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ABSTRACT

Large vision-language models (LVLMs) have shown remarkable abilities in un-
derstanding visual information with human languages. However, LVLMs still
suffer from object hallucination, which is the problem of generating descriptions
that include objects that do not actually exist in the images. This can negatively
impact many vision-language tasks, such as visual summarization and reasoning.
To address this issue, we propose a simple yet powerful algorithm, LVLM Hal-
lucination Revisor (LURE), to post-hoc rectify object hallucination in LVLMs
by reconstructing less hallucinatory descriptions. LURE is grounded in a rigorous
statistical analysis of the key factors underlying object hallucination, including co-
occurrence (the frequent appearance of certain objects alongside others in images),
uncertainty (objects with higher uncertainty during LVLM decoding), and object
position (hallucination often appears in the later part of the generated text). LURE
can also be seamlessly integrated with any LVLMs. We evaluate LURE on six
open-source LVLMs and found it outperforms the previous best approach in both
general object hallucination evaluation metrics, GPT, and human evaluations. Our
data and code are available at https://github.com/YiyangZhou/LURE.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have made significant progress in understanding real-
world images, showing potential towards achieving general artificial intelligence (Liu et al., 2023d;
Zhu et al., 2023; Ye et al., 2023; Li et al., 2023a; Maaz et al., 2023; Gong et al., 2023). Although
LVLMs have demonstrated their versatility and linguistic fluency, they often suffer from object hal-
lucination in their generated text outputs (Wang et al., 2023a; Liu et al., 2023a; Gunjal et al., 2023).
Object hallucination refers to the phenomenon of generating inaccurate descriptions for a given im-
age, including non-existent objects or omitting essential features. The issue with hallucinatory text
generation in LVLMs is that it can mislead and deceive users in downstream applications that depend
on these captions or descriptions, ultimately resulting in a negative impact on various fields that em-
ploy LVLMs, including robotics (Mai et al., 2023; Liu et al., 2023b), medical imaging (Wang et al.,
2023b; Hu et al., 2023), and human-computer interaction (Olson et al., 1994; Brie et al., 2023).

Early works have attempted to address the problem of object hallucinations in small-scale mul-
timodal pre-trained models by performing either fine-grained alignment across different modali-
ties (Biten et al., 2022) or reducing object co-occurrence patterns with data augmentation (Rohrbach
et al., 2018; Kim et al., 2023). However, the auto-regressive architecture of LVLMs differs signifi-
cantly from small-scale multimodal pre-trained models, making their direct utilization impractical.
A few recent works (Li et al., 2023c; Liu et al., 2023a;d) have studied to reduce object hallucina-
tions in LVLMs by enhancing the quality of datasets used for fine-tuning. Yet, acquiring a substantial
number of high-quality examples for fine-tuning can be time-consuming and labor-intensive, requir-
ing human expertise and effort. Instead, we aim to propose a lightweight method to post-hoc handle
object hallucination by introducing LURE: LVLM hallcUination REvisor.

Concretely, LURE is grounded in a rigorous statistical analysis that elucidates the underlying causal-
ities of object hallucinations in LVLMs. This analysis delves into the relationship between the
pre-training data and their corresponding textual responses from LVLMs that exhibit hallucinatory

∗Equal contribution. Work was done during Yiyang Zhou and Chenhang Cui’s remote internship at UNC.

1

https://github.com/YiyangZhou/LURE


Published as a conference paper at ICLR 2024

contents (Ordonez et al., 2011; Lin et al., 2014; Changpinyo et al., 2021; Liu et al., 2023d). Both
our empirical and theoretical findings reveal that object hallucinations can be attributed to three key
factors: co-occurrence, uncertainty, and object position. First, if the training data contains spuri-
ous co-occurring patterns between objects, language models may generate outputs based on these
learned spurious associations, thus resulting in hallucinatory descriptions. Second, hallucinations
occur more frequently on objects characterized by high uncertainty during generation. Lastly, posi-
tional factors also play a role, as more object hallucinations tend to appear in the latter portions of
the generated description due to the accumulation of misinterpretation.

Based on our statistical analysis, LURE develops a object hallucination revisor. This revisor takes
potentially hallucinatory descriptions as input and converts them into accurate ones. To create the
revisor, we first generate a hallucinatory dataset using GPT-3.5 by making two modifications to the
original correct captions: (1) Insert additional object texts into the description that are likely to co-
occur with the objects contained in the initial description. This modification allows LURE to learn to
disentangle such co-occurrence patterns effectively; (2) Replace uncertain objects or those at the end
of descriptions with a placeholder tag, encouraging the revisor to re-evaluate these objects. In the
end, we train our hallucination revisor leveraging the acquired hallucinatory dataset. Once trained,
the revisor can seamlessly integrate with any LVLM to correct potential hallucinatory descriptions.

Our primary contribution is LURE, a lightweight and compatible post-hoc approach for rectifying
object hallucination in LVLMs. This approach is grounded in our rigorous statistical analyses of
object hallucinatory phenomena in LVLMs. Our experiments thoroughly evaluate LURE on multiple
existing open-source LVLMs. Compared to the best prior method, the results demonstrate that
LURE can significantly reduce object hallucination under general object hallucination evaluation
metrics (e.g., CHAIR (Rohrbach et al., 2018)), GPT evaluation, and human evaluation.

2 WHY DO LARGE VISION-LANGUAGE MODELS EXPERIENCE OBJECT
HALLUCINATION?

This section scrutinizes the root causes of object hallucinations in vision-language models via com-
prehensive statistical analyses from three critical viewpoints: co-occurrence, uncertainty, and po-
sition, recognized as the primary factors contributing to object hallucination. We further provide a
rigorous theoretical explanation that complements our empirical findings on object hallucinations.

Notations. Large Vision-Language Models (LVLMs) typically generate sentences in a free-form
and auto-regressive manner, predicting the probability distribution of the next token progressively.
In this context, we denote the input as x, the correct answer as y, and the generated sequence with
a length of Ns as s = {z1, . . . , zNs

}. For a given LVLM, the probability of generating zi as the
i-th token can be described as p(zi|s<i, x) (where 1 ≤ i ≤ Ns), and s<i refers to the previously
generated tokens {z1, . . . , zi−1}. Given a description s, we additionally define the complete object
set, which is arranged in the order of appearance, as Os = {os,1, . . . , os,nh+nr}. Here, nh and nr

represent the number of hallucinatory and non-hallucinatory objects, respectively.

2.1 CO-OCCURRENCE AND SPURIOUS CORRELATION AMONG OBJECTS

In the realm of multi-modal models, “co-occurrence” denotes the frequent appearance of specific
objects. When the training data includes spurious co-occurring patterns among objects, language
models can generate outputs based on these learned associations. However, these associations may
not hold true for test examples, resulting in hallucinatory outputs. For example, “grass” and “sky”
frequently co-occur in the training data. The model falsely associates them and tends to generate
“grass” and “sky” together even when only “grass” is present in the context.

In order to assess the influence of co-occurrence on object hallucination, we draw inspiration
from Biten et al. (2022)and introduce a Co-occurrence Score denoted as CoScore. For each im-
age description s, the corresponding co-occurrence score CoScores is computed as the summation
of co-occurrence degrees across all hallucinatory objects {os,1, . . . , os,nh

}, which is defined as:

CoScores =

nh∑
i=1

nr+nh∑
j=1,os,j ̸=os,i

|S(os,i) ∩ S(os,j)|
|S(os,i)|+ |S(os,j)|

. (1)
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Figure 1: Comparison between hallucinatory and non-hallucinatory captions under different factors.

Here, S(·) denotes the set of all descriptions that mention a specific object, and |S(·)| represents the
cardinality of this set.

Based on the definition of CoScore, we compare the distribution of co-occurrence scores between
hallucinatory and non-hallucinatory captions (please refer to Appendix A.1 for our experimental
setting), As shown in Figure 1a, hallucinatory captions tend to exhibit higher co-occurrence scores,
which suggests a stronger association between object hallucination and co-occurrence.

2.2 OBJECT UNCERTAINTY

In language modeling, beam search (Holtzman et al., 2019; Freitag & Al-Onaizan, 2017) is em-
ployed to predict words iteratively, introducing inherent uncertainty into the search process (Please
refer to illustrative examples in Appendix D.1). This uncertainty is used as a measure of the model’s
confidence in generating the next token, and can be related to the hallucination problem, as objects
with higher uncertainty are more likely to be inaccurate. Here, we aim to quantitatively investigate
the potential relationship between the uncertainty associated with objects at each prediction step and
the hallucinations.

Concretely, we represent the probability of autoregressive decoding for each object token as
p(os,i|s<k, x), where k denotes the positional index of object os,i. For each object os,i, the cor-
responding Uncertainty Score is defined as:

UnScores,i = − log p(os,i|s<i, x), (2)
where a higher value of the uncertainty score indicates greater uncertainty. In Figure 1b, we perform
a statistical analysis examining the connection between hallucination and object uncertainty (refer
to Appendix A.1 for experimental details). Similar to the analysis of co-occurrence, hallucinatory
objects are predominantly observed in the high-uncertainty range, while non-hallucinatory objects
are more frequently generated in the certain range.

2.3 OBJECT POSITION IN GENERATED DESCRIPTIONS

We also find a significant correlation between the object position in the generated descriptions and
hallucination, where dominant hallucinations occur in the latter part of the descriptions. To validate
it, we introduce the Positioning Score denoted as PoScore for each object os,i as follows:

PoScores,i =
Index(os,i)

Ns
, (3)

where Index(os,i) signifies the position index of object os,i within the entire description.

Based on the definition of PoScore, we conduct a analysis of the positions of hallucination in
the descriptions, illustrated in Figure 1c (refer to Appendix A.1 for experimental details and Ap-
pendix C.1.1 for more analysis). These findings indicate that high-density areas of hallucinatory
objects predominantly appear towards the end of the sequence. This pattern corroborates our ob-
servation that object hallucination frequently occurs in the latter segments of generated text. One
plausible explanation for this observed trend is rooted in the autoregressive text generation process.
In the initial stages, the model closely adheres to the semantic information of its input image, re-
sulting in coherent beginnings. However, as the generation progresses, the accumulation of past
hallucinatory information and emerging uncertainties may steer the model off-course, ultimately
leading to a more pronounced emergence of object hallucination.
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2.4 THEORETICAL EXPLANATION

After examining these empirical correlations, we proceed to offer theoretical insights to explain them
(all proofs can be found in Appendix B). Specifically, we focus on predicting the i-th token, denoted
as zi, and introduce a predictive function denoted as f . For each object k within a set of objects
represented as [K], the function fk(s<i, x) signifies the predicted score associated with the k-th
object. Here, K is defined as the total number of objects under consideration, and we use yk = 1 to
denote the presence of the k-th object in an image and yk = −1 otherwise. Furthermore, we make an
assumption that fk(s<i, x) can be expressed as ⟨ϕk(s<i, x), βk⟩, ϕk(s<i, x) | yk ∼ N(yk · µ∗

k, Id) and
Pr(yk = 1) = Pr(yk = −1) = 1/2. For a training set D, the optimizer for the k-th class parameter βk

trained on D is defined as: β̂k = 1
|D|

∑
(s<i,x,yi,k)∈D yi,k ·ϕk(s<i, x), where yi,k ∈ {−1, 1} represents

whether object k will occur at position i. Such a model and optimizer are commonly used in the
theoretical analysis of deep learning models (Carmon et al., 2019; Zhang et al., 2022a).

Co-occurrence. Based on this definition, we first consider co-occurrence. Without loss of general-
ity, we assume that K = 2, and the first and second classes are frequently observed together, i.e., we
observe (ϕ1(s<i, x), ϕ2(s<i, x)) among a fraction ρ0 ∈ (0, 1) of samples when both y1 and y2 are
equal to 1. Here, to simplify the autoregressive process while maintaining sequential prediction man-
ner, we consider using f̂1 = ⟨ϕ1(s<i, x), β̂1⟩ for the prediction of the first object, and in the second
prediction, we model the information passed from the first information by ⟨ϕ1(s<i, x), β̂1⟩, and con-
sider f̂2 = ⟨ϕ1(s<i, x), β̂1⟩+ ⟨ϕ2(s<i, x), β̂2⟩. The model outputs the second object if f̂2(s<i, x) > 0.

Under this setting, we consider two sampling schemes: (1) Each class is sampled according to the
original training distribution; (2) Each class is sampled by setting ρ < ρ0. These two sampling
schemes result in two subset of samples D(1), D(2) with the same size. Denote the classifiers trained
on D(1) and D(2) by {f̂ (1)

k }k∈{1,2} and {f̂ (2)
k }k∈{1,2} respectively. Theorem 2.1 reflect reducing

co-occurrence issue can lead to smaller test misclassification error Err(·).

Theorem 2.1 Suppose ∥µ∗
k∥2 ≪ d, d/|D(k)| → κ for k ∈ {1, 2} and universal constants κ > 0.

We have
Err(f̂

(2)
2 ) ≤ Err(f̂

(1)
2 ).

Uncertainty. We then turn our attention to object uncertainty. Here, we consider the two following
sampling schemes: (1) Each class is sampled with equal probability 1/K; (2) Each class is sampled
if the uncertainty score, defined as − log(p̂k), is above a certain threshold γ > 0. Here, p̂k is
calculated as follows: p̂k = 1

|Dtr|
∑

(s<i,x,1)
σ(⟨ϕk(s<i, x), β̂k⟩), where Dtr represents the training

set. These two schemes result in two subsets of samples D(1) and D(2) with the same size. Given
x and s<i, we make a prediction about whether the k-th object is present in the image using f̂k.
Theorem 2.2 illustrates that sampling more certain objects can lead to a reduction in test error.

Theorem 2.2 Suppose ∥µ∗
k∥2 ≪ p, d/|D(k)| → κ for κ > 0 and k ∈ [K]. We will have with

probability at least 1− o(1),

1

K

K∑
k=1

Err(f̂
(2)
k ) ≤ 1

K

K∑
k=1

Err(f̂
(1)
k ).

Object Position. The effect of object position on object hallucination is closely tied to error or pre-
diction uncertainty accumulation in autoregressive models. This topic has been extensively studied
in time series analysis, and several theoretical models have been established to investigate it (Hannan
et al., 1989; Ing, 2007; Ding et al., 2017).

3 LVLM HALLUCINATION REVISOR

After thoroughly investigating the root causes of hallucinations, this section formally introduces
our remedy, LURE, that mitigates object hallucinations in large vision-language models. Inspired
by denoising autoencoders (Vincent et al., 2008), which is designed to reconstruct clean data from
corrupted input, we employ a hallucination revisor in our approach that aims to transform potentially
LVLM-generated hallucinatory descriptions into accurate ones. The framework of LURE is depicted
in Figure 2. In the subsequent sections, we will delve into the training and deployment processes of
the hallucination revisor.
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Figure 2: An illustration of LURE Framework: The orange-shaded section shows the training
paradigm of LURE, where the black-bordered part represents the hallucinatory data generation
phase, including introducing co-occurring objects and replacing either uncertain objects or objects
in later positions in the descriptions. The purple-bordered part indicates the revisor training process,
with the masking process that can be referenced in Alg. 1. The orange-shaded section illustrates an
example in the inference phase of LURE.

3.1 TRAINING HALLUCINATION REVISOR

In LURE, to train the hallucination revisor, we first curate a training dataset. Each example in this
dataset consists of an image accompanied by a hallucinatory description, with the correct description
serving as the output target. A significant challenge encountered during dataset curation lies in the
generation of naturally-occurring hallucinatory descriptions. To overcome this challenge, LURE
generates hallucinatory descriptions by modifying the accurate descriptions using GPT-3.5. These
adjustments are guided by factors related to object hallucination, including co-occurrence, object
uncertainty, and object position. In the following, we detail these modifications:

Introducing Potential Co-Occurrence Objects. To create a more naturally occurring co-
occurrence scenario, rather than relying on counting co-occurrence frequencies from any specific
datasets that may contain bias co-occurrence records, LURE leverages GPT-3.5 to deduce and in-
corporate objects that are most likely to co-occur in the scene into the original description.

Reconsidering Uncertain Objects & Objects in Later Position in the Descriptions. Hallucina-
tion is more prone to occur in objects with greater uncertainty and objects exist later in the descrip-
tion. In this context, we anticipate that the revisor should place greater emphasis on and reevaluate
these objects. To achieve this, we utilize string matching to replace objects with significant uncer-
tainty and those located at the end of the description with the placeholder tag “[IDK]”.

Here, to quantify object uncertainty in descriptions, we use the uncertainty values of noun tokens as
a proxy. Token uncertainty is expressed as the entropy of each token, denoted as − log p(zi|s<i, x).
We classify tokens as uncertain objects if their corresponding uncertainty exceeds a threshold γ,
and if they are identified as nouns. Like uncertainty, we determine the later object’s position using
the condition Index(zi) ≥ η ∗ Length(s) and the thresold η. This approach enables the model to
reassess and either replace ”[IDK]” with a more appropriate object based on the image or remove
it entirely. Using these modification strategies, for every accurate description, we provide GPT-3.5
with a list of potential co-occurrence objects, and a list of uncertain objects.

We then prompt GPT-3.5 to generate the corresponding hallucinatory description using the prompts
listed in Appendix A.3. Finally, we leverage the constructed hallucination dataset to fine-tune a
LVLM and use it as revisor. Some cases of hallucinatory descriptions are in Appendix D.2. The
training pipeline is illustrated in Alg. 1.
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Algorithm 1 Training LVLM Hallucination Revisor in LURE

Require: training image set X ; groundtruth descriptions Y; LVLMM(·); uncertainty threshold γ; hallucina-
tion revisorRθ(·) with parameters θ; position threshold η

1: Use GPT-3.5 to construct hallucinatory description setHold (see Appendix A.3 for more details)
2: Initialize the revisor’s parameter θ and an empty setHnew ← {}
3: while not converged do
4: for each image x ∈ X and the correpsonding hallucinatory description h ∈ Hold do
5: Generate description s =M(x) with object set Os

6: for object os,i ∈ Os do
7: if os,i in h and − log p(os,i|M, x) ≥ γ then
8: Add placeholder tag “[IDK]” to h, i.e., h← Mask(h, os,i)
9: if os,i in h and Index(os,i) ≥ η ∗ Length(h) then

10: Add placeholder tag “[IDK]” to h, i.e., h← Mask(h, os,i)
Put h into Hnew

11: Update parameter θ with autoregressive loss L(Rθ(Hnew),Y)

3.2 DEPLOYING HALLUCINATION REVISOR

In the inference stage, the trained revisor is employed to rectify the generated descriptions. Specif-
ically, similar to the process of constructing hallucinated descriptions during the training phase, in
the testing phase, we similarly integrate the placeholder tag “[IDK]” into the generated descriptions.
This integration serves the purpose of enforcing the Revisor to reevaluate objects exhibiting high
uncertainty or appearing later in the generated text. The inference pipeline is detailed in Alg. 2.

Algorithm 2 Inference Pipline of LURE

Require: test image xt; LVLMM(·); trained hallucination revisor R∗
θ(·); uncertainty threshold γ, position

threshold η
1: Generate description st =M(xt) with object set Ost

2: for object ost,i ∈ Ost do
3: if − log p(object|M, x) ≥ γ then
4: Add placeholder tag “[IDK]” to st, i.e., st ← Mask(st, ost,i)
5: if Index(ost,i) ≥ η ∗ Length(st) then
6: Add placeholder tag “[IDK]” to st, i.e., st ← Mask(st, ost,i)
7: return R∗

θ(st)

4 EXPERIMENTS

In this section, we evaluate the performance of LURE aiming to answer the following questions:
(1) Can LURE effectively reduce object hallucination in LVLMs compared to other baselines? (2)
Can the key factors we’ve identified related to hallucinations in LVLMs benefit the training process
of the revisor? (3) Is LURE sensitive to the revisor’s backbone?

Datasets. MSCOCO (Lin et al., 2014) is a comprehensive dataset used for image recognition,
segmentation, and captioning. It comprises over 300,000 images spanning more than 80 object
categories, each with detailed annotations. Following (Li et al., 2023d; Liu et al., 2023a), we selected
5,000 unique images from the COCO 2014 training dataset to evaluate performance. To train the
hallucination revisor, we randomly selected 5000 image-text pairs from LLaVA-150k (Liu et al.,
2023c), ensuring that these images were different from the ones used in testing. In addition, we also
evaluate the performance on other datasets, as discussed in Appendices B.4 and B.5.

Evaluation Metric. Caption Hallucination Assessment with Image Relevance (CHAIR) (Rohrbach
et al., 2018) is a widely-used metric for evaluating object hallucination in image captioning tasks.
CHAIR assesses the quality of image captions by comparing them to the ground truth objects present
in the corresponding images. It calculates the proportion of objects mentioned in the caption that
are not actually present in the image. There are two common variants of CHAIR: CHAIRI and
CHAIRS . Both variants evaluate the degree of object hallucination, but at different levels: the object
instance level and the sentence level, respectively. The two variants are formulated as follows:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}| , CHAIRS =

|{captions with hallucinated objects}|
|{all captions}| . (4)
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Baselines. The comparison methods include: Original, which directly use the generated descrip-
tions from LVLMs; Teacher (Saha et al., 2023), which leverages blip2 (Li et al., 2023b) to generate
short image descriptions and employs them as contextual guidance for generating long-form descrip-
tions; Chain-of-Thought (CoT) (Wei et al., 2022), which involves the model initially listing objects
and subsequently describing the image; Greedy-Decoding, a method that abstains from using a sam-
pling strategy and aims to make the model output the most certain tokens; GPT-Ensemble, which
initially employs GPT-3.5 to aggregate the commonly generated descriptions from multiple LVLMs,
excluding the one under evaluation. Subsequently, GPT-3.5 utilizes these summarized common de-
scriptions as guidance to rewrite the originally generated description from the evaluated model;
GPT-Teacher, where GPT-3.5 is tasked with rewriting the original long-form description based on
the blip2 generated short descriptions. Detailed descriptions about baselines are in Appendix A.4.

Evaluated LVLMs. We performed experiments utilizing six of the most recent LVLMs, with their
corresponding language models specified in parentheses: MiniGPT-4 (Vicuna 13B) (Zhu et al.,
2023), LLaVa (LLaMA 13B) (Liu et al., 2023d), MMGPT (LLaMA 7B) (Gong et al., 2023),
LLaMA-Adapter (LLaMA 7B) (Zhang et al., 2023b), mPLUG-Owl (LLaMA 7B) (Ye et al., 2023),
and InstructBLIP (Vicuna 7B) (Dai et al., 2023).

Hyperparameter Settings. Unless specified, all experiments in the paper are using MiniGPT-4 as
the backbone of the revisor, along with the training parameter settings provided in Appendix A.2.
All hyperparameters are selected via cross-validation.

4.1 EVALUATION STRATEGIES AND RESULTS

Automated Object Hallucination Evaluation. We follow the guidelines presented in (Rohrbach
et al., 2018) to perform an automated calculation of CHAIR metrics for the MSCOCO dataset, where
80 objects are involved in this automated evaluation process. In addition, we extend our evaluation
to include other widely used metrics such as BLEU and CLIP score, which are commonly adopted
in assessing the quality of image captioning. Detailed descriptions and results for these additional
metrics can be found in Appendix B.3.

Human and GPT Evaluations. Although automated evaluation strategies are efficient, they cannot
encompass all objects present in the evaluated images. To overcome this limitation, we conducted
a comprehensive human evaluation involving several native speakers. Please refer to Appendix A.5
for the evaluation interface. In this human evaluation, participants are assigned the task of annotat-
ing hallucinatory objects and we rank different methods based on human feedback. In addition to
human evaluation, inspired from (Zheng et al., 2023), we also prompt GPT-3.5 to compare differ-
ent descriptions. In this GPT evaluation, we provide the annotated information, including detection
boxes and captions, and anticipate that GPT-3.5 can provide an ranking for the descriptions from
various methods. For GPT evaluation, we use the prompts referenced in Table 9 in the Appendix.

Results. In Table 1 and Table 2, we report the results of automated evaluations and human and
GPT evaluations under different LVLMs, respectively (see more analysis about the effectiveness
of LURE on Appendices C.2 and C.1.3). Here, taking cost into account, we only compare LURE
with the four strongest methods in human and GPT evaluations. Although Teacher, CoT, and GPT-
Teacher can improve the performance compared to the original descriptions in most cases, LURE
significantly enhances performance over these strong baselines, which effectively reduces object
hallucination in generated descriptions. One potential reason for this is that all of these baselines
experience error propagation to some extent. For instance, CoT’s linear guidance can lead to errors
if the object listing step is incorrect. In contrast, LURE directly corrects hallucinatory descriptions
using guidance from potential factors that can trigger hallucinations.

4.2 ANALYSIS OF LURE
Table 3: Compared LURE to fine-tuning method
using the training data of revisor.

Model CHAIRS ↓ CHAIRI ↓
Original 26.8 7.3
FT (add’l data) 31.0 7.2

LURE (Ours) 19.7 4.9

Are the Performance Gains of LURE from Us-
ing Constructed Hallucination Datasets? To ver-
ify that the performance gains of our method are not
from using additional data to train the revisor, we
fine-tuned the original LVLMs with the additional
dataset. The results on MiniGPT-4 are shown in Ta-
ble 3, where “Original” represents the descriptions

7



Published as a conference paper at ICLR 2024

Table 1: Automated hallucination evaluation is performed under six LVLMs using CHAIRS (CS) and
CHAIRI (CI ), where smaller values indicate less object hallucination. For additional metrics, please refer
to Appendix B.3.

MiniGPT-4 LLaVa MMGPT LLaMA-Adapter mPLUG-Owl InstructBLIP
CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Original 26.8 7.3 54.0 11.3 56.6 11.0 58.8 13.7 71.2 16.5 40.0 8.2
Teacher 24.0 5.7 49.9 9.3 53.4 7.5 40.8 9.4 62.4 13.0 36.4 7.5
CoT 31.6 9.4 47.6 9.0 48.8 17.5 43.3 9.4 56.9 13.4 35.7 7.8
Greedy-Decoding 25.1 6.6 50.9 10.0 50.6 8.4 55.9 13.7 55.1 12.8 35.5 7.8
GPT-Ensemble 41.0 10.6 43.0 10.7 51.0 11.1 47.1 13.0 52.0 15.2 51.0 13.0
GPT-Teacher 25.3 7.6 38.0 7.8 26.7 9.3 49.0 12.4 22.0 9.0 32.0 7.8

LURE (ours) 19.7 4.9 27.1 6.4 22.2 5.6 35.3 9.1 18.8 5.4 21.0 5.1

Table 2: We conducted evaluations for description ranking, comparing the four strongest baselines in both
human (’H’) and GPT (’G’) evaluations. Metrics represent the average rankings within the top 1-5 positions,
with lower rankings indicating less hallucination.

MiniGPT-4 LLaVa MMGPT LLaMA-Adapter mPLUG-Owl InstructBLIP
G ↓ H ↓ G ↓ H ↓ G ↓ H ↓ G ↓ H ↓ G ↓ H ↓ G ↓ H ↓

Original 3.97 3.10 4.55 4.62 3.66 3.25 4.79 4.45 4.25 3.98 4.29 4.77
Teacher 3.36 3.83 3.30 3.07 3.09 3.20 3.00 3.13 3.25 3.66 3.34 3.53
CoT 2.44 2.83 3.05 2.52 4.38 4.07 2.63 2.10 3.75 3.13 2.78 2.21
GPT-Teacher 3.56 3.28 2.45 2.96 2.16 2.90 2.68 3.24 2.50 2.44 3.12 2.56

LURE (ours) 1.67 1.96 1.65 1.83 1.61 1.58 1.90 2.08 1.25 1.79 1.47 1.93

of MiniGPT-4. According to Table 3, LURE outperforms the fine-tuned LVLMs, which indicates
that our method indeed reduces object hallucination by post-hoc rectifying potential hallucinatory
descriptions rather than using additional data.

Table 4: Ablation studies on three hallucination
factors.

Model CHAIRS ↓ CHAIRI ↓
Original 26.8 7.3
w/o Co-occurrence 22.6 4.9
w/o Uncertainty 21.2 5.4
w/o Position 22.3 5.8

LURE (Ours) 19.7 4.9

Ablation Study – Do the Hallucination Factors
Contribute Performance Gains? To demonstrate
the impact of considering co-occurrence, uncer-
tainty, and object position in reducing hallucination,
we conducted ablation experiments and report the
results in Table 4, where “Original” represents the
descriptions of MiniGPT-4. In the ablation experi-
ments, we trained and deployed the revisor without
each of the three factors, one at a time. The results
show that all three factors contribute to training a
strong hallucination revisor to reduce object hallucination. Furthermore, we have also conducted an
analysis of the changes in these three factors before and after applying the revisor, as presented in
Appendix C.1.1. This analysis demonstrates that LURE can effectively reduce instances of halluci-
nation caused by these factors.

Table 5: Performance under different hallucina-
tion revisor backbones.

Backbone CHAIRS ↓ CHAIRI ↓
Original 26.8 7.3

MiniGPT-4 19.7 4.9
LLaMA-adapter 21.3 5.2
mPLUG-Owl 22.1 5.4

Robustness Analysis of the Hallucination Revi-
sor. We further analyze the robustness of the revi-
sor with respect to different backbones. Specifically,
we trained the revisor on the same dataset using
different backbones: MiniGPT-4, LLaMA-adapter,
and mPLUG-Owl. The results are reported in Table
5, where “Original” represents the descriptions of
MiniGPT-4. We can observe that despite the varying
performance of each backbone, LURE consistently
improve the performance compared to the original description, which further indicate the effective-
ness of LURE. Additionally, we analyze the results of LURE with respect to various uncertainty
thresholds in Appendix C.1.3. The findings demonstrate that LURE exhibits strong performance
across a wide range of uncertainty thresholds.

Case Analysis. We select several strong baselines and presented a case with rectified descriptions
in Figure 3. Compared with other approaches, LURE excels in providing a more accurate image
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The image features a table in a restaurant with a 
sandwich and a glass of wine placed on it. The 
sandwich is positioned on the right side of the 
table, while the wine glass is located closer to 
the center. The table is surrounded by chairs, 
with one on the left side, another on the right, 
and a third one further back. There are also other 
people in the scene, both sitting at separate 
dining tables. Additional items on the table 
include a fork near the sandwich and a handbag 
placed on the left side of the table.

Original Teacher
The image features a delicious sandwich on a plate, 
placed on a dining table. The sandwich is 
accompanied by a glass of wine, which is sitting 
close to the plate. The table is surrounded by 
several chairs, indicating a comfortable dining 
setup. In the background, there are a few people, 
suggesting that the scene might be taking place at 
a restaurant or a social gathering. Additionally, 
there are a few handbags placed around the room, 
likely belonging to the people present.

GPT-
Teacher

The image depicts a plate with a sandwich on it, 
placed on a table in a restaurant. The sandwich is 
positioned on the right side of the plate. The table 
is surrounded by chairs, with one on the left side 
and another on the right.
There are other people in the scene, with one 
person visible in the background on the left side. A 
fork can be seen near the sandwich.

LURE

The image features a sandwich and a glass of wine 
placed on a table. The sandwich is located near the 
center of the table, while the wine glass is 
positioned towards the top left corner. 
The table is surrounded by several chairs, with one 
on the left side, another on the right side, and two 
more in the background.

Figure 3: A case study comparing the levels of hallucination among various baselines.

description. In the case, LURE accurately depicts the primary elements (e.g., sandwich, chair, plate)
while avoiding hallucinatory objects like the fork and handbag. Although other baselines partially
reduce hallucination, they still exhibit object hallucinations in their descriptions. Additionally, we
also mitigate logical errors to some extent, including object orientation and actions. Further case
analyses can be found in Appendices D.3 and D.4.

5 RELATED WORK

Vision-Language Models. Vision-language pre-trained models, as exemplified by (Li et al., 2021;
Zeng et al., 2021), demonstrate substantial capabilities in modeling interactions between visual and
textual information, especially when fine-tuned for specific tasks. Recently, autoregressive large-
scale language models (LLMs) (Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023;
Zhang et al., 2022b; Chiang et al., 2023; Taori et al., 2023) have ushered in a new era of vision-
language models. These models, known as LVLMs, integrate LLMs with visual modality and show-
case impressive visual understanding through end-to-end training techniques that directly decode vi-
sual and text tokens in a unified manner (Liu et al., 2023d; Zhu et al., 2023; Ye et al., 2023; Li et al.,
2023a). However, similar to VLMs, LVLMs also face the challenge of object hallucination (Wang
et al., 2023a; Rohrbach et al., 2018). This form of object hallucination is more pronounced and
widespread in the long-form descriptions produced by LVLMs compared to the shorter descriptions
generated by VLMs (Zhang et al., 2023a).

Hallucination in VLMs and LVLMs. In VLMs, hallucination typically refers to scenarios where
the generated descriptions contain information that does not exist in the visual modality (Rohrbach
et al., 2018; Biten et al., 2022; Wang et al., 2023a). Addressing object hallucination in VLMs is
primarily achieved through techniques such as fine-grained contrastive learning (Zeng et al., 2021),
ROI feature fusion (Biten et al., 2022), and eliminating co-occurrence patterns through data aug-
mentation (Kim et al., 2023). However, the training paradigms between traditional VLMs and re-
cent LVLMs differ, and the new autoregressive training paradigm in LVLMs makes it challenging
to directly apply hallucination mitigation methods used in VLMs to LVLMs. Recent research has
begun to address the issue of object hallucination in LVLMs, including hallucination evaluation and
detection (Wang et al., 2023a; Liu et al., 2023a; Li et al., 2023d), as well as the construction of
higher-quality datasets for fine-tuning (Gunjal et al., 2023; Li et al., 2023c; Liu et al., 2023a;d).
Nevertheless, acquiring a substantial number of high-quality examples can be time-consuming and
labor-intensive. Instead, grounded in statistical analysis of hallucination, we propose a conceptually
different approach, LURE, to post-hoc rectify object hallucination. We have already demonstrated
its effectiveness in reducing hallucination and its compatibility with various LVLMs.

6 CONCLUSION

In this paper, our objective is to address the challenge of object hallucination in LVLMs. We in-
troduce a lightweight post-hoc method, named LVLM Hallucination Revisor (LURE), designed to
rectify object hallucination in the generated descriptions produced by LVLMs. LURE is grounded in
three key factors known to contribute to object hallucination: co-occurrence, uncertainty, and object
position. These factors have been demonstrated to induce hallucination both empirically and theo-
retically. Our experiments, conducted on six open-source LVLMs, demonstrate the effectiveness of
LURE in mitigating object hallucination in LVLM-generated descriptions.
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REPRODUCIBILITY STATEMENT

For our theoretical results, we present complete proofs for all our claims in Appendix B and engage
in a thorough discussion of the assumptions. As for our empirical results, we delve into the details
of the experimental setup, introduce additional metrics, and provide a comprehensive overview of
baseline details, all of which can be found in Appendices A and B.3. Additionally, in Appendix D,
we offer detailed case demonstrations and comparisons. Furthermore, we include template prompts
used during these analytical processes within the A.3 and A.4. It is worth noting that we are com-
mitted to open-sourcing the code related to our research after publication.
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A EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL SETTING FOR THE HALLUCINATION ANALYSIS

Experimental Setting for Co-occurrence Analysis. The objects in this experiment are based on
the 80 object labels annotated in (Rohrbach et al., 2018) from the COCO dataset, and the image
descriptions are generated by MiniGPT-4 based on inference results from 5000 images in the COCO
2014 train dataset.

Experimental Setting for the Uncertainty Analysis. Because uncertainty and position analysis
are relatively independent from co-occurrence, in order to avoid conducting statistical analysis on
the training set distribution, the statistical data for uncertainty analysis is derived from MiniGPT-4’s
descriptions of 200 images from the COCO 2014 test dataset. The computation of uncertainty is
performed using − log p(zi|s<i, x).

Experimental Setting for the Analysis of Position of Hallucinated Objects. Similar to the uncer-
tainty analysis, we used the manually annotated descriptions of MiniGPT-4 for 200 images from the
COCO 2014 test dataset, due to the need for precise positioning.
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A.2 TRAINING SETTINGS FOR REVISOR

The overall revisor training setting is similar to MiniGPT-4. Here, we only need one A100 80G
GPU for training, which takes approximately 10 minutes. We present hyperparameter settings of the
LURE during the training phase, as shown in Table 6.

Table 6: Training hyperparameters.

Hyperparameters
Training steps 410
Warmup steps 50
Max length 512
Batch size of multi-modal instruction data 12
Optimizer AdamW
Learning rate 3e-5
Learning rate decay Cosine
AdamW ϵ 1e-6
AdamW β (0.9, 0.999)
Weight decay 0.05

A.3 PROMPTS FOR TRAINING DATASET

We leverage the in-context few-shot learning capability of GPT-3.5 to generate hallucinatory data
automatically for revising. Initially, we prompt GPT-3.5 to provide a list of objects that are highly
likely to co-occur with the objects mentioned in the given description. Next, we use LVLMs (such
as MiniGPT-4) to generate descriptions for the training set of 5000 images. During this process,
we will save nouns with − log p(zi|s<i, x) greater than the uncertain threshold γ in the decoding
process to the list of uncertain objects corresponding to each image. Subsequently, we direct the
model to take the original description and incorporate a randomly chosen word from the “co-occur
objects” list, as well as another randomly chosen word from the “uncertain objects” list, into it.
Detailed prompts are listed in Table 7 and a few examples are presented in Table 19.

A.4 DETAILS ABOUT BASELINE

In this section, we will provide a detailed explanation of the settings used for the baseline in Table
1, including some parameter settings and prompt configurations. The detailed prompt for baselines
can be seen in Table 8.

• Teacher: The “Teacher” approach involves generating short descriptions for the images via
blip2 (Li et al., 2023b) and using them as context to guide the model in generating descriptions. By
providing these descriptions as additional information, the model can benefit from the guidance
and produce more accurate or relevant descriptions.

• CoT: The “CoT” method asks the model to first list the objects it identifies in the image and
then describe the image based on those objects. It draws inspiration from the concept of chain
of thought (Wei et al., 2022) and aims to guide the model in generating accurate descriptions by
focusing on object recognition.

• Greedy-Decoding: The difference between the “Greedy-Decoding” strategy and the “Original”
strategy is that in the ”Greedy-Decoding” strategy, the model uses greedy decoding instead of
sampling during the generation of image descriptions to produce the most deterministic output.
This approach is used to explore the potential connection between the generation of illusions and
the use of sampling.

• GPT-Ensemble: In ”GPT-Ensemble,” we utilize GPT-3.5 to summarize the common elements in
the descriptions generated by multiple LVLMs, excluding the one being evaluated. Subsequently,
we employ GPT-3.5 to rewrite the description of the evaluated LVLM, using the identified com-
mon elements from the descriptions of the other models to correct any dissimilar parts in the
evaluated model’s description.
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Table 7: The prompt for the GPT-3.5 API to generate the required hallucination dataset. “Instruction 1” is
used to ask ChatGPT to provide a list of co-occurring objects based on the description, while “Instruction 2” is
used to integrate the objects obtained from the co-occurring object list and the objects from the list of uncertain
objects into the given description.

Instruction 1:
List three other objects that you think are most likely to appear with the objects in the scene
described below:
{description}
Output in strict accordance with the following format:
Object one
Object two
Object three

Instruction 2:
Input caption: {description}
co objects list: {co objects list}
uncertain objets list: {uncertain objets list}
Select one object from “co objects list” and “uncertain objects list” respectively and add it to
“Input caption” to get “Output caption”. (Try not to change the format)
Output caption:

• GPT-Teacher: “GPT-Teacher” represents the process of providing the GPT-3.5 API with con-
textual references and descriptions from the model’s output, allowing it to revise the inaccurate
description generated by the model into a more accurate version based on the contextual informa-
tion.

A.5 DETAILS ABOUT MANUAL ANNOTATION EVALUATIONS

The manual evaluation annotation interface provides a user-friendly interface for performing manual
annotations and capturing evaluation feedback. The interface is hosted on the Amazon Web Services
(AWS) platform, which offers scalability, reliability, and security for handling annotation tasks. As
shown in Figure 4, we annotated all objects and hallucinated objects in the descriptions based on
the images. We then provided a binary label (0/1) to indicate whether each description contained
hallucinations. Based on the fine-grained annotation results, similar to GPT evaluation, we sorted
the results from different baselines.

B DETAILED PROOF

B.1 PROOF OF THEOREM 2.1

Let us denote N = |D(1)| = |D(2)|. For the detection rule of the first object, we have

β̂
(1)
k =

1

|D(1)|
∑

(s<i,x,yi,k)∈D(1)

yi,k · ϕk(s<i, x).

As ϕk(s<i, x) | yi,k ∼ N(yi,k · µ∗
k, I), we write

yi,k · ϕk(s<i, x) = µ∗
k + ϵi,k.

Now, suppose among all samples, a fraction ρ0 ∈ (0, 1) of samples have both y1 and y2 are equal to
1. We can then write

(β̂
(1)
1 , β̂

(1)
2 ) = (ρ0µ

∗
1 +

1

N

ρ0·N∑
i=1

ϵi,1, ρ0µ
∗
2 +

1

N

ρ0·N∑
i=1

ϵi,2).
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Table 8: Prompts for baselines.

Teacher:
Reference caption:
{blip2 caption}
Please refer to reference caption and describe this picture:

CoT:
Human:
Please list the main objects in the picture and strictly follow the following format:
{object1, object2, object3......}
AI:
{objects list}
Human:
Describe this image
AI:
{description}

GPT-Ensemble:
Reference captions 1:{description of model 1}
Reference captions 2:{description of model 2}
Reference captions 3:{description of model 3}
Reference captions 4:{description of model 4}
Reference captions 5:{description of model 5}
Original Description:{description}
Synthesizing the commonalities of Reference captions 1-5, and then removing the parts in the
Original Description that do not align with the commonalities, while preserving the original
format. Answer:

GPT-Teacher:
Reference caption:
{blip2 caption}
Original description:
{description}
Rewrite the original description to align it with the reference caption, delete some objects that
you think are hallucinations, and keep the original format. Answer:

Use Φ(·) to denote the cumulative distribution function of a standard normal distribution. Then for
the prediction function f̂2 = ⟨ϕ1(s<i, x), β̂

(1)
1 ⟩+ ⟨ϕ2(s<i, x), β̂

(1)
2 ⟩, we have

Err(f̂
(1)
2 ) =

1

2
P(⟨ϕ1(s<i, x), β̂

(1)
1 ⟩+ ⟨ϕ2(s<i, x), β̂

(1)
2 ⟩ < 0 | y = 1)

+
1

2
P(⟨ϕ1(s<i, x), β̂

(1)
1 ⟩+ ⟨ϕ2(s<i, x), β̂

(1)
2 ⟩ > 0 | y = −1)

= Φ(−⟨µ∗
1, β̂1⟩+ ⟨β2, µ̂

∗
2⟩√

∥β̂1∥2 + ∥β̂2∥2
)

= Φ(− ρ0∥µ∗
1∥2 + ρ0∥µ∗

2∥2√
ρ20∥µ∗

1∥2 + ρ20∥µ∗
2∥2 +

ρ0·d
N + ρ0·d

N

) + o(1).
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Figure 4: Human evaluation annotation interface.

Table 9: The prompt for ChatGPT3.5 evaluation.

Instruction:
Suppose you are a hallucination annotator who judges the degree of hallucination based on objects, and
you have the following image information. Reference captions:{five captions from COCO}
Bounding box:{bounding boxes}
Please just provide the ranks for the below descriptions without any explanation, where the caption ranks
first with the most hallucinations. The output format: [caption x,...]
Descriptions:
caption 1: {description 1}
caption 2: {description 2}
caption 3: {description 3}
caption 4: {description 4}
caption 5: {description 5}
Output:

Similarly, we have

Err(f̂
(2)
2 ) = Φ(− ρ∥µ∗

1∥2 + ρ∥µ∗
2∥2√

ρ2∥µ∗
1∥2 + ρ2∥µ∗

2∥2 +
ρ·d
N + ρ·d

N

) + o(1).

As Φ(− ρ∥µ∗
1∥

2+ρ∥µ∗
2∥

2

√
ρ2∥µ∗

1∥2+ρ2∥µ∗
2∥2+ ρ·d

N + ρ·d
N

) is monotonically increasing with ρ, we complete the proof.

17



Published as a conference paper at ICLR 2024

B.2 PROOF OF THEOREM 2.2

We first analyze the uncertainty score. In fact, we have

p̂k =
1

|Dtr|
∑

(s<i,x,1)

σ(⟨ϕk(s<i, x), β̂k⟩)

=E[σ(⟨ϕk(s<i, x), β̂k⟩)] + oP (1)

=E[
1

1 + exp(∥µ∗
k∥2 + ∥µ∗

k∥ · Z)
] + oP (1),

where Z ∼ N(0, 1) is the standard normal random variable.

Therefore, p̂k decreases when ∥βk∥ increases. Choosing samples with small p̂k (i.e., large
− log(p̂k)) correspond to larger sample sizes for the classes with larger ∥µ∗

k∥.

Then we analyze the misclassification error. For f̂k = sgn(⟨ϕ(s<i, x), β̂k⟩), we have

Err(f̂k) = P(sgn(⟨ϕ(s<i, x), β̂k⟩) ̸= y) =
1

2
P(⟨ϕ(s<i, x), β̂k⟩ < 0 | y = 1)

+
1

2
P(⟨ϕ(s<i, x), β̂k⟩ > 0 | y = −1)

As ϕk(s<i, x) | y ∼ N(yk · µ∗
k, Id), we have

P(⟨ϕk(s<i, x), β̂k⟩ < 0 | y = 1) = P(⟨ϕ(s<i, x), β̂k⟩ > 0 | y = −1) = Φ(−⟨µ∗
k, β̂k⟩
∥β̂k∥

).

As β̂k = µ∗
k + 1

nk

∑nk

i=1 ϵi := µ∗
k + 1√

nk
Z, we have

⟨µ∗
k, β̂k⟩
∥β̂k∥

=
∥βk∥2 + 1√

nk
⟨µ∗

k, Z⟩√
∥µ∗

k∥2 +
2√
nk

⟨µ∗
k, Z⟩+ 1

nk
∥Z∥2

.

As we assume ∥µ∗
k∥2 ≪ d, we have

⟨µ∗
k, β̂k⟩
∥β̂k∥

=
∥µ∗

k∥2√
∥µ∗

k∥2 +
d
nk

+ o(1).

As a result, if the total sample size is fixed, choosing large nk for small ∥µ∗
k∥ will make the average

misclassification error small.

B.3 MODEL PERFORMANCE ANALYSIS WITH ADDITIONAL METRICS

In this section, we conduct additional analysis using commonly used metrics from vision-language
models on the same dataset, and discuss the applicability of these methods to hallucination evalua-
tion.

B.3.1 DESCRIPTIONS OF ADDITIONAL METRICS

BLEU BLEU (Bilingual Evaluation Understudy (Papineni et al., 2002)) is a metric used to evaluate
the quality of machine-generated translations by comparing them to one or more reference transla-
tions. The BLEU score is based on the idea of precision in n-grams, which are contiguous sequences
of n words. It measures how well the generated translation matches the reference translations in
terms of n-gram overlap.

BertScore BERTScore (Zhang et al., 2019) is a method for evaluating the quality of natural language
generation or summarization systems. BERTScore measures the similarity between a reference text
and a generated text by computing contextualized embeddings using BERT.

ROUGE-L ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation - Longest Common
Subsequence (Lin, 2004)) is an evaluation metric commonly used in natural language processing
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and text summarization tasks. It is designed to measure the quality of a machine-generated sum-
mary by comparing it to one or more reference summaries.

CLIP CLIP (Contrastive Language-Image Pretraining (Radford et al., 2021)) score is a metric used
to evaluate the performance of the vision-language model, which measures how well the model can
correctly associate images with their corresponding captions or textual descriptions.

Besides, these four metrics, we further introduce METEOR, CIDER, and SPICE, which are detailed
as follows:

MENTOR (Banerjee & Lavie, 2005): METEOR (Metric for Evaluation of Translation with Explicit
ORdering) is a metric used to evaluate the performance of machine translation. It measures the
extent to which a machine translation model can accurately associate the generated translation with
its corresponding human reference translation.

CIDER (Vedantam et al., 2015): CIDER (Consensus-based Image Description Evaluation) is a
metric used to assess the quality of image captioning models. It focuses on evaluating how well the
generated captions align with human judgments.

SPICE (Anderson et al., 2016): SPICE (Semantic Propositional Image Caption Evaluation) is a
metric used for evaluating the quality of image captions generated by machine models. Unlike
traditional metrics that rely on n-gram matching, SPICE focuses on assessing the semantic similarity
between the generated captions and human reference captions.

B.3.2 RESULTS

In Table 10 and Table 11 (for METEOR, CIDER, and SPICE), we present the performance of dif-
ferent models and baselines on these metrics. Based on the experimental results, it is evident that
LURE outperforms the other baselines in both text translation metrics and image-text matching met-
rics, with a notable improvement in the CLIP Score metric. This could be attributed to the higher
sensitivity of the CLIP Score, as compared to text translation metrics like BLEU, in capturing object-
level differences. These findings are consistent with the overall experimental results presented in
Table 1, further confirming the effectiveness of LURE. However, we have also identified certain
issues related to the BLEU metric for text translation. The differences between baselines were not
very pronounced, possibly because such metrics tend to emphasize the evaluation of text style rather
than object-level distinctions. These metrics may not be well-suited for assessing hallucinations and
long-form descriptions when compared to CHAIR.

B.4 ADDITIONAL RESULTS ON IMAGENET AND CC DATASETS

We conduct additional analyses to assess the performance of LURE on two newly introduced
datasets: ImageNet (Deng et al., 2009) and CC (Conceptual Captions) (Changpinyo et al., 2021).
Currently, the CHAIR metric can only be applied to the COCO dataset, which limits its usability
beyond that dataset. To overcome this limitation, we manually annotate ImageNet and CC datasets
to investigate object hallucination. Specifically, we randomly select 200 images from each dataset
to be annotated. We evaluate the presence of hallucination in the generated captions through manual
evaluation, using a scale where 0 indicated no hallucination and 1 indicated the presence of halluci-
nation. The results presented in Table 12 demonstrate the performance improvements achieved by
LURE across different datasets, thereby reinforcing our claims regarding LURE’s effectiveness in
reducing object hallucination in generated descriptions.

B.5 ADDITIONAL RESULTS ON POPE AND MME

In addition to assessing the performance of our method, LURE, in mitigating hallucinatory objects
in image captioning, we conduct additional experiments using LURE on other popular benchmark
datasets, specifically MME (Fu et al., 2023) and POPE (Li et al., 2023d), as they are well-suited for
evaluating hallucinations. For the POPE dataset, following the methodology of Li et al. (2023d),
we conduct evaluations using LLaVa 13B. Since LURE is a post-hoc method, during testing, we
incorporated the captions rectified by LURE as context in the prompts for reference to execute these
tests. The final results are displayed in Table 13. For a fair comparison, we conducted additional
experiments in Table 14 on these datasets by providing input in the form of the question along with
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Table 10: Performance of different models and baselines on general metrics.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 BERTS ROUGE-L CLIPS

mPLUG-Owl

Original 30.37 14.59 5.618 2.505 86.87 30.21 0.168
CoT 25.04 11.48 4.229 1.954 86.61 29.86 0.189
Teacher 29.91 14.22 5.519 2.431 86.76 31.15 0.192
Greedy-Decoding 30.29 14.30 5.509 2.502 86.59 30.35 0.208
GPT-Ensemble 29.74 13.91 5.121 2.367 85.94 28.90 0.159
GPT-Teacher 28.19 14.13 6.181 3.128 86.65 30.87 0.215
LURE (ours) 30.44 15.47 6.640 3.576 86.65 30.31 0.267

LLaVa

Original 30.88 15.46 6.984 3.586 86.96 31.53 0.242
CoT 29.94 15.01 7.042 3.718 86.99 31.82 0.211
Teacher 30.52 15.54 7.334 3.906 87.11 31.76 0.256
Greedy-Decoding 31.76 17.21 8.491 4.223 87.01 32.50 0.249
GPT-Ensemble 25.68 16.24 7.047 2.893 84.10 30.84 0.201
GPT-Teacher 22.06 19.54 3.393 1.493 85.94 27.62 0.251
LURE (ours) 35.94 21.81 11.33 6.804 87.39 32.59 0.238

LLaMA-Adapter

Original 29.95 15.36 7.324 3.875 86.83 31.77 0.179
CoT 25.45 11.41 4.233 1.687 86.48 39.98 0.201
Teacher 26.71 12.88 5.388 2.636 86.65 30.50 0.142
Greedy-Decoding 30.66 14.63 6.920 2.309 86.90 31.69 0.211
GPT-Ensemble 24.92 11.21 4.678 1.890 84.92 27.12 0.140
GPT-Teacher 25.13 10.25 3.929 1.684 85.85 28.68 0.186
LURE (ours) 30.94 15.81 7.334 3.804 86.96 31.60 0.223

MiniGPT-4

Original 31.22 16.57 9.270 5.190 86.96 31.75 0.157
CoT 33.68 20.57 10.72 6.430 86.09 32.39 0.177
Teacher 32.69 19.87 9.870 5.350 86.06 30.72 0.142
Greedy-Decoding 35.12 22.89 12.38 6.770 87.22 33.93 0.198
GPT-Ensemble 29.65 19.22 9.878 5.330 85.77 29.83 0.140
GPT-Teacher 33.37 20.28 11.52 5.770 87.01 31.89 0.182
LURE (ours) 41.20 23.17 13.18 7.580 87.88 35.34 0.210

MMGPT

Original 27.27 12.66 5.680 2.290 79.79 29.03 0.177
CoT 26.11 12.30 5.580 2.250 76.90 28.77 0.192
Teacher 26.56 12.38 5.600 2.260 80.16 22.09 0.162
Greedy-Decoding 30.15 15.11 6.320 3.573 86.62 31.77 0.188
GPT-Ensemble 24.59 13.77 5.673 2.882 84.22 25.78 0.156
GPT-Teacher 23.60 10.92 4.610 2.010 83.11 23.43 0.178
LURE (ours) 32.71 16.24 7.407 3.830 87.01 32.31 0.201

InstructBLIP

Original 29.46 14.52 5.670 2.421 86.71 31.64 0.218
CoT 24.04 12.61 4.086 1.837 85.50 28.07 0.229
Teacher 25.61 12.22 4.321 1.963 85.93 29.89 0.294
Greedy-Decoding 29.22 13.98 5.605 2.344 86.11 32.57 0.276
GPT-Ensemble 26.32 13.11 5.101 2.396 85.04 30.77 0.198
GPT-Teacher 24.91 11.92 4.652 2.097 85.81 29.49 0.205
LURE (ours) 29.77 15.23 5.708 2.634 87.94 32.95 0.307

an original, uncorrected description of the image. This method is referred to as “Ori + Cap.” For
other methods, the input of “Original” consists of the original question and the corresponding image.
For LURE, the input during inference comprises the original question, the image, and the description
that has been rectified by LURE.

Furthermore, we evaluate three top-performing LVLMs with LURE on the Multimodal Model Eval-
uation (MME) benchmark (Fu et al., 2023). This benchmark comprises ten subtasks to evaluate
models’ perceptual capabilities and four subtasks for assessing cognitive abilities. To measure ob-
ject hallucinations, we select a specific subset tailored for this purpose, similar to the POPE bench-
mark (Li et al., 2023d). This subset consists of a series of binary ”Yes-or-No” questions. Following
the evaluation settings used in the POPE benchmark, we employ metrics such as accuracy, recall, and
F1 score to quantify the models’ performance on this subset, with the results presented in Table 15.
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Table 11: Performance on additional metrics – MENTOR, CIDER, SPICE.

Models METEOR CIDER SPICE

mPLUG-Owl Original 28.7 0.53 17.5
LURE 36.7 0.66 18.9

LLaVa Original 37.7 0.61 22.6
LURE 43.9 0.67 31.4

LLaMA-Adapter Original 27.6 0.59 21.8
LURE 33.4 0.63 29.2

MiniGPT-4 Original 22.0 0.51 17.9
LURE 25.6 0.55 26.4

MMGPT Original 24.3 0.56 18.9
LURE 26.8 0.61 20.1

InstructBLIP Original 26.5 0.62 18.5
LURE 30.3 0.72 19.6

Table 12: Results (human evaluation) on additional datasets - ImageNet and CC. We assessed hallucination in
the generated captions through manual evaluation, employing a scale where 0 indicates the absence of halluci-
nation, and 1 indicates its presence. The average hallucination ratio (%) is reported in this table.

MiniGPT4 LLaVA LLaMA-Adapter mPLUG-Owl

ImageNet Original 31.5 58.0 37.0 63.5
LURE(ours) 22.5 24.0 28.5 32.0

CC Original 23.5 36.0 41.0 52.5
LURE(ours) 16.0 18.5 29.0 26.5

The results indicate a significant reduction in hallucination with the introduction of LURE in both
the POPE and MME datasets. These findings not only highlight the effectiveness of LURE but also
provide additional support for the conclusions drawn in our main paper.

Table 13: POPE results of LLaVa on MSCOCO, A-OKVQA, and GQA.

Dataset Model POPE Accuracy Precision Recall F1 Score Yes (%)

MSCOCO

Random 54.43 52.32 99.80 68.65 95.37
LLaVa (Original) Popular 52.43 51.25 99.80 67.72 97.37

Adversarial 50.77 50.39 99.87 66.98 99.10

Random 86.33 89.44 82.40 85.77 46.07
LLaVa (LURE) Popular 80.30 79.00 82.53 80.73 52.23

Adversarial 77.17 74.33 83.00 78.43 55.83

A-OKVQA

Random 50.16 50.08 99.53 66.64 99.37
LLaVa (Original) Popular 50.03 50.02 99.67 66.61 99.63

Adversarial 50.13 50.07 99.67 66.65 99.53

Random 83.70 84.32 82.80 83.55 49.10
LLaVa (LURE) Popular 78.00 75.86 82.13 78.87 54.13

Adversarial 69.93 65.72 83.33 73.49 63.40

GQA

Random 50.17 50.08 99.20 66.56 99.03
LLaVa (Original) Popular 50.03 50.02 99.47 66.56 99.43

Adversarial 49.77 49.88 99.20 66.38 99.43

Random 83.32 84.22 82.47 83.25 49.15
LLaVa (LURE) Popular 80.85 80.09 82.47 81.20 51.62

Adversarial 78.74 76.67 82.77 79.58 54.03
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Table 14: POPE results of LLaVa on A-OKVQA, and GQA. ”LLaVa (Ori + Cap)” indicates that
during testing, we provided the input as the question along with LLaVa’s original, uncorrected de-
scription of the image.

Dataset Model POPE Accuracy Precision Recall F1 Score Yes (%)

A-OKVQA

Random 50.16 50.08 99.53 66.64 99.37
LLaVa (Original) Popular 50.03 50.02 99.67 66.61 99.63

Adversarial 50.13 50.07 99.67 66.65 99.53

Random 74.93 75.20 91.17 74.17 61.28
LLaVa (Ori + Cap) Popular 70.01 68.94 90.32 73.57 63.23

Adversarial 65.13 62.40 92.17 68.87 72.38

Random 83.70 84.32 82.80 83.55 49.10
LLaVa (LURE) Popular 78.00 75.86 82.13 78.87 54.13

Adversarial 69.93 65.72 83.33 73.49 63.40

GQA

Random 50.17 50.08 99.20 66.56 99.03
LLaVa (Original) Popular 50.03 50.02 99.47 66.56 99.43

Adversarial 49.77 49.88 99.20 66.38 99.43

Random 75.23 73.66 90.37 74.73 60.38
LLaVa (Ori + Cap) Popular 75.12 73.24 90.32 74.47 60.59

Adversarial 67.63 63.40 83.17 70.18 65.19

Random 83.32 84.22 82.47 83.25 49.15
LLaVa (LURE) Popular 80.85 80.09 82.47 81.20 51.62

Adversarial 78.74 76.67 82.77 79.58 54.03

Table 15: Performance comparison before and after applying LURE on MME. Since we found that TN (True
Negatives) and FN (False Negatives) are both zero in the MME dataset, the values of accuracy and recall are
the same.

Models Accuracy Recall F1 Score

LLaVa Original 90.0 90.0 94.7
LURE 93.3 93.3 96.6

MiniGPT-4 Original 93.8 93.8 96.8
LURE 96.7 96.7 98.3

mPLUG-Owl Original 86.7 86.7 92.6
LURE 93.5 93.5 96.7

C ADDITIONAL ANALYSIS OF LURE

C.1 ADDITIONAL ANALYSIS ABOUT THE HULLUCINATION FACTORS

C.1.1 ADDITIONAL ANALYSIS OF OBJECT POSITIONS AND HALLUCINATIONS

To gain a deeper understanding of the impact of object position on hallucinations, we extend our
analysis beyond the existing evaluation presented in Figure 1c. This extended analysis encompasses
the following evaluations:

• Evaluation with More Examples. In the first phase of our evaluation, we re-assess the distri-
bution of hallucinatory objects concerning their positions using a larger dataset comprising 5,000
examples from the COCO dataset. The results are detailed in Figure 5a.

• Evaluation on Short Descriptions. Similarly, in the second phase, we evaluate the distribution
of hallucinatory objects concerning their positions within short descriptions generated by models
such as OFA, BLIP2, etc., using the same 5,000 data points as in the first evaluation. These
findings are illustrated in Figure 5b in our updated paper.

• Evaluation on Other Datasets. In the third phase, we explore the relationship between the distri-
bution of hallucinatory objects and their positions in ImageNet and CC dataset Deng et al. (2009);
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Sharma et al. (2018). For this evaluation, descriptions are manually annotated to identify halluci-
nated objects, and the results are reported in Figure 5c.

Across all evaluations, our findings consistently indicate that high-density areas of hallucinatory
objects predominantly appear towards the end of the sequence, regardless of the length of the de-
scriptions. This further reinforces our original conclusions. Furthermore, it is worth noting that
generating shorter descriptions does not yield lower position hallucination. Therefore, simply gen-
erating multiple short descriptions and combining them may not necessarily lead to higher-quality
descriptions.
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Figure 5: Additional analysis of the relationship between object position and hallucination.

C.1.2 CAN LURE REDUCE OBJECT HALLUCINATIONS CAUSED BY CO-OCCURRENCE,
UNCERTAINTY AND OBJECT POSITION?

To validate that our method reduces co-occurrence, uncertainty, and object positional bias that affect
object hallucination, we further verify by evaluating the proportion of hallucinatory objects in high
uncertainty, high co-occurrence, and sentence-ending positions. We compared the changes in vari-
ous proportions of descriptions using MiniGPT-4 and LURE on the COCO 2014 test dataset. Here,
we first describe how we calculate the object ratio under different factors:

Ratio of Co-occurrence-Based Hallucinatory Objects. Similiar to uncertainty hallucination ra-
tio, we obtain the Cratio by calculating ratio of the number of hallucination objects with high co-
occurence score and the total number of objects with high co-occurence score:

Cratio =

∑Mh

s=1 1[CoScores ≥ CoScoremean]∑M
m=1 1[CoScorem ≥ CoScoremean]

, (5)

where Mh is the number of hallucinatory descriptions, M represents the number of total descrip-
tions, and CoScoremean = 1

M

∑M
m=1 CoScorem.

Ratio of Uncertainty-Based Hallucinatory Objects. We obtain the Uratio by calculating ratio of
the number of hallucination objects with high uncertainty and the total number of objects with high
uncertainty:

Uratio =

∑M
s=1

∑nh

i=1 1[UnScores,i ≥ UnScoremean]∑M
m=1

∑nh+nr

j=1 1[UnScorem,j ≥ UnScoremean]
, (6)

where

UnScoremean = 1
M(nh+nr)

∑M
m=1

∑nh+nr

j=1 UnScorem,j .

Ratio of Hallucinatory Objects in Later Part of the Sentence. For the ratio of hallucinatory
objects in later part of the sentence., we calculate the Sratio by calculating ratio of the number of
hallucination objects in later part of the sentence and the total number of objects in later part of the
sentence:

Sratio =

∑M
s=1

∑nh

i=1 1[PoScores,i ≥ η]∑M
m=1

∑nh+nr

i=1 1[PoScorem,i ≥ η]
, (7)
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Table 16: Uncertainty-based hallucination object ratio, co-occurrence-based hallucination object ratio, and
sentence-ending hallucination object ratio analysis on several models.

Models Co-occurrence CRatio Uncertainty URatio Position SRatio

MiniGPT-4 Original 0.106 0.221 0.227
LURE (ours) 0.071 0.145 0.139

LLaVa Original 0.243 0.103 0.331
LURE (ours) 0.142 0.086 0.139

LLaMA-Adapter Original 0.295 0.178 0.442
LURE (ours) 0.176 0.102 0.272

mPLUG-Owl Original 0.128 0.229 0.259
LURE (ours) 0.106 0.127 0.151

MMGPT Original 0.110 0.157 0.418
LURE (ours) 0.089 0.114 0.154

InstructBLIP Original 0.213 0.147 0.389
LURE (ours) 0.123 0.090 0.156
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Figure 6: Sensitivity analysis of uncertainty threshold using MiniGPT-4 and LLaVA as revisor backone.

where η is the position threshold.

Results. Based on the data presented in Table 16, it is evident that all three categories of ratios in the
descriptions of LURE reduce when compared to the ratios of the original descriptions. This observa-
tion indicates that the elements of uncertainty, co-occurrence, and object position have contributed
less to hallucinations in LURE.

C.1.3 PARAMETER SENSITIVITY ANALYSIS ON UNCERTAINTY

To further illustrate the robustness of our model, we conducted a parameter sensitivity analysis on
the threshold of uncertainty. The uncertainty threshold θ determines the proportion of replacing
“object” with [IDK]. From the Figure 6, we can observe that our model is robust within a certain
range of uncertainty threshold.

C.2 DOES APPLYING LURE AFFECT THE USEFULNESS?

We conduct additional analyses to examine the impact of LURE on the diversity and completeness
of descriptions generated by various models before and after applying LURE. Our primary focus
is on several key aspects: changes in description length, reduction in the proportion of correctly
identified objects, and reduction in hallucinatory objects after applying LURE. The detailed results
for six LVLMs using the same dataset as the main paper are presented in Table 17.

Our findings reveal that the incorporation of LURE leads to a significant reduction in hallucinatory
objects, averaging around 56%, while only slightly affecting the presence of correctly identified ob-
jects, with an average decrease of approximately 1.6%. This noteworthy outcome can be attributed
to the fact that LURE doesn’t merely eliminate potentially hallucinatory objects; it actively encour-
ages the model to reconsider and either remove or replace such objects. This approach significantly
enhances model performance and reduces hallucination. Furthermore, the positive effect of LURE
is evident in the average length of the generated descriptions. Applying LURE results in only minor
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changes to the description length, indicating its effectiveness in preserving the utility and diversity of
the generated responses. In summary, the use of LURE achieves a balance between the correctness
and usefulness of responses in LVLMs.

Table 17: Analysis of correctness and usefulness before and after applying LURE.

MiniGPT-4 LLaVa MMGPT LLaMA-Adapter mPLUG-Owl InstructBLIP

Correct Decrease Reduction of correct objects (%) 0.680 2.150 1.420 1.610 1.130 2.720
Reduction of hallucinated object (%) 41.13 56.51 69.36 52.19 61.88 54.96
Average description length (before) 67.08 102.8 63.18 94.27 110.1 95.63
Average description length (after) 56.63 96.39 57.24 93.44 99.15 92.27

C.3 CAN LURE REDUCE OBJECT HALLUCINATION IN SHORT DESCRIPTIONS?

To further explore the effectiveness of LURE with concise captions, we conduct additional experi-
ments, the results of which are presented in Table 18. The concise descriptions are generated using
the prompt “Generate a short caption of the image.” Our findings indicate that LURE remains effec-
tive in reducing object hallucinations even with shorter captions, thus reinforcing its capability in
mitigating such issues.

Table 18: Performance of LURE on short descriptions generated by the four best-performing LVLMs.

MiniGPT-4 LLaVa LLaMA-Adapter mPLUG-Owl
CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Original 18.4 7.6 33.3 10.5 23.6 8.4 14.6 7.1

LURE (ours) 10.6 3.1 21.2 5.3 20.2 5.4 13.1 3.7

D ADDITIONAL CASE STUDIES

D.1 CASES OF UNCERTAINTY

This image depicts a group of people sitting around a table. The 
people are wearing different clothes. There is a window in the 
background, and the room appears to be well-lit. The walls of the 
room are painted white and there are two doorways that lead to other 
rooms.

The probability of the vocabulary within the red box

book: 0.17, window: 0.15, child: 0.13, wooden: 0.09, small: 0.07 ......

Figure 7: Case of uncertainty in the MiniGPT-4.

We provide an example using MiniGPT-4 to illustrate the uncertainty present in LVLMs during
the decoding process. In the example, we display the word probabilities in the vocabulary at the
location of hallucinatory words (sorted in descending order of probability). As shown in Figure 7,
we have displayed the decoded tokens and their probabilities at the point where the hallucinatory
word “window” occurs. We can observe that the probability of the hallucinatory word “window” is
comparable to that of “book”. The uncertainty in the model’s decoding path is highly influenced by
the text generated earlier, leading to the incorrect selection of the word “window” when generating
this token.

D.2 CASES OF OUR TRAINING DATASET

Here, we present some cases of training data constructed using GPT-3.5, as shown in Table 19.
“Original caption” represents the original standard description, while the “Hallucination caption”
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Original Caption: The image shows a man walk-
ing down a rainy sidewalk while holding a bright
red umbrella to stay dry. The man walks next to a
building as rain pours down, making the umbrella
a necessary accessory. In addition to the man with
the red umbrella, there are several other people in
the scene, some of which are carrying handbags
despite the wet conditions. Towards the edge of
the image, a person holding a small umbrella can
be seen, indicating that others are also trying to
shield themselves from the rain. The busy street
with multiple passersby creates an atmosphere of
a bustling city adapting to the rainy weather.

Hallucination Caption: The image shows a man
walking down a rainy sidewalk while holding a
bright red umbrella to stay dry. Cars driving by
with their headlights on contribute to the bustling
city atmosphere. The man walks next to a build-
ing as rain pours down, making the umbrella a
necessary accessory. In addition to the man with
the red umbrella, there are several other people in
the scene, some of which are carrying handbags
despite the wet conditions. Towards the edge of
the image, a person holding a small umbrella can
be seen, indicating that others are also trying to
shield themselves from the rain. The busy street
with multiple passersby creates an atmosphere of
a bustling city adapting to the rainy weather.

(a) Case 1.

Original Caption: The image depicts a woman
in a green shirt sitting at a dining table eating a
meal. She is using a fork to pick at the food on
her plate, which is positioned right in front of her.
The table is set with a variety of items like a sand-
wich, a bowl, and multiple utensils such as knives
and spoons. There are also several cups placed
on the table. Although there are other chairs
around the table, the woman appears to be din-
ing alone, adding a sense of solitude to the scene.
Other empty chairs can be seen in various posi-
tions around the dining table. Additionally, there
are a few other individuals in the background, but
they don’t seem to be engaging with the woman
or her meal.

Hallucination Caption: The image depicts a
woman in a green shirt sitting at a dining table eat-
ing a meal. She is using a fork to pick at the food
on her plate, which is positioned right in front of
her. The table is set with a variety of items like
a sandwich, fries, a bowl, and multiple utensils
such as knives and spoons. There are also sev-
eral cups placed on the table. A napkin and water
glass are neatly placed beside her plate. Although
there are other chairs around the table, the woman
appears to be dining alone, adding a sense of soli-
tude to the scene. Other empty chairs can be seen
in various positions around the dining table. Ad-
ditionally, there are a few other individuals in the
background, but they don’t seem to be engaging
with the woman or her meal. The salt and pepper
shakers are placed at the center of the table, within
easy reach of the woman.

(b) Case 2.

Table 19: Cases of generating hallucinatory descriptions.

column represents the hallucinated description constructed by GPT-3.5. The red portions in the
hallucination captions indicate the hallucinations added by GPT-3.5 based on co-occurring object
lists and uncertain object lists.
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D.3 CASES OF REWRITING CAPTIONS

In this section, we present several examples of rectified descriptions to demonstrate the capabilities
of LURE in reducing hallucination. From 9 we can find that our model demonstrates a high level of
proficiency in removing or substituting hallucinatory objects.

D.4 ADDITIONAL CASE COMPARISON BETWEEN LURE AND BASELINES

We carefully selected several baselines that demonstrated promising performance based on our ex-
perimental results and conducted a thorough comparison with our proposed method. The detailed
results of this comparison can be found in Figure 10. Upon comparing the descriptions generated by
Revisior with those from the other methods, it becomes evident that Revisior surpasses the others in
terms of accuracy and level of detail in describing the image.

The description produced by Revisior effectively captures the key elements of the image, such as the
presence of a man wearing a white shirt walking on the tennis court while holding a tennis racket, as
well as the presence of other individuals in the scene. On the contrary, the other methods fall short
in various aspects. The “Original” method’s description includes numerous hallucinated objects like
the “net” and “cap.” Although the “CoT” method’s description has fewer hallucinated objects, it is
observed that errors in the step-by-step reasoning process, such as incorrectly stating the presence
of two tennis players, lead to corresponding errors in subsequent descriptions.

While the “Teacher” method’s description is somewhat accurate, it still struggles to eliminate hal-
lucinated objects effectively. Although GPT demonstrates strong textual comprehension abilities, it
can still make mistakes when rewriting descriptions due to the absence of visual patterns, resulting
in the omission of hallucinated objects and introducing errors.
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The image features a woman playing tennis on a 
clay court. She is in the middle of a swing, 
holding a tennis racket and preparing to hit the 
ball. The woman is wearing a pink dress and 
white shoes, which complement her athletic 
attire. There are several other people in the 
scene, likely spectators or fellow players, 
positioned around the court. Some of them are 
standing closer to the woman, while others are 
further away, observing the game. The main 
focus of the image remains the woman tennis 
player in action.

Describe this image

<Input image>

The image features a female tennis player 
standing on a clay tennis court. The player is 
wearing a red dress and is holding a tennis 
racket in her right hand, ready to play. Her left 
hand is raised above her head, possibly to catch 
the ball during the game. The player appears to 
be focused and determined, as she is getting 
ready to make a serve. 

Under revision!!!

LURE

The image captures a man skillfully riding a wave 
on a surfboard in the ocean. He is crouching down 
on his board, maintaining balance and control as 
he navigates the wave. The surfer is positioned 
towards the center of the image, with the wave 
surrounding him. In the background, there are 
several other people in the water, possibly 
observing or waiting for their turn to surf. Some of 
them are closer to the shore , while others are 
further out in the ocean. The scene conveys the 
excitement and challenge of surfing, as well as the 
camaraderie among those who share this passion.

Describe this image

<Input image>

The image shows a person standing on a 
surfboard in the ocean, riding a large wave. The 
person is wearing a black shirt and black pants 
and is positioned on top of the surfboard as he 
rides the wave. The wave is large and has a lot 
of water coming off of it. The person appears to 
be enjoying the ride.

Under revision!!!

LURE
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The image shows a man laying on his stomach in a 
grassy field, with water and a frisbee scattered 
around him. The man is wearing a pair of 
sunglasses and is smiling, as if he's having fun 
playing with the frisbee. The image is sunny, with 
green grass and trees in the background. There are 
also a few people visible in the distance, watching 
the man play.

Describe this image

<Input image>

The image shows a man laying on his stomach 
in a park, with a frisbee scattered around him. 
The man is smiling, as if he's having fun the 
frisbee. The image is sunny, with green grass 
and trees in the background. There are also a 
few people in the park, watching the scene.

Under revision!!!

LURE

This image is of a man doing a trick on a 
snowboard in mid-air with his back facing the 
camera. The man is wearing a red jacket and black 
pants, and he is holding onto the snowboard with 
both hands. The background is a city street with 
buildings and cars in the distance. There are also 
banners hanging from the buildings.

Describe this image

<Input image>

The image features a man in mid-air, likely 
doing a trick on a snowboard. He is wearing a 
red jacket and black pants, and he is holding 
onto the snowboard with both hands. The man is 
the main focus of the scene, as he is the only 
person visible in the air.

Under revision!!!

LURE

Figure 9: Additional cases of rectified descriptions
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The image shows a man in a white shirt and 
black shorts walking on a tennis court, holding a
racket in his hand. He is wearing a green cap, 
and his shoes are white with green laces. The 
crowd in the background is watching the match. 
The court is made of green grass, and there are 
white lines on it. The man is standing on the 
right side of the image, and the net can be seen 
in the background. The image is clear and 
effectively captures the details of the man and 
the court.

Describe this image

<Input image>

Original

xx

The main objects in the picture are two tennis 
players, both dressed in white and standing on a 
tennis court. There are also tennis balls on the 
court and a racket visible in one of the players' 
hands.

Please list the main objects in the picture and 
strictly follow the following format:
{object1, object2, object3......}

The image shows two men dressed in white 
playing a game of tennis. One player is holding 
a tennis racket and preparing to swing it at the 
ball, while the other player stands close by, 
waiting to return the shot. They are positioned 
on a well-maintained tennis court, with tennis 
balls scattered around the surface. The setting 
seems like a typical tennis match with a 
professional atmosphere.

Describe this image

<Input image>

The image depicts a man standing on the tennis 
court, holding a tennis racket in one hand, and 
preparing to serve the ball. He is wearing a 
white shirt and appears to be focused on his 
game. The tennis ball can be seen in the 
foreground, slightly behind him. There are 
several other people visible in different positions 
around the court. Some of them are standing 
closer to the center of the image, while others 
are positioned near the edges of it. In the 
background, a few cars are parked on a street, 
adding a sense of urban setting to this outdoor 
sports event.

Reference caption:
{blip2 caption}
Please refer to reference caption and describe this 
picture

<Input image>
blip2 caption: a man holding a tennis racket

Teacher

CoT

CoT

The image depicts a man holding a tennis racket. 
He is wearing a white shirt and black shorts. The 
man is standing on a tennis court with green 
grass and white lines. In the background, a 
crowd is watching the match, and the net is 
visible.

Reference caption:
{blip2 caption}
Original description:
The image shows a man in a white shirt and black 
shorts walking on a tennis court, holding a racket in 
his hand. He is wearing a green cap, and his shoes 
are white with green laces. The crowd in the 
background is watching the match. The court is 
made of green grass, and there are white lines on it. 
The man is standing on the right side of the image, 
and the net can be seen in the background. The 
image is clear and effectively captures the details of 
the man and the court.
Rewrite the original description to align it with the 
reference caption, delete some objects that you 
think are hallucinations, and keep the original 
format. Answer:

<Input image>
blip2 caption: a man holding a tennis racket

The image shows a man in a white shirt and 
black shorts walking on a tennis court, holding a
racket in his hand. He is wearing a green cap, 
and his shoes are white with green laces. The 
crowd in the background is watching the match. 
The court is made of green grass, and there are 
white lines on it. The man is standing on the 
right side of the image, and the net can be seen 
in the background. The image is clear and 
effectively captures the details of the man and 
the court.

Describe this image

<Input image>

The image shows a man in a white shirt and 
black shorts walking on a tennis court, holding a 
tennis racket in his hand. He appears to be the 
main focus of the scene, as he is walking 
towards the right side of the image. The court is 
made of green grass, and there are white lines on 
it.

GPT-Teacher

Under revision!!!

LURE

Figure 10: Case study of several strong baselines, including detailed dialogue flow of the real inquiry process
for each baseline.
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