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Abstract

This study investigates the concept of the ‘right001
to be forgotten’ within the context of large lan-002
guage models (LLMs). We explore machine003
unlearning as a pivotal solution, with a focus on004
pre-trained models–a notably under-researched005
area. Our research delineates a comprehen-006
sive framework for machine unlearning in pre-007
trained LLMs, encompassing a critical analy-008
sis of seven diverse unlearning methods. We009
rigorously evaluate these methods against cu-010
rated datasets sourced from arXiv, books, and011
GitHub codes, providing a robust benchmark012
for unlearning performance. Our results show013
that integrating gradient ascent with gradient014
descent on in-distribution data improves hy-015
perparameter robustness. We also provide de-016
tailed guidelines for efficient hyperparameter017
tuning in the unlearning process. Our findings018
advance the discourse on ethical AI practices,019
offering substantive insights into the mechanics020
of machine unlearning for pre-trained LLMs021
and underscoring the potential for responsible022
AI development.1023

1 Introduction024

Large language models (LLMs) have seen remark-025

able advancements, attributable to training on ex-026

tensive and diverse datasets (Ouyang et al., 2022;027

Wei et al., 2022; Touvron et al., 2023b; Wu et al.,028

2023; Liang et al., 2023). Yet, the reliance on mas-029

sive data pools has raised significant ethical con-030

cerns, particularly when such data include sensitive,031

private, or copyrighted material (Li et al., 2022; Shi032

et al., 2023; Li et al., 2023; Yang et al., 2023).033

A prominent example of these issues is the re-034

cent lawsuit filed by The New York Times2 against035

OpenAI. The lawsuit, responding to the alleged use036

of millions of articles from The Times in training037

1Our code is available at https://anonymous.4open.
science/r/Unlearning_LLM-503F

2https://nytco-assets.nytimes.com/2023/12/NYT_
Complaint_Dec2023.pdf

LLMs like ChatGPT, highlights the critical issue 038

of copyright infringement in LLMs’ development. 039

In response to these ethical challenges, the con- 040

cept of machine unlearning has emerged as a po- 041

tential remedy. It entails systematically removing 042

specific data from a model’s training, ensuring its 043

operation as though the data had never been in- 044

cluded (Bourtoule et al., 2021). This approach 045

mitigates the ethical issues stemming from the pre- 046

trained data in LLMs, aligning the technology with 047

evolving legal and ethical standards. 048

Despite its potential, current research on ma- 049

chine unlearning in the realm of LLMs has 050

been predominantly confined to the fine-tuned 051

model (Kumar et al., 2022; Chen and Yang, 2023; 052

Maini et al., 2024). This focus has limitations, as 053

fine-tuning models on a retained dataset is often 054

feasible, rendering fine-tuning phase unlearning 055

less critical. The real challenge, and our focus in 056

this paper, is the unlearning of pre-trained LLMs. 057

This challenge is compounded by several factors: 058

1) the need to adapt existing unlearning methods 059

from other fields to pre-trained LLMs, 2) the gen- 060

eral lack of public availability of pre-trained data 061

used to develop LLMs, and 3) the absence of di- 062

rectly comparable baselines due to the exorbitant 063

costs of retraining pre-trained LLMs. 064

Our paper addresses them through several key 065

contributions. We first define the problem of ma- 066

chine unlearning for pre-trained LLMs and propose 067

a unified formulation consolidating prior arts under 068

a single unlearning objective. We then investigate 069

seven different unlearning methods in the context 070

of LLMs. To benchmark the unlearning perfor- 071

mance, we compile three datasets from sources, in- 072

cluding arXiv, books, and GitHub code. Recogniz- 073

ing the impracticality of retraining pre-trained mod- 074

els, we propose an approximate retraining method 075

using an in-distribution, unseen dataset to simulate 076

the performance of a retraining baseline. 077

Besides, previous studies on machine unlearning 078
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in LLMs have been limited to small-scale exper-079

iments, unlearning at most 128 samples, single080

corpus sources, or short context lengths (Jang et al.,081

2023; Eldan and Russinovich, 2023; Yao et al.,082

2023). In contrast, our work unlearns thousands of083

chunks, each 4096 tokens in length, from a diverse084

range of sources across three domains, presenting a085

more realistic and challenging scenario. Our main086

contributions and findings are:087

• We structure a unified unlearning framework for088

LLMs, from which seven unlearning methodolo-089

gies are derived and adapted to LLMs.090

• We introduce an approximate retraining evalua-091

tion baseline to bypass the impracticality of re-092

training LLMs. Experiments on three domains093

demonstrate the efficacy of our methods.094

• Gradient ascent combined with gradient descent095

on in-distribution data shows greater hyperparam-096

eter robustness. We offer guidelines to efficiently097

fine-tune hyperparameters for other methods to098

streamline and make unlearning more feasible.099

We aim to offer a comprehensive solution to100

unlearning in pre-trained LLMs, contributing to de-101

veloping more ethical and responsible AI systems.102

2 Problem Formulations103

Let D = {xi}Ni=1 be a training corpus contain-
ing N sequences, where xi∈[N ] is a sequence of ti
tokens wi

1, w
i
2, ..., w

i
ti . With a slight abuse of nota-

tion, we use M to denote both the model itself and
its weights. This work focuses on generative LLMs
M that are typically trained using the next-token
prediction, characterizing the conditional probabil-
ity given prompts: PM (wt+1|w1, w2, ..., wt). We
denote A as a randomly initialized training algo-
rithm M ← A(D), where the training objective is
to minimize the negative log-likelihood:

L(PM ;D) = −
∑
xi∈D

ti∑
t=1

logPM (wi
t+1|wi

1, ..., w
i
t).

We call the model designated for unlearning the104

vanilla model. We denote a forget set of sequences105

to be unlearned as U ⊂ D. To remove the effect of106

U , we consider an unlearning algorithm Â that ap-107

plies to A(D) and outputs an unlearned model M ′.108

Motivated by differential privacy (Dwork et al.,109

2006), Ginart et al. (2019) formulated the proba-110

bilistic notion of unlearning using (ϵ, δ)-closeness111

of distributions (Guo et al., 2020; Sekhari et al., 112

2021). Informally, it requires that the output distri- 113

butions of Â and A run over (D \ U) to be similar. 114

We call it exact unlearning if the distributions are 115

identical (i.e., ϵ = δ = 0); approximate unlearning, 116

otherwise. A naïve solution for exact unlearning is 117

just retraining on D \ U for each U from scratch. 118

However, it is prohibitively expensive for LLMs, in- 119

curring gigantic computation costs and carbon foot- 120

prints (Luccioni et al., 2022; Zhang et al., 2023a). 121

Deriving theoretical guarantees for LLMs is also
non-trivial, as the underlying transformer architec-
ture is not convex or Lipschitz (Kim et al., 2021).
Pragmatically, an active line of research (Golatkar
et al., 2020; Chen and Yang, 2023; Kurmanji et al.,
2023; Jia et al., 2023) only requires the empirical
performance (e.g., classification accuracy) of re-
trained and unlearned models to be similar. In our
context, we can resort to perplexity and ensure

EPM⋆ ≈ EPM ′ with M⋆ ← A(D \ U),

where M⋆ represents the model trained on D \ U . 122

Besides, we require that the validation performance 123

of M ′ onD\U and U is similar to that of the vanilla 124

model on D \ U and unseen data, respectively. 125

3 Unlearning Methods 126

3.1 Overview 127

As discussed in Section 2, the objective of LLM un- 128

learning is to ensure that the model effectively for- 129

gets designated token sequences while still preserv- 130

ing its performance on the retain set. To achieve 131

this goal, we propose an approximate unlearning 132

framework for LLMs using next-token prediction. 133

To unlearn sequences in U , we update the current 134

model M using the gradient derived from 135

∑
w∈U

T∑
t=1

Eqt∼Qwt
logPM (qt|w1, w2, ..., wt−1) 136

+
∑
z∈R

T∑
t=1

logPM (zt|z1, z2, ..., zt−1), (1) 137

whereR ⊆ D \ U and Qwt is a set of distributions 138

over token universeW depending on wt, which we 139

call reference distributions. While Eq. (1) appears 140

complicated, we demonstrate that several iconic 141

unlearning methods are its instances in Section 3.2. 142

Most existing unlearning approaches (Golatkar 143

et al., 2020; Chen and Yang, 2023; Kurmanji et al., 144
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2023; Jia et al., 2023) target at (image) classifica-145

tion scenarios. Nevertheless, some of them can be146

adapted to unlearning token sequences used to train147

(generative) LLMs with slight modifications.148

Below, we focus on those first-order approxi-149

mate unlearning methods that only exploit gradient150

information and are often more efficient than exact151

unlearning and second-order designs 3. Their gen-152

eral formulation is given in Eq. (1), which can be153

extended for new unlearning methods. We will dis-154

cuss how to specialize it to each method revisited155

below and the corresponding pros and cons.156

Notably, some methods either consider forget-157

ting an entire class (Tarun et al., 2021) or need to158

store all intermediate model/gradient information159

during training (Bourtoule et al., 2021). However,160

the former is not directly applicable to LLMs, and161

the latter is too expensive regarding memory. We162

exclude them from our discussion.163

3.2 Approximate Unlearning Methods164

3.2.1 Gradient Ascent (or Negative Gradient)165

Derived from the general framework outlined in166

Eq. (1), if we ignore the second term, set Qwt =167

δwt , and multiply −1 to the gradient, we arrive at168

the unlearning strategy known as gradient ascent or169

negative gradient (Golatkar et al., 2020; Jia et al.,170

2023; Jang et al., 2023). Here, δwt is the delta171

function at wt such that qt ∼ Qwt means qt = wt172

with probability 1. The intuition is that M has173

been trained with U , while the retrained model MU
r174

never sees U . Thus, the loss of M on U is lower175

than that of MU
r , but the loss should be similar if176

|U| is limited. Unfortunately, it is known from the177

literature that if we perform gradient ascent for too178

many epochs, the model M will also potentially179

forget the information about D \ U , thus leading180

to poor utility. In practice, researchers often only181

apply gradient ascent in a few epochs.182

3.2.2 Fine-tuning with Random Labels183

Alternatively, if we ignore the second term of184

Eq. (1), and set Qwt to be a uniform distribution185

over all possible token sets W , we arrive at the186

strategy known as fine-tuning with random labels,187

as proposed by Golatkar et al. (2020) for classifica-188

tion problems. The intuition for this strategy is that189

a model not seeing U should act as random guess-190

ing. While it may seem reasonable at first glance,191

3We present a detailed review on exact unlearning and
second-order unlearning methods in Appendix A

we argue that uniform distribution for Qwt is not 192

universally appropriate. For instance, consider the 193

case of two duplicated sequences: one to be un- 194

learned and the other to be retained. Apparently, 195

the retrained model should not act as random guess- 196

ing on this sequence. In practice, convergence on 197

random labels often leads to a marked decrease in 198

both utility and performance, limiting this method 199

to a brief period of weight adjustment, akin to the 200

earlier mentioned gradient ascent method. 201

Chundawat et al. (2023); Zhang et al. (2023b) 202

propose to set Qwt = PMrand(wt|w1, ..., wt−1), 203

where Mrand is a randomly initialized model 204

(known as incompetent teacher). Their intuition 205

is similar to fine-tuning with random labels, where 206

Mrand does not contain information about U . Es- 207

sentially, these two methods are equivalent, but 208

fine-tuning with random labels is more direct and 209

efficient, so we only adapt it to LLMs. 210

3.2.3 Unlearning with Adversarial Samples 211

This approach is originally proposed for classifi- 212

cation tasks (Cha et al., 2023). We adapt it to our 213

context below. For simplicity, let us assume only 214

one sequence w1, . . . , wT to be unlearned. We gen- 215

erate adversarial samples {at} for each t such that 216

they are close to wt but can confuse M the most 217

at = argmax
a̸=wt

PM (a|w1, w2, . . . , wt−1). (2) 218

Originally, Cha et al. (2023) proposes choosing 219

adversarial samples a within a small radius to wt 220

in some metric space for classification tasks. Yet, 221

it is non-trivial to adapt this strategy to LLMs. We 222

thus choose a most likely token a other than wt. 223

To unlearn all training sequences in U , we fine- 224

tune M using Eq. (1) while ignoring the second 225

term in Eq. (1) and choosing Qwt = δat and at = 226

argmaxa̸=wt
PM (a|w1, w2, . . . , wt−1). The raw 227

approach (Cha et al., 2023) uses K − 1 adversarial 228

samples for each training sample to be unlearned 229

in K-class classification problems. Directly using 230

it is not suitable, as generating |W| − 1 adversarial 231

samples for unlearning one token is impractical in 232

our setting. Hence, we simplify it via Qwt = δat 233

and at = argmaxa̸=wt
PM (a|w1, w2, . . . , wt−1). 234

Other choices in the same spirit, such as replacing 235

argmaxa̸=wt
with top-ka̸=wt

, are also feasible. 236

3.2.4 Gradient Ascent + Descent or KL 237

Divergence on Retained Set 238

On the other hand, disregarding the first term in 239

Eq.(1) leads to a strategy known as fine-tuning on 240
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the retained set. By updating M with this strategy241

on D \ U until convergence, we can achieve the242

effect of retraining from scratch. For efficiency,243

researchers typically fine-tune M on a small sub-244

set R ⊆ D \ U over a few epochs. However, this245

becomes impractical for LLMs due to the large246

volume of pre-training data relative to the data des-247

ignated for unlearning. While not utilized indepen-248

dently here, this method is integrated with gradi-249

ent ascent techniques, forming a hybrid approach250

that optimizes both terms in Eq.(1) to balance un-251

learning effectiveness with utility. To optimize the252

second term, we adopt both direct gradient ascent253

and KL-divergence constraint methods, outlined in254

the prior work (Yao et al., 2023). Moreover, we255

assess the impact of different data types for the sec-256

ond term, including general pre-training data and257

domain-specific data matching the unlearning set,258

termed in-distribution data.259

4 Experiments260

4.1 Background261

Here, we select removing copyrighted data from262

the pre-trained model as a representative scenario.263

LLMs have the potential to internalize and repro-264

duce copyrighted content unintentionally. It poses265

legal challenges and ethical dilemmas, especially266

when the model’s outputs mimic or rephrase the267

protected material. When it comes to light that268

copyrighted data has been assimilated into an269

LLM’s training set, machine unlearning techniques270

can be mobilized to facilitate the model’s “forget-271

fulness” regarding this specific content. Hence, the272

model’s subsequent outputs are safeguarded against273

undue influences of the copyrighted material, fos-274

tering a more compliant and ethical use of data.275

4.2 Evaluation Metrics276

We focus on evaluating the unlearned models from277

1) Performance on the Forget Set: The model278

should not be able to predict correctly on the forget279

set, or its performance should degrade to the same280

level as the test set.281

2) Performance on the Retain Set: Ideally, the282

model’s performance on this set should not degrade283

significantly, indicating that the unlearning process284

did not adversely affect the data it should remem-285

ber. The performance assessment is conducted by286

measuring the model’s accuracy and perplexity on287

both the forget and retain sets.288

3) Performance on General Downstream Tasks:289

We can evaluate the performance on some gen- 290

eral downstream tasks, which can provide insights 291

into the model’s overall capability post-unlearning. 292

The model’s performance on these tasks is ex- 293

pected not to downgrade too much compared with 294

the model before unlearning. The downstream 295

tasks considered include Massive Multitask Lan- 296

guage Understanding (MMLU) (Hendrycks et al., 297

2021), the ARC Challenge (Clark et al., 2018), Hu- 298

manEval (Chen et al., 2021), and Grade School 299

Math (GSM8K) (Cobbe et al., 2021). 300

Approximate Retraining. To attain ideal un- 301

learning outcomes, one can retrain from scratch 302

to exclude the specified sequences U . This ex- 303

act unlearning approach is considered as the “gold 304

standard” for evaluating approximate unlearning 305

efficacy, as highlighted in the prior work (Liu et al., 306

2023). However, retraining LLMs on the entire re- 307

tained datasetD\U is impractical due to substantial 308

computational resource requirements. 309

To circumvent this challenge, we introduce a 310

surrogate evaluation approach called approximate 311

retraining, which is inspired by membership in- 312

ference attacks (Shokri et al., 2017; Carlini et al., 313

2022) that identify performance gaps between the 314

training and unseen data. We thus hypothesize 315

that the retrained model will exhibit consistent per- 316

formance on unseen domain-specific data, albeit 317

inferior to its performance on trained data. Given 318

the significant imbalance between pre-training and 319

unlearning data volumes, we expect the retrained 320

model’s performance on unlearned data distribu- 321

tions to closely align with the original (vanilla) 322

model’s performance. Consequently, by collecting 323

new data from the same domain as the forget set 324

to create an ’approximate set,’ we estimate the re- 325

trained model’s performance on the forget set by 326

the vanilla model’s performance on this approx- 327

imate set. This estimation can further guide the 328

extent of approximate unlearning, including factors 329

such as the learning rate or optimization steps. 330

Membership Inference Attack. The complexity 331

of LLMs precludes straightforward interpretable 332

verification of the complete exclusion of specific 333

sequences from the vanilla model. To address 334

this, we employ Membership Inference Attack 335

(MIA) to ascertain whether particular sequences 336

are erased from the LLM’s training dataset. This 337

evaluation employs the Min-K% Prob method (Shi 338

et al., 2023), which operates on the premise that 339
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Models
Forget Set Retain Set Downstream Task Accuracy ↑

ACC↓ PPL↑ MIA↓ ACC↑ PPL↓ MMLU ARC HumanEval GSM8K Avg.

Vanilla Model 69.02 3.65 50.77 52.68 9.24 63.37 68.49 16.46 33.59 45.48
Approximate Retrain 68.98 3.69 - - - - - - - -
Gradient Ascent 68.79 3.70 50.28 52.66 9.26 63.45 68.77 15.85 34.04 45.53
Fine-tuning with Random Labels 68.92 3.69 50.55 52.67 9.25 63.37 68.38 14.02 32.22 44.50
Unlearning with Adversarial Samples 68.87 3.69 50.52 52.68 9.25 63.32 68.74 15.24 33.13 45.11

Gradient Ascent + Descent on retain set
- Descent on in-distribution data 68.87 3.69 50.18 52.66 9.26 63.32 68.52 15.24 33.74 45.21
- Descent on general data 68.81 3.69 50.33 52.93 9.04 63.40 67.87 15.24 33.13 44.91

Gradient Ascent + KL divergence
- KL on in-distribution data 68.82 3.69 50.29 52.65 9.27 63.40 68.57 15.24 33.89 45.28
- KL on general data 68.79 3.70 50.25 52.65 9.27 63.27 68.38 15.85 33.81 45.33

Table 1: Overall results of unlearning Yi-6B on a subset of pre-training data (500 arXiv papers)

Models
Forget Set Retain Set Downstream Task Accuracy ↑

ACC↓ PPL↑ MIA↓ ACC↑ PPL↓ MMLU ARC HumanEval GSM8K Avg.

Vanilla Model 80.65 2.40 81.93 52.68 9.24 63.37 68.49 16.46 33.59 45.48
Approximate Retrain 72.91 3.42 - - - - - - - -
Gradient Ascent 78.19 3.53 74.28 52.60 9.31 63.45 68.40 14.63 35.10 45.40
Fine-tuning with Random Labels 78.00 3.12 80.55 52.50 9.47 62.45 67.02 10.98 29.49 42.48
Unlearning with Adversarial Samples 75.09 3.40 79.51 52.54 9.41 62.36 67.33 9.76 31.39 42.71

Gradient Ascent + Descent on retain set
- Descent on in-distribution data 76.88 3.45 76.75 52.48 9.38 62.31 66.77 2.44 31.01 40.63
- Descent on general data 78.79 3.57 75.61 53.03 9.00 63.15 67.62 14.63 33.51 44.73

Gradient Ascent + KL divergence
- KL on in-distribution data 78.78 3.51 76.19 52.61 9.31 63.40 68.21 14.63 34.95 45.30
- KL on general data 78.68 3.58 75.42 52.60 9.31 63.32 68.07 14.02 34.72 45.03

Table 2: Overall results of unlearning Yi-6B on a subset of pre-training data (2K GitHub code repository files)

Models
Forget Set Retain Set Downstream Task Accuracy ↑

ACC↓ PPL↑ MIA↓ ACC↑ PPL↓ MMLU ARC HumanEval GSM8K Avg.

Vanilla Model 55.26 7.62 74.03 52.68 9.24 63.37 68.49 16.46 33.59 45.48
Approximate Retrain 50.65 10.11 - - - - - - - -
Gradient Ascent 52.47 9.64 58.47 52.45 9.40 63.32 68.66 16.46 32.90 44.91
Fine-tuning with Random Labels 51.9 10.19 63.69 52.56 9.39 63.05 68.01 16.46 29.64 44.29
Unlearning with Adversarial Samples 52.07 10.02 63.60 52.59 9.35 63.08 68.18 16.46 31.39 44.78

Gradient Ascent + Descent on retain set
- Descent on in-distribution data 50.07 10.27 56.39 52.34 9.41 63.08 67.70 17.68 29.80 44.57
- Descent on general data 52.49 10.35 69.81 52.88 9.06 63.33 67.78 16.46 32.83 45.10

Gradient Ascent + KL divergence
- KL on in-distribution data 52.42 10.02 64.02 52.52 9.35 63.50 68.80 16.46 33.59 45.59
- KL on general data 52.85 9.71 62.61 52.58 9.31 63.32 68.55 15.24 32.98 45.02

Table 3: Overall results of unlearning Yi-6B on a subset of pre-training data (100 Books)

non-member examples are more prone to contain-340

ing outlier words with notably high negative log-341

likelihood values, in contrast to member examples.342

An important variable affecting the efficacy of MIA343

is the percentage of tokens with minimal prediction344

probability; thus, we conduct experiments across345

various percentages, selecting the one yielding the346

highest detection performance for each model. The347

sequence length is set to be 4096 tokens for both348

member (chunked from the forget set) and non- 349

member (equivalent number of chunks from the ap- 350

proximate set) datasets. The effectiveness of MIA 351

was quantitatively assessed using the Area Under 352

Curve (AUC) metric. Notably, a higher AUC indi- 353

cates that the targeted sequence is still identifiable 354

within the training set, whereas a score approach- 355

ing 0.5, indicative of random guess result, suggests 356

superior unlearning effectiveness. 357
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Domains Forget Approximate

Docs Chunks Docs Chunks

arXiv 500 1,938 6,155 32,144
GitHub 2,000 2,730 15,815 18,929
Books 100 3,038 50 923

Table 4: Document and chunk counts across domains

4.3 Model and Datasets358

We conduct experiments using the open-sourced359

Yi-6B4 LLM. To rigorously assess the effectiveness360

of unlearning methods, we perform tests in three361

distinct settings: arXiv papers, GitHub code repos-362

itories, and books. Despite their public availability,363

these sources may still entail copyright concerns.364

For instance, although arXiv provides open access365

to preprints, in many cases, the copyright of each366

individual preprint remains with its authors or the367

rights holders. Imagine a case where the paper’s368

authors would like to erase their preprints from the369

pre-trained LLMs (“the right to be forgotten”).370

The forget set is randomly sampled from the Yi-371

6B’s pre-training data 5, encompassing domains372

such as arXiv papers, GitHub code repositories,373

and books. Due to the impracticality of evaluating374

the model’s performance across the entirety of the375

retained set, we randomly select a sample of 1k376

sequences from the retained set to create a general377

set. For arXiv papers, the approximate data com-378

prises 6.1k publications from August 2023. The379

GitHub code repositories’ approximate data are380

15.8k files from GitHub repositories uploaded in381

November 2023 with permissive licenses (Real-382

TimeData, 2024). The approximate data of Books383

are 50 books published after 2023, which are from384

the unseen data of BookMIA (Shi et al., 2023).385

We employ the model’s maximum input sequence386

length of 4096 as the chunk length, segmenting the387

sequences into multiple chunks. All the approxi-388

mate dataset is preprocessed in the same manner389

as TogetherComputer (2023), an open-source pre-390

training data collection to reproduce Llama. The391

dataset statistics are shown in Table 4.392

4.4 Results393

We report and analyze the results for unlearning394

arXiv papers, GitHub code repositories, and books.395

4https://huggingface.co/01-ai/Yi-6B
5We contacted companies with open-sourced LLMs for

pre-training data access. Only the Yi model’s developers
responded, granting us sampled data and permission for its
use and open-sourcing.

Given that approximate retraining serves as an op- 396

timal target for unlearning, we adjust the learn- 397

ing rate of each experiment to align the results 398

with those achieved through approximate retrain- 399

ing. The number of unlearning epochs is 1. All the 400

experiments are conducted using 8 A800 GPUs. 401

Unlearning academic papers from arXiv. We 402

task the pre-trained Yi-6B to unlearn 500 academic 403

papers randomly selected from its training data 404

within the arXiv domain. This procedure simulates 405

scenarios in which authors wish to safeguard their 406

proprietary knowledge or unique writing styles. 407

The unlearning performance is shown in Table 1. 408

The vanilla model exhibits close performance on 409

both the forget set and unseen approximate data, 410

with perplexity values of 3.65 and 3.69, respec- 411

tively, demonstrating the model has good general- 412

ization capabilities within the arXiv domain. Com- 413

pared with the vanilla model, unlearned models 414

exhibit a slight decline in next token prediction ac- 415

curacy (e.g., from 69.02% to 68.79% after gradient 416

ascent), signifying increased difficulty in token ex- 417

traction given preceding tokens as prompts. The 418

decrease in the AUC score of MIA on unlearned 419

models indicates that it becomes more challeng- 420

ing to differentiate between the forget set and un- 421

seen data, suggesting the efficacy of unlearning 422

methods. Notably, only the model subjected to un- 423

learning through a combination of gradient ascent 424

and gradient descent exhibited reduced perplexity 425

on the retain set. This outcome can be attributed 426

to the model learning on a general dataset sam- 427

pled from the same distribution as the retain set 428

while unlearning the forget set. Furthermore, gradi- 429

ent ascent emerges as the sole method to enhance 430

average accuracy across downstream tasks post- 431

unlearning, underscoring its superiority in main- 432

taining the model’s overall utility. 433

Unlearning programming code from GitHub 434

repositories. We request the pre-trained Yi-6B to 435

unlearn 2000 GitHub code files randomly selected 436

from its training data. This simulates scenarios 437

where developers or organizations seek to remove 438

specific coding patterns, algorithms, or proprietary 439

code from the model’s knowledge base, ensuring 440

that their intellectual property remains protected. 441

The unlearning results are displayed in Table 2. 442

The vanilla model exhibits a more pronounced 443

disparity in performance between the forget set 444

and the unseen approximate set for GitHub code, 445
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Figure 1: Figures 1a to 1c are visualization of unlearning results on GitHub code across varying learning rates
while optimization steps are fixed at 4. Figures 1d to 1f are visualization of unlearning results on GitHub code
across varying optimization steps while learning rate is fixed at 2× 10−5. In Figures 1a and 1d, values below 40
are presented on a log10 scale, whereas values above 40 adopt a log10100 scale. The horizontal spring-green line
in Figures 1a and 1d delineates the approximate retraining baseline as the unlearning target. For Figures 1b and 1e,
the scale transitions from log10 for values under 20 to log1010 for values exceeding 20.

indicating inferior generalization capabilities com-446

pared to the arXiv domain. A notable decline in447

the HumanEval pass@1 score is observed for mod-448

els unlearned through fine-tuning with random la-449

bels, unlearning with adversarial samples, and gra-450

dient ascent combined with gradient descent on in-451

distribution data. Given that HumanEval is a metric452

specifically designed to assess the code-generating453

proficiency of LLMs (Chen et al., 2021), this sub-454

stantial decrease underscores the detrimental im-455

pact of these three methods on the model’s task-456

specific utility. Furthermore, a performance reduc-457

tion of at least 1.83% on the HumanEval pass@1458

score is recorded for other methods, suggesting459

that unlearning GitHub codes from the LLM’s pre-460

training dataset while maintaining coding capabili-461

ties presents a challenging task.462

Unlearning copyrighted books. We instruct the463

pre-trained Yi-6B to unlearn 500 books randomly464

selected from its training data. This process simu-465

lates scenarios in which authors or publishers aim466

to withdraw their literary works, thereby protect-467

ing the uniqueness of their content or preventing468

the model from generating derivative works. The469

unlearning results are detailed in Table 3.470

Similar to the GitHub code domain, the vanilla 471

model’s perplexities of 7.62 for the forget set and 472

10.11 for the approximate set suggest weaker gener- 473

alization compared to the arXiv domain. Moreover, 474

when fine-tuning to reach perplexity levels similar 475

to approximate retraining, models unlearned via 476

fine-tuning with random labels, adversarial sample 477

unlearning, and the combination of gradient ascent 478

with gradient descent on in-distribution data result 479

in lower accuracy on the forget set than other meth- 480

ods. This indicates that these strategies more ef- 481

fectively obfuscate the model to predict accurately 482

for the forget set, thus better protecting against 483

potential information extraction from the model. 484

4.5 Ablation studies 485

Taking the task of unlearning GitHub code as a 486

case study, a series of experiments are conducted 487

to investigate the influence of learning rate and op- 488

timization steps on the unlearning outcomes, with 489

results shown in Figure 1. For Figures 1a to 1c, 490

we keep optimization steps fixed at 4 and vary 491

the learning rate between 5× 10−6 and 1× 10−4. 492

In Figures 1d to 1f, the learning rate is constant at 493

2×10−5, with optimization steps ranging from 1 to 494

32. We evaluated the unlearned model’s perplexity 495
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on both the forget and general sets, along with aver-496

age performance on downstream tasks, presenting497

results across seven different unlearning methods498

for each hyperparameter configuration.499

Figure 1 shows that the method combining gra-500

dient ascent and descent on in-distribution data is501

notably tolerant to changes in learning rate and502

number of optimization steps, indicating high sta-503

bility. In contrast, other methods exhibit a marked504

increase in perplexity for both the forget and gen-505

eral sets with higher learning rates or more op-506

timization steps, underscoring their sensitivity to507

hyperparameter adjustments.508

Moreover, since approximate unlearning may ei-509

ther be non-convergent or compromise utility until510

convergence, it is crucial to conduct a thorough511

search for the appropriate hyperparameters to en-512

sure optimal unlearning performance. However,513

the vast search space and lack of definitive refer-514

ence targets render this task impractical. To address515

these challenges, we analyze and summarize the516

following detailed guidelines to streamline the hy-517

perparameter adjustment process:518

Figure 1d indicates that a high number of opti-519

mization steps reduces the stability of the unlearn-520

ing process, whereas too few steps can average out521

detailed information over large batches, thereby522

degrading unlearning quality. Based on these ob-523

servations, we set the optimization step size to four524

for optimal balance.525

Figure 1a shows that the unlearned model’s per-526

plexity on the forget set rises with the learning527

rate. To find the optimal learning rate aligned with528

the approximate retraining baseline for unlearning,529

we recommend starting with a broad granularity530

search (10−5) within 5× 10−6 to 5× 10−5. This531

step narrows the search range. A subsequent finer532

granularity search within this refined interval will533

identify the learning rate that best achieves the de-534

sired unlearning outcomes.535

5 Related Work536

We provide an overview of current research on537

machine unlearning, memorization, and forgetting.538

A more detailed version is deferred to Appendix A.539

Machine Unlearning. The concept of machine540

unlearning is first introduced in Cao and Yang541

(2015). Bourtoule et al. (2021) further formalizes542

exact unlearning by introducing a general frame-543

work: sharded, isolated, sliced, aggregated (SISA).544

Exact unlearning requires the unlearned model the545

same as the retrained model. Approximate unlearn- 546

ing, which relaxes the requirement, is also explored 547

by bounding the distance (Chourasia and Shah, 548

2023) or indistinguishability (Sekhari et al., 2021) 549

between the two model’s distributions. 550

Machine unlearning has been extensively re- 551

searched within the broader field of machine learn- 552

ing (Xu et al., 2024), yet its exploration in gen- 553

erative language models remains limited. Kumar 554

et al. (2022) propose SISA-FC and SISA-A, two 555

computationally efficient extensions of SISA for 556

classification LMs, e.g., BERT. To unlearn knowl- 557

edge in generative models, Jang et al. (2023) simply 558

perform gradient ascent on target sequences. Eldan 559

and Russinovich (2023) consider a special case of 560

unlearning the Harry Potter books from Llama2- 561

7b. Yao et al. (2023) applies machine unlearning 562

for harmful responses removing and hallucinations 563

eliminating. However, these studies have been lim- 564

ited to fine-tuned models or a single corpus source. 565

Our work explores unlearning pre-trained LLMs 566

on more diverse datasets. 567

Memorization and Forgetting. Carlini et al. 568

(2019) first quantifies unintended memorization by 569

a metric called exposure, revealing severe privacy 570

issues, e.g., membership inference attacks (Car- 571

lini et al., 2022) or verbatim data extraction (Car- 572

lini et al., 2021). Contrary to memorization, catas- 573

trophic forgetting, where a model loses previously 574

learned knowledge when training on new data, has 575

been studied (Kemker et al., 2018; Shao and Feng, 576

2022). It is a passive phenomenon different from 577

unlearning, which actively forces models to “forget” 578

specific samples. 579

6 Conclusion 580

In this paper, we investigate the challenge of remov- 581

ing copyrighted pre-training data from LLMs. We 582

present a unified formulation for unlearning LLMs, 583

from which seven unlearning methodologies are 584

derived. We introduce approximate retraining as an 585

evaluation technique to bypass the impracticality 586

of retraining LLMs from scratch. Our experimen- 587

tal analysis across three pre-training data domains 588

validates the efficacy of the unlearning approaches. 589

Furthermore, we find that combining gradient as- 590

cent with gradient descent on in-distribution data 591

enhances hyperparameter robustness. We also offer 592

guidelines to streamline the tuning of hyperparam- 593

eters essential to the unlearning process. 594
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Limitations595

This work primarily focuses on conducting exper-596

iments with the Yi-6B model. A significant chal-597

lenge arises since most LLMs do not open-source598

their pre-training data, making the collection of for-599

get sets infeasible. We encourage future research600

to investigate the applicability of unlearning pro-601

cesses to other models, including those of larger602

sizes such as 13B or 70B, or more complicated ar-603

chitecture such as the mixture of experts. Also, we604

mainly do experiments on three pre-training data605

domains. Future research should aim to explore un-606

learning across other domains, including Wikipedia607

and HackerNews. Besides, our work concentrates608

on unlearning copyrighted content from LLMs. Fu-609

ture studies could expand our methodologies to ad-610

dress other challenges, such as unlearning biases or611

harmful outputs in LLMs. Furthermore, since our612

methods are non-convergent or may reduce model613

utility until convergence, the adjustment of hyper-614

parameters becomes crucial for ideal unlearning615

results. While our guidelines simplify and stream-616

line this process, we hope that future research will617

develop convergent methods that are less dependent618

on hyperparameter adjustments.619

Ethics Statement620

In this work, we focus on unlearning pre-trained621

generative LLMs. Our goal is to enable LLMs to se-622

lectively forget particular training sequences while623

preserving the model’s utility. This approach aims624

to address ethical concerns, including copyright625

infringement and privacy breaches. The evalua-626

tion datasets are compiled from publicly accessible627

sources, adhering to the licenses associated with628

the collected data. We also encourage researchers629

and developers to use our methods responsibly and630

ethically.631
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A Related Work (Full Version)967

In this section, we provide greater detail about re-968

lated work on machine unlearning, memorization969

and forgetting, the relation between machine un-970

learning, differential privacy, and alignment, exact971

unlearning, and second-order methods of machine972

unlearning.973

Machine Unlearning. Cao and Yang (2015) in-974

troduce the notion of machine unlearning. They975

give a heuristic method, transforming learning al-976

gorithms into a summation form for forgetting data977

lineage. Their goal is to ensure that unlearned mod-978

els exactly match the ones retrained from scratch.979

Subsequently, it is formalized as exact unlearn-980

ing or data deletion (Ginart et al., 2019; Bourtoule981

et al., 2021) of a specific training sample, requiring982

the distributions of unlearned and retrained mod-983

els are identical. Ginart et al. (2019) propose two984

tailored approaches for k-means, while Bourtoule985

et al. (2021) propose a general unlearning frame-986

work: sharded, isolated, sliced, aggregated (SISA).987

Exact unlearning may be too “strong” to achieve;988

it can be “relaxed” to approximate unlearning (Gi-989

nart et al., 2019) by bounding the “distance” (e.g.,990

Rényi divergence (Chourasia and Shah, 2023) or991

indistinguishability (Sekhari et al., 2021)) between992

the two models’ distributions. More generally, one993

can unlearn a subset of training points (Sekhari994

et al., 2021) that can even be adaptively cho-995

sen (Gupta et al., 2021).996

Since the seminal proposal, machine unlearning997

has been widely studied in ML in general (Xu et al.,998

2024) but remains rarely explored in NLP, notably999

generative LLMs. Zhang et al. (2023a) discusses1000

the challenges and implications of unlearning and1001

other approaches to realize RTBF in LLMs. Ku-1002

mar et al. (2022) propose SISA-FC and SISA-A,1003

two extensions of SISA for classification LMs, e.g.,1004

BERT. SISA-FC only trains fully connected task1005

layers, and SISA-A resorts to Adapters (Houlsby1006

et al., 2019) that only update a few plug-in param-1007

eters. Chen and Yang (2023) propose an efficient1008

unlearning method via a selective teacher-student1009

formulation for both classification and summariza-1010

tion tasks. They also design a fusion mechanism to1011

merge unlearning layers for sequential data forget-1012

ting. To unlearn knowledge in generative models,1013

Jang et al. (2023) simply perform gradient ascent1014

on target sequences. Wang et al. (2024) presents1015

a selective unlearning method to minimize nega-1016

tive impacts on unlearned model’s capabilities and 1017

proposes evaluation metrics focusing on sensitive 1018

information. Eldan and Russinovich (2023) con- 1019

sider a special case of unlearning the Harry Potter 1020

books from Llama2-7b. They first use a reinforced 1021

model to identify the tokens that are most related to 1022

the unlearning target and then replace idiosyncratic 1023

terms with generic ones to generate alternative la- 1024

bels for fine-tuning the model. Yao et al. (2023) 1025

applies machine unlearning for harmful responses 1026

removing and hallucinations eliminating. Maini 1027

et al. (2024) presents a benchmark for unlearning 1028

fictitious authors on fine-tuned models. 1029

Memorization and Forgetting. Training data 1030

memorization to some extent is pivotal for model 1031

generalization, but unintended memorization, first 1032

quantified by a metric called exposure (Carlini 1033

et al., 2019), poses severe privacy issues, e.g., mem- 1034

bership inference attacks (Carlini et al., 2022) or 1035

verbatim data extraction (Carlini et al., 2021). Car- 1036

lini et al. (2023) illustrate that memorization relies 1037

on the model scale, training data deduplication, and 1038

prompting context length. 1039

As opposed to memorization, catastrophic for- 1040

getting, which means that a model tends to forget 1041

previously learned knowledge when training on 1042

new data, has been studied (Kemker et al., 2018; 1043

Shao and Feng, 2022). It is a passive phenomenon 1044

different from unlearning, which actively forces 1045

models to “forget” specific samples. As with mem- 1046

orization, concurrent works (Tirumala et al., 2022; 1047

Jagielski et al., 2023) define and measure forgetting 1048

as a form of privacy leakage. 1049

Machine Unlearning vs. Differential Privacy. 1050

DP is a rigorous framework for protecting indi- 1051

vidual privacy in data analytics by adding cali- 1052

brated noise to query results (Dwork and Roth, 1053

2014). Definition-wise, approximate unlearn- 1054

ing is reminiscent of DP. They use the same 1055

metric for distributional closeness (e.g., (ϵ, δ)- 1056

indistinguishability (Guo et al., 2020)) but with 1057

a substantial difference. Unlearning compares two 1058

algorithms–unlearning and retraining–on the same 1059

dataset, whereas DP compares the same algorithm 1060

run on neighboring datasets (differing in an indi- 1061

vidual’s data). DP is a sufficient (not necessary) 1062

condition for unlearning (Guo et al., 2020): An 1063

DP mechanism working on datasets with edit dis- 1064

tance m naturally unlearns any m samples. Prior 1065

DP-based unlearning designs (Guo et al., 2020; 1066
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Sekhari et al., 2021; Izzo et al., 2021) often as-1067

sume convex loss functions. Sekhari et al. (2021);1068

Huang and Canonne (2023) bound the “deletion”1069

capacity (i.e., how many samples can be unlearned1070

while ensuring desirable loss) better than m in DP.1071

Also, DP can mitigate the adaptivity of unlearning1072

requests (Gupta et al., 2021). Garg et al. (2020)1073

provide an alternative definitional framework for1074

RTBF from cryptographic primitives.1075

Machine Unlearning vs. Alignment. Alignment1076

in LLMs, the process of adjusting these models to1077

resonate with human values, is typically accom-1078

plished through techniques like supervised fine-1079

tuning (SFT) (Ouyang et al., 2022; Conover et al.,1080

2023; Chiang et al., 2023; Köpf et al., 2023; Tou-1081

vron et al., 2023b) and reinforcement learning with1082

human feedback (RLHF) (Christiano et al., 2017;1083

Stiennon et al., 2020; Ouyang et al., 2022; Bai1084

et al., 2022; Touvron et al., 2023a,b). These meth-1085

ods rely on human-generated demonstrations or1086

rewards and penalty systems. Machine unlearning,1087

on the other hand, uniquely focuses not on pro-1088

moting correct behavior but discouraging outputs1089

misaligned with human values (Yao et al., 2023).1090

This method thus offers a complementary approach1091

to standard SFT techniques.1092

Second-order methods of Machine Unlearning.1093

The high-level idea of almost all second-order un-1094

learning methods is through Taylor expansion on1095

the gradient at the stationary point. This leads to1096

a Newton-type update, which involves Hessian in-1097

verse (or its approximation) computation (Golatkar1098

et al., 2020; Peste et al., 2021). Apparently, the1099

hessian-related operation is prohibitive to LLM1100

due to its billions if not trillions parameters. Never-1101

theless, current theoretical approximate unlearning1102

approaches with privacy guarantees are all second-1103

order to the best of our knowledge (Guo et al.,1104

2020; Sekhari et al., 2021; Chien et al., 2023). We1105

decided to briefly introduce them in the context1106

of classification and discuss the potential way of1107

extending them for LLM.1108

Here, we denote M for both the LLM and its1109

model parameters with a slight abuse of notation.1110

Assume M is well-trained with respect to the train-1111

ing loss L(PM ;D) so that it is a stationary point1112

∇L(PM ;D) = 0. Similarly, the retrain model MU
r1113

is also a stationary point with respect to the loss1114

L(PMU
r
;D \ U), so that ∇L(PMU

r
;D \ U) = 0.1115

We can apply a first order Tayler expansion on1116

∇L(PMU
r
;D \ U) at M , which leads to 1117

∇L(PM ;D \ U) +∇2L(PM ;D \ U)(MU
r −M) ≈ 0 1118

⇒ MU
r ≈ M − (∇2L(PM ;D \ U))−1∇L(PM ;D \ U). 1119

The theoretical unlearning approach will fur- 1120

ther introduce some privacy noise (similar to the 1121

Gaussian mechanism (Mironov, 2017)) to obfus- 1122

cate the potential privacy leakage rigorously (Guo 1123

et al., 2020; Sekhari et al., 2021; Chien et al., 1124

2023), where the noise variance determined by 1125

the worst-case error of the Taylor approximation. 1126

This analysis can only be done for strongly convex 1127

problems with additional smoothness assumptions 1128

and is thus not applicable to LLMs. In practice, 1129

some researchers still follow this second-order up- 1130

date with a heuristic-based noise addition design, 1131

which has demonstrated superior performance on 1132

privacy and utility (Golatkar et al., 2020). The 1133

main focus of this direction is to improve the com- 1134

putation complexity of the second-order update, 1135

with ideas leveraging the Fisher information ma- 1136

trix (Golatkar et al., 2020) and rank one update by 1137

Sherman-Morrison lemma (Peste et al., 2021). Nev- 1138

ertheless, the computation complexity of these ad- 1139

vanced second-order methods is still too expensive 1140

for LLM. One potential direction is to apply these 1141

second-order updates only for adaptor (Houlsby 1142

et al., 2019) or LoRA (Hu et al., 2022), which 1143

contain much fewer parameters to be modified. It 1144

remains open whether it is possible to apply second- 1145

order methods for LLM or not at the moment. 1146

Exact Unlearning. We introduce exact unlearn- 1147

ing methods that correspond to (ϵ, δ) notion of 1148

unlearning with ϵ = δ = 0. While ensuring 1149

ϵ = δ = 0 is desired in some extreme cases, it 1150

generally fails to explore the beneficial trade-off 1151

between unlearning quality, model utility, and time 1152

complexity. 1153

SISA (Sharded, Isolated, Sliced, and Aggre- 1154

gated) framework (Bourtoule et al., 2021) is a gen- 1155

eral approach to achieve exact unlearning for gen- 1156

eral deep neural networks at the cost of changing 1157

the training pipeline significantly. The main idea 1158

is to partition the training dataset D into K dis- 1159

joint sets D1, . . . ,DK . For each Di, we train or 1160

fine-tune M on it independently, which results in 1161

K models Mi = A(Di). We use any fixed ag- 1162

gregation strategy for these K models for the fi- 1163

nal prediction or output. Unlearning in the SISA 1164

framework is straightforward. Given an unlearn- 1165

ing request U , we retrain all models Mi for i such 1166
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that U ∩ Di ̸= ∅. Apparently, storing K copies of1167

LLMs is memory-expensive and impractical which1168

makes the SISA approach not applicable to the pre-1169

training task. The authors of (Kumar et al., 2022)1170

leverage the SISA approach to the fine-tuning task1171

by only fine-tuning a fully connected layer (FC) or1172

Adapter (A) on top of a freeze public pretrained1173

model M . They termed these methods SISA-FC1174

and SISA-A respectively.1175

The SISA framework is currently the only1176

method providing a theoretical privacy guarantee1177

while applicable to LLMs. However, the efficiency1178

and utility of this approach are greatly affected by1179

the choice of K and dataset dependent. Clearly,1180

when K = 1 we simply arrive at retraining from1181

scratch, which maximally preserves the utility but1182

exhibits impractical time complexity. Choosing1183

a large K can improve the efficiency but may de-1184

grade model utility. It is unclear at the moment1185

how to choose an appropriate K.1186
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