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Abstract— The linguistic quality of Embodied AI (EAI)
datasets is underexplored. We present a feature extrac-
tion pipeline that quantifies diversity across token- and
sentence-level traits such as lexical variation and syntactic
complexity. Applied to multiple EAI datasets, our analysis
reveals a reliance on repetitive language that may hinder
generalization. A feature-guided paraphrasing case study
on LIBERO-10 shows that minor syntactic shifts can cut
OpenVLA’s success rate by over 50%, underscoring the
value of fine-grained linguistic analysis for dataset design
and model evaluation.

I. INTRODUCTION

General-purpose models like large language mod-
els (LLMs) have gained widespread popularity across
domains [1]–[4]. Following this trajectory, recent
years have seen rapid progress in developing Vision-
Language-Action (VLA) models and, more broadly,
robotic foundation models, with works such as Open-
VLA [5], RT-X [6], and others. These advancements
have been largely driven by the emergence of datasets
such as Open X-Embodiment (OXE) [6], which are
significantly larger and more general-purpose than those
in the past. This shift has enabled positive transfer
between different robotics embodiments and platforms,
some degree of generalization to unseen objects, among
other promising capabilities.

Building on this progress, many recent works have
also mentioned important limitations of OXE, such as
limited diversity in scenes and objects [9], [10], poor
generalization [9], difficulties with multiple objects [11],
[12], reduced performance with novel objects [12], im-
portance of optimizing the data mixture [13] and chal-
lenges in bimanual robot manipulation [14]. However,
one aspect that remains underexplored is the role of
language in these datasets.

We argue that language remains an overlooked, yet
essential, component in the development and evaluation
of VLA models. As a step towards studying the language
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Original Instruction Paraphrased Instruction

“Put both the cream 
cheese box and the 

butter in the basket”

“In the basket, place both 
the cream cheese and the 

butter. ”

Fig. 1: (Top) We perform linguistic diversity analysis
on EAI datasets across two main categories: Token-
Level for granular, lexical features and Sentence-Level
for higher-level, syntactic patterns. (Bottom) Using our
insights from Part-of-Speech Pattern, we show that a
small divergence from an original LIBERO-10 [7] in-
struction into a paraphrased instruction causes failures
in OpenVLA [8].

in VLAs, we start by looking into the available datasets.
By analyzing a subset of the OXE datasets alongside
several others, we find that the language used in com-
monly adopted datasets lacks diversity across several
dimensions, including the number of unique utterances,
lexical variety (nouns and verbs), and morphological
structure.

We see this as a significant safety concern for the
practical deployment of current systems and a promising
opportunity for training better models. Motivated by
this, we also show that simple paraphrasing of the
test commands can significantly degrade model per-
formance, revealing critical limitations in how current
models represent and generalize language.



In summary, we show that:
• OXE datasets contain few unique commands

and exhibit limited lexical diversity compared to
other robotics and natural language understanding
datasets;

• The language in EAI datasets follows repetitive
syntactic patterns, includes few unique nouns and
adverbs per verb, and rarely features complex struc-
tures such as negations, conditionals, or cycles;

• Paraphrasing language commands can lead to over
50% lower task success rates on OpenVLA pre-
trained on OXE and finetuned on LIBERO-90.

Based on these findings, we advocate for greater
attention to language in VLA datasets — including
reporting detailed language statistics, applying language
augmentation for training data, and adopting more rig-
orous evaluation protocols to separate true language
understanding from learned dataset-specific biases.

II. DATASETS

The seven datasets we examine reflect a broad spec-
trum of Embodied AI research priorities, from low-
level manipulation to high-level instruction following
and dialogue (c.f. Table I.) For the purposes of our
analysis, we consider all instructions (high-level goals
and step-by-step directives) provided by the datasets.
ALFRED emphasizes fine-grained, step-by-step action
alignment with natural language in simulated indoor
environments, which is ideal for studying grounded
task decomposition. SCOUT uniquely captures two-way,
unconstrained human-robot dialogues during navigation
tasks, enabling more adaptive, context-aware interac-
tion beyond static commands. RT-1 and BRIDGE both
target generalization across diverse tasks, but differ in
domain: RT-1 provides a real-world scale with short
imperative commands, while BRIDGE includes richer
linguistic and cultural variation, supporting tool use and
nuanced object interactions. TacoPlay adopts a task-
agnostic “play” paradigm to learn general-purpose be-
havior from unstructured interaction. Lastly, Language
Table is designed for open-vocabulary spatial manip-
ulation in controlled tabletop settings. These datasets
span a continuum from rigid, templated instructions
to open-ended, multimodal, and interactive language
grounded in action. For additional insights, please refer
to Table III, which highlights common pitfalls in the
more sophisticated coverage datasets as well as a neat
feature of cultural knowledge present in BRIDGE.

III. RESULTS

This section presents a portion of our framework for
analyzing language commands, focusing on token-level
and syntax-level characteristics. We illustrate the rele-
vance of these linguistic features through a case study

that highlights challenges in language generalization on
OpenVLA [8] and LIBERO-10 [7]. Collectively, these
analyses provide insight into the linguistic limitations
of current EAI datasets. Methodological details can be
found in the Appendices.

A. Intrinsic Dimensionality Analysis

We perform an intrinsic dimensionality analysis of
language data by encoding that data using standard LLM
encoders and then performing a principal component
analysis (PCA) across the entire embedded dataset. We
approximate intrinsic dimensionality as the minimum
number of principal components required to explain
95% of a dataset’s cumulative variance [23], [24]; we
justify our approach in Appendix I. We can infer a
dataset’s information density by determining how many
principal components are necessary to reach this thresh-
old. To mitigate model-specific biases, we evaluate em-
beddings from four distinct models: USE (512D) [25],
SBERT (768D) [26], CLIP (512D, multimodal) [27],
and SONAR (1024D, multimodal) [28]. Table II presents
our results. We note that sample size does not trivially
determine our results (see Figure 4) [29].

To contextualize the language complexity of modern
robotics datasets, we include GLUE [30], a widely-used
NLU benchmark suite. We combine the training splits
from each GLUE task into one GLUE dataset. Our
goal is not to evaluate GLUE task performance but to
use its examples as a reference for linguistic richness.
Despite being nearly 7 years old, GLUE exhibits higher
intrinsic dimensionality than many robotics datasets. In
particular, ALFRED and SCOUT are more comparable
to GLUE, while RT-1 and TacoPlay show much lower
dimensionality, suggesting that their language spaces are
far more repetitive and limited in scope.

B. Token-Level Analysis

In this section, we provide token-level analysis to
evaluate language through more interpretable lexical
features, in contrast to the LLM-based representation
analysis used in Section III-A. For implementation de-
tails, see Appendix III.

Unique Unigrams refer to words that appear only
once in a given dataset. This simple metric helps de-
termine the diversity of each dataset’s vocabulary. This
analysis (see Table IV) reveals a disparity in vocabu-
lary diversity: in most OXE datasets, fewer than 2%
of language instructions contain unique wording. Even
Language Table, which matches ALFRED’s number
of unique commands, lags. In contrast, ALFRED and
SCOUT stand out with much richer vocabularies.

The Command Length distribution across six
datasets reveals a preference for short commands that
fall within the range of 3 to 15 words (see Figure



TABLE I: Overview of EAI datasets. The included datasets are covered by OXE [6] and prior research [15]. *The
LIBERO-10 commands are taken from Ego4D [16] then used to develop language templates.

Dataset Citations in OXE? Focus Interaction Type Environment Language Style

ALFRED [17] 662 N Household task instruction following Egocentric nav. + manipulation AI2-THOR simulator Step-by-step, high-level
SCOUT [18] 1 N Two-way, task-oriented dialogue Collaborative navigation (dialogue turns) Real-world (Wizard-of-Oz) Unconstrained, interactive
RT-1 [19] 533 Y Kitchen instruction following for scalable multi-task robot learning Demonstration-based manipulation Kitchen-themed setups Concise, imperative, templated
BRIDGE [20] 124+ Y Skill generalization across domains Multi-task manipulation (incl. tools) Kitchen-themed and tool shop setups Diverse, step-by-step
TacoPlay [21] 54+ Y Task-agnostic “play” behaviors Unstructured, unlabeled interaction Tabletop with toys/objects Simple, low-variety, templated
Language Table [22] 217+ Y Open-vocab spatial manipulation Language-conditioned arrangement Tabletop, fixed objects Natural, open-ended
LIBERO [7] 102+ N Knowledge transfer in lifelong robot learning Demonstration-based manipulation Procedurally generated kitchen and home environments Natural*

TABLE II: The Minimum Number of PCA Components
to Explain 95% Variance for each EAI Dataset. A greater
number of components represents stronger diversity.

Dataset # SBERT ↑ # USE ↑ # SONAR ↑ # CLIP ↑

ALFRED [17] 165 159 406 198
SCOUT [18] 194 148 295 181
RT-1 [19] 27 33 - 35
BRIDGE [20] 115 125 239 149
TacoPlay [21] 31 42 41 36
Language Table [22] 57 86 - 71

GLUE [30] 393 262 - 383

5.) This highlights the dominance of concise phrasing,
which may limit exposure to more complex linguistic
structures, e.g., multi-clause, multi-step instructions.

Lexical Overlap. We analyze how much vocabu-
lary is shared across datasets along the following POS
categories: verbs, nouns, and adverbs. As shown in
the heatmap in Figure 6, TacoPlay and RT-1, which
have smaller vocabularies overall, share significantly
fewer words with other datasets. Nouns are the most
widely shared category, likely because many robotic
tasks involve similar objects (e.g., boxes, cans, drawers).
Verbs are also shared, though to a lesser extent likely
constrained by the specific capabilities of each robot
embodiment. Only four words appear in all datasets:
move, close, open, and pick.

Lexical Diversity Metrics. We present text similarity
statistics in Table V, which closely align with the
unigram diversity patterns observed in Table IV. GLUE,
SCOUT, and ALFRED consistently exhibit the highest
levels of diversity, maintaining this ranking across all
evaluated metrics. These findings reinforce the trends
discussed in Section III-A. Notably, the low compression
ratios for RT-1 and TacoPlay suggest that their language
commands are highly structured and repetitive.

C. Sentence-Level Analysis

In this section, we examine sentence-level structure,
focusing on syntactic patterns, verb and direct object
coverage, and uncover tendencies in instruction style.
Refer to Appendix IV for greater detail.

Part-of-Speech (POS) Pattern analysis examines the
grammatical structure of commands, specifically how
words are arranged using POS patterns. We use an LLM
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Fig. 2: Percentage of instructions exhibiting four struc-
tural phenomena: negation, conditionality, multi-step se-
quencing, and cyclic repetition. Multi-step constructions
dominate across all datasets.

to extract these structures. As shown in the histograms
in Figure 12, TacoPlay, SCOUT, RT-1, and LIBERO-10
exhibit long-tailed distributions, where just one or two
syntactic templates dominate. This reliance on repetitive
sentence structures may make it harder for models
to generalize to more complex instructions. Refer to
Figures 8a and 8b for qualitative examples of domi-
nant patterns. Our Case Study in Section III-D shows
how OpenVLA struggles when deviating from these
structures. To counteract this, we suggest future data
collection or augmentation should focus on enriching the
tail end of the syntactic distribution. Figure 11 offers
an aggregated view across datasets to help guide that
process.

Verb, Direct Object, Adverbial Diversity analysis
explores how diverse the actions and modifiers are in
language instructions. We measure how many unique
verbs are associated with each object for manipulation
datasets. As shown in Figures 17 and 14, most objects
appear with fewer than ten distinct verbs (LIBERO-10
and RT-1 exhibit fewer than 5), revealing limited task
diversity. While some constraints stem from limitations
in manipulation capabilities, others appear artificial; for
example, TacoPlay’s stacked blocks could support richer
interactions (e.g., “observe” or “tip”). For navigation
datasets like SCOUT, we examine the diversity of ad-
verbials, which modify actions in ways that convey
nuance in direction (north, forward), location (inside,



Fig. 3: Average Task Success Rates Across Original and Augmented Instructions for LIBERO-10 Tasks. Each pair
of bars represents the success rate of the OpenVLA model on a specific LIBERO-10 task using either the original
task description (blue) or a GPT-4o-generated paraphrased version (orange). The drop in success on paraphrased
instructions highlights the model’s sensitivity to linguistic variation and limited robustness to novel language inputs.

around), manner (slowly, precisely), time (now, again),
and conversational fillers (please, okay) (see Figure 15.)

Instruction Structure Analysis examines how in-
structions are logically composed, beyond just their
vocabulary, by identifying four structural patterns: nega-
tion, conditionality, multi-step sequencing, and cyclical
or loop-like patterns. Figure 2 visualizes their distribu-
tion, and Table VI provides representative examples. See
Appendix VI for details.

We find that multi-step instructions are the most
prevalent across all datasets, reflecting a strong bias to-
ward procedural, linear task decomposition, particularly
in LIBERO-10. Datasets like RT-1 and SCOUT contain
fewer multi-step commands and favor shorter, atomic
actions. Negation and conditional structures occur in
less than 2% of cases. Their absence suggests that
many benchmarks do not adequately capture logical
disjunctions, exception handling, or constraint-driven
behaviors essential for safe and flexible deployment.
Cyclical or loop-like structures, common in real-world
tasks, are similarly underrepresented, with only SCOUT
and ALFRED showing a modest signal. This points to
a structural bias in current datasets toward flat, step-
by-step formulations, with limited support for more
complex task logic.

D. Case Study: OpenVLA & LIBERO-10
This case study examines the language gen-

eralization capabilities of OpenVLA (checkpoint:
openvla-7b-finetuned-libero-10) by lever-
aging our prior feature analyses to create a challeng-
ing test set by targeting paraphrases that diverge from
common verbs, objects, and POS patterns. See prompt
and feature details in Appendix VI. The results, vi-
sualized in Figure 3, show a drop in performance on

paraphrased instructions. The average success rate on
original tasks was 0.66, compared to only 0.3168 for
paraphrased variants. A paired t-test confirmed this was
a statistically significant effect (t = -6.12, p = 0.0002),
strongly suggesting that the performance degradation is
not due to chance. These findings underscore a critical
gap in current VLA benchmarks: models fine-tuned
on a narrow band of linguistic expressions struggle to
generalize to realistic, syntactically varied commands.
This brittleness poses risks for real-world deployment
and opens potential adversarial attack surfaces. It is
imperative that future benchmarks and datasets more
thoroughly account for linguistic diversity.

IV. CONCLUSION

Our data analysis, from the granular token level to
the sentence level, presents linguistic attributes within
existing EAI datasets for future EAI dataset developers.
Our findings highlight critical limitations in the current
VLA models’ linguistic diversity and generalization
capabilities. Even simple paraphrases can cause signif-
icant drops in performance, revealing an overreliance
on surface-level language patterns. To support the de-
velopment of more robust and trustworthy systems, we
encourage the community to place greater emphasis on
language in VLA research. In particular, we advocate
for (1) reporting detailed statistics about the language
data used in training, (2) incorporating synthetic para-
phrases to improve generalization and robustness, and
(3) investigating how language variation impacts both
generalization and safety in real-world deployments. We
hope this work motivates deeper integration of language-
centered evaluation and augmentation in the future of
embodied AI.



APPENDIX I
INTRINSIC DIMENSIONALITY ANALYSIS

A notable limitation of our methodology is using
linear dimensionality reduction techniques, specifically
PCA, to assess data that may lie on a nonlinear manifold,
as is often the case with LLM-encoded datasets. While
PCA assumes linearity, this limitation does not signifi-
cantly undermine our analysis. In fact, it likely results in
an overestimation of the intrinsic dimensionality, since
PCA cannot exploit underlying nonlinear relationships
in the data [24]. For our purposes, this effect only
further underscores the discrepancy between the struc-
ture of robotics datasets and the more diverse language
representations found in natural language understanding
(NLU) research.

Although the conclusions of this analysis are rein-
forced by our more interpretable feature-based methods
(see Section III-B); in future work, we would like to
strengthen this effort.

APPENDIX II
QUALITATIVE FEATURES OF EAI DATASETS

We conducted an informal qualitative review of the
examined datasets and highlighted interesting attributes,
summarized in Table III.

On Conversational Strengths. The SCOUT dataset
exhibits a distinct dialogue structure that differentiates
it from traditional instruction-following datasets. Rather
than adhering to a rigid, directive style, its dialogues
often involve an exploratory or inquiry-based approach,
as seen in exchanges like “move west uh zero point five
meters” and “...and then the last question here anything
that indicates the environment was recently occupied”.
This interactive nature may offer advantages for EAI by
allowing more adaptive responses. For example, in cases
where instructions involve complex spatial reasoning
(e.g., placing an object in a specific but ambiguous
location), the dataset’s conversational format could aid
in disambiguation.

On Cultural Knowledge. One of the more striking
aspects of the BRIDGE dataset is its incorporation of
multicultural culinary terminology, despite being pri-
marily monolingual (English). Unlike many Western-
centric datasets, BRIDGE includes references to diverse
cooking utensils and ingredients, such as purkoli (broc-
coli), brinjal (eggplant), brezzela (eggplant), capsicum
(bell pepper), quince fruit, nigiri, wok, and kadai. This
linguistic diversity suggests a broader representation of
cultural knowledge, making incremental progress toward
addressing concerns raised in prior work on dataset
biases [31], [32]. Specifically, it challenges the tendency
for data collection to reflect primarily Western, white,
and wealthy audiences. Additionally, BRIDGE captures
subtle social characteristics of human perception, such

as humor, evidenced by an annotation that describes a
mushroom toy as a “phallic looking item.”

On “Common Sense” Reasoning. A recurring chal-
lenge across real-world datasets is the disconnect be-
tween world knowledge, common-sense reasoning, and
practical instruction execution. While BRIDGE and AL-
FRED aim to ground tasks in realistic environments,
many instructions contain fundamental inconsistencies
or implausible directives. In ALFRED, for example,
commands such as “open refrigerator, place potato to
the right of tomato on second shelf of refrigerator,
close refrigerator, open refrigerator, pick up potato from
refrigerator, close refrigerator” expose rigid, mechanical
assumptions about human behavior. Additionally, one
must ask what has been accomplished by storing a
potato in a refrigerator and then removing said potato in
a matter of seconds. Another example from ALFRED
includes, “Put an egg in a pan in the fridge.” More
concerning, and at times, unintentionally amusing, are
instances of potentially unsafe or property-damaging
instructions, such as “place a heated slice of tomato
on a counter and store a knife in a microwave” or
“stab the tip of the knife into the wooden table, in
front of the gray plate closest to the lettuce.” While a
robot damaging a kitchen table may be preferable to
microwaving a knife, these examples highlight incon-
sistencies in world knowledge modeling within these
datasets. Similar anomalies appear in BRIDGE, where
commands such as “take sushi out of the pan,” “put
sushi in pot...,” and “put spatula in pan” suggest an over-
simplified understanding of object affordances, human
behavior, and broader world and cultural knowledge.
If the broader EAI community sees embodiment as
a necessary step toward elevating the representational
learning of single-modality models, e.g., LLMs, we
ought to discourage dataset collectors from building
illogical “common-sense” associations.

APPENDIX III
TOKEN-LEVEL ANALYSIS METHODOLOGY AND

EXPANDED RESULTS.

A. Text Cleaning

All datasets were cleaned to standardize white space
and remove punctuation. However, SCOUT [18], a di-
alogue dataset, required further cleaning of user role
tags and tags that indicate filler words, e.g., “um”,
silence, and noise. Due to the complexity of this data,
we focus our initial analysis only on the “robot com-
mander” dialogue, with plans to expand our analysis to
all roles in the future and to incorporate filler filtering
in the text cleaning pipeline. Once cleaned, we use a
combination of spacy [33] and pandas [34] methods,
e.g., .unique() to develop Tables IV and Figure 5.



Theme Example Instruction(s)

Cultural Terms (BRIDGE) “put the kadai on the stove”, “grab the brinjal from the drawer”
Unsafe Action (ALFRED) “store a knife in a microwave”, “stab the tip of the knife into the table”
Commonsense Violation (ALFRED) “Put an egg in a pan in the fridge”
Commonsense Violation (BRIDGE) “take sushi out of the pan”

TABLE III: Selected examples illustrating conversational structure, cultural variation, and commonsense inconsis-
tencies across EAI datasets.

Fig. 4: Correlation between the number of PCA com-
ponents required to explain 95% variance and language
statistics across EAI datasets. PCA components derived
from SBERT, USE, SONAR, and CLIP embeddings
are compared against the number of commands, unique
commands, and unique unigrams in each dataset. Strong
positive correlations are observed between unique uni-
grams and all embedding models, particularly SONAR
and USE. In contrast, the total number of commands
shows weak or negative correlation with embedding
diversity

B. Lexical Overlap

To assess how much vocabulary is shared across
datasets, we examine the distribution of words across
three part-of-speech (POS) categories: nouns, verbs, and
adverbs. We use dependency parsing (see Section III-C)
to extract tokens by their POS tags. We then construct a
dataset–word matrix that records how often each word
appears in more than one dataset. This allows us to
visualize lexical overlap using a heatmap (Figure 6).

C. Token-Level Text Diversity Analysis

We use several text similarity measures in our analysis
(see Table V.) The first involves assessing syntactic
diversity by comparing constituency parse trees [35].
Following previous work [36], we calculate BLEU-
4 [37] and ROUGE-L [38] scores for candidate sen-
tences against the remainder of their respective datasets.
Additionally, we utilize Levenshtein distance as a metric

Fig. 5: Distribution of command lengths across six ex-
amined EAI datasets. The majority of commands contain
fewer than ten words. Command lengths are capped at
a maximum of 30 words for analysis.

as well as BERTScore. Given that these methods entail
pair-wise comparisons, we perform 1,000 commands to
obtain these scores across 3 trials.

APPENDIX IV
SENTENCE-LEVEL ANALYSIS METHODOLOGY AND

EXPANDED RESULTS

A. POS Patterns

We implemented a large-scale dependency pars-
ing pipeline using an LLM to extract POS and de-
pendency parse patterns, leveraging multi-GPU par-
allel processing for efficiency. Each GPU inde-
pendently processed a subset of instructions using
DeepSeek-R1-Distill-Qwen-32B [40], a state-
of-the-art instruction-following LLM. The model was
loaded in 8-bit quantized format to optimize memory
usage, and batch b = 10 processing was employed
to maximize throughput. The prompts for the model
followed a structured format (see Figure 7), instructing
it to perform dependency parsing and return results in
valid JSON format. The output JSON included:

• The original instruction



TABLE IV: Summary unique commands and unigrams of EAI datasets reviewed in this work.

Dataset # Commands % Unique Commands # Unique Commands # Unique Unigrams

ALFRED [17] 162K+ 79.9% 126,005 2,627
SCOUT [18] 23K+ 39.4% 8,795 1,631
Open X-Embodiment [39] - - - -

RT-1 [19] 3.7M+ 0.02% 577 49
Bridge [20] 864K+ 1.4% 11,693 1,189
TacoPlay [21] 214K 0.2% 403 74
LanguageTable [22] 7.0M+ 1.81% 127K+ 928

TABLE V: Text similarity measures on robotics datasets. These measures were taken by sampling 1000 commands
from each dataset, performed three times. Arrows point toward increasing diversity. Compression Ratio is CR.

Dataset CR ↓ Levenshtein ↑ Jaccard ↓ BLEU-4 ↓ ROUGE-L ↓ Tree Kernel [35] ↓ BERTScore ↓

ALFRED [17] 5.912 46.695 ± 0.883 0.128 ± 0.004 0.003 ± 0.000 0.214 ± 0.002 5.705 ± 0.140 % 0.638 ± 0.002
SCOUT [18] 4.851 24.512 ± 0.946 0.052 ± 0.002 0.002 ± 0.001 0.072 ± 0.004 1.892 ± 0.219 % 0.493 ± 0.003
RT-1 [19] 118.195 28.143 ± 0.413 0.138 ± 0.001 0.026 ± 0.006 0.190 ± 0.007 5.090 ± 0.202 % 0.636 ± 0.005
BRIDGE [20] 64.904 35.139 ± 0.180 0.088 ± 0.004 0.003 ± 0.000 0.149 ± 0.002 3.680 ± 0.120 % 0.600 ± 0.002
TacoPlay [21] 158.858 27.705 ± 0.137 0.188 ± 0.003 0.020 ± 0.001 0.304 ± 0.005 8.863 ± 0.132 % 0.683 ± 0.002
Language Table [22] 56.643 32.206 ± 0.171 0.198 ± 0.002 0.010 ± 0.001 0.288 ± 0.004 - 0.697 ± 0.001
GLUE [30] 2.605 66.013 ± 1.480 0.039 ± 0.001 0.001 ± 0.001 0.069 ± 0.003 1.603 ± 0.029 % 0.487 ± 0.001

Fig. 6: Shared POS categories across datasets. Using
ALFRED as a pretraining dataset is advantageous be-
cause it has the greatest amount of lexical coverage
across the examined EAI datasets.

• A tokenized breakdown, where each word was
annotated with its:

– Lemma (root form)
– Part of speech (POS) tag
– Syntactic head (parent word in the dependency

tree)

Fig. 7: Prompt used in dependency parse work.

– Dependency label (e.g., ROOT, direct object,
modifier, etc.)

For qualitative examples related to each POS pattern,
please refer to Figure 8.

The BRIDGE dataset is heavily characterized by
prepositional phrases, frequently structuring instructions
that specify spatial relationships between objects and the
environment. This results in a high frequency of ADP
(adpositions), NOUN (nouns), and DET (determiners),
forming patterns, e.g. “put the spoon on the cloth”, “put
the mangoes in a pan”, and “Move the spatula near the
egg.” While this structure ensures precision in command



Dataset POS Pattern Example Sentences
put the purple block on the table

slide the purple block to the left

place the yellow block on the table

put the pink object inside the left cabinet

put the yellow block inside the right cabinet

place the purple block inside the right cabinet

take the purple block and rotate it right

take the yellow block and turn it right

grasp the purple block and turn it left

place rxbar blueberry into bottom drawer

move rxbar chocolate near orange can

move 7up can near green can

move water bottle near rxbar chocolate

move coke can near water bottle

move rxbar blueberry near water bottle
pick coke can from bottom drawer and place on 
counter
pick water bottle from top drawer and place on counter 
pick rxbar blueberry from middle drawer and place on 
counter

TacoPlay

VERB → DET → ADJ → NOUN → ADP → DET → NOUN

VERB → DET → ADJ → NOUN → ADP → DET → ADJ → NOUN

VERB → DET → ADJ → NOUN → CCONJ → VERB → PRON → 
ADV

RT-1

VERB → NOUN → NOUN → ADP → ADJ → NOUN

VERB → NOUN → NOUN → ADP → NOUN → NOUN

VERB → NOUN → NOUN → ADP → ADJ → NOUN → CCONJ → 
VERB → ADP → NOUN

(a) TacoPlay and RT1.

turn left thirty degrees

turn left ninety degrees

move forward one foot

move towards a shoe

move towards the barrel

go through the door

turn sixty degrees left

move ten inches northeast

move two feet forward

Place the mushroom behind the spatula.

Place the salmon in the pot.

Move the mushroom onto the towel.

Move the spatula at the edge of the table.

Move the spoon to the left of the napkin.

Put the cloth to the left of the spoon.

Place the strawberry in the silver pot.

Set the pot onto the green cloth. 

Place the pot on the blue cloth.

SCOUT

VERB → ADV → NUM → NOUN

VERB → ADP → DET → NOUN

VERB → NUM → NOUN → ADV

BRIDGE

VERB → DET → NOUN → ADP → DET → NOUN → PUNCT

VERB → DET → NOUN → ADP → DET → NOUN → ADP → DET 
→ NOUN → PUNCT

VERB → DET → NOUN → ADP → DET → ADJ → NOUN → 
PUNCT

(b) SCOUT and ALFRED.

Fig. 8: Common POS Parse Patterns.



execution, it lacks syntactic variation beyond simple
prepositional constructs, potentially limiting generaliza-
tion to more complex spatial reasoning tasks.

RT-1, in particular, exhibits highly repetitive syntactic
patterns, as seen in commands like “place 7up can
into middle drawer,” “place water bottle into white
bowl,” and “place rxbar blueberry into bottom drawer.”
Similarly, TacoPlay demonstrates significant syntactic
redundancy, with instructions such as “place the purple
block on the table,” “store the pink object in the drawer,”
and “slide the yellow block to the right.” This lack of
linguistic variability, likely due to the template-driven
generation of these datasets, may limit a model’s ability
to generalize to more complex instructions, particularly
those involving hierarchical dependencies or compound
actions.

SCOUT introduces more numerical expressions and
adverbial structures, implying an instructional style
where robots may be required to count, measure, or
modify behaviors dynamically, e.g., “move south four
feet”, “turn right twenty degrees”, “go forward one
meter”. However, its emphasis on concise command
structures might underrepresent more complex multi-
step directives.

The POS histograms in Figures 11 and 12 reveal a
long-tailed distribution in TacoPlay, SCOUT, and RT-
1, where the frequency of syntactic structures drops
sharply after the first or second most common parse
pattern. Such patterns indicate a reliance on repetitive
syntactic templates, which may limit a model’s ability
to generalize to linguistically varied instructions. We
recommend that synthetic data augmentation could help
mitigate this imbalance by introducing greater syntactic
variability, such as tree-based reordering techniques, in-
spired by data augmentation in machine translation [41],
[42], could be adapted to generate syntactic variants of
robotic commands while preserving their semantics.

B. Verb, Direct Object, Adverbial Diversity.

To extract verb, direct object, and adverbial fea-
tures, we implemented a large-scale annotation pipeline
using two model variants: R1-Distill-Llama-8B
and R1-Distill-Qwen-14B [40], just as in Section
IV-A. However, the prompts for the model followed
the format shown in Figure 9. We implemented in-
context learning (ICL) to enhance accuracy by retriev-
ing sentence-specific examples using TF-IDF similarity.
Despite using LLMs, all annotations were manually
reviewed to ensure consistency, including lemmatizing
verbs, removing duplicates, and normalizing synony-
mous expressions (e.g., “pick” vs. “pick up”). This
hybrid method enabled the construction of high-quality
annotations for downstream analysis. Results are pro-
vided in Figures 17, 14, and 15.

On Object and Adverbial Diversity. We assessed
how many distinct verbs are used with each direct object
for manipulation datasets. Low counts suggest limited
interaction diversity, sometimes due to real-world con-
straints, but often due to overly templated instruction
generation. Direct object structures are less relevant for
navigation-focused datasets, instead how an instruction
is followed, e.g., directional terms (e.g., “north,” “for-
ward”), location-based modifiers (e.g., “around,” “in-
side”), manner descriptors (e.g., “slowly,” “directly”) are
more relevant.

On Numeric Generalization. As VLA models are
increasingly expected to interpret numerical quantities
(e.g., distances, angles) in an end-to-end manner, the dis-
tribution of numerical values in navigation instructions
becomes more critical. Figure 16 shows that numbers
like “two,” “three,” and “five” are relatively common
in SCOUT, while values such as “seven,” “eight,” or
“twelve” are rare. This sparsity raises concerns about
whether models trained on these datasets can interpolate
or generalize to underrepresented numerical instructions.
For example, can a robot correctly interpret “move seven
meters” if it has never encountered that number in
training? What if it has only encountered meters but
is given a command in yards? What if the command
contains common shortcuts, such as using 4K to refer to
4,000? Future research should investigate the impact of
numeric and unit sparsity on navigation performance and
explore methods for balancing numerical distributions
during data collection or augmentation.

APPENDIX V
INSTRUCTION STRUCTURE ANALYSIS

To analyze the compositional structure of language
in robotics datasets, we use LLM-generated feature in-
formation (see Appendices IV-A and IV-B) to construct
heuristics for detecting four types of instruction-level
patterns: negation, conditionality, multi-step sequencing,
and cyclical structures. These patterns are identified
through string-matching techniques and syntactic cues
extracted from dependency parses and part-of-speech
tags.

• Negation was detected using syntactic cues like
neg dependencies and lexical markers (e.g., “not”,
“don’t”, “never”).

• Conditionality was identified via subordinating
conjunctions (e.g., “if”, “unless”) and dependency
markers indicating conditional clauses.

• Multi-step sequencing was inferred from coordi-
nating conjunctions (e.g., “and”, “then”), punctua-
tion, or imperative chaining.

• Cyclical patterns were identified using repeat verbs
(“again”, “repeat”) or constructions indicating iter-
ation or loops.



(a) Verb–direct object prompt example used in Section III-C.

(b) In context learning string generated by tf-idf distance k-
nearest neighbors.

Fig. 9: Prompts used in direct object and verb parsing
tasks for instruction analysis.

For each instruction, we annotated binary indicators
for each structure type and aggregated them to compute
relative frequencies across datasets. Quantitative results
are presented in Figure 2, and representative examples
are shown in Table VI. These results help reveal struc-
tural tendencies in instruction design; particularly, the
dominance of linear, stepwise instruction formats and
the underrepresentation of more complex, logic-driven
patterns.

APPENDIX VI
CASE STUDY: OPENVLA & LIBERO-10

Why LIBERO-10? LIBERO-10 is the designated
evaluation suite for downstream generalization in the
LIBERO benchmark. As shown in Figure 10, LIBERO-
100 dominates the dataset regarding frame count, with
LIBERO-90 comprising the bulk of the training data and
LIBERO-10 representing only a small fraction reserved
for evaluation. While LIBERO-Spatial, -Object, and -
Goal are designed to isolate specific types of knowledge
transfer, LIBERO-10 requires generalization over entan-
gled knowledge domains, making it a natural testbed
for stress-testing language-conditioned policies. Given
its small data footprint yet high importance for lifelong

Fig. 10: LIBERO task suite overview from https://
libero-project.github.io/datasets.

learning assessment, augmenting LIBERO-10 with lin-
guistically diverse instructions enables a more rigorous
evaluation of language generalization capabilities.

This case study examines the language gen-
eralization capabilities of OpenVLA (checkpoint:
openvla-7b-finetuned-libero-10). We begin
by extracting linguistic features (verbs, direct objects,
and syntactic patterns) from the LIBERO-10 test set [7],
following the process in Section III-C, but using GPT-
3.5-turbo due to local GPU constraints.

These features (see Figures 18a and 18b) inform
targeted augmentations designed to probe the model’s
robustness, specifically by generating paraphrases that
diverge from common verbs, objects, and syntactic
templates. Paraphrases were generated using GPT-4o
through a multifaceted process that included object
substitutions (e.g., “cup” for “mug”), verb replacements
(e.g., “activate” for “turn on”), and syntactic restruc-
turing based on dependency parse patterns. Our exact
prompt is provided in Figure 13. Variations included
clause reordering, relative clauses, participial phrases,
and passive constructions, with one strategy applied
per prompt to ensure diversity while maintaining inter-
pretability. Each prompt included the original BDDL file
content to preserve semantic validity, exposing GPT-4o
to the relevant object sets, affordances, and environment
configurations. This context prevented implausible com-
mands. Paraphrased instructions were then substituted
into duplicated BDDL files to ensure the evaluation iso-
lated linguistic robustness alone. For each task (original
and paraphrased), we executed five trials per BDDL
file, enabling a side-by-side performance comparison
across language variants. Figure 18c demonstrates the
efficacy of the paraphrasing pipeline. The final success
rate results, visualized in Figure 3, show a staggering
drop in performance on paraphrased instructions.

https://libero-project.github.io/datasets
https://libero-project.github.io/datasets


Fig. 11: POS parse pattern distribution on unique commands in the datasets.



Fig. 12: Grouped view of top 10 POS parse patterns on unique commands in EAI datasets.



Fig. 13: Prompt used in paraphrase generation for test
set. The parameter: constraints contains informa-
tion from BDDL files which are then captured by
surface hint.

Fig. 14: Frequency Plot of Unique Verbs per Direct
Object for Manipulation Datasets

Fig. 15: VLN adverbials - limited to the top 20 verbs
with most unique language use

Fig. 16: SCOUT Numerics



Fig. 17: Frequency Plot of Unique Verbs per Direct Object for Manipulation Datasets



Category Dataset Examples

Negation
SCOUT i don’t know what the red thing was

you are not at the total entrance
no i did not see any

BRIDGE video frames not showing
video frames or not showing
Picture is not downloading, not able to view.

ALFRED This step does not exist.
Slice the tomato on the counter but do not put down the knife.
Cook the potato slice in the microwave and do not put the cooked potato slice on the counter.

Conditional
SCOUT see if there’s a doorway

check and see if there’s a doorway there
and i’ll point out when there’s a doorway so we can count them

BRIDGE Pick the orange towel and place it on the middle if the table
PLACE THE YELLOW TOPWEL SIDE IF THE TABLE

ALFRED Take keys from the black table, leave them on the lamp when you turn it on.
Turn right and walk until you’re even with the fridge on your right and when you are turn right
and walk to it.
Turn left and walk to the table then turn right when you get to it.

Multi-Step

LIBERO open the top drawer and put the bowl inside
TacoPlay go towards the drawer and place the pink object

go towards the purple block and grasp it
take the purple block and rotate it right

RT-1 pick coke can from bottom drawer and place on counter
pick apple from top drawer and place on counter
pick green rice chip bag from bottom drawer and place on counter

SCOUT and take a picture
and then the last question here anything that indicates the environment was recently occupied
and then take a picture

BRIDGE put pot or pan on stove and put egg in pot or pan
Take the spatula from the vessel and place it on the table.

ALFRED Open the drawer. Put the cell phone in the drawer on the right side towards the back and close
it.
open the top right drawer of the desk, put phone inside, close the drawer
Turn and move to the far end of the kitchen island, so you’re facing the tomato and fork.

Cycle
SCOUT continue moving forward

follow hallway to the end of the wall uh to until you reach the wall
take a photo every forty five degrees

BRIDGE end effector reaching knife
pick orange toy from vessel and keep it on the left side of the table
end effector reaching corn

ALFRED Move over to the right side of the desk again.
Put the potato slice in the fridge and shut the door and then take the potato slice out and shut
the fridge door again.
Walk to your left until you see a loaf of bread on the counter top.

TABLE VI: Representative instruction examples for negation, conditional, multi-step, and cycle structures. Note that
in BRIDGE and ALFRED, some examples contain noise from the original OXE metadata (e.g., typos or syntactic
errors); and in many cases, this noise artificially inflate diversity scores.



(a) Dependency parse features across all LIBERO splits.
(b) Verb and direct object frequencies across all LIBERO
splits.

(c) Distribution of POS patterns in the GPT-4o augmented LIBERO-10 test set.

Fig. 18: Feature extraction across LIBERO datasets. Top: parse and verb–object statistics across all splits. Bottom:
POS diversity from paraphrased instructions in LIBERO-10. These insights guide our augmentation pipeline (see
Figure 1).



APPENDIX VII
LIMITATIONS

Our analysis relies heavily on automated annotations
generated by LLMs. While we took steps to assess
annotation quality for dependency parsing, occasional
errors were observed and, due to dataset scale, could
not be corrected exhaustively. A more rigorous study
would include a structured quality assurance process and
measure inter-annotator agreement even for manually
reviewed generations, e.g., Section IV-B. Additionally,
while we analyzed seven datasets, which we believe
capture dominant trends in the field, our findings may
not fully generalize to all EAI instruction-following
datasets.
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