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Abstract

Most (3D) multi-object tracking methods rely on object-level information, e.g.
appearance, for data association. By contrast, we investigate how far we can
get by considering only geometric relationships and interactions between objects
over time. We represent each tracking sequence as a multiplex graph where 3D
object detections are nodes, and spatial and temporal pairwise relations among
them are encoded via two types of edges. This structure allows our graph neural
network to consider all types of interactions and distinguish temporal, contextual
and motion cues to obtain final scene interpretation by posing tracking as edge
classification. The model outputs classification results after multiple rounds of
neural message passing, during which it is able to reason about long-term object
trajectories, influences and motion based solely on initial pairwise relationships.
To enable our method for online (streaming) scenarios, we introduce a technique
to continuously evolve our graph over long tracking sequences to achieve good
performance while maintaining sparsity with linear complexity for the number of
edges. We establish a new state-of-the-art on the nuScenes dataset.

1 Introduction

Intelligent agents such as autonomous vehicles need to understand dynamic objects in their sur-
roundings to safely navigate the world. 3D multi-object tracking (MOT) is, therefore, an essential
component of autonomous intelligent systems.

State-of-the-art methods leverage the representational power of neural networks to learn appearance
models [41, 48] or regress velocity vectors [46] as cues for data association. While powerful, such
methods need to be trained for the specific environments in which they are deployed. Methods such
as [40, 7] rely on motion as the key cue for association and can thus generalize across different envi-
ronments. However, performance-wise they lag behind data-driven methods as they treat individual
objects in isolation and do not consider their interactions.

In this work, we investigate how far we can get by learning to track objects given only geometric cues
in the form relative pose differences between 3D bounding boxes without relying on any appearance
information. This approach is not coupled to any specific object detector, sensor modality, or region-
specific appearance models. As a result, it generalizes well across environments and geographic
locations, as we experimentally demonstrate. By contrast to prior work [40] that rely on individual
object motion as the main association cue, our method can learn how objects move as a group, taking
into account their interactions to better adapt to dynamic environments and crowded scenarios.

As graphs are a natural representation for such long-term agent interactions, we represent our scene
as a sparse, multiplex graph, which is then processed by a graph neural network (Fig. 2). We encode
3D detection as nodes, while edges represent their spatial and temporal relations and denote possible
associations and influences. After several message passing steps in this graph, our neural network
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Figure 1: PolarMOT tracks objects in 3D (offline and online) using a graph neural network that
learns to associate 3D bounding boxes over time solely based on their relative geometric features and
spatio-temporal relationships. Considering such object interactions improves PolarMOT’s ability to
handle scenarios with high occlusions (pedestrian crossing) compared to others, e.g. CenterPoint.

outputs binary classifications for all temporal edges. All nodes connected with a positive edge form a
track and thus get assigned a consistent track ID [5].

One of our main insights is that encoding pairwise geometric relations, i.e., edge features, in localized
polar instead of global Cartesian space is the key to good generalization and robustness and enables
our model to effectively learn to track by solely relying on geometric cues. The pair-specific nature
of the features makes them invariant to global transforms, so features between different detections of
a consistently moving object will be stable, regardless of the route geometry or point of reference.
Such polar representation also naturally encodes non-holonomic motion prior, i.e., a motion that is
constrained by heading direction and is well parametrized by heading angle and velocity.

We evaluate our method, PolarMOT , on KITTI [10] and nuScenes datasets [6]. Our ablations reveal
that our proposed graph structure and edge feature parametrization are pivotal for our final model
achieving 66.4 average AMOTA, setting a new state-of-the-art on nuScenes MOT dataset among
lidar-based methods. More importantly, we show that our learned tracker, which relies only on
geometry leads to strong generalization across different geographic regions (Boston, Singapore,
Karlsruhe) and datasets (nuScenes, KITTI), without fine-tuning. We are not suggesting to not use
appearance cues, but point out that we can get very far with a minimalistic, graph-based tracking,
solely relying on geometric cues and inferring object properties implicitly from interactions.

To summarize, (i) we propose a minimalistic, graph-based 3D tracker that relies only on geometric
cues and, without any bells and whistles or image/lidar input, establish new state-of-the-art on the
nuScenes dataset; (ii) we suggest a graph-based representation of the scene that encodes temporal
and spatial relations via a localized polar representation. This is not only to achieve state-of-the-
art performance on benchmarks but, more importantly, is the key to strong generalization; (iii) as
efficiency and online operation are crucial for robotic/AV scenarios, we construct a sparse graph

t

Figure 2: Given a set of 3D bounding box detections in a sequence, PolarMOT constructs a graph
encoding objects as nodes and their geometric relations as spatial and temporal edges. After implicitly
deriving node features and refining edge features via message passing with wider spatial and temporal
context, we classify edges to obtain track predictions.
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(a) Full (sparse) graph.
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(b) Relational features.
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(c) Online construction.

Figure 3: The key contributions of our work: multiplex input graph with inter-frame (temporal) and
intra-frame (spatial) edges, relative geometric features in localized polar coordinates and continuously
evolving online graph construction.

and only establish links that are feasible based on maximal possible velocity and show how such
sparse graphs can be constructed in an online fashion. We hope our code and models, available at
polarmot.github.io, will run on friendly future robots!

2 Related Work

This section reviews relevant related work in 2D and 3D multi-object tracking (MOT) based on the
well-established tracking-by-detection paradigm.

In the era of deep learning, the community has been focusing on learning strong appearance mod-
els [18, 39, 35], future target locations [2, 44] or predicting offset vectors as cues for association [49].
Recently, we have witnessed a resurgence in graph-based approaches for tracking. MPNTrack [5]
encodes 2D object detections as nodes while edges represent possible associations among them. Then,
a message passing [11] graph neural network (GNN) [12] is used to update node/edge representation
with temporal context. Just as [5], we (i) encode detections as nodes, while edges represent hypo-
thetical associations, and we (ii) learn to classify edges to obtain the final set of tracks. Different to
[5], we tackle 3D MOT using only geometric cues. Our model encodes both, temporal and spatial
relations and, importantly, encodes them via localized polar coordinates, that encode non-holonomic
motion prior. Moreover, beyond offline use-case, we show how to construct sparse graphs in online
fashion with streaming input, as needed in mobile robotics.

3D MOT. Early methods for 3D detection and tracking [8, 28] model vehicles as cuboids or rely on
bottom-up point cloud segmentation [36, 24, 13] and track objects using (extended) Kalman filter.
Thanks to developments in deep point-based representation learning [30, 31, 37, 50], we nowadays
have strong backbones, as needed for 3D object detection [29, 33, 50, 45, 17, 46], tracking [9, 40, 7]
and segmentation [1]. AB3DMOT [40] shows that well-localized lidar-based 3D object detections
work very well in conjunction with a simple Kalman filter based tracking framework [4]. Association
can be performed based on 3D bounding box overlap or centroid-based Mahalanobis distance [7] to
increase robustness to lower frame rates. State-of-the-art CenterPoint [46] learns to detect objects as
points and regresses velocity vectors needed for the association. Similar to ours, OGR3MOT[47]
also tackles 3D MOT using message passing networks based framework, proposed by [5]. However,
it represents detections and tracks as two distinct types of nodes, thus effectively maintaining two
subgraphs. Different to that, our PolarMOT implicitly derives node embeddings from relational
(edge) features parametrized via proposed local polar coordinates. A recent body of work proposes
to fuse image and lidar data [14, 48, 41]. GNN3DMOT [41] utilizes GNNs to learn appearance and
motion features for data association jointly. This approach relies on Hungarian algorithm to perform
data association based on the learned features. Different to that, we only use 3D geometric cues and
perform association directly via edge classification in end-to-end manner.
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3 PolarMOT

In this section, we provide a high-level overview of our PolarMOT , followed by a detailed discussion
of our key ideas and components.

3.1 Method Overview

PolarMOT encodes the overall geometric configuration of detected objects and the relative pose
changes between them as primary cues for tracking.

Sparse graph-based scene representation. We use a graph to represent object detections as nodes,
and their geometric relations as edges. We encode both temporal and spatial relations among objects
in two levels of our sparse multiplex graph (Fig. 3a). The temporal level connects nodes across
different frames with inter-frame edges, while the spatial level connects nodes of the same frame
with intra-frame edges. For sparsity, we only link nodes that are mutually reachable based on the
maximal velocity of their semantic class.

Localized relational polar encoding We encode geometric relations among nodes via a localized
polar-based representation (Fig. 3b). Our parametrization is not based on a shared global coordinate
frame but is specific to each pair’s local frame. This makes our parametrization invariant to the
reference world frame, and induces a non-holonomic (directional) motion prior.

Learning representation via message passing. We follow a message passing procedure [11] to
iteratively update our features via edge/node updates (Fig. 2, center). Node features are not extracted
from the input detections, instead, they are learned implicitly through mutual object interactions. For
more details on the procedure, please refer to the appendix.

Edge classification. To obtain object tracks, we classify our temporal edges using a multi-layer
perceptron based on final edge representations (Fig. 2, right).

Online graph construction. For online tracking, we continuously evolve our input graph after each
frame, while maintaining both sparsity and high connectivity (Fig. 3c). For online processing, we
connect past track predictions directly to the most recent detections, thus allowing our network to
infer historical context effectively via message passing on the graph topology.

3.2 Message Passing on a Sparse Multiplex Graph

Representation. Following [5], we represent each individual object detection as a node of the graph
with edges encoding relations between objects. More precisely, we model temporal and spatial
relations between objects (graph nodes) by encoding our 3D detections via a sparse, undirected
multiplex graph with two distinct levels / edge types (Fig. 3a). In the first level we model temporal
connections via undirected inter-frame edges between nodes across frames [5], which describe
potential motion of objects. Each edge connects two distinct detections across frames. The edge
features denote the likelihood of an object moving from pose/node A to pose/node B in the elapsed
time. In the second level, we introduce undirected intra-frame edges (i.e., links between nearby
detections from the same frame) to model spatial context. These edges act as pathways to exchange
frame-specific context and are meant to express the mutual influence of moving targets’ motion
patterns. This should intuitively help with difficult and ambiguous cases that arise in crowded
scenarios. Both inter- and intra-frame edges connect the same set of nodes, but convey semantically
different information, effectively turning our graph into a multiplex network with two distinct levels.
Intra-frame edges are excluded from edge classification.

Table 1: Results of state-of-the-art methods for 3D multi-object tracking on the NuScenes test set.

Method name Input IDs ↓ Recall ↑ AMOTA ↑ class-specific AMOTA ↑
modality total average average car ped bicycle bus motor trailer truck

Ours 3D 242 70.2 66.4 85.3 80.6 34.9 70.8 65.6 67.3 60.2
OGR3MOT [47] 3D 288 69.2 65.6 81.6 78.7 38.0 71.1 64.0 67.1 59.0
CenterPoint [46] 3D 684 68.0 65.0 81.8 78.0 33.1 71.5 58.7 69.3 62.5
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Sparse graph construction. To handle occlusions, we connect nodes across any number of frames.
Doing this naively would potentially result in a prohibitively dense graph. To ensure graph sparsity,
we take full advantage of the 3D domain, and rely on physical constraints to establish only relevant,
physically-plausible spatial or temporal relations. For inter-frame edges, if the physical distance
between two detections is greater than the maximal velocity of the detected class, we consider it
impossible for them to belong to the same object and do not form an edge. For intra-frame edges,
we allow distance up to twice the maximal velocity to connect objects that could collide in the next
frame if moving towards each other and, therefore, influence each other’s movement.

Tracking via edge classification. After graph construction and message passing, we classify inter-
frame edges, which encode temporal relations. Positive classification implies the same object identity
for both detections (i.e., a consistent track ID). Any edge connecting nodes of the same track should
be labeled as positive, regardless of the time difference between the connected nodes.

3.3 Localized Relational Polar Encoding

3D sensors do not provide comprehensive appearance information (compared to cameras) and instead
provide accurate distance measurements to objects. Therefore, for 3D MOT, we fully focus on
efficiently representing relative poses via edge features and learn node features implicitly. This leads
to the question of how to efficiently represent geometric relations between objects? We start by
representing each 3D detection as an oriented point with two planar coordinates x, y and orientation
ϕ around s vertical axis z. We ignore elevation, tilt, and spatial dimensions of objects as their values
are similar among objects of the same class.

Global Cartesian coordinates. Traditionally, spatial geometric relations between objects are
parametrized in Cartesian coordinates relative to some reference frame, encoding an edge h

(0)
i,j

connecting nodes oi and oj as:

h
(0)
i,j = ∆(oi, oj) =

[
∆x
∆y
. . .

]
=

[
oxi − oxj
oyi − oyj

. . .

]
. (1)

As shown in Fig. 3b, for identical pose changes
−−→
AB and

−−→
BC, global Cartesian features are not

identical, as they depend on the orientation of the reference frame. Thus, with such representation,
identical motion non-intuitively leads to different relational features.

Localized polar coordinates.

We propose a different representation, which depends (i) only on the relevant pair of objects, oi and
oj , and (ii) is more suitable for encoding directional non-holonomic motion. Our parametrization
(Fig. 3b) expresses differences in poses A and B through a velocity vector, expressed in polar
coordinates, where the center of the first detection A is the pole (i.e., the origin of the polar coordinate
frame), and its heading direction (downward) is the polar axis. This vector includes two components:
velocity |AB| (i.e., distance between objects by detection time difference), and polar angle φ, i.e.,
the angle between

−−→
AB and the polar axis of A (downward vector). We also include differences in

object orientation (oϕ) and detection time difference (ot):

h
(0)
i,j = ∆(oi, oj) =

[
v

φi,j

∆ϕ
∆t

]
=


∥oi−oj∥2

∆t

∠
(
o⃗ head
i , o⃗j − o⃗i

)
oϕi − oϕj
oti − otj

 . (2)

We remove the dependency on an arbitrary reference frame by computing each feature relative to
individual localized frames. Now, identical motion between

−−→
AB and

−−→
BC leads to identical features.

Table 2: Online tracking on the nuScenes validation set [6]

Method name Input IDs ↓ Recall ↑ AMOTA ↑ class-specific AMOTA ↑
modality total average average car ped bicycle bus motor trailer truck

Ours 3D 439 72.46 67.27 81.26 78.79 49.38 82.76 67.19 45.80 65.70
CenterPoint 3D 562 70.62 65.91 84.23 77.29 43.70 80.16 59.16 51.47 65.39
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Table 3: Ablation on parametrization of geometric relations on nuScenes validation set.

Localized Normalized IDs ↓ Recall ↑ AMOTA ↑ class-specific AMOTA ↑
polar by time total average average car ped bicycle bus motor trailer truck

✓ ✓ 430 62.12 57.96 85.16 80.80 44.02 80.68 45.83 5.41 63.83
✓ ✗ 652 55.07 52.17 81.51 80.14 06.66 79.53 53.82 0 63.51
✗ ✓ 1321 41.06 40.41 78.77 78.80 0 67.62 0 0 57.66

Table 4: Ablation for intra-frame edges on the nuScenes validation set
Intra-frame IDs ↓ Recall ↑ AMOTA ↑ class-specific AMOTA ↑
connections total average average car ped bicycle bus motorcycle trailer truck

✓ 213 75.14 71.14 85.83 81.70 54.10 87.36 72.32 48.67 68.03
✗ 198 72.74 70.09 85.44 80.51 52.88 86.78 69.87 46.61 68.54

Polar coordinates explicitly encode the change in heading angle (φ). This intuitively encodes a smooth,
non-holonomic motion prior. For example, polar features for trajectory

−−→
KL and an (improbable)

trajectory
−−→
MN significantly differ, while their Cartesian coordinates do not. These key characteristics

allow PolarMOT to generalize well even when trained with a small number of labeled samples (Sec.
4.4), especially important for rarely observed object classes.

3.4 Online Graph Construction

In this section, we propose an online graph construction approach that makes our method applicable to
online applications. We maintain a single input graph for the whole sequence, which we continuously
evolve with each incoming frame. This construction is identical to the offline setting, as discussed
in Sec. 3.2. In each frame, edges are classified based on past-frame information only. There are
multiple ways of maintaining a single input graph over a sequence of frames.

MPNTrack++: dense. First approach is a simple extension of offline GNN methods [5, 19], where
previous track associations do not influence graph structure. At each frame, new nodes and edges are
added to a continuously growing dense graph. Such model is unaware of past track estimates.

Prune inactive: consecutive. Past track estimates are a valuable cue to resolve ambiguous associa-
tions. To this end, [47] propose to simply prune all past (negative) edges. This option encodes track
history and maintains sparsity and due to frame-by-frame processing, preserved track edges always
connect temporally consecutive nodes in each track. However, over time, temporal distance from
the current frame to early nodes is increasing, making them unreachable within a limited number of
message passing iterations. This approach thus has a limited temporal receptive field.

Ours: prune + skip. We propose a solution that maintains graph sparsity and a global temporal
receptive field. After each frame, we remove all past negative edges and ensure we have, for each
track, an edge between each most-recent track node and all past nodes from its track, see Fig. 3c.
Moreover, new nodes at each frame are only connected to the most-recent track node for each
existing track. By continuously evolving the graph in this manner we maintain sparsity, provide
previous tracking decisions to the model through the input graph topology (this makes our model
autoregressive) and keep all nodes reachable during message passing: any two connected nodes
have at most two edges between them. This allows our model to learn historical context directly via
message passing to make well-informed edge classification, as needed for long-term tracking.

4 Experimental Evaluation

This section outlines our evaluation setting: datasets, metrics and input detections (Sec. 4.1). Next,
in Sec. 4.2, we discuss our offline tracking results on the nuScenes test set and online and offline
performance on the validation set, compared to the current state-of-the-art. Then, we justify our
design decisions and discuss the benefits of our contributions via thorough ablation studies (Sec. 4.3).
Finally, we demonstrate the generalization capabilities of PolarMOT by successfully applying it to
different datasets and locations without fine-tuning (Sec. 4.4).
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Table 5: Sparse graph construction: the impact of reducing/increasing the maximal velocity threshold
on online tracking (nuScenes validation set)

Max edge IDs ↓ Recall ↑ AMOTP ↓ AMOTA ↑ class-specific AMOTA ↑
distance total average average car ped bicycle bus motorcycle trailer truck

0.5x 1123 65.14 0.718 58.61 76.90 46.66 46.89 77.35 62.73 40.09 59.63
1.0x 439 72.46 0.595 67.27 81.26 78.79 49.38 82.76 67.19 45.80 65.70
2.0x 467 69.74 0.642 65.42 81.28 72.15 46.84 83.45 63.57 44.94 65.70

Table 6: Online graph construction analysis (nuScenes validation set)
Track IDs ↓ Recall ↑ AMOTA ↑ class-specific AMOTA ↑

connectivity total average average car pedestrian bicycle bus motorcycle trailer truck

Ours 439 72.46 67.27 81.26 78.79 49.38 82.76 67.19 45.80 65.70
Consecutive 485 69.90 66.03 81.04 77.37 48.84 82.45 66.58 40.66 65.23

Dense 1024 68.58 61.39 71.08 75.20 49.70 79.78 52.03 41.15 60.79

4.1 Evaluation setting

Datasets. We evaluate our method on nuScenes [6] and KITTI [10] tracking datasets. NuScenes was
recorded in four locations across two cities: Boston, USA, and Singapore. It contains 150 scenes,
recorded with a 32-beam lidar sensor, and provides two scans per second (2Hz). KITTI tracking
dataset was recorded in Karlsruhe, Germany, using a 64-beam lidar sensor at a 10Hz frame rate.
Unless otherwise specified, we follow the official train/validation/test splits.

Evaluation metric. On the nuScenes dataset, we follow the official evaluation protocol that reports
per-class and average AMOTA [40], which averages the CLEAR-MOT [3] MOTA metric across
different recall thresholds. On KITTI, we also report sAMOTA [40] and HOTA [23] metrics, which
allows us to analyze detection and association errors separately. We also report the number of identity
switches (IDs) at the best performing recall. In the supplementary, we provide extended tables and
evaluations that we omitted for brevity.

Object detections. On nuScenes, for a fair comparison with CenterPoint [46], we use their provided
3D detections (without the estimated velocity vectors). On KITTI, we use PointGNN [34] detections
provided by EagerMOT [14].

4.2 Benchmark results

We compare our method to state-of-the-art 3D MOT on the official nuScenes benchmark. In Tab. 1
(top) we compare methods that rely only on the 3D input. As can be seen, our model ranks highest
overall (66.4 avg. AMOTA compared to 2nd best 65.6). Our method only lags behind methods
that additionally rely on rich visual signal (AlphaTrack and EagerMOT). While our focus was on
effectively leveraging geometric relations, this hints that our approach could potentially further benefit
from sensor fusion, which we leave for future work.

Online tracking. To confirm that our approach successfully handles online scenarios, we evaluate it
on the nuScenes validation set with streaming inputs. In Tab. 2 we compare our offline and online
versions, and compare both to online state-of-the-art CenterPoint [46] using the same 3D detections.

Not surprisingly, our offline model achieves the top performance at 71.14 avg. AMOTA. When
switching to online inference, we achieve 67.27 avg. AMOTA (−3.87), outperforming CenterPoint
by +1.36 avg AMOTA (from 65.91). As expected, there is a noticeable difference between our offline
and online variants, as the online version is effectively exposed to only half of the context available to
its offline counterpart, which observes both past and future detections.

4.3 Model ablation

Edge parametrization. To measure the impact of our proposed representation of geometric relations,
we train three models with different relative feature parametrizations. The main advantage of our
proposed polar representation is in the inductive bias that helps the model better understand long
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trajectories and non-holonomic motion. We conduct this experiment in the low data regime using
the official nuScenes mini-split (1% of training data) and evaluate them on the (non-overlapping)
validation set (150 seq.) and report results in Tab. 3.

Intra-frame connections. Does spatial context matter? Tab. 4 shows that adding spatial intra-frame
edges improves avg. AMOTA by +1.05 and significantly improves recall (+2.4%) at a marginal
increase in IDs (+15). For better contextual awareness, we aggregate messages from temporal and
spatial edges separately. An ablation study of this technique is in the supplementary material.

Sparse graph construction. What is the impact of our sparse graph construction on tracking
performance? In Tab. 5 we compare results obtained by models using half (0.5x) and double (2.0x)
of the measured maximal velocity values to constrain edges with the ones from our default model
(1x). Reducing maximum allowed velocity (0.5x) removes valuable edges that hypothesize valid
associations, while permitting higher values (2x) introduces irrelevant edges. In both cases, we
observe a significant performance drop across all metrics (recall, precision, AMOTA), due to message
passing becoming less complete and noisier and edge classification more challenging. This confirms
that our data-driven physics-based sparse graph construction is the optimal approach.

Evolving online graph connectivity. To validate our proposed approach to online graph connectivity,
we present ablation experiments that confirm the advantage of our technique over alternatives
discussed in Sec.3.4. As shown in Tab. 6, our experimental results align with our expectations based
on the theoretical properties of each option. Dense (MPNTrack++) linking (61.39 avg. AMOTA)
completely ignores past trajectories and produces the lowest results. Next, consecutive (prune inactive)
chaining introduces a significant improvement with 66.03 avg. AMOTA. Finally, our proposed prune
+ skip connectivity leads to a significant improvement over both alternatives with 67.27 avg. AMOTA.

4.4 Generalization study

In this section, we show how PolarMOT generalizes across geographic locations and datasets. To
this end, we (i) use the nuScenes dataset, recorded in Singapore and Boston, to train the model on
one city and evaluate on the other and (ii) evaluate our model, trained on nuScenes, on KITTI data
without any fine-tuning.

Cross-city generalization: Boston ↔ Singapore. In this cross-city evaluation we compare our
method to CenterPoint (we use detections from the corresponding re-trained CenterPoint model).
As shown in Tab. 10, our method generalizes significantly better: +3.41 avg. AMOTA on Boston
(trained) → Singapore (evaluated) and +3.33 avg. AMOTA on Singapore → Boston. In both cases
we also observe a significant improvement in both recall and number of ID-switches. This confirms
that our method generalizes very well across regions, which we believe is largely due to our feature
parametrization (Sec. 3.3).

Cross-dataset generalization: nuScenes → KITTI. We report our results on the unofficial KITTI
3D MOT benchmark [40] in Tab. 8, and on the official KITTI 2D MOT benchmark in Tab. 9. We only
evaluate our nuScenes-trained model on KITTI dataset, which we consider an ultimate generalization
experiment, as KITTI dataset was recorded using a different sensor under a different frame rate in a
different geographical location (Karlsruhe, Germany). For 2D MOT evaluation we simply project
our estimated 3D tracks to the image plane. We note that entries are not directly comparable, as
different methods use different input detections. However, we observe our method is on-par with
EagerMOT [15], which uses lidar and cameras, and the same set of 3D detections. PolarMOT is

Table 7: CenterPoint (CP) [46] and our method when trained on training data from one city, and
evaluated on the validation data from another

Train city Tracking IDs ↓ Recall ↑ AMOTA ↑ class-specific AMOTA ↑
→ eval city model total average average car ped bicycle bus motor trailer truck

Boston Ours 145 64.48 63.12 82.26 72.81 31.49 77.70 43.17 0 71.28
→ Singapore CP 306 61.02 59.71 79.26 67.47 20.52 78.86 41.13 0 71.04

Singapore Ours 104 52.30 50.28 78.60 82.59 36.70 71.22 28.71 11.31 42.83
→ Boston CP 314 53.32 47.06 77.01 76.18 34.86 71.07 13.54 13.18 43.55
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Table 8: Unofficial KITTI 3D MOT validation set benchmark [40]. Our model was trained only on
nuScenes dataset

Method name 3D 2D IDs ↓ sAMOTA ↑ MOTA ↑ Recall ↑
input input car ped car ped car ped car ped

Ours online ✓ ✗ 31 9 94.32 94.08 93.93 93.48 94.54 93.66
PC-TCNN [43] ✓ ✗ 1 – 95.44 – unpub – unpub –
EagerMOT [14] ✓ ✓ 2 36 94.94 92.95 96.61 93.14 96.92 93.61
GNN3DMOT [41] ✓ ✓ 10 – 93.68 – 84.70 – unpub –
AB3DMOT [40] ✓ ✗ 0 1 91.78 73.18 83.35 66.98 92.17 72.82

Table 9: KITTI 2D MOT test set benchmark. Our model was trained only on nuScenes dataset

Method name 3D 2D IDs ↓ HOTA ↑ AssA ↑ AssRe ↑ MOTA ↑
input input car ped car ped car ped car ped car ped

Ours online ✓ ✗ 462 270 75.16 43.59 76.95 48.12 80.00 51.95 85.08 46.98
PC-TCNN [43] ✓ ✗ 37 – 80.90 – 84.13 – 87.46 – 91.70 –
PermaTrack [38] ✗ ✓ 258 403 78.03 48.63 78.41 45.61 81.14 49.63 91.33 65.98
PC3T [42] ✓ ✗ 225 – 77.80 – 81.59 – 84.77 – 5 88.81 –
Mono_3D_KF [32] ✗ ✓ 162 267 75.47 42.87 77.63 46.31 80.23 52.86 88.48 45.44
EagerMOT [14] ✓ ✓ 239 496 74.39 39.38 74.16 38.72 76.24 40.98 87.82 49.82
SRK_ODESA [25] ✗ ✓ 380 511 68.51 50.87 63.08 48.78 65.89 53.45 87.79 68.04
3D-TLSR [27] ✗ ✓ – 175 – 46.34 – 51.32 – 54.45 – 53.58
MPNTrack [5] ✗ ✓ – 397 – 45.26 – 47.28 – 52.18 – 46.23

top-performer on the 3D benchmark and among top-4 on the 2D benchmark, performing consistently
well on car and pedestrian classes.

5 Conclusion

We presented PolarMOT for 3D multi-object tracking that solely relies on 3D bounding boxes as
input without appearance/shape information. Our key contribution is a GNN that encodes spatial
and temporal geometric relations via localized polar coordinates. This parametrization enables us to
effectively learn to understand long-range temporal and spatial context via message passing and, solely
from object interactions, learn a scene representation suitable for tracking via edge classification.
We also propose an online graph construction technique to apply PolarMOT to streaming data. Our
method establishes a new state-of-the-art on the nuScenes dataset among methods that do not rely on
image data and, more importantly, generalizes well across geographic regions and datasets.
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A Appendix

A.1 Message Passing Networks for Multi-Object Tracking

Our work is inspired by MPNTrack [5], an image-based MOT method that we summarize for
completeness. MPNTrack models detections as graph nodes and represents possible associations
via edges. After propagating features via neural message passing [11], edges are classified as
active/inactive.

MPNTrack processes a clip of frames with detected objects, and outputs classifications of links
between them. For each clip, input is a set of object detections O = {oi}ni=1, represented via an
(appearance) embedding vector, 2D position and timestamp. Then, a graph G = (V,E) where
V = O and E ⊂ O ×O. MPNTrack encodes only inter-frame edges and heuristically prunes them
for sparsity. Each node oi ∈ V and edge eij ∈ E (connecting oi, oj) have corresponding initial
embeddings h

(0)
i and h

(0)
(i,j) obtained from appearance and position cues. These embeddings are

propagated across the graph via neural message passing for a fixed number of iterations L to obtain
updated edge features h(1,...,L)

(i,j) .

More specifically, edge embeddings are updated at each message passing step based on embeddings
from the previous step of the edge itself and its neighboring nodes. Nodes are then updated based on
previous embeddings of the node and neighboring edges, which are aggregated separately for forward
and backward directions in time. After L message passing updates, edges are classified based on
their embeddings from all steps, h(1,...,L)

(i,j) , where positive classification implies that two connected
detections are part of the same track (identity).

Message passing. Following the general message passing framework, our model performs a fixed
number of alternating edge and node updates to obtain enhanced node/edge representation, as needed
for edge classification.

Edge update: At every message passing iteration l = 1, . . . , L, we first update edge embeddings
by learning to fuse the edge and connected node embeddings from the previous message passing
iteration. More precisely, we update edge embedding h(i,j) between nodes oi and oj as follows:

h
(l)
(i,j) = MLPedge

([
h
(l−1)
i , h

(l−1)
(i,j) , h

(l−1)
j

])
. (3)

During each update, the edge embedding from the previous message passing iteration l − 1, i.e.,
h
(l−1)
(i,j) , is concatenated with embeddings (h(l−1)

i , h(l−1)
j ) of the connected nodes. The result is then

fused by MLPedge, a Multi-Layer Perceptron (MLP), which produces the fused edge features h(l)
(i,j)

(Eq. 3). This edge embedding update is identical for all edge types and directions.

Node update: To update nodes, first, we construct messages for each edge h(l)
(i,j) via learned fusion of

its updated edge and neighboring nodes’ features:

m
(l)
(i,j) =


MLPpast

(
[h

(l−1)
i , h

(l)

(i,j)
, h

(l−1)
j ]

)
if tj < ti,

MLPpres

(
[h

(l−1)
i , h

(l)

(i,j)
, h

(l−1)

(j)
]
)

if ti = tj ,

MLPfut

(
[h

(l−1)
i , h

(l)

(i,j)
, h

(l−1)
j ]

)
if tj > ti.

(4)

Via inter-frame edges we produce two messages for each temporal direction: we produce past features
via MLPpast and future features via MLPfut (only in offline tracking settings). At the same time,

Table 10: CenterPoint (CP) [46] and our method when trained on training data from one city, and
evaluated on the validation data from another

Train city Tracking IDs ↓ Recall ↑ AMOTA ↑ class-specific AMOTA ↑
→ eval city model total average average car ped bicycle bus motor trailer truck

Boston Ours 145 64.48 63.12 82.26 72.81 31.49 77.70 43.17 0 71.28
→ Singapore CP 306 61.02 59.71 79.26 67.47 20.52 78.86 41.13 0 71.04

Singapore Ours 104 52.30 50.28 78.60 82.59 36.70 71.22 28.71 11.31 42.83
→ Boston CP 314 53.32 47.06 77.01 76.18 34.86 71.07 13.54 13.18 43.55
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we produce present features via MLPpres for each intra-frame, spatial, edge. Using separate MLPs
allows our model to learn different embeddings for each type of relationship.

Node aggregation: Then, each node h
(l)
i aggregates incoming messages using an element-wise max

operator, separately for past, present and future edges to maintain contextual awareness. The resulting
aggregated vectors are concatenated and fused via MLPnode:

h
(l)
i = MLPnode([max

tj<ti
m

(l)
(i,j),max

ti=tj
m

(l)
(i,j),max

tj>ti
m

(l)
(i,j)]). (5)

As we do not use any object-specific information (e.g. appearance), we rely on the model to implicitly
learn node features from their interactions.

Initialization: We initialize edge embeddings with relational features (as detailed in Sec. 3.3) processed
by MLPedge_init (Eq. 6). These are then directly aggregated to produce initial node embeddings via
MLPnode_init (Eq. 7):

(initial edge) h
(1)
(i,j) = MLPedge_init(h

(0)
(i,j)), (6)

(initial node) h
(1)
i = MLPnode_init([max

tj<ti
h
(1)
(i,j),max

ti=tj
h
(1)
(i,j),max

tj>ti
h
(1)
(i,j)]). (7)

A.2 Implementation details

Network structure. In PolarMOT , we use only fully connected (FC) layers with the leaky ReLU
[26] nonlinearity, and the dimensionality of the edge and node features is 16 and 32 respectively. Our
MLPnode and MLPnode_init consist of 3 FC layers. Remaining MLPs consist of 2 layers with 70k
parameters in total.

Training and augmentation. We train PolarMOT only on keyframes from the nuScenes [6] dataset,
which we augment with noise dropout to mimic real detection performance. To mimic occlusions
and false negatives, we randomly drop full frames, individual bounding boxes, and edges. To mimic
false positives, we randomly add bounding boxes. We also perturb boxes by adding Gaussian noise
to 3D positions and orientat sion. We train PolarMOT with focal loss [20], which is well suited for
our imbalanced binary classification case. We use Radam optimizer [21, 16] using cosine annealing
with warm restarts [22] for 180 epochs with batch size of 64.
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