.6%.

7. Discussion
7.1. Effective Receptive Field

We empirically visualize the effective receptive field (ERF)
(Luo et al., 2016) of xT in Figure 4. The effective receptive
field is computed by setting the gradient of one pixel in the
final feature map to 1 while keeping the gradient of all other
pixels as zero, and then computing the gradient with respect
to the input image through a backward pass. The visual-
ized image measures the magnitude of gradient with darker
green areas demonstrating greater “sensitivity”” and lighter
areas demonstrating lower. We show that Swin Transformer
has an ERF similar to a skewed Gaussian which vanishes
quickly over distance. Comparatively, xT retains a more uni-
form distribution across the entire image. Since our nested

tokenization approach is effectively a convolution, we see
convolution-like artifacts in the ERF that are mitigated as
region sizes get larger. This highlights the xT framework’s
capacity at capturing and integrating long range context in
large images.

7.2. Throughput

In lieu of FLOPS, which is difficult to standardize, hardware
dependent, and an inconsistent measure of running time
when using custom kernels, we instead report the throughput
of our method and compare to prior works in Figure 5. For
our comparisons, we use 40GB Nvidia A100 GPUs. As we
work with multiple image resolutions at once, we calculate
a throughput of regions/second, which is the number of
encoder-sized regions we process per second.

On a per-model size comparison, our method drops in
throughput slightly compared to prior methods (with the
exception of the fastest size, Tiny). However, we are able to
achieve large accuracy gains for this slight tradeoff which
are much better than if we used a larger model from prior
work instead. This demonstrates the benefit of our method in
improving the frontier in modeling larger images efficiently.

7.3. Memory Growth

Modern vision backbone, such as Swin, rapidly run out-of-
memory near-quadratically as the image size increases. In
Figure 6, we show how the xT framework effectively re-
moves this quadratic memory growth, allowing the model to
reason over large images end-to-end. Thanks to our chunk-
ing design, our method incurs minimal extra memory when
we increase our input size as we recurrently store previous
regions as context for future context-aware encoding.
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Model Type

Swin (xT) Mamba (Ours)
70,0 | Swin (xT) Hyper (Ours)
® Swin

Top-1 Accuracy

20 3‘0 4‘0 5‘0 6‘0 7‘0 80 90
Throughput (regions/sec)

Figure 5: xT offers greatly increased accuracy per

throughput. On iNaturalist classification, we find that our

models only slightly diminished throughput (with the ex-

ception of Swin-T (xT) XL/Mamba) but achieved greater

accuracies at each throughput threshold.

80 Swin-S (xT) XL /256 X
4
—e— Swin-S e
o 60 P
G] i
~ 4
o)
S 40+
IS
[]
=20
01— T T T T T
500 1000 1500 2000 2500 3000
Input Size

Figure 6: Swin rapidly goes out of memory (indicated
by the red X) as images grow in size whereas x7T retains
near-constant memory cost. x7" can scale to much larger
images than the naive usage of a vision backbone.

7.4. Locality of Features

Many vision backbones have adjustable receptive fields for
the integration of local information. Larger receptive fields
have memory and throughput implications, however. We
ablate the Swin transformer for various region and window
sizes and compare the impact on accuracy, throughput, and
memory in Table 6 on the iNaturalist classification task.

We set the window size used by Swin appropriately as a
function of region size. That is, an region size of 256 cor-
responds to a window size of 16, region size of 512 to a
window size of 32, and so on. Swin-B, without the usage of
xT, can achieve marginally higher accuracy at small image
sizes. However, this trend is reversed when working with
larger images. Of importance is the ability for x7 to retain
high throughput (measured as time per epoch in minutes)
and low memory usage (memory per region in GB) while
achieving equivalent accuracy downstream.

Model Acc. Size(s) | W. Size Th. Mem.
Swin-B 67.02 512 32 29.53 6.02
Swin-B (xT) XL | 65.49 512/256 16 12.77 0.49
Swin-B 67.37 1024 64 | 242.92 25.1
Swin-B (xT) XL | 68.19 | 1024/256 16 64.7 2.03

Table 6: Comparison of top-1 accuracy (Acc.), time per
epoch (Th.), and memory per region (Mem.) as a func-
tion of region size(s) and window sizes. Swin-B and

our method have approximately equivalent accuracies, but
xT achieves much more desirable throughput and memory
utilization.

8. Conclusion

Large images have been the norm for the past decade in
consumer and professional domains. Yet, state-of-the-art
methods in computer vision still limit themselves to mod-
eling small images by throwing away valuable information
via down-sampling and cropping. Large images from the
real world contain a wealth of information that often require
context across long distances to properly make sense of.

In this work, we introduce x7, a framework through which
vision models trained to handle small images can cheaply
integrate larger context over large images. x7 achieves
significant gains in downstream tasks such as classification,
detection, and segmentation on real-world datasets. By
offering a simple framework by which vision researchers
can effectively model large images, we aim to widen the
types of data and tasks vision researchers aim to solve.
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