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Abstract
Recent research works demonstrate that one
of the significant factors for the model Out-of-
Distribution detection performance is the scale
of the OOD feature representation field. Conse-
quently, model ensemble emerges as a trending
method to expand this feature representation field
leveraging expected model diversity. However,
by proposing novel qualitative and quantitative
model ensemble evaluation methods (i.e., Loss
Basin/Barrier Visualization and Self-Coupling In-
dex), we reveal that the previous ensemble meth-
ods incorporate affine-transformable weights with
limited variability and fail to provide desired fea-
ture representation diversity. Therefore, we esca-
late the traditional model ensemble dimensions
(different weight initialization, data holdout, etc.)
into distinct supervision tasks, which we name
as Multi-Comprehension (MC) Ensemble. MC
Ensemble leverages various training tasks to form
different comprehensions of the data and labels,
resulting in the extension of the feature represen-
tation field. In experiments, we demonstrate the
superior performance of the MC Ensemble strat-
egy in the OOD detection task compared to both
the naive Deep Ensemble method and the stan-
dalone model of comparable size.

1. Introduction
State-of-the-art neural network models often exhibit over-
confidence in their predictions due to their training and
generalization in a static and closed environment. Specifi-
cally, these models assume that the distribution of test sam-
ples is identical to that of the training samples. However,
this assumption may not hold in the open world, as out-
of-distribution (OOD) samples can arise from unreliable
data sources or adversarial attacks. Such OOD samples

1George Mason University 2Air Force Research Laboratory.
Correspondence to: Xiang Chen <xchen26@gmu.edu>, First
Author: Chenhui Xu <cxu21@gmu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

can introduce significant challenges to the generalization
performance of these models. Due to reliability and safety
concerns, it is crucial to identify when input data is OOD.
Significant research efforts have been devoted to detecting
OOD samples (Liang et al., 2018; Hendrycks et al., 2019;
Ren et al., 2019; Huang et al., 2021), as well as the esti-
mation of uncertainty (Lakshminarayanan et al., 2017) in
neural network models.

In practice, researchers proposed combining multiple inde-
pendent models to enhance the robustness of model predic-
tions against OOD samples (Lakshminarayanan et al., 2017;
Zaidi et al., 2021; Malinin et al., 2020; Kariyappa et al.,
2021; Li et al., 2021; Xue et al., 2022). Inspired by the
Bagging (Breiman, 1996), one of the most representative
works — Deep Ensembles (Lakshminarayanan et al., 2017)
was proposed, which calculates the average of the posterior
probabilities generated by multiple models with different
initializations. This approach delivers an ensemble model
that is more pervasive and scalable for OOD detection.

However, recent work (Abe et al., 2022) claims that the en-
semble diversity does not meaningfully contribute to a Deep
Ensemble’s OOD detection performance improvement. This
means that Deep Ensemble’s performance is consistent with
that of a single model of equivalent size. We observe this
phenomenon and attribute it to the fact that the diversity
provided by naive Deep Ensemble through different model
initializations is not significant enough. Specifically, the in-
dividuals in a naive ensemble tend to exhibit a considerable
lack of diversity in feature representation.

This is because, although the individual models of the deep
ensemble seem different due to diverse initializations and
partial datasets, they still adopt the same training criterion,
forming a monotonic comprehension. As shown in Table 1,
for example, models trained with cross-entropy loss always
try to directly find the mapping from data to labels. The
formation of this single comprehension is accompanied by
intrinsic mode connectivity (Pagliardini et al., 2022; Frankle
et al., 2020; Ainsworth et al., 2023) among neural networks.
With only a single training criterion, individual models in
an ensemble are usually mode-connected and thus are not
sufficient to generate a diversity of feature representations
that can boost the OOD detector.

As diversity is the key to the model ensemble, we propose
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Table 1. Ensemble
Method Diversity Approach Training Criterion Comprehension

Deep Ensemble (Lakshminarayanan et al., 2017) Weight Initialization Cross-Entropy (CE) Data-Label Pairs
SSLC (Vyas et al., 2018) Data Leave-Out Margin-Entropy Data-Distribution Pairs
kFolden (Li et al., 2021) Data Leave-out Cross-Entropy Data-Label Pairs
EnD2 (Malinin et al., 2020) Weight Initialization Cross-Entropy Data-Label Pairs
LaCL (Cho et al., 2022) Weight Initialization Supervised Contrastive Bring similar data close
MC Ensemble (ours) Training Task CE+SimCLR+SupCon Multi-Comprehension

a new perspective to measure it regarding the distribution
distance between feature representations. Notably, we illus-
trate how different training tasks can give diverse feature
representations to the models in terms of the loss landscape.
Based on feature representation and loss landscape perspec-
tive findings and assumptions, we demonstrate that the train-
ing task is a crucial factor in the diversity of the models.

Therefore, we devised a novel ensemble scheme, named
Multi-Comprehension Ensemble (MC Ensemble) that inte-
grates models trained on different tasks but with the same
structure and training data. Our ensemble breaks away from
the original ensemble approach in the dimensionality of
single comprehension patterns. We bring a new dimension
to the consideration of ensemble diversity: the compre-
hension mode of models. Our experiments show that this
ensemble scheme outperforms other ensemble approaches
like different initialization and data leave-out on CIFAR10
and Imagenet Benchmarks.

Contributions. We make the following contributions:

• We demonstrate the feasibility of feature-level ensem-
ble in OOD detection in principle. (Section 2)

• We reveal that the previous ensembles’ inability to
effectively detect OOD samples can be attributed to
the insufficient level of diversity among models trained
using the same criterion. (Section 3)

• We propose a novel method, Self-Coupling Index, to
quantitatively measure the difference between feature
representations generated by two models. (Section 3)

• We reveal that multiple training criteria introduced by
different supervision tasks can make the loss barrier be-
tween models larger through the perspective of the loss
landscape, thus enabling diverse penultimate-layer fea-
ture representations, and eventually, forming a diverse
Multi-Comprehension mode. (Section 4)

• We propose a feature-level ensemble scheme that ex-
ploits the diversity of models based on distinct compre-
hension, resulting a model powerful in OOD detection.

2. How Feature Ensembles Boost OOD
Detection?

Let X and Y be the input space and label space. We de-
fine the penultimate layer representation space of the neural
network as R. Then the neural network trained on hypothe-
sis H can be represented as fH(x) = hH(gH(x)), x ∈ X ,
where gH : X → R is the feature encoder and hH : R → Y
is the projection head. The hypothesis H contains the train-
ing criterion (i.e. Cross-entropy loss, SimCLR (Chen et al.,
2020), SupCon loss (Khosla et al., 2020)), data distribution
D, initialization Θ, and other training configuration.

2.1. What Is a Good OOD Detection Booster?

A simple and common OOD detection method is to score the
feature representation z = gH(x) = (z1, z2, . . . , zm) ∈ R
in the penultimate layer space based on the scoring met-
rics s(z) ∈ R (Liu et al., 2020; Sun et al., 2022; Liang
et al., 2018). Then we determine the sample by its score
and a threshold τ that the sample is ID if s(z) > τ and
vice versa OOD. Previous work has proved that the sepa-
ration of ID and OOD in feature space can be transferred
into OOD detector’s output space (Sun et al., 2021), in-
dicating that a good OOD detection booster should make
ID and OOD activation more separable. Considering the
nature difference the distribution between ID (following
a rectified normal distribution, zi ∼ NR(µ, σ2)) and
OOD activation (following a rectified epslion-skew normal
distribution,zi ∼ ESNR(µ, σ2, ϵ)) (Sun et al., 2021), to
make two distributions more separable, we should have:

(1) ID data should achieve greater positive activation
movement (increase) compared to OOD data in aver-
age. We denote z̄i as the activation after applying an OOD
detection booster. Then:

Eout[z̄i − zi]− Ein[z̄i − zi] ≤ 0 (1)

(2) Activation after boosting should form a better esti-
mate of the parameter µ. In other words, the variance of
the estimate should be smaller than the not-boosted one,

V ar(¯̂µ) ≤ V ar(µ̂). (2)
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Figure 1. (a) Models trained by different initialization (Θ1, Θ2) but with the same cross-entropy classification task (CE-SGD) can fall
into the same or symmetric loss basin, which can be affine-transformed into the same basin (Re-Basin (Ainsworth et al., 2023)). This
indicates the two models provide little variability. (b) By contrast, a different comprehension task (SimCLR-SGD) directs the model
parameters in other directions. When SimCLR-SGD weights are relocated to the same loss landscape of CE-SGD weights, we can observe
the loss barrier between two sets of weights is high so that Re-Basin is not possible, thus increasing the model and feature diversity.

2.2. Feature-level Ensemble Is a Good OOD Booster

The traditional ensemble strategy is based on the bias-
variance decomposition theory (see Appendix A.1). How-
ever, this theory ignores the ensemble’s effect on feature rep-
resentation, and thus in principle fails to explain ensemble-
based OOD detection in feature level. We first demonstrate
that individuals in feature-level ensemble will not counter-
act each other, in Appendix A.2. Then, we analyze the
feature-level ensemble from the above two conditions.

Under the premise of using neural networks with the same
architecture, we assert that the pre-activation features of a
single dimension in different models follow the same distri-
bution due to the presence of normalization layer. For ID
data, compared with a single model, the average movement
of feature averaging ensemble for activation is:

Ein[z̄i − zi] = µ
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For OOD data, the corresponding movement will be:

Eout [z̄i − zi] =
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)
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Under the same chaotic-level (σin = σout), the activation

movements satisfy Eq. (1), that is ID activations move more.
See Appendix A.3 for detailed proof.

Meanwhile, the essence of the process of selecting a certain
number of models from a model pool to construct a feature
average ensemble is sampling. The construction process
is done according to some rules (we artificially design the
content models that makes up ensemble), which is consis-
tent with the characteristics of cluster sampling with small
cluster (Angrist & Pischke, 2009). Therefore, the variance
estimate of the parameter µ with averaged feature will be:

V ar(¯̂µ) =
1 + (M − 1)ρ

M
V ar(µ̂) ≤ V ar(µ̂), (5)

where ρ ∈ [0, 1] denotes intraclass correlation coefficient.

Therefore, satisfying Eq. (1) and (2), we conclude feature-
level ensemble is a good OOD detection booster.

2.3. Feature Diversity Matters in Ensemble

Intraclass correlation directly reflects the diversity of in-
dividual models in ensemble. Due to the same training
data, network architecture, or training criteria, feature rep-
resentations in ensemble fails to be independent, leading
to a non-zero intraclass correlation. Eq. (5) reveals that
with a smaller intraclass correlation, the ensemble will be
stronger to separate ID and OOD. However, direct mea-
surement of intraclass correlation fails to reveal the model
difference, because the intraclass correlation is restricted to
low-dimensional statistics while the dimension to compare
two models’ representation at least in the order of millions
(# of samples × feature dimensions). This requires us to
reconsider how we measure the diversity of models.
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3. How Much Diversity Exists among Models?
3.1. Diversity: Mode Connectivity and Feature View

Since the post-hoc scoring metric in OOD detection em-
ploys penultimate layer feature maps, the penultimate layer
feature diversity will be important in ensemble-based ap-
proaches. Deep Ensembles (Lee et al., 2018; Fort et al.,
2019) claim the diversity via randomness of SGD coupled
with non-convex loss surfaces. While other data-based en-
sembles (i.e. K-fold (Li et al., 2021) and Bagging (Breiman,
1996)) use the differences in training data from different
individual models to construct diversity. However, in this
section, from a unified loss landscape and feature represen-
tation distribution perspective, we reveal that the difference
between the individuals among ensembles with such diver-
sify strategies may not be as significant as expected, because
with same data distribution and optimizer, different individ-
ual models’ optima can be connected or aligned (Tatro et al.,
2020) with a easy permutation on either weights or features.

Conjecture 1 (Feature Transformation Alignment). If there
is linear mode connectivity between the two models, then
based on Optimal Transport theory, both ID and OOD sam-
ples’ penultimate layer feature maps generated by the mod-
els can be aligned by an affine transformation with a very
small number of training sample features calibrated.

If the individual models in the ensemble fall into the same
or perturbed-symmetric loss landscape basin after the SGD
optimization, then these individual models perform simi-
larly in the penultimate layer feature representation. This
similarity of the features fails to provide much representa-
tion diversity in an emsemble, therefore, leads to limited
improvement in OOD detection performance.

3.2. Measuring Mode Connectivity with Loss Barrier

Git Re-basin (Ainsworth et al., 2023) gives a view that two
models trained with SGD can be trapped in a permeated-
symmetric basin and their behavior is similar. Given such
two models, their parameters can be calibrated after a simple
affine permutation. As shown in Fig. 1 (a), if we simply
train the models from two different initializations, they can
easily end up in the same or symmetric loss basin since
their objectives are the same. When training with different
subsets, the loss landscape is not very different because the
samples still obey the assumption of independent identical
distribution. Following Git Re-basin, we also try to apply
the same perturbation (STE matching (Ainsworth et al.,
2023)) to models trained on different hypotheses to find
whether there is linear mode connectivity between the two
models. We calculate the loss barrier of the model after the
perturbation, which has the following definition (Frankle
et al., 2020). To make the loss uniform, we define the loss
function for the current parameters on the target task of the

Table 2. Self-Coupling Index and Loss Barrier for models trained
under different initialization and training strategies. The model
structure is ResNet18. The loss is measured on CIFAR10.

SupCE SupCon SimCLR

SCI Loss Barrier SCI Loss Barrier SCI Loss Barrier

SupCE 0.861 0.1047 0.203 2.1179 0.091 2.3557
SupCon 0.214 2.1495 0.877 0.0993 0.107 2.3456
SimCLR 0.094 2.3447 0.089 2.3155 0.834 0.1579

model rather than on the pre-training task.

LossBar(ΘA,ΘB) =maxα∈[0,1]L((1− α)ΘA + αΘB)

− 1

2
(L(ΘA) + L(ΘB)),

(6)

where ΘA,ΘB are trained parameters, and L(·) is loss func-
tion on the target task. Related concept is in Appendix A.4.

3.3. Measuring Feature Differences with Self-Coupling

To test Conjecture 1 from the feature representation level,
we denote the penultimate layer features of the two models
based on Hypothesis H1 and H2 for sample xi as gH1

(xi)
and gH2

(xi), respectively. Taking a constant N such that
|Y| < N < dim ≪ |X |, we randomly select N samples
from the training set, denoted as x(1), x(2), · · · , x(N). Then,
according to these N samples, a linear transformation matrix
A ∈ Rdim×dim and a deviation vector b⃗ ∈ Rdim are calcu-
lated such that gH1

(x(i)) = AgH2
(x(i)) + b⃗, i = 1 · · ·N .

For all test samples (ID and OOD), we generate gH2
(xj)’s

counterpart representation g′H2
(xj) = AgH2(xj) + b⃗, j ∈

DID∪DOOD. If Conjecture 1 holds, then gH1(xi) will have
a high probability of corresponding to g′H2

(xi) with respect
to index i when we establish the Optimal Transport between
the distributions of the penultimate layer features gH1

(D)
and g′H2

(D) of the test sample set D = DID orDOOD.

Optimal Transport outputs a deterministic mapping for any
pair of continuous distributions where the mass of distri-
bution gH1(x) is pushed forward to another distribution
g′H2

(x). For a given sample set D, we define this mapping
by the Sinkhorn distance (Cuturi, 2013) as a coupling matrix
PH1,H2

, which describes how much probability mass from
one point in support of gH1

(D) is assigned to a point in
support of g′H2

(D). The calculation and constraint of the
coupling matrix are shown in Appendix A.5. The diago-
nal of the coupling matrix PH1,H2 represents the sample’s
own-to-self assignment. The diagonal highlighting of the
coupling matrix indicates that the difference in the feature
representation of the two models is small for any sample.
Hence, we define a Self-Coupling Index between two mod-
els which indicates the degree of consistency in the feature
representations of the models.

Definition 1 (Self-Coupling Index) Given two models
trained on the hypotheses H1 and H2, the self-coupling
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(a) Loss Barrier (b) ID and OOD Self-Coupling Matirx

H1-H2 H1-H3 H4-H5

ID
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Figure 2. Two models trained from different hypotheses. When there is a large loss barrier between models, the coupling matrix of features
tends to perform more stochastic. The models’ architecture is ResNet-18 (He et al., 2016). H1: Initialization Θ1, Cross-Entropy loss,
whole training set. H2: Initialization Θ2, SimCLR Loss, whole training set. H3: Initialization Θ2, Cross-Entropy Loss, whole training set.
H4: Initialization Θ1, Cross-Entropy Loss, 80% training set. H5: Initialization Θ2, Cross-Entropy Loss, another 80% training set.

index CH1,H2 ∈ [0, 1] between the models is defined as:

CH1,H2 =
|X |
k

tr(PH1,H2,topk
). (7)

As shown in Fig. 2(b) H1-H3, we train two ResNet 18 (He
et al., 2016) models with different initialization Θ1 and Θ2,
we observe highlighting on the diagonal of the coupling ma-
trix, and the self-coupling index CΘ1,Θ2 = 0.853, indicating
the difference in penultimate layer feature is minimal.

3.4. Different Initializations and Dataset Partition
Provide Limited Diversity

If a low loss barrier can be generated between models by
perturbing the weights, the result is that the feature represen-
tations generated by these models can also be aligned by a
simple transformation. As shown in Fig. 2, we trained mul-
tiple models based on different hypotheses, and we found
a significant correlation between linear mode connectivity
and coupling matrix. When the loss barrier is large, we
find that the corresponding two models generate both ID
and OOD features with a more confusing coupling matrix,
implying that the difference between the features generated
by the models is significant.

The model pairs trained on different sets of hypotheses dif-
fer significantly in terms of the loss barrier. In Fig. 2, the
two models trained based on hypotheses H1 and H3 demon-
strate that, in agreement with mode connectivity theory, the
differences introduced by the different initializations are
easily eliminated, i.e., the variability they provide is very
small. Surprisingly, the two models trained based on hy-
potheses H4 and H5 use different initializations and two
independently sampled subsets of the training set, but both
their ID and OOD features are also still highly self-coupled.
Thus, different model initialization and data partitioning fail

to provide sufficient feature representation diversity.

4. Improving Diversity with
Multi-Comprehension Ensemble

4.1. Exploring Multi-Comprehension via Training Tasks

Conjecture 2 (Multi-Comprehension) Using distinct pre-
training tasks helps to improve the loss barrier between the
models and thus helps to improve the ensemble diversity.

Conjecture 2 means different comprehension is developed
through different training tasks. As shown in Table 1, differ-
ent training criteria (tasks) are corresponding to different
comprehensions to input data. This is because when design-
ing different training criteria, the corresponding objectives
are different so that the trained individual models will have
a different comprehension of the inputs, which is difficult
to translate into each other by simple perturbations at the
parameter or feature representation level. Thus, the diversity
provided by multiple training tasks is much more significant.

Based on the analysis in Section 3.2, enlarging the loss
barrier between models is one of the keys to feature repre-
sentation diversity. An intuitive way to enlarge the loss bar-
rier is to train the individuals using different training tasks,
i.e., train the weights using different losses. To generate a
loss barrier by having the parameters arrive in completely
different basins after training, we can train the model on
a completely different loss landscape defined by the loss
function. As shown in Fig. 1 (b), we can use other training
criteria to make the parameters go in the other direction dur-
ing the stochastic gradient descent, which finally fall into the
symmetric unreachable basin and produce a total different
feature representation with the original task training.

We find that models trained with different tasks are more
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Table 3. Results on CIFAR10 Benchmark. Comparison with competitive OOD detection methods. All results are in percentages. Some
of the baseline results are from (Sun et al., 2022).

OOD Dataset
SVHN LSUN iSUN Texture Places365 Average

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ODIN (Liang et al., 2018) 20.93 95.55 7.26 98.53 33.17 94.65 56.40 86.21 63.04 86.57 36.16 92.30
SSD+ (Sehwag et al., 2021) 1.51 99.68 6.09 98.48 33.60 95.16 12.98 97.70 28.41 94.72 16.52 97.15
CSI (Tack et al., 2020) 37.38 94.69 5.88 98.86 10.36 98.01 28.85 94.87 38.31 93.04 24.16 95.89
MSP (Hendrycks & Gimpel, 2017) 59.66 91.25 45.21 93.80 54.57 92.12 66.45 88.50 62.46 88.64 57.67 90.86
Mahalanobis (Lee et al., 2018) 9.24 97.80 67.73 73.61 6.02 98.63 23.21 92.91 83.50 69.56 37.94 86.50
Energy (Liu et al., 2020) 54.41 91.22 10.19 98.05 27.52 95.59 55.23 89.37 42.77 91.02 38.02 93.05
KNN (Sun et al., 2022) 24.53 95.69 25.29 95.96 25.55 95.26 27.57 94.71 50.90 89.14 30.77 94.15
KNN+(Sun et al., 2022) 2.42 99.52 1.78 99.48 20.06 96.74 8.09 98.56 23.02 95.36 11.07 97.93

MC Ens.+MSP 37.49 92.22 33.96 94.96 43.96 92.21 43.68 92.43 39.68 90.15 39.75 92.39
MC Ens.+Mahala. 2.09 99.48 43.35 93.79 21.59 94.77 14.31 94.68 27.68 89.88 21.80 94.52
MC Ens.+Energy 34.99 92.58 6.05 99.05 17.96 96.59 23.97 91.92 33.02 92.37 23.20 94.50
MC Ens.+KNN 1.35 99.70 1.45 99.80 7.88 98.09 4.07 99.05 13.19 97.01 5.58 98.73

likely to have a smaller Self-Coupling Index. As shown
in Table 2, we verified the Self-Coupling Index between a
fraction of three commonly used training criteria on ResNet-
18, and their loss barrier on the CIFAR10 classification task.
More Self-Coupling Index on different models, datasets,
and training tasks can be found in Appendix A.6.

4.2. Building Multi-Comprehension Ensemble

Given a candidate pool with N individual model hypothe-
ses H = {H1, · · · , HN}, we select M of them to form
an ensemble. We call this ensemble with individual mod-
els trained on different hypotheses a Multi-Comprehension
Ensemble (MC Ensemble).

Self-Coupling Index guided model selection: When select-
ing individual models in an ensemble, we need to consider
both the performance of ID samples and the feature diver-
sity. We use the loss of the model on the ID dataset to
measure its ID performance and the Self-Coupling Index (as
in Table 2, 9, 10, 11, and 12) to measure feature diversity.
Thereby, the problem of constructing an ensemble can be
transformed into the following minimization problem:

minH1,··· ,HM∈H
1
M

∑M
i=1 LCE(Hi) + λ 1

M(M−1)

∑
i ̸=j CHi,Hj , (8)

where LCE(Hi) indicates the loss of hypothesis Hi in the
main task, λ is an adjustable parameter.

We construct an instantiated MC Ensemble with three indi-
viduals trained on cross-entropy, SimCLR, and SupCon loss
respectively. All three individual models are trained on the
whole dataset, given different initializations.

5. Experiment
Datasets: We evaluate Multi-Comprehensive Ensemble
on two benchmarks: CIFAR Benchmark and ImageNet

Benchmark. In CIFAR Benchmark, CIFAR10 (Krizhevsky
et al., 2009) is used as ID dataset, and SVHN (Netzer
et al., 2011), iSUN (Xu et al., 2015), LSUN (Yu et al.,
2015), Texture (Cimpoi et al., 2014) and Places365 (Zhou
et al., 2017) are used as OOD datasets. Furthermore, CI-
FAR100 (Krizhevsky et al., 2009) is also tested as OOD to
evaluate near OOD performance. In ImageNet Benchmark,
Imagenet-1K (Deng et al., 2009) is used as the ID dataset,
and Places365 (Zhou et al., 2017), SUN (Xiao et al., 2010),
Texture (Cimpoi et al., 2014) and iNaturalist (Van Horn
et al., 2018) are used as OOD datasets. We use 4 NVIDIA
A100s for model training.

Metrics: We evaluate OOD detection methods on two
standard metrics following common practice (Hendrycks
& Gimpel, 2017): (1) AUROC: the area under the re-
ceiving operating curve; AUROC measures the model’s
ability to distinguish between positive and negative sam-
ples. It plots the true positive rate (TPR) against the
false positive rate (FPR) at various classification thresholds.
(2) FPR@TPR95 (FPR95): It measures the rate at which the
model falsely identifies OOD samples as ID samples while
maintaining a true positive rate of 95% for ID samples. A
low FPR95 is desirable as it indicates that the model is able
to accurately identify OOD samples without flagging too
many ID samples as OOD.

Scoring methods: Since our approach explores diversity at
the feature representation level, it can be combined with a
variety of post-hoc OOD detection scoring metrics based on
feature representation. We consider the following mostly-
used scoring metrics: (1) MSP (Hendrycks & Gimpel, 2017),
(2) Mahalanobis distance (Lee et al., 2018), (3) Energy (Liu
et al., 2020), (4) KNN (Sun et al., 2022). These methods
work on the premise that ID and OOD feature representa-
tions need to be distinguishable. A detailed description of
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Table 4. Comparison with naive ensemble. Models in naive ensemble are trained from different weight initialization. Models in
3×SupCE* are trained with independently-sampled 80% training set. Scoring method is KNN. All results are in percentages. Some of the
baseline results are from (Sun et al., 2022).

OOD Dataset
SVHN LSUN iSUN Texture Places365 Average SCI

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Single Model
SupCE 24.53 95.69 25.29 95.96 25.55 95.26 27.57 94.71 50.90 89.14 30.77 94.15
SimCLR 41.69 92.07 29.68 93.44 43.60 91.60 32.98 92.77 38.41 91.72 29.27 94.62
SupCon 2.42 99.52 1.78 99.48 20.06 96.74 8.09 98.56 23.02 95.36 11.07 97.93

Naive Ensemble
3×SupCE 21.39 95.89 27.15 94.99 23.55 95.37 19.93 96.35 46.88 90.21 27.78 94.56 0.868
3×SimCLR 47.48 88.08 43.99 89.98 36.02 93.01 24.24 92.75 43.50 89.39 39.04 90.64 0.841
3×SupCon 2.21 99.51 1.88 99.44 12.06 97.74 7.19 98.66 23.37 95.02 10.34 98.07 0.835
3×SupCE* 52.37 87.06 39.41 90.34 45.55 88.27 48.33 87.71 68.90 74.22 50.91 85.52 0.834

MC Ens. 1.35 99.70 1.45 99.80 7.88 98.09 4.07 99.05 13.19 97.01 5.58 98.73 0.134

these methods can be found in Appendix A.7.

5.1. CIFAR10 Benchmark

Training details: We use ResNet-18 as the backbone of
individual models for CIFAR10 benchmark. The number
of individual models M in the ensemble is set to 3. We
train SupCE model with the cross-entropy loss with SGD
for 500 epochs, with a batch size of 512. The learning rate
starts at 0.5 with a cosine annealing schedule (Loshchilov &
Hutter, 2017). The SimCLR model and SupCon model are
trained following the original setting of (Chen et al., 2020)
and (Khosla et al., 2020) separately. Results on ResNet-50
are presented in Appendix A.8.

MC Ensemble’s outstanding performance: We present
our OOD detection performance in Table 3. We com-
pare our results with several baseline models, including
MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al.,
2018), Mahalanobis Distance (Lee et al., 2018), Energy (Liu
et al., 2020), KNN (Sun et al., 2022), CSI (Tack et al., 2020),
SSD+ (Sehwag et al., 2021) and KNN+ (Sun et al., 2022).
Among them, CSI, SSD+, and KNN+ are with contrastive
training. When combined with the KNN scoring method,
MC Ensemble outperforms other methods on four datasets
and averages. Further, MC Ensemble, when combined with
MSP, Mahalanobis Distance, Energy, and KNN, outper-
forms the OOD detection performance of the original single
training model (w/ or w/o contrastive training) under these
scoring methods, except on iSUN dataset compared with
Mahalanobis distance. SOTA comparison is in Table 13.

MC Ensemble leverages the diversity of feature represen-
tation: We compare our MC Ensemble with other ensemble
strategies. As shown in Table 4, we make the naive deep
ensemble whose individual models share the same training

criterion but are with different weight initializations. Com-
pared with single models, the naive ensemble indeed im-
proves the OOD detection performance when using SupCE
and SupCon training. However, the improvement is limited
while we also notice a decrease when we conduct a self-
supervised SimCLR ensemble. When training individual
models with the partial dataset, the OOD detection perfor-
mance drop quickly, even with an ensemble. We argue that
this is because OOD detection performance is positively cor-
related with ID performance; training with a partial dataset
will cause the degradation of the model’s cognition capacity.

MC Ensemble outperforms all the naive ensembles with
all scoring methods. This shows that the ensemble’s multi-
comprehension of the data, i.e., the feature representation
diversity with multiple training tasks, brings a significant
improvement in OOD performance. Table 4 shows the
results of the KNN scoring method. Results on more scoring
methods are presented in Appendix A.9.

NearOOD setting: Near OOD samples are similar to the
training data, but still different enough to be considered
OOD. We evaluate MC Ensemble near OOD performance
on the CIFAR10-vs-CIFAR100 task, which considers CI-
FAR100 as an OOD dataset. As shown in Table 6, consistent
with the previous CIFAR benchmark experiments, the naive
ensemble does not provide significant OOD performance
improvement in the near OOD setting either. Compared
with the naive ensemble with 3 models trained with cross-
entropy loss and different initializations, MC Ensemble
reduces the FPR95 by 30.05% and improves the AUROC by
5.29%. MC Ensemble outperforming 3×SupCon ensemble
indicates that the OOD detection performance improvement
is not only gained from supervised contrastive training but
also multi-comprehension feature representation diversity.
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Table 5. Comparison with state-of-the-art OOD detection methods. All results are in percentages. *: Outlier Exposure based model.

OOD Dataset
SVHN LSUN iSUN Texture Places365 Average

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

FeatureNorm (Yu et al., 2023) 7.13 98.65 27.08 95.25 26.02 95.38 31.18 92.31 62.54 84.62 30.79 93.24
DOE* (Wang et al., 2023) 2.65 99.36 0 99.89 0.75 99.67 7.25 98.47 15.1 96.53 5.15 98.78
CIDER (Ming et al., 2023) 3.04 99.5 4.1 99.14 15.94 97.1 13.19 97.3 26.6 94.64 12.57 97.55
SHE (Zhang et al., 2023) 5.87 98.74 6.67 98.42 4.16 98.85 6.31 98.7
DICE (Sun & Li, 2022) 25.99 95.9 3.91 99.2 4.36 99.14 41.9 88.18 48.59 89.11 24.95 94.3
ASH-S (Djurisic et al., 2023) 6.51 98.56 4.96 98.92 5.17 98.9 24.34 95.09 48.45 88.31 17.89 95.96
MC Ens. 1.35 99.7 1.45 99.8 7.88 98.09 4.07 99.05 13.19 97.01 5.58 98.73

Table 6. Results on CIFAR10 vs CIFAR100.
Methods FPR95 AUROC

Single Model
SupCE 56.76 88.74
SimCLR 62.38 89.97
SupCon 37.42 92.56

Naive Ensemble
3×SupCE 53.41 89.22
3×SimCLR 68.53 88.44
3×SupCon 36.72 92.52

MC Ens. 23.35 94.51

5.2. ImageNet Benchmark

Training details: Following (Sun et al., 2022), we use
ResNet-50 as the backbone of individual models for the
ImageNet benchmark. The models are trained on ImageNet-
1k (Deng et al., 2009) with resolution 224×224. For SupCE
model, we import the model from torchvision (Paszke et al.,
2019). The SimCLR and SupCon models are trained follow-
ing the original setting in (Chen et al., 2020) and (Khosla
et al., 2020) separately. Results of ViT-B (Dosovitskiy
et al., 2020) MC Ensemble trained with cross-entropy,
MOCO v3 (Chen et al., 2021b) and MAE (He et al., 2022)
are presented in Appendix A.10.

MC Ensemble achieves outstanding performance in
large-scale task: As shown in Table 7, consistent with the
CIFAR10 benchmark, MC Ensemble outperforms all the
naive ensembles on all the OOD datasets except 3×SupCon
on SUN dataset. This is most likely because the gap between
the OOD detection performance of supervised contrastive
training on the ImageNet benchmark and the other two is
too large. A comparison with other baseline methods is
presented in Appendix A.11.

6. Ablation Study
Significance of supervised contrastive training: As no-
ticed in (Sun et al., 2022), supervised contrastive training

provides feature representation that is helpful to OOD de-
tection performance. We verify this in Table 4. However,
we argue that SupCon training is not the only contributor
to OOD performance improvement in MC Ensemble. As
shown in Table 8, 2×SupCon ensemble can not beat either
SupCE+SupCon or SimCLR+SupCon ensemble, indicating
that multi-comprehension feature diversity also contributes
to OOD detection performance.

Comparison with a single model with the same scale:
(Abe et al., 2022) points out that an ensemble has similar
performance on OOD to a single model of similar size. In
Table 8, We confirm that this conclusion holds for the naive
ensemble by comparing ResNet-62 with the ensemble of 3
ResNet-18s. However, MC Ensemble still significantly out-
performs larger single models, indicating that model scale
is not the only contributor to MC Ensemble’s performance.

Combinability with distillation: Despite its effectiveness,
the use of an ensemble can be limited by the high compu-
tational expenses it incurs, making it impractical for cer-
tain applications. For its computational overhead, knowl-
edge distillation is an effective method for ensemble model
compression. To verify whether MC Ensemble’s distill-
able, we directly employ Ensemble Distribution Distillation
(EnD2) (Malinin et al., 2020) to distill our MC Ensemble to
a single model. As shown in Table 8, with a minimal drop,
the distillation model of MC Ensemble maintains a strong
OOD detection performance, but the computation overhead
in the inference stage is the same as a single individual.

7. Ensemble Latency Analysis
The components that contribute to the latency of the OOD
detection method usually contain such two phases: (1) Gen-
eration of penultimate layer feature representations, (2)
Computation of out-of-distribution discriminant score.

In the first phase, latency depends on the inference time of
the backbone network. The computational overhead of an
MC Ensemble consisting of M individual models is M×
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Table 7. Results on ImageNet Benchmark. All results are in percentages. Scoring method is KNN.

OOD Dataset
iNaturalist SUN Places Textures Average

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Single Model
SupCE 59.00 86.47 68.82 80.72 76.28 75.76 11.77 97.07 53.97 85.01
SimCLR 49.88 88.34 78.62 79.57 63.65 82.35 13.87 96.33 51.51 86.65
SupCon 30.18 94.89 48.99 88.63 59.15 84.71 15.55 95.40 38.47 90.91

Naive Ensemble
3×SupCE 53.32 87.95 58.25 82.98 56.28 81.01 17.71 94.31 46.39 86.56
3×SimCLR 46.37 88.31 77.34 80.39 64.88 82.64 15.97 95.55 51.14 86.72
3×SupCon 28.93 95.21 38.69 91.32 59.66 84.69 15.41 95.36 35.67 91.64

MC Ens. 15.39 96.78 42.97 90.35 54.89 87.34 9.54 97.77 30.69 93.06

Table 8. Ablation Study. ResNet-62 contains 4 more blocks com-
pared to ResNet-50.

Methods #Params. FPR95 AUROC

2×SupCon 18.26 12.34 97.09
SupCE+SimCLR 18.26 24.98 95.31
SupCE+SupCon 18.26 9.37 97.95
SimCLR+SupCon 18.26 9.42 97.81
ResNet-62 27.50 23.79 95.34
3×SupCE 27.39 27.78 94.56

MC Ens. 27.39 5.58 98.73
Distillation 9.13 8.17 98.13

that of a single model (we ignore the overhead of averag-
ing feature, since it is negligibly small compared to neural
network models). However, since these individual models
are independent of each other, they are model-level par-
allelizable. Typically, in inference phases with sufficient
computation resources, it is possible to achieve a high de-
gree of parallelism of these individual models die on a single
device with the help of Nvidia’s Multi-Process Scheduling
(MPS) or Multi-Instance GPU (MIG) technology. We con-
duct following experiments to support the above conclusion:
we set three individual models (3 x ResNet-18) as multiple
independent processes, and utilized Nvidia MIG technology
to let these models run simultaneously on the same A100
GPU, with batch size set to 16 (small batch size is more in
line with real-world real-time reasoning needs), the latency
of MC Ensemble to generate the penultimate layer features
was 9.4 ms, while the single ResNet-18 model took 9.3
ms. Furthermore, we tested against bigger models, and MC
ensemble can even achieve faster inference than some stan-
dalone models of the same size. For example, ResNet-62,
which is the same size as MC Ensemble, took 17.0 ms on
the same hardware.

In the second phase, latency depends on the OOD scoring

methods. Since MC ensemble can be used with any kind
of OOD discriminant scoring metric, it does not have any
computational difference in latency compared to other post-
hoc OOD detection methods if we use the same scoring
metric. With the hyperparameters determined, the computa-
tional complexity of the OOD discriminant score depends
only on the dimensions of the features, and our strategy of
using feature average ensures that the feature dimensions
are invariant compared to the original backbone network.
Therefore the second phase computational latency depends
only on which OOD scoring metric is combined with the
MC Ensemble.

8. Conclusion
In this paper, we reveal that the different initializations of an
original ensemble model do not provide sufficient feature
representation diversity, thereby resulting in only minor per-
formance improvements for OOD detection. By demonstrat-
ing that training tasks can induce multiple comprehension
of the ensemble model in both feature space similarity angle
and loss landscape angle, we propose a method, named MC
Ensemble, to enhance the diversity of feature representation,
which improves the OOD detection performance of ensem-
ble models. We validate the excellent performance of MC
Ensemble through experimental evaluation on CIFAR10 and
ImageNet Benchmark datasets.

Impact Statement
Generally, we believe OOD detection is an important com-
ponent of AI safety. Enhancing OOD detection impacts the
reliability of AI application in autonomous driving, health-
care, and others. The negative impact may be that the large
amount of computation of ensemble-based model may cause
larger computational resource footprint and carbon footprint.
Disscusion on limitations can be found in Appendix A.12.
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A. Appendix
A.1. Bias-Variance Decomposition of OOD Detection Ensemble

A.1.1. BIAS-VARIANCE DECOMPOSITION OF OOD DETECTION MODEL

We consider the OOD detection task as a 0-1 classification problem on an open set, where samples sampled from a
distribution consistent with the training set Dtrain (ID) are regarded as positive, and samples sampled from outside the
distribution (OOD) are regarded as negative (assumed to be sampled from DOOD).

The probability that an OOD detector coupled with a neural network trained on hypothesis H regard sample x as positive
can be formulated as:

P (ΓH = 1|x) = E[1[s(gH(x)) > τ ]] = P (s(gH(x)) > τ) (9)

ΓH(x, τ) =

{
1, if s(gH(x)) > τ
0, if s(gH(x)) < τ

(10)

Denote the ground truth classifier as ΓT .

Theorem A.1. ΓH and ΓT are conditionally independent given target f and a test point x.

Proof. P (ΓT ,ΓH |f, x) = P (ΓT |ΓH , f, x)P (ΓH |f, x) = P (ΓT |f, x)P (ΓH |f, x).

The last equality is true because by definition, the ground truth classifier ΓT only depends on the target f and the test point
x.

Regarded as a 0-1 classification problem, the loss of detector ΓH can be subjected to a bias-variance decomposition (Kohavi
et al., 1996) like Eq. (11),

L(ΓH) =
1

2

∑
x

P (x)[

1∑
y=0

(P (ΓH = y|x)− P (ΓT = y|x))2︸ ︷︷ ︸
bias2H

+ (1−
1∑

y=0

P (ΓH = y|x)2)︸ ︷︷ ︸
varianceH

+σ2
x]

(11)

where T means ground truth hypothesis which can be seen as a perfect OOD detector and σ2
x = 1−

∑1
y=0 P (ΓT = y|x)2

is an irreducible error.
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Proof. First we consider only the distribution of the detector output:

L(ΓH) = 1−
1∑

y=0

P (ΓH = ΓT = y)

=

1∑
y=0

−P (ΓH = ΓT = y) +

1∑
y=0

P (ΓH = y)P (ΓT = y)

+

1∑
y=0

[−P (ΓH = y)P (ΓT = y) +
1

2
P (ΓT = y)2 +

1

2
P (ΓH = y)2]

+ [
1

2
− 1

2
P (ΓH = y)2] + [

1

2
− 1

2
P (ΓT = y)2]

=

1∑
y=0

[P (ΓH = y)P (ΓT = y)− P (ΓH = ΓT = y)]

+
1

2

1∑
y=0

(P (ΓH = y)− P (ΓT = y))2

+
1

2
(1−

1∑
y=0

P (ΓH = y)2)

+
1

2
(1−

1∑
y=0

P (ΓT = y)2)

Due to the independence between the detector and ground truth, the first term disappears. Now, we consider the conditional
probabilities on the data set.

L(ΓH) = 1−
∑
x

P (x)

1∑
y=0

P (ΓH = ΓT = y|x)

=
∑
x

P (x)
1

2

1∑
y=0

(P (ΓH = y|x)− P (ΓT = y|x))2 (bias2H)

+
∑
x

P (x)
1

2
(1−

1∑
y=0

P (ΓH = y|x)2) (varianceH)

+
∑
x

P (x)
1

2
(1−

1∑
y=0

P (ΓT = y|x)2) (σ2
x)

A.1.2. VARIANCE TERM DECOMPOSITION OF OOD DETECTION ENSEMBLE

The ensemble is widely used in the deep learning community as a scalable and simple method. The core idea of the ensemble
is to exploit the diversity among different models. The variance of an ensemble in Eq. (11) with M individuals which are

14
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based on hypothesis Hi, i ∈ {1, · · · ,M} can be further composed to:

varianceens =
1

M
[
1

M

M∑
i=1

(1−
1∑

y=0

P (ΓHi = y|x)2)︸ ︷︷ ︸
E[varianceHi

]

+
1

M

M∑
i=1

∑
j ̸=i

(1−
1∑

y=0

P (ΓHi
= y|x)P (ΓHj

= y|x))︸ ︷︷ ︸
covariance

],

(12)

hence, the variance of an ensemble can be bounded by a lower boundary 1
ME[varianceHi

] and an upper boundary
E[varianceHi

].

Proof. For an ensemble model, the variance term can be further decomposed:

varianceens = 1−
1∑

y=0

(

M∑
i=1

P (ΓHi
= y|x))2

=
1

M2

M∑
i=1

M∑
j=1

(1−
1∑

y=0

P (ΓHi
= y|x)P (ΓHj

= y|x))

=
1

M
[
1

M

M∑
i=1

(1−
1∑

y=0

P (ΓHi
= y|x)2) (E[varianceHi

])

+
1

M

M∑
i=1

∑
j ̸=i

(1−
1∑

y=0

P (ΓHi = y|x)P (ΓHj = y|x))], (covariance)

Therefore,

1

M
E[varianceHi ] =

1

M
[
1

M

M∑
i=1

(1−
1∑

y=0

P (ΓHi = y|x)2)

≤ 1

M
[
1

M

M∑
i=1

(1−
1∑

y=0

P (ΓHi
= y|x)2)

+
1

M

M∑
i=1

∑
j ̸=i

(1−
1∑

y=0

P (ΓHi
= y|x)P (ΓHj

= y|x))]

≤ 1

M
[
1

M

M∑
i=1

(1−
1∑

y=0

P (ΓHi
= y|x)2)

+
1

M

M∑
i=1

(M − 1)(1−
1∑

y=0

P (ΓHi
= y|x)2]

= E[varianceHi
],

When the covariance is 0, i.e., all detectors are completely uncorrelated, the variance of the ensemble can reach the lower
bound, which is 1

M in a single model; while when all models are highly similar, the covariance of the models will become
larger and the significance of the ensemble will then diminish. Therefore, substantial model diversity can significantly
reduce the covariance term, thus improving the ensemble performance.
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(a) SupCE

(c) SimCLR (d) MC Ensemble (Average)

(b) SupCon

Figure 3. t-SNE visualization of penultimate layer features of SupCE, SupCon, SimCLR, MC Ensemble(average), while class 0-9 are ID
classes (CIFAR10) and class 10 is OOD (CIFAR100).

A.2. No Counteraction in Feature-level Ensemble

Averaging features will not lead to counteraction because the fact that: The feature space is a high-dimensional space,
in which arbitrary two vectors are almost orthogonal. This is based on the fact that, for a n-dim space, the angle θ

between any two vectors satisfies: P (|θ − π
2 | ≤ m) = 1 −

∫ π
2

−m

0 sinn−2 θdθ∫ π
2

0 sinn−2 θdθ
, where the numerator

∫ π
2 −m

0
sinn−2 θdθ <

(π2 −m) sinn−2(π2 −m) decreases exponentially with n, while the denominator
∫ π

2

0
sinn−2 θdθ > 2

√
2

3
√
n−2

decreases no
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faster than o(
√
n). This suggests that any two features are almost orthogonal and that averaging them will not counteract

each other. Fig. 3 gives an example of feature-level ensemble’s t-SNE visualization.

A.3. Feature-level Ensemble Activation Analysis

Suppose X ∼ ESN(µ, σ, ϵ). First, we consider the probability density function of X:

p(x) =

{
ϕ((x− µ)/(1 + ϵ)σ)/σ, if x < µ,

ϕ((x− µ)/(1− ϵ)σ)/σ, if x ≥ µ,
(13)

Therefore, considering activation function, Z = max(0, X), we have expectation:

E[Z] = µ+

−µ∫
−∞

−µ

σ
ϕ

(
x

(1 + ϵ)σ

)
dx+

0∫
−µ

x

σ
ϕ

(
x

(1 + ϵ)σ

)
dx+

∞∫
0

x

σ
ϕ

(
x

(1− ϵ)σ

)
dx

= µ− µ(1 + ϵ)Φ

(
−µ

(1 + ϵ)σ

)
+ (1 + ϵ)

0∫
−µ

x

(1 + ϵ)σ
ϕ

(
x

(1 + ϵ)σ

)
dx+ (1− ϵ)

∞∫
0

x

(1− ϵ)σ
ϕ

(
x

(1− ϵ)σ

)
dx

= µ− µ(1 + ϵ)Φ

(
−µ

(1 + ϵ)σ

)
+ (1 + ϵ)2

[
ϕ

(
−µ

(1 + ϵ)σ

)
− ϕ(0)

]
σ + (1− ϵ)2ϕ(0)σ

= µ

[
1− (1 + ϵ)Φ

(
−µ

(1 + ϵ)σ

)]
+ (1 + ϵ)2ϕ

(
−µ

(1 + ϵ)σ

)
σ − (1 + ϵ)2ϕ (0)σ + (1− ϵ)2ϕ (0)σ

= µ

[
1− (1 + ϵ)Φ

(
−µ

(1 + ϵ)σ

)]
+ (1 + ϵ)2ϕ

(
−µ

(1 + ϵ)σ

)
σ − 4ϵϕ(0)σ

= µ

[
1− (1 + ϵ)Φ

(
−µ

(1 + ϵ)σ

)]
+ (1 + ϵ)2ϕ

(
−µ

(1 + ϵ)σ

)
σ − 4ϵσ√

2π
,

(14)
where Φ(·) and ϕ(·) denote the cdf and pdf of a standard normal distribution separately.

For a single model’s activation, substitute σ = σin and ϵ = 0 into Eq.(14), then the expectation of ID activation will be:

Ein[zi] =

[
1− Φ

(
−µ

σin

)]
µ+ ϕ

(
−µ

σin

)
σin, (15)

For a feature-level ensemble that averages the pre-activation features of M models, the pre-activation feature xi ∼ N (µ,
σ2

in
M ),

substitute σ = σin/
√
M and ϵ = 0 into Eq. (14):

Ein[z̄i] =

[
1− Φ

(
−µ

√
M

σin

)]
µ+ ϕ

(
−µ

√
M

σin

)
σin√
M

. (16)

For OOD data, it can be obtained in the same way that the single model and ensemble activation’s expection would be:

Eout [zi] = µ− (1 + ϵ)Φ

(
−µ

(1 + ϵ)σout

)
µ+ (1 + ϵ)2ϕ

(
−µ

(1 + ϵ)σout

)
· σout −

4ϵ√
2π

σout, (17)

Eout [z̄i] = µ− (1 + ϵ)Φ

(
−µ

√
M

(1 + ϵ)σout

)
· µ+ (1 + ϵ)2ϕ

(
−µ

√
M

(1 + ϵ)σout

)
σout√
M

− 4ϵ√
2πM

σout, (18)

For ID data, compared with a single model, the average movement of feature averaging ensemble for activation is:

Ein[z̄i − zi] = µ

[
Φ

(
µ
√
M

σin

)
− Φ

(
µ

σin

)]
+ σin

[
1√
M

ϕ

(
µ
√
M

σin

)
− ϕ

(
−µ

σin

)]
. (19)
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For OOD data, the corresponding movement will be:

Eout [z̄i − zi] =
4ϵσout√

2π

(
1− 1√

M

)
+ (1 + ϵ)µ

[
Φ

(
µ
√
M

(1 + ϵ)σout

)
− Φ

(
µ

(1 + ϵ)σout

)]

+ (1 + ϵ)2σout

[
1√
M

ϕ

(
µ
√
M

(1 + ϵ)σout

)
− ϕ

(
µ

(1 + ϵ)σout

)]
. (20)

Under the same chaoticness level (σin = σout = σ), we make a difference between the ID and OOD movement expectation:

Eout[z̄i − zi]− Ein[z̄i − zi] = µ

[
(1 + ϵ)Φ

(
µ
√
M

(1 + ϵ)σ

)
− (1 + ϵ)Φ

(
µ

(1 + ϵ)σ

)
− Φ

(
µ
√
M

σ

)
+Φ

(µ
σ

)]
︸ ︷︷ ︸

(I)

+ σ

[
(1 + ϵ)2√

M
ϕ

(
µ
√
M

(1 + ϵ)σ

)
− (1 + ϵ)2ϕ

(
µ

(1 + ϵ)σ

)
− 1√

M
ϕ

(
µ
√
M

σ

)
+ ϕ

(µ
σ

)
+

4ϵ√
2π

(
1− 1√

M

)]
︸ ︷︷ ︸

(II)

. (21)

Next, we prove that (I) and (II) ≤ 0 separately. For (I), we have µ > 0. Since the OOD activation is positive-skewed, we
have −1 < ϵ < 0. Let a = (1 + ϵ) ∈ (0, 1), b = µ

σ > 0, and c =
√
M > 1, then:

(I) = µ

[
aΦ

(
bc

a

)
− aΦ

(
b

a

)
− Φ(bc) + Φ(b)

]
. (22)

Let, T (x, a) = aΦ(x/a)− Φ(x), then:
(I) = µ[T (bc, a)− T (b, a)] (23)

Since (i): ∂T
∂x = ϕ(x/a)− ϕ(x) < 0 when x > 0 for all a ∈ (0, 1), (ii): µ > 0, and (iii): bc > b, we have:

(I) = µ[T (bc, a)− T (b, a)] < 0. (24)

For (II), we use same symbol system:

(II) = σ

[
a2

c
ϕ

(
bc

a

)
− a2ϕ

(
b

a

)
− 1

c
ϕ(bc) + ϕ(b) +

4ϵ√
2π

(
1− 1

c

)]
. (25)

Let U(x, a) = a2ϕ(x/a)− ϕ(x), and:

V (x, a, c) := σ

[
1

c
U(xc, a)− U(x, a) +

4(a− 1)√
2π

(
1− 1

c

)]
. (26)

Then we have:
(II) = V (b, a, c). (27)

We start with the b = 0:

V (0, a, c) = σ

[
1

c
U(0, a)− U(0, a) +

4ϵ√
2π

(
1− 1

c

)]
= σ

[
−(1− 1

c
)U(0, a) +

4ϵ√
2π

(
1− 1

c

)]
= σ

[
−(1− 1

c
)
a2 − 1√

2π
+

4(a− 1)√
2π

(
1− 1

c

)]
=

σ√
2π

(
1− 1

c

)
[−a2 + 4a− 3]

≤ 0, if a ∈ (0, 1). (28)
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For x > 0, we have partial derivatives:

∂V

∂c
= σ

[
− 1

c2
U(cx, a) +

1

c

∂U(cx, a)

∂c
+

4(a− 1)√
2π

1

c2

]
=

σ√
2π

[
− 1

c2

(
a2e−

c2x2

2a2 − e−
c2x2

2

)
+

1

c
(−x2ce−

c2x2

2a2 + x2ce−
c2x2

2 ) + 4(a− 1)
1

c2

]
=

σ√
2π

[
− 1

c2

(
a2e−

c2x2

2a2 − e−
c2x2

2

)
+ (−x2e−

c2x2

2a2 + x2e−
c2x2

2 ) + 4(a− 1)
1

c2

]
<

σ√
2π

[
− 1

c2

(
a2e−

c2x2

2a2 − e−
c2x2

2

)
+ (−a2x2e−

c2x2

2a2 + x2e−
c2x2

2 ) + 4(a− 1)
1

c2

]
=

σ√
2π

[
(
1

c2
+ x2)︸ ︷︷ ︸
>0

(
e−

c2x2

2 − a2e−
c2x2

2a2

)
︸ ︷︷ ︸

<0, for a∈(0,1)

+4(a− 1)
1

c2︸ ︷︷ ︸
<0

]
< 0, (29)

and

∂V

∂a
= σ

[
1

c

∂U(cx, a)

∂a
− ∂U(x, a)

∂a
+

4√
2π

(1− 1

c
)

]
=

σ√
2π

[
1

c
(2a+

c2x2

a
)e−

c2x2

2a2 − (2a+
x2

a
)e−

x2

2a2

]
+

4σ√
2π

(1− 1

c
)

=
σ√
2π

[
(
2a

c
+

cx2

a
)e−

c2x2

2a2 − (2a+
x2

a
)e−

x2

2a2

]
+

4σ√
2π

(1− 1

c
). (30)

Substitute c = 1 into the Eq. (30),
∂V

∂a

∣∣∣∣
c=1

= 0. (31)

For c¿1, we have:
∂V

∂a∂c
=

σ√
2π

e−
c2x2

2a2

[
−2a

c2
− x2

a
+

c2x4

a3

]
+

4σ√
2πc2

. (32)

When − 2a
c2 − x2

a + c2x4

a3 ≥ 0, its obvious that ∂V
∂a∂c > 0. When − 2a

c2 − x2

a + c2x4

a3 < 0, we have:

∂V

∂a∂c
=

σ√
2π

e−
c2x2

2a2

[
−2a

c2
− x2

a
+

c2x4

a3

]
+

4σ√
2πc2

≥ σ√
2π

[
−2a

c2
− x2

a
+

c2x4

a3

]
+

4σ√
2πc2

≥ σ√
2π

− 9
4a+ 4

c2
> 0. (33)

Due to the fact that Eq. (31): ∂V
∂a

∣∣
c=1

= 0 and ∂V
∂a∂c > 0, for any c > 1, we have Eq. (30):

∂V

∂a
> 0. (34)

Substitute c = 1 and a = 1 into the Eq. (26) separately, we have:

V (x, 1, c) = 0, (35)

and
V (x, a, 1) = 0. (36)

Therefore, from Eq. (29): ∂V
∂c < 0, Eq. (30): ∂V

∂c > 0, Eq. (35): V (x, 1, c) = 0, and Eq. (36):V (x, a, 1) = 0, for
0 < a < 1,c > 1, we can conclude:

V (x, a, c) < 0, (37)
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for any x > 0. Therefore,
(II) = V (b, a, c) < 0, (38)

always stands up for any 0 < a < 1, b > 0, and c > 1.

Combining Eq. (24) and Eq. (38), we conclude that Eq. (21):

Eout[z̄i − zi]− Ein[z̄i − zi] < 0. (39)

A.4. Related Concepts

A.4.1. LOSS BARRIER

A loss barrier (Frankle et al., 2020) between two models refers to a scenario where the optimization landscape, as defined
by the loss function, presents a considerable and challenging obstacle for transitioning from one model to another. When
attempting to move from one model to another, the goal is to adjust the parameters in a way that leads to improved
performance on a specific task. However, if there exists a loss barrier between the two models, this means that making
parameter updates to transition from the first model to the second model might involve encountering a region in the parameter
space where the loss function increases significantly.

A.4.2. GIT REBASIN

The postulate of Git Rebasin (Ainsworth et al., 2023) methodology posits that a substantial subset of Stochastic Gradient
Descent (SGD) solutions attained through the customary training regimen of neural networks belongs to a discernible
collection, wherein the constituent elements can be systematically permuted. This permutation yields a configuration
wherein no loss barrier in loss landscape exist along the trajectory of linear interpolation connecting any two permuted
constituents.

A.4.3. ENSEMBLE LEARNING

Ensemble methods have been a longstanding approach to enhancing model performance by combining the predictions
of multiple models. Bagging (Breiman, 1996) and Boosting (Freund et al., 1996) are classic ensemble techniques that
aim to mitigate overfitting and bias in predictions. Deep ensembles, as introduced by (Lakshminarayanan et al., 2017),
leverage multiple neural networks with different initializations to capture model uncertainty and encourage diverse parameter
sampling. SSLC (Vyas et al., 2018) and kFolden (Li et al., 2021) combined the traditional idea based on the difference in
data samples with the data leave-out approach to construct deep ensembles. All of these ensembles have been effective in
the OOD detection problem.

A.5. Sinkhorn Distance and Coupling Matrix

A.5.1. COMPUTATION OF COUPLING MATRIX

The feature representations generated by the two models are considered as distributions gH1
(D) and g′H2

(D). The coupling
matrix PH1,H2

represents how much probability mass from one point in support of gH1
(D) is assigned to a point in support

of g′H2
(D). For a coupling matrix PH1,H2 , all its columns must add to a vector containing the probability masses for

gH1(D), denoted as vH1 , and all its rows must add to a vector with the probability masses for g′H2
(D), denoted as vH2 .

The calculation of the total overhead of this assignment also relies on another cost matrix C, which describes the cost of
assigning a point in support of gH1(D) to every single point in support of g′H2

(D). We usually use the Lp distance (p=2 in
this work) between the feature representations of the samples to obtain the cost matrix.

The ultimate goal is to optimize:
min

PH1,H2

⟨C,PH1,H2
⟩

subject to PH1,H2
1 = vH1

,

1T PH1,H2
= vT

H2

The minimum is known as Wasserstein distance. However, it is hard to compute because of computational complexity and
non-convexity. Sinkhorn distance (Cuturi, 2013) is an approximation to Wasserstein distance, which introduces an entropic
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regularization to make the problem convex, and therefore, can be solved iteratively. Thus the problem is transformed into:

min
PH1,H2

⟨C,PH1,H2
⟩+ ϵ

∑
ij

PH1,H2 ij logPH1,H2 ij

subject to PH1,H2
1 = vH1

,

1T PH1,H2
= vT

H2

Increasing ϵ will make the coupling matrix smoother. The solution to this optimization problem can be written as
PH1,H2 = diag(u)Kdiag(v), where K = e−λC is a kernel matrix. u and v are updated with the iteration:

u(k+1) =
vH1

Kv(k)

v(k+1) =
vH2

KTu(k+1)

After multiple iterations (100 in this work), the final coupling matrix PH1,H2
is obtained.

A.5.2. STRENGTH OF REGULARIZATION IN SINKHORN DISTANCE

The strength of regularization (ϵ) is set according to analysis in (Cuturi, 2013) that requires taking ϵ−1 in order of log n/p,
where n is the number of samples and p is the tolerance of approximation. In this paper, n = 512 and p = 0.0001, thus, we
should have ϵ−1 > 15.44. In experiments of this paper, we set ϵ to 0.05 to satisfy the above constraint. Under this constraint,
the approximation precision of the Sinkhorn distance is sufficient to support our observation of self-coupling.

A.6. Self-Coupling Index Table

Table 9. Self-Coupling Index for models trained under different initialization and training strategies. The model structure is ResNet-18.
The dataset is CIFAR10.

SupCE SupCon SimCLR MoCo RotNet JigClu

SupCE 0.861 0.203 0.091 0.094 0.107 0.163
SupCon (Khosla et al., 2020) 0.214 0.877 0.107 0.193 0.207 0.187
SimCLR (Chen et al., 2020) 0.094 0.089 0.834 0.367 0.147 0.139
MoCo (He et al., 2020) 0.097 0.209 0.339 0.913 0.329 0.096
RotNet (Gidaris et al., 2018) 0.119 0.207 0.165 0.311 0.987 0.165
JigClu (Chen et al., 2021a) 0.170 0.175 0.126 0.101 0.160 0.915

Table 10. Self-Coupling Index for models trained under different initialization and training strategies. The model structure is ResNet-50.
The dataset is CIFAR10.

SupCE SupCon SimCLR MoCo RotNet JigClu

SupCE 0.841 0.197 0.106 0.076 0.097 0.168
SupCon (Khosla et al., 2020) 0.200 0.854 0.098 0.199 0.163 0.157
SimCLR (Chen et al., 2020) 0.099 0.069 0.812 0.316 0.112 0.119
MoCo (He et al., 2020) 0.079 0.185 0.319 0.891 0.289 0.086
RotNet (Gidaris et al., 2018) 0.113 0.187 0.155 0.293 0.965 0.143
JigClu (Chen et al., 2021a) 0.164 0.149 0.117 0.081 0.153 0.865

In Table 9 and 10, we report the Self-Coupling Index between some models with representative training criterion trained
on CIFAR10 dataset with ResNet-18 and ResNet-50 (He et al., 2016), respectively. There is a large Self-Coupling Index
between the same training method and a smaller Self-Coupling Index between models with different training methods.

In Table 11 and 12, we report the Self-Coupling Index between some models with representative training criterion trained
on ImageNet dataset with ResNet-50 (He et al., 2016) and ViT-B (Dosovitskiy et al., 2020), respectively. Due to the large
amount of Imagenet data, we take a balanced part of the dataset to calculate the self-coupling index.
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Table 11. Self-Coupling Index for models trained under different initialization and training strategies. The model structure is ResNet-50.
The training dataset is ImageNet-1K.

SupCE SupCon SimCLR MoCo RotNet JigClu

SupCE 0.721 0.021 0.047 0.036 0.031 0.078
SupCon (Khosla et al., 2020) 0.069 0.734 0.036 0.089 0.063 0.059
SimCLR (Chen et al., 2020) 0.039 0.028 0.757 0.196 0.062 0.043
MoCo (He et al., 2020) 0.028 0.067 0.183 0.699 0.186 0.016
RotNet (Gidaris et al., 2018) 0.043 0.063 0.053 0.164 0.765 0.127
JigClu (Chen et al., 2021a) 0.049 0.057 0.034 0.011 0.053 0.711

Table 12. Self-Coupling Index for models trained under different initialization and training strategies. The model structure is ViT-B. The
dataset is CIFAR10.

SupCE MoCo v3 MAE DINO

SupCE 0.769 0.068 0.046 0.036
MoCo v3 (Chen et al., 2021b) 0.111 0.862 0.031 0.159
MAE (He et al., 2022) 0.049 0.016 0.887 0.036
DINO (Caron et al., 2021) 0.031 0.185 0.035 0.791

A.7. Scoring Methods

(1) MSP (Hendrycks & Gimpel, 2017): using maximum softmax probability as detection scoring metric, and ID data point
will have higher softmax probability.

sMSP(x) = max
k

Softmax(WgH(x) + b)k, (40)

where W and b is parameter for output layer.

(2) Mahalanobis distance (Lee et al., 2018): Mahalanobis distance takes into account the covariance of the class distribution.
The data point has a high Mahalanobis distance from the distribution is considered OOD.

sMahal.(x) := max
k

− (gH(x)− µ̂k)
⊤
Σ̂ (gH(x)− µ̂k) (41)

where µ̂k and Σ̂, are the estimated feature vector mean and covariance for classes.

(3)Energy (Liu et al., 2020): Energy score uses the energy-based model to score the feature representation.

sEnergy (x) = − log

K∑
k=1

exp
(
w⊤

i gH(x) + bi
)

(42)

(4)KNN (Sun et al., 2022): it is a non-parameter approach that computes the k-nearest neighbor distance between test input
embedding and training set embeddings, using a threshold to determine OOD.

sKNN (gH(x)∗; k) = 1 {−rk (gH(x)∗) ≥ λ} , (43)

where where rk (z
∗) =

∥∥z∗ − z(k)
∥∥
2

is the distance to the k-th nearest neighbor

A.8. CIFAR10 Benchmark on ResNet-50

As shown in Table 14, we trained 3 different ResNet-50s for the MC Ensemble, the training configuration is the same as
ResNet-18 except the batch size is set to 256. The result is consistent with Table 3. We notice that the MC Ensemble+MSP
result is lower than the one in ResNet-18, we argue that this is because larger models tend to give a more over-confident
prediction.
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Table 13. Comparison with state-of-the-art OOD detection methods. All results are in percentages. *: Outlier Exposure based model.

OOD Dataset
SVHN LSUN iSUN Texture Places365 Average

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

FeatureNorm (Yu et al., 2023) 7.13 98.65 27.08 95.25 26.02 95.38 31.18 92.31 62.54 84.62 30.79 93.24
DOE* (Wang et al., 2023) 2.65 99.36 0 99.89 0.75 99.67 7.25 98.47 15.1 96.53 5.15 98.78
CIDER (Ming et al., 2023) 3.04 99.5 4.1 99.14 15.94 97.1 13.19 97.3 26.6 94.64 12.57 97.55
SHE (Zhang et al., 2023) 5.87 98.74 6.67 98.42 4.16 98.85 6.31 98.7
DICE (Sun & Li, 2022) 25.99 95.9 3.91 99.2 4.36 99.14 41.9 88.18 48.59 89.11 24.95 94.3
ASH-S (Djurisic et al., 2023) 6.51 98.56 4.96 98.92 5.17 98.9 24.34 95.09 48.45 88.31 17.89 95.96
MC Ens. 1.35 99.7 1.45 99.8 7.88 98.09 4.07 99.05 13.19 97.01 5.58 98.73

Table 14. Results on CIFAR10 Benchmark with ResNet-50. Comparison with competitive OOD detection methods. All results are in
percentages.

OOD Dataset
SVHN LSUN iSUN Texture Places365 Average

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ODIN (Liang et al., 2018) 18.34 95.68 7.10 98.67 28.17 94.69 53.26 87.42 59.07 88.57 33.19 93.01
SSD+ (Sehwag et al., 2021) 1.07 99.80 5.25 98.87 29.75 95.64 9.99 97.97 25.37 94.85 14.29 97.42
CSI (Tack et al., 2020) 39.12 93.96 4.88 99.00 10.41 98.02 29.31 94.41 36.23 93.13 23.99 95.70
MSP (Hendrycks & Gimpel, 2017) 53.36 92.31 48.46 93.60 53.86 92.07 60.34 89.01 57.32 89.16 54.67 91.23
Mahalanobis (Lee et al., 2018) 9.56 97.36 59.86 78.37 16.02 96.41 19.31 94.30 69.67 73.56 34.88 88.00
Energy (Liu et al., 2020) 48.06 92.60 11.85 97.62 26.52 95.55 43.32 93.33 41.37 91.35 34.22 94.09
KNN (Sun et al., 2022) 23.19 95.89 23.29 96.18 21.55 96.11 23.90 95.12 43.97 91.23 27.18 94.90
KNN+(Sun et al., 2022) 2.65 99.43 1.98 99.38 19.36 96.71 7.11 98.75 19.12 96.31 10.04 98.11

MC Ens.+MSP 42.37 91.78 43.45 92.11 43.36 92.32 43.86 92.44 49.13 90.00 44.43 91.73
MC Ens.+Mahala. 3.64 98.99 41.32 94.35 18.55 94.97 12.27 94.81 24.68 91.02 20.09 94.82
MC Ens.+Energy 34.94 92.59 6.01 99.06 17.99 96.62 23.98 91.91 31.02 92.98 22.79 94.63
MC Ens.+KNN 0.89 99.81 0.24 99.91 6.96 98.23 5.13 98.86 12.39 97.75 5.12 98.91

A.9. Comparison with Naive Ensemble on Mahalanobis Distance and Energy

The comparison of the naive ensemble with 3 cross-entropy trained ResNet-18 and MC Ensemble on Mahalanobis
distance (Lee et al., 2018) and Energy socre (Liu et al., 2020) is shown in Table 15. MC Ensemble consistently outperforms
naive ensemble on these scoring metrics.

A.10. ImageNet Benchmark on ViT-B

We fine-tune 3 different ViT-B models which are trained with cross-entropy, MoCo v3 (Chen et al., 2021b), and Masked-
Autoencoder (He et al., 2022) to build a MC ViT Ensemble. The weights are imported from their original repositories. As
shown in Table 16, MC ViT Ensemble still consistently outperforms vanilla ViT.

A.11. ImageNet Benchmark on ResNet-50

As shown in Table 17, we report the ImageNet Benchmark results on ResNet-50. We notice Mahalanobis distance scoring
metric almost crashes on ImageNet benchmark, this may be because the Mahalanobis distance leverages the class center
information, and in Imagenet Benchmark, there are 1000 class centers, which is hard to determine which class a sample
belongs to regardless of its distribution. MC Ensemble is not able to improve this.

A.12. Limitations

This paper proposes to aggregate multiple models trained with different tasks to form a multi-comprehension ensemble for
better OOD detection performance. The limitation of this paper can be that: (1) In current work, the task/criteria pool we
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Table 15. Comparison with naive ensemble. Models in naive ensemble are trained from different weight initialization. All results are in
percentages.

OOD Dataset
SVHN LSUN iSUN Texture Places365 Average

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Mahalanobis distance
3×SupCE 8.71 97.96 59.29 87.96 31.55 93.26 21.57 93.72 73.90 71.14 39.00 88.80
MC Ens. 2.09 99.48 43.35 93.79 21.59 94.77 14.31 94.68 27.68 89.88 21.80 94.52

Energy score
3×SupCE 51.29 91.83 11.15 97.79 25.88 95.21 53.55 89.91 40.93 92.01 36.56 93.35
MC Ens. 34.99 92.58 6.05 99.05 17.96 96.59 23.97 91.92 33.02 92.37 23.20 94.50

Table 16. Results on ImageNet Benchmark with ViT-B (Dosovitskiy et al., 2020). All results are in percentages. Scoring metric is
KNN.

OOD Dataset
iNaturalist SUN Places Textures Average

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ViT-B(SupCE) 8.41 97.23 49.98 86.32 37.98 91.37 56.24 85.71 38.15 90.16

MC ViT Ens. 7.99 97.73 43.72 90.69 35.89 91.02 34.65 91.77 30.56 92.80

have explored cannot be described as large, and this makes it possible for us to miss the opportunity to find a more powerful
MC ensemble. As more and more training task/criteria being proposed, the task/criteria pool needs further study. (2) The
computation overhead of MC Ensemble is still M× compared to a single standalone model with the same backbone. In the
case of constrained computation resources, the latency may increase.
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Table 17. Results on ImageNet Benchmark. All results are in percentages. Some of the baseline results are from (Sun et al., 2022).

OOD Dataset
iNaturalist SUN Places Textures Average

Methods FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

ODIN 47.66 89.66 60.15 84.59 50.23 85.62 67.89 81.78 56.48 85.41
SSD+ 57.16 87.77 78.23 73.10 36.37 88.52 81.19 70.97 63.24 80.09
MSP 54.99 87.74 70.83 80.86 68.00 79.61 73.99 79.76 66.95 81.99
Mahalanobis 97.00 52.65 98.50 42.41 55.80 85.01 98.40 41.79 87.43 55.47
Energy 55.72 89.95 59.26 85.89 53.72 85.99 64.92 82.86 58.41 86.17
KNN 59.00 86.47 68.82 80.72 11.77 97.07 76.28 75.76 53.97 85.01
KNN+ 30.18 94.89 48.99 88.63 15.55 95.40 59.15 84.71 38.47 90.91

MC Ens.+Mahala. 98.00 52.15 100.00 50.95 97.65 51.24 100.00 48.97 98.91 50.83
MC Ens.+Energy 38.45 92.75 43.98 90.33 37.69 91.88 48.96 87.91 42.27 90.72
MC Ens.+KNN 15.39 96.78 42.97 90.35 54.89 87.34 9.54 97.77 30.69 93.06
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