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Abstract

The rapid development of Large Language
Models (LLMs) has been pivotal in advancing
Al, with pre-trained LLMs being adaptable to
diverse downstream tasks through fine-tuning.
Federated learning (FL) further enhances fine-
tuning in a privacy-aware manner by utilizing
clients’ local data through in-situ computation,
eliminating the need for data movement. How-
ever, fine-tuning LL.Ms, given their massive
scale of parameters, poses challenges for clients
with constrained and heterogeneous resources
in FL. Previous methods employed low-rank
adaptation (LoRA) for efficient federated fine-
tuning but utilized traditional FL aggregation
strategies on LoRA adapters. This approach led
to mathematically inaccurate aggregation noise,
reducing fine-tuning effectiveness and failing
to address heterogeneous LoRAs. In this work,
we first highlight the mathematical incorrect-
ness of LORA aggregation in existing federated
fine-tuning methods. We introduce a new ap-
proach called FLORA that enables federated
fine-tuning on heterogeneous LoRA adapters
across clients through a novel stacking-based
aggregation method. Our approach is noise-
free and seamlessly supports heterogeneous
LoRAs. Extensive experiments demonstrate
FLORA'’s superior performance in both homo-
geneous and heterogeneous settings, surpassing
state-of-the-art methods. We envision this work
as a milestone for efficient, privacy-preserving,
and accurate federated fine-tuning of LLMs.

1 Introduction

The Large Language Models (LLMs) have shown
remarkable performance on various tasks, such as
chatbots (Bill and Eriksson, 2023), virtual assis-
tants (Dong et al., 2023), search engines (Kelly
etal., 2023), and healthcare (Thirunavukarasu et al.,
2023; Singhal et al., 2023). However, adapting
pre-trained LLMs (e.g., Llama 2 (Touvron et al.,
2023b)) to downstream tasks requires tremendous
computation resources to fine-tune all the model
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Figure 1: The overview of LoRA, FedIT and our
FLORA. The top row shows how LoRA updates the
model in centralized fine-tuning. The middle and bot-
tom rows show the global model updating strategies in
FedIT and our FLORA respectively.
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parameters. To mitigate this issue, a variety of
parameter-efficient fine-tuning (PEFT) methods
have been proposed. One of the most widely used
PEFT methods is low-rank adaptation (LoRA) (Hu
et al.,, 2021). As shown in the top of Figure 1,
LoRA adds a parallel branch of trainable adapters
A and B to compute the model update AW, where
the ranks of A and B are much smaller than the
pre-trained model parameter W. When applying
LoRA for fine-tuning, only A and B are updated
while the entire W is frozen, thereby significantly
reducing the GPU memory consumption.
Fine-tuning Large Language Models (LLMs) re-
quires ample data for adaptation to specific down-
stream tasks. Often, this data is dispersed across a
multitude of devices, harboring privacy concerns.
For instance, aggregating medical data from hospi-
tals for centralized LLM fine-tuning poses signifi-
cant challenges. Consequently, to facilitate fine-
tuning without compromising private data, fed-
erated learning (FL) becomes essential, enabling
LLM fine-tuning across distributed clients while
preserving data privacy (McMahan et al., 2017;
Zhang et al., 2021). In this work, we focus on
federated fine-tuning, enabling distributed clients



to collaboratively fine-tune LLMs for adaption to
downstream tasks while preserving data privacy.

Prior work, FedIT, proposed a federated fine-
tuning method (Zhang et al., 2023a), integrating
LoRA with FedAvg (McMahan et al., 2017). In
each FL round of FedlIT, clients fine-tune LoRA
modules using their local data and then send the
fine-tuned modules to the server. The server aver-
ages all the local LoORA modules to obtain a global
LoRA. Since only the weights of the LoORA mod-
ules are fine-tuned and communicated, FedIT ef-
fectively reduces both computation and communi-
cation costs. However, FedIT faces two key issues.
First, the naive averaging of local LoRA modules
in FedIT introduces noise to the global model
update. Specifically, FedIT averages local A and
B independently, which introduces mathematical
errors to the global LoRA. In short,
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We will elaborate on this issue in Section 2 with
theoretical analysis. Such an inaccurate aggrega-
tion will hinder convergence, leading to higher fine-
tuning costs. Second, due to the heterogeneous
data distribution (Zhao et al., 2018; Li et al., 2019)
and heterogeneous hardware resources, clients
need to adapt LoRA ranks (Zhang et al., 2023b)
according to the system and data heterogeneity.
However, FedIT cannot aggregate local LoRAs
with heterogeneous ranks.

In this work, we present FLORA, an
aggregation-noise-free  federated fine-tuning
method that supports heterogeneous LoRAs.
Specifically, as shown in Figure 2, we propose
to stack the local LoRA modules A and By
separately to construct the global LoRA mod-
ules A and B, where A, and B, denote the
corresponding LoRA modules on the k-th client.
This stacking method is theoretically proven to
be accurate for the aggregation of local LoRA
modules (Section 3.1). Additionally, it can natu-
rally accommodate heterogeneous LoRA settings
(Section 3.2), since stacking does not require the
local LoRA modules to have identical ranks across
clients. The noise-free aggregation of FLORA
accelerates convergence, which, in turn, improves
the overall computation and communication
efficiency of federated fine-tuning. Furthermore,
FLORA effectively caters to heterogeneous data
and computational resources across clients, where

heterogeneous ranks are applied. The noise-free
aggregation of FLORA accelerates convergence,
which will in turn improve the overall computation
and communication efficiency of federated
fine-tuning. Furthermore, FLORA can effectively
cater to heterogeneous data and computational
resources across clients, where heterogeneous
ranks are applied. Our key contributions are
summarized as follows:

* We propose FLORA, a federated fine-tuning
algorithm based on LoRA that can perform
noise-free aggregation of local LoRA mod-
ules. Theoretical analysis shows that FLORA
eliminates the meaningless intermediate term
in the global model update, leading to faster
convergence and improved performance.

* The proposed stacking mechanism for aggre-
gating LoRA modules supports heterogeneous
LoRA ranks across clients, accommodating
data and system heterogeneity in realistic set-
tings. This encourages the broader participa-
tion of clients with heterogeneous data and
resources in federated fine-tuning.

e We use FLORA to fine-tune LLaMA,
Llama2 (Touvron et al., 2023a) and TinyL-
lama (Zhang et al., 2024) on four benchmarks
for two downstream tasks. Results show that
FLORA surpasses SoTA methods for both
homogeneous and heterogeneous settings.

2 Preliminaries

Fine-tuning LLMs with LoRA. LoRA (Hu
et al., 2021) uses two decomposed low-rank ma-
trices to represent the update of the target module:

W =W+ AW =W + BA, @))

where W € R™*" and W/ € R™*™ denote
the pre-trained and fine-tuned parameters of target
modules (e.g., attention modules), respectively. A
and B are low-rank decomposition of AW. where
A € R™" B € R™*", such that AW = BA
with the identical dimensions as W and W'. The
rank of LoRA, denoted by r, is typically signifi-
cantly smaller than m and n, leading to dramatic pa-
rameter reduction of AW. During the fine-tuning
phase, LoRA optimizes matrices A and B instead
of directly updating W, thus achieving substantial
savings in GPU memory usage. For example, in
the context of the Llama-7b model (Touvron et al.,
2023a), the original dimension of attention mod-
ules is 4096 x 4096 (i.e., W € R4096x4096) ‘setting



the LoRA rank to 16 reduces the decomposed ma-
trices to A € R16>x409% apd B ¢ RA096%16  This
approach decreases the number of trainable param-
eters to merely 0.78% of the entire parameter space
of the pre-trained model, offering a significant effi-
ciency boost in fine-tuning.

FedIT: Averaging Homogeneous LoRA. The
most widely used FL algorithm, i.e., Fe-
dAvg (McMahan et al., 2017), aggregates all the lo-
cal model updates by weighted averaging to update

the global model in each communication round:

K
W=wW+> paw,=w+aw 2
k=1

where W’ and W denote the global model pa-
rameters before and after a communication round.
AW, represents the local model update from the
k-th client, with pj, being the corresponding scaling
factor that is typically weighted by the local data
size, and A'W represents the global model update.
FedIT (Zhang et al., 2023a) directly integrates
FedAvg with LoRA to enable federated fine-tuning,
where each client fine-tunes LoRA modules with
the homogeneous rank. Specifically, the clients
download the pre-trained LLM from the server.
Then, the clients locally initialize and fine-tune
the LoORA modules. After the local fine-tuning, the
updated LoRA modules are sent to the server. The
server finally updates the global LoRA modules
A and B by independently applying the weighted

averaging across all local modules Ay, and By:

K K
A=) pAr, B=) pBs. 3)
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This aggregation of FedIT is almost the same
as FedAvg except that only the LoORA modules are
trained and communicated. However, such a naive
aggregation mechanism introduces additional prob-
lems for federated fine-tuning. First, each single
module A or B is not the model update, and only
B A represents the model update. Thus, averaging
A}, and By, independently to compute the aggre-
gated gradients will introduce noises to the global
model update. Here we use a simple example to
explain how the noise is generated, and we assume
that two clients are applying FedIT to perform fed-
erated fine-tuning. In a communication round, the
two clients train Ay, Bg and A1, B; respectively.
The local model updates AW and AW are the
product of corresponding LoRA modules:

AW, =BiAy, k € {0, 1}. (4)

According to Equation 2, the expected global
model update AW can be obtained by weighted
averaging AWy and AW

AW =poAWo +p1 AW, )
=poBoAo +p1B1A;.

However, according to Equation 3, FedIT aggre-
gates A and B independently:

AW = BA = (poBo + p1B1)(poAo + p1A1)
= peBoAo + piB1 A1 + popr (BoA1 + B1Ay).

The global model update in Equation 6 is differ-
ent from the expected one in Equation 5, mainly
due to the underlined intermediate term that is ob-
tained by the cross-production of LoORA modules
from different clients. This intermediate-term is un-
expected noise in the model aggregation. With the
number of clients increasing, this noisy term will
become much larger than the real global updates,
significantly slowing down the fine-tuning progress.
In addition, FedIT applies the scaling factor pj, to
both A and By, resulting in a pi coefficient for
the local model update AWy, exacerbating the
error of LORA aggregation. As Figure 2 illustrates,
the averaging algorithm in FedIT is an inaccurate
aggregation method, leading to slower convergence
and more computation cost.

The other deficiency of FedIT is that it cannot
support aggregation on heterogeneous LoRA mod-
ules. The local data in FLL may exhibit significant
heterogeneity across clients (Zhao et al., 2018; Li
et al., 2019). If a client configures a higher rank
than the actual one required by the local data com-
plexity, this may result in overfitting. Conversely,
if the rank is too small, it may lack the necessary
generalization capacity to effectively learn from the
local dataset (Figure 4). Moreover, the heteroge-
neous computational resource across clients also re-
quires heterogeneous rank deployment, e.g., clients
with smaller memory can only afford to train LORA
modules with smaller ranks. AdaL.oRA (Zhang
et al., 2023b) has been proposed to adapt LoRA
ranks based on available computation resources.
Therefore, deploying heterogeneous ranks across
clients is a pressing requirement for accommoda-
tion to data and system heterogeneity. However, ac-
cording to Equation 3, FedIT is only able to aggre-
gate LoRA modules with the homogeneous rank.

3 Proposed Method: FLoRA
3.1 Stacking-based Noise-free Aggregation

(6)

Motivated by the aforementioned problem, we pro-
pose a novel aggregation mechanism that accu-
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Figure 2: Module stacking in FLORA is a noise-free aggregation for LoRA, while the module averaging in FedIT

cannot accurately aggregate the local updates.

rately compute global model update AW by aggre-
gating local LoRA modules and effectively support
the heterogeneous LoRA. According to matrix mul-
tiplication principles and the model update rule in
LoRA (i.e., Equation 1), the element at position
(z,y) of the model update AW is computed as
the sum of the products of corresponding elements
from the z-th column of B and the y-th row of A:

5wy = Z ayiba:ia (7)
=0

where 0, represents the element at position (z, y)
in AW. ay;, b, are the elements at positions (y, 7)
and (z,7) in A and B, respectively. According
to Equation 7, the model update in LoRA can be
expressed as the sum of the products of the corre-
sponding rows of A and the columns of B.

To illustrate this concept further, let us consider a
simplified example where the dimensions of LoRA
modules are given by A € R?*3 and B € R3*2,
As described in Equation 8, A and B can be decom-
posed to two sub-matrices with rank = 1, and the
product of A and B then are computed as the sum
of the products of two respective sub-matrices:

boo, b
BA — 0 01] ) {aoo,alo,azo

b1o, b11
b 7b ao1, @11, a21
20, b21

®)

boo bo1
=|b1o|-[ao0, a0, azo]+ |b11 |- [ao1, a1, az1.|

bao ba1

To address the aggregation challenge from an
alternative perspective, let us consider the scenario
where we have multiple pairs of LoORA modules,
Ay, By, optimized by the clients. Each pair satis-
fies the dimensions A, € R™*™ and B}, € R™*"k,
Similar to Equation 8, the sum of the products of
these module pairs is the product of the stacked
modules, i.e., ZkK:1 BiA; = BA, where B rep-
resents the stacking of all By modules aligned
through dimension m and A is the stacking of all
A, aligned through dimension n. Figure 2 visually
illustrates this concept, where the orange, green,
and blue rectangles symbolize Ay, By, and their
respective products. The aggregation of three prod-
ucts mirrors the product of the stacked B and A

from all By and A}, pairs trained by clients. This
mechanism demonstrates that, in the context of
federated fine-tuning, we can achieve a noise-free
aggregation of local updates by simply stacking
the local LoRA modules. This process also cir-
cumvents the need for transmitting the full model
parameters, thus reducing communication costs.

To facilitate our discussion, we introduce the
stacking operation symbolized by "®" to denote
the module aggregation as depicted in Figure 2.
This operation is mathematically defined as:

A=A)D A @& Az, B=By3B; ¢B,,
Ak e Rran7A c R(r'0+r'1+r2)><n’ (9)
B, ¢ Rmxrk,B c R™MX(rotritrz)

In Equation 9, "@&" indicates that for A, each
subsequent module is vertically stacked below the
preceding one, whereas for B, each module is hori-
zontally stacked to the right of the one before it.

We can now formalize our conclusion regarding
the aggregation of LoORA modules. The sum of the
products of K LoRA module pairs is equivalent to
the product of their stacked matrices:

K

> BiAr=(Bo®..0Bk)(Ac@...®Ak) (10)

k=0

This foundational principle will guide the de-
sign of FLORA, as it allows for the efficient and
effective aggregation of local updates without the
transmission of entire model parameters.

3.2 FLORA: Stacking-based Federated
Fine-tuning for Heterogeneous LoRA

The stacking-based aggregation facilitates not only
the accurate aggregation of LoORA modules but also
inherently supports the heterogeneous LoRA ranks.
This approach imposes no constraints on the ranks
of each local LoRA module as long as each client
fine-tunes the same pre-trained model, i.e., they
share the same dimension m and n.

By employing the stacking-based aggregation
mechanism, we introduce FLORA, an approach de-
signed to facilitate federated fine-tuning of LLMs
with heterogeneous LoRA. Let us use a concrete
example to illustrate the key steps of applying
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Figure 3: FLORA workflow. The local LoRA modules are initialized and optimized each round, and stacked by the
server to obtain the global LoRA modules. The global modules are then sent back to clients to update local models.

FLORA, where K heterogeneous clients are in-
volved in fine-tuning an LLM, and the pre-trained
parameters are denoted by W.
Initialization. The server first disseminates the
pre-trained model parameters W to all K clients.
Then, the clients initialize their local LoORA mod-
ules based on the complexity of local data and
available local resources. The adaptation of LoRA
ranks is beyond the scope of this paper, but exist-
ing work like AdalLoRA (Zhang et al., 2023b) can
facilitate the rank adjustment.
Local Fine-tuning. Following initialization, the
clients train their local LoORA modules with the
local data for several iterations. Then, the clients
send the local LoRA modules back to the server.
Note that the clients initialize local LoRA modules
each round before local fine-tuning.
Stacking-based LoRA Aggregation. Upon re-
ceiving the heterogeneous LoRA modules from par-
ticipating clients, the server proceeds to aggregate
them by stacking all By and Ay according to Equa-
tion 10, resulting in the global A € R(ZH=o %)X
and B € R™*(Xi%0")_ The aggregation process
of FLORA can be described as follows:

A =poAo Dp1A1 ... B pxAxk

B=Bi®B1®B2®.. ® Bk

Ap e R™**" B, € R™*"F

1D

Ac R(Zi{:o Tk)XnyB c RmX(ZkI;o Tk)y

where py, represents the scaling factor for each local
update, determined by the relative size of the local
data to the global data:

len(D
- en(Dy)

= 71«511(2,?:0 D’ 12)

Note that the scaling factor p; should be only

applied to one of A and By, to avoid squaring the
factor in the final model update BA. This method
ensures a noise-free aggregation mechanism as de-
scribed in Equation 10.
Update Local Models. After each round of
noise-free aggregation, the server redistributes the
updated global LoRA modules A and B back to the
clients. The clients then proceed to update the lo-
cal models using BA and continue the fine-tuning.
Using the stacking approach, the dimensions of
updated global LoRA modules A and B are larger
than those of FedIT, potentially leading to larger
communication overhead in each round. However,
empirical observations indicate that federated fine-
tuning typically requires only a limited number of
communication rounds to achieve satisfactory re-
sults, as detailed in Section 4. In addition, it is
important to note that the LoORA modules A and B
constitute a small fraction of the overall size of the
pre-trained model, which is distributed to clients
during the initialization phase. Thus, the additional
communication overhead of the stacking approach
is negligible and does not significantly impact the
efficiency of federated fine-tuning.

4 Experiments

The key features of FLORA are (i) noise-free ag-
gregation and (ii) support for heterogeneous LoRA
modules. In this section, we verify these key fea-
tures across various LLM fine-tuning tasks. We
first study the performance of FLoRA and com-
pare it against FedIT under homogeneous settings
to demonstrate the advantages of noise-free aggre-
gation (Zhang et al., 2023a). Then, we examine



performance in a synthetic heterogeneous setup
and compare FLOR Awith a vanilla zero-padding
method. Finally, we conduct ablation studies on
the scaling factor, the heterogeneity of LoRA ranks,
and the extra communication overhead of FLoRA.

4.1 Experiment Setup

Models, Datasets and Experiment Settings. We
employ three Llama-based models with different
scales in our experiments: TinyLlama with 1.1 bil-
lion parameters (Zhang et al., 2024), and the 7
billion parameter versions of Llama (Touvron et al.,
2023a) and Llama?2 (Touvron et al., 2023b), eval-
uating FLORA across different model capacities.
Following the configurations in the original LoRA
paper (Hu et al., 2021), the LoRA modules are
applied to the self-attention layers only.

We use the Databricks-dolly-15k (Zhang et al.,
2023a) instruction dataset, Alpaca dataset (Taori
et al., 2023), and Wizard dataset (Luo et al., 2023)
for the question-answering (QA) task, and Wiz-
ard and ShareGPT for the chat assistant task.
We evaluate the federated fine-tuned models on
MMLU (Hendrycks et al., 2020) for the QA task
and MT-bench (Zheng et al., 2023) for the chat as-
sistant task, respectively. We sample 10 clients uni-
formly at random following the non-IID setting in
FedIT (Zhang et al., 2023a). The other experimen-
tal configurations are elaborated in Appendix A.

Baselines. We compare FLORA with four base-
lines. (1) FedIT: It is the SOTA federated fine-
tuning method (Zhang et al., 2023a) that integrates
LoRA with FedAvg. We only apply FedIT to homo-
geneous LoRA experiments as it does not support
heterogeneous LoRA. (2) Zero-padding: It is an
approach that enables FedIT to support heteroge-
neous LoRA (Cho et al., 2023). It extends all the
heterogeneous local ranks to the maximum rank
among the clients and pads their remaining parts
by 0. (3) Centralized Fine-tuning: we compare
FLORA with centralized LoRA fine-tuning with
the same hyperparameters and configurations. (4)
Standalone: the client fine-tunes the pre-trained
model locally without federations.

4.2 Experiment Results

Homogeneous LoRA. We first evaluate the per-
formance of FLORA with homogeneous LoRA.
Specifically, all the clients share the identical LoRA
rank of 16. As Table 1 depicts, FLORA achieves
consistently better performance than FedIT across
all the evaluated models and tasks. This is evident

in the MT-bench scores for both TinyLlama and
Llama models, where FLORA’s performance ex-
ceeds that of FedIT by at least 0.2. A notable exam-
ple is the MT-bench score for the Llama model fine-
tuned with Wizard dataset, where FLORA scores
4.21, surpassing FedIT’s 3.07. On the MMLU test
set, FLORA outperforms FedIT in all the settings.
For example, considering the TinyLLlama model
fine-tuned with Dolly, FLOR A nearly doubles the
accuracy achieved by FedIT. While FedIT occa-
sionally matches the performance of FLORA, as
observed with the Alpaca dataset on MMLU, the
performance gap is marginal. Interestingly, in sev-
eral scenarios, the performance of FLORA not
only outpaces FedIT but also exceeds the perfor-
mance achieved by the centralized fine-tuning. This
phenomenon, observed in the TinyLlama model
fine-tuned with the Alpaca and Wizard datasets,
suggests that the smaller data volume on clients
for federated fine-tuning may help mitigate overfit-
ting, thereby enhancing model generalization. The
experiment results of the Llama2 model are pre-
sented in Appendix A, which reveal the same trend
as that in TinyLlama and Llama. The consistent
observations across the three models demonstrate
that FLoRA consistently outperforms FedIT in the
homogeneous LoRA setting.

Heterogeneous LoRA. Compared with FedIT, a
distinctive strength of FLORA lies in its inherent
capability to accommodate heterogeneous LoRA
configurations. In the heterogeneous LoRA set-
tings, we apply varied local LoRA ranks, i.e., [64,
32, 16, 16, 8, 8, 4, 4, 4, 4], to 10 clients, simu-
lating a realistic scenario where clients have het-
erogeneous computational resources. As Table 1
and Table 4 illustrate, FLORA not only adapts to
heterogeneous ranks without performance degrada-
tion but also maintains consistency with the results
observed in most homogeneous settings. This con-
trasts sharply with the performance of FedIT, where
the application of zero-padding significantly de-
grades its performance on MMLU and MT-bench.
It reveals that zero-padding exacerbates FedIT’s
inherent noise issues in the aggregation process,
posing significant challenges in managing fine-
tuning performance. For example, by applying
the zero-padding method, the MMLU accuracy
of Llama model fine-tuned with Alpaca dataset
dramatically drops to 7.97%. The results demon-
strate that FLOR A not only accommodates hetero-
geneous LoRA ranks effectively but also sustains
robust training performance compared to baseline



Table 1: Comparison of FLORA with baselines on MMLU and MT-bench. "Homo" represents the settings with
homogeneous LoRA ranks, and "Heter" denote the settings with heterogeneous LoRA ranks.

Foundation Strateg Fine-tuning MMLU MT-bench

model Y algorithm Dolly Alpaca Wizard \ Wizard ShareGPT

Centralized LoRA 27.99  28.03 29.13 2.34 2.79

Homo FedIT 1635  30.02 42.51 292 2.55

TinyLlama FLORA 30.80 31.92 43.87 3.13 2.77

Heter Zero-padding | 15.76  29.56 40.79 1.56 1.29

FLORA 18.45  29.69 41.48 3.14 2.71

Centralized LoRA 3591 29.18 31.68 4.38 3.99

Homo FedIT 29.67 2941 33.43 3.07 373

Llama FLORA 30.99 2985 34.26 4.21 3.93

Heter Zero-padding | 26.46 7.97 26.98 3.51 3.26

FLORA 28.50  29.54 2791 4.14 3.64

M Global Model

HWos W32 MW 16 8 4

2.71

MT-bench Score

(a) TinyLlama - Wizard

(b) TinyLlama - ShareGPT

4.14

(¢) Llama - Wizard

(d) Llama - ShareGPT

Figure 4: The impact of heterogeneous LoRA ranks across clients. The red bars represent the global model
performance and the blue bars represent the local model performance with varying LoRA ranks.

methods. It facilitates the participation of devices
with varied computational capacities in heteroge-
neous federated fine-tuning tasks efficiently. Addi-
tionally, FLORA can be seamlessly integrated with
AdalLoRA (Zhang et al., 2023b), which dynami-
cally adjusts the LoRA rank using on the clients,
the results are presented in Appendix A.

The Impact of Scaling Factor. The scaling fac-
tor, denoted as pj, in Equation 12, playing a pivotal
role in the efficacy of FL (Wang et al., 2023). To
understand its impact on FLORA, we conduct ex-
periments investigating how varying scaling factors
influence the performance of FLORA. Given that
the default scaling factor is set to 0.1 for all clients,
assuming 10 clients with equal local dataset sizes
as per Equation 12, we explored the effects of al-
ternative scaling factors, namely 0.01, 0.05, and
0.2. The results are summarized in Figure 5. The
results do not reveal a clear pattern or optimal scal-
ing factor for federated fine-tuning across different
settings. The efficacy of a specific scaling factor
appears to be contingent upon the dataset, task,
and model in use. For example, when fine-tuning
TinyLlama on the Dolly dataset, a lower scaling
factor of 0.01 yields the highest accuracy, signifi-
cantly outperforming the 0.1 and 0.2 scaling fac-
tors. Conversely, the model fine-tuned on Wizard
dataset demonstrates a preference for a higher scal-

ing factor of 0.2, achieving the best performance,
whereas the lowest scaling factor of 0.01 was the
least effective. In the case of the Llama model,
larger scaling factors consistently facilitated bet-
ter fine-tuning performance. Applying FLORA to
Dolly and Alpaca shows the optimal performance
with a scaling factor of 0.2. These observations
suggest that the choice of an appropriate scaling
factor is highly dependent on specific datasets and
model characteristics, underscoring the necessity
for a tailored approach in federated fine-tuning.

The Impact of Heterogeneous LoRA Ranks.
Although the above results demonstrate FLORA
effectively enables the federated fine-tuning with
heterogeneous LoRA, it is worth further investi-
gating how the federated fine-tuning improves the
local models with various ranks. Motivated by this,
we evaluate MT-bench scores for local models with
LoRA ranks of 64, 32, 16, 8, and 4, presenting
the results in Figure 4. Global model scores are
shown in red bars, while local models are in blue,
with deeper shades indicating higher ranks. The
results show that the global model outperforms all
local models, except for a case with the TinyLlama
model fine-tuned on the Wizard dataset, where
the client with rank 32 slightly exceeds the global
model. This demonstrates FLORA’s ability to syn-
thesize knowledge from diverse clients effectively.
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Figure 5: The impact of the scaling factor on FLORA.
The x-axis is the scaling factor, and the y-axis represents
the MMLU accuracy for (a)-(b) and MT-bench score for
(c)-(d). The results of Llama2 are in Appendix A.

Regarding the LoRA rank’s impact, a rank of 8
consistently yields strong performance across var-
ious models and datasets. However, performance
diverges at extreme ranks; for instance, the TinyL-
lama model fine-tuned on Wizzard with the LoRA
rank of 64 underperforms the ones with smaller
ranks, but the Llama model with the rank of 64
excels the counterparts with smaller ranks. This
also demonstrates the heterogeneous rank deploy-
ment across clients is a realistic setting. These ob-
servations suggest a potential positive correlation
between optimal LoRA rank and model capacity,
motivating further exploration in future research.
Communication Efficiency. As discussed in
Section 3, the server needs to send global LoRA
modules to the clients in FLORA, potentially rais-
ing concerns about increased communication over-
head. To quantify this, we compare the commu-
nicated parameters of full fine-tuning, FedIT, and
FLORA over three communication rounds. As Fig-
ure 6 shows, although FLORA transmits slightly
more parameters than FedIT, it still significantly
reduces the overhead of full fine-tuning. Despite
the minor communication increase compared to
FedIT, FLORA enhances fine-tuning effectiveness
and supports heterogeneous LoRA ranks, making
it a preferable solution in federated fine-tuning.

5 Related Work
5.1 Parameter-efficient Fine-tuning of LLMs.

Parameter-efficient fine-tuning aims to reduce the
number of trainable parameters. BitFit (Zaken
et al,, 2021) fine-tunes only the biases while

FedIT

M Full Fine-tuning FLORA

algorithms

Federated fine-tuning

Ratio of communicated parameter # to full
fine-tuning — 3 communication rounds

Figure 6: The ratio of communicated parameter num-
bers to full fine-tuning.

achieving similar accuracy with full fine-tuning.
Houlsby et al. (2019) and Pfeiffer et al. (2020) ap-
ply transfer learning that adds pre-trained adapter
layers between transformer blocks. LoRA (Hu
et al., 2021) adopts the product of two low-
rank matrices to represent the gradient in full
fine-tuning, which achieves memory-efficient fine-
tuning. AdaLoRA (Zhang et al., 2023b) optimizes
LoRA by adaptively allocating the parameter bud-
get, which enhances the flexibility of LoRA.

5.2 Federated Fine-tuning of LLMs.

Federated fine-tuning aims to extract knowledge
from multiple on-device datasets while preserving
data privacy. FedIT (Zhang et al., 2023a) leverages
the FL framework for fine-tuning LLMs. It uses
LoRA as the local fine-tuning strategy. However,
concerns related to the deficiency in supporting het-
erogeneous LoRA limit its utilization. Cho et al.
(2023) tries to solve this problem by zero-padding
the local LoRA modules. However, this padding
process causes additional computing overhead. Be-
sides, it separately averages A and B modules,
introducing noise to the global model.

6 Conclusion

In this work, we identified the limitations in current
federated fine-tuning methods (e.g., FedIT), and
the challenges of applying federated fine-tuning
in realistic settings, i.e., the heterogeneous LoRA
ranks across clients. To overcome these practical
challenges and broaden the applicability of feder-
ated fine-tuning, we introduced FLORA to enable
the accurate aggregation on heterogeneous LoRA
modules using the proposed stack-based LoRA ag-
gregation mechanism. Our extensive experiments
demonstrate that FLORA outperforms the SOTA
method in both homogeneous and heterogeneous
LoRA settings. Moreover, our inspiring results
provide valuable insights for future research in fed-
erated fine-tuning of large language models in a
lightweight and accurate manner.



Broader Impacts and Ethics Statement

The objective of this paper is to improve the ef-
fectiveness of federated fine-tuning and does not
involve sensitive information or ethical concerns
related to Al and society. The experiments sec-
tion of this paper uses publicly available LLMs
and text datasets from the Internet with appropriate
citations of their sources. The proposed algorithm
can contribute to building up a privacy-preserving
distributed fine-tuning framework. It encourages
the research community to consider data privacy in
fine-tuning LLMs with collected data.

Limitation

Our approach has the limitation that the server
sends the stacked LoRA modules to the client,
thereby increasing the communication costs. We
discussed this limitation both theoretically and ex-
perimentally in Section 3 and Section 4, respec-
tively. We believe that the increase in communica-
tion overhead is acceptable under the premise of
improving fine-tuning effectiveness and accelerat-
ing convergence. In addition, due to constraints
on computational resources and time, we only uti-
lized Llama models in the experimental section.
We aim to observe experimental phenomena of dif-
ferent types of LLM federated fine-tuning in future
research and derive more general principles.

References

Desirée Bill and Theodor Eriksson. 2023. Fine-tuning a
IIm using reinforcement learning from human feed-
back for a therapy chatbot application.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi,
Matt Barnes, and Gauri Joshi. 2023. Heterogeneous
lora for federated fine-tuning of on-device founda-
tion models. In International Workshop on Federated
Learning in the Age of Foundation Models in Con-
Jjunction with NeurIPS 2023.

Xin Luna Dong, Seungwhan Moon, Yifan Ethan Xu,
Kshitiz Malik, and Zhou Yu. 2023. Towards next-
generation intelligent assistants leveraging 1lm tech-
niques. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 5792-5793.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea

Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-

tation of large language models. arXiv preprint
arXiv:2106.09685.

Dominique Kelly, Yimin Chen, Sarah E Cornwell,
Nicole S Delellis, Alex Mayhew, Sodiq Onaolapo,
and Victoria L Rubin. 2023. Bing chat: The future
of search engines? Proceedings of the Association
for Information Science and Technology, 60(1):1007-
1009.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen
Wang, and Zhihua Zhang. 2019. On the conver-
gence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273-1282. PMLR.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2023. Large language models encode clinical
knowledge. Nature, 620(7972):172-180.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-1lab/stanford_alpaca.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930—
1940.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.


https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ziyao Wang, Jianyu Wang, and Ang Li. 2023. Fedhyper:
A universal and robust learning rate scheduler for
federated learning with hypergradient descent. arXiv
preprint arXiv:2310.03156.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li,
and Yuan Gao. 2021. A survey on federated learning.
Knowledge-Based Systems, 216:106775.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chun-
yuan Li, Ruiyi Zhang, Guoyin Wang, and Yi-
ran Chen. 2023a. Towards building the federated
gpt: Federated instruction tuning. arXiv preprint
arXiv:2305.05644.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023b. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda,
Damon Civin, and Vikas Chandra. 2018. Feder-
ated learning with non-iid data. arXiv preprint
arXiv:1806.00582.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

A Additional Experiments and Setup
Details

A.1 Datasets and Metric

Dolly dataset. The Dolly dataset is an open-
source dataset with 15k text samples generated by
Databricks employees. The topics include brain-
storming, classification, closed QA, generation, in-
formation extraction, open QA, and summariza-
tion (Zhang et al., 2023a).

Alpaca dataset. The Alpaca dataset contains
52K instruction-following data used for fine-tuning
the Alpaca model (Taori et al., 2023). This dataset
is believed to be diverse enough for fine-tuning
LLMs.
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Wizard dataset. The Wizard dataset we use
is the training data of the WizardLM model. It
includes 70k pairs of instructions and outputs. The
Wizard dataset generally features more complex
instructions compared to the other datasets. Its fine-
tuning results are typically better, which has been
confirmed by our experiments, especially those
evaluated by the MT-bench scores.

ShareGPT dataset. The ShareGPT dataset is
a collection of approximately 52,000 conversa-
tions scraped via the ShareGPT API. The conver-
sations in ShareGPT include both user prompts
and responses from ChatGPT. In our experiments,
we split the conversation dataset into question-
answering pairs.

MMLU test set. The MMLU dataset is a widely
used question-and-answer dataset in LLM fine-
tuning. It has 14,024 questions in 57 different
subjects, which can evaluate the logical reasoning
capabilities of LLMs. We selected 1444 samples
from the dataset for a quick and comprehensive
evaluation.

MT-bench evaluation. MT-bench is a set of
challenging multi-turn open-ended questions for
evaluating chat assistants (Zheng et al., 2023). It
evaluates the performance of LLMs by using the
GPT-4 API to score the LLM-generated conver-
sations. LL.Ms that behave more like GPT-4 will
receive higher scores.

A.2 Hyperparameter Details

In all our experiments, the learning rate of fine-
tuning is set to 0.0003; the batch size is 128 and the
micro batch size is 16. Due to the large dataset
and model sizes selected, federated fine-tuning
consumes significant computational resources and
time. Therefore, we opted for fewer fine-tuning
rounds (even just one round) to ensure that we
could observe enough data. Additionally, the
MMLU dataset is prone to overfitting on these large
datasets, resulting in a decrease in accuracy. There-
fore, fewer training rounds ensure the effectiveness
of the observed phenomena. Table 2 shows the
fine-tuning rounds and local epochs we selected.

A.3 Supplementary Experiment Results

Integrating FLORA with AdaLLoRA All the ob-
servations about the impact of rank on the model
performance, despite being influenced by data
heterogeneity, still manage to reveal the impor-
tance of selecting an appropriate LoRA rank for
a specific task. Thus, some algorithms such as
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Table 2: The communication rounds and local epochs
on each experiment setting. The Rounds column rep-
resents the number of communication rounds and the
Epochs column represents the number of local fine-
tuning epochs in each round.

Foundation | Datasets | Rounds Epochs
Dolly 3 1
. Alpaca 3 1
TinyLlama Wizard 3 1
ShareGPT 1 1
Dolly 3 3
Alpaca 3 3
Llama Wizard 1 1
ShareGPT 1 1
Wizard 1 1
Llama2 | ohareGPT 1 1

Table 3: The performance of FLORA + AdalLoRA.
Adal.oRA can reduce the rank while preserving the
fine-tuning effectiveness.

Foundation Fine-tuning Sum of MT-bench
model algorithm local ranks score
TinyLlama FLORA 160 3.13
¥ FLORA+AdaLoRA 120 3.14
Llama FLORA 160 421
FLORA+AdaLoRA 131 4.10
Llama2 FLORA 160 4.17
FLORA+AdaLoRA 140 4.25

Adal.oRA (Zhang et al., 2023b) are designed to
adaptively adjust the LoRA rank to optimize the
model performance and save computational re-
sources. With our support for heterogeneous LoRA,
we can flexibly utilize AdaLoRA with adaptive
LoRA ranks. We conducted corresponding exper-
iments to demonstrate that we can use AdaLoRA
to further improve the efficiency of federated fine-
tuning. We implement AdalLoRA on each client
to adjust LoORA modules during local fine-tuning.
The results are shown in Table 3. The "Sum of
local ranks" column means the sum of all local
LoRA rank values after fine-tuning. Since our
FLORA does not adjust the rank, its value is 160,
the same as the initial value. On the other hand,
AdalLoRA dynamically adjusts the rank to maxi-
mize training effectiveness and minimize rank val-
ues to save resources. From Table Table 3, we
can see that AdaLoRA on TinyLlama and Llama
reduced the sum of local ranks to 120 and 131
from 160 respectively. We further conclude that
FLORA+AdalL.oRA can further reduce the train-
able parameter count while ensuring comparable
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Table 4: Compare FLORA with baselines in Llama2.

Fine-tuning

Strategy ‘ ‘Wizard ShareGPT

algorithm
Centralized | LoRA | 4.24 3.99
FedIT 4.03 3.87
Homo ‘ FLORA ‘ 422 3.96
Zero-paddin, 4.01 3.70
Heter ‘ FLORA = | 417 3.91
425 # Wizard
ShareGPT | J N ~a.
4.1 "
.-
s95 1
3.8
0.01 0.05 0.1 0.2

Figure 7: The impact of scaling factor on Llama2 model.

or even improved performance compared to simply
using LoRA on the clients. Our support for such
rank adaptation further demonstrates the effective-
ness and applicability of the FLORA approach.

Experiment results of Llama2. Due to the in-
herently strong performance of Llama2, the im-
provement in the QA dataset is not significant.
Therefore, we fine-tuned Llama2 using the Wiz-
ard and ShareGPT datasets. Overall, Llama2 ex-
hibits similar experimental results to Tinyllama
and Llama. Table 4 shows the comparison between
FLORA and our baselines. In the homogeneous
and heterogeneous settings, the MT-bench scores
of Wizard and ShareGPT all surpass those in FedIT
and Zero-padding. As for the impact of scaling fac-
tors in Figure 7, Llama?2 has a similar trend to the
Llama-7b model, in which higher scaling factors
exhibit better fine-tuning performance.

B Convergence Analysis

In this section, we demonstrate the convergence of
FLORA following the standard convergence anal-
ysis in Li et al. (2019). The FedAvg algorithm
exhibits convergence to the global optimum at a
rate of O(1/T") for non-IID (independent and iden-
tically distributed) data under full client participa-
tion. This convergence is based on four assump-
tions mentioned in Li et al. (2019):

Assumption 1. Each local objective function
is L- smooth, that is, for all x and y, Fi(z) <
Fr(y) + (= — y)"VF(y) + 5o — yl13

Assumption 2. Each local objective function is




w - strongly convex that is, for all z and y, F(x) >
Fr(y) + (@ —y)"VF(y) + 5l — yll3

Assumption 3. The variance of stochas-
tic gradients in each client is bounded:
E|\VEW, ey — aw|2 < o2 for
k=1,..., K, where f,(:) is the subset of training
data randomly sampled from k-th client.

Assumption 4. The expected squared norm
of stochastic gradients is uniformly bounded:
EVEWD, M))2 < G2 forall k = 1,..., K
andt =1,...,T, where £ ,E:t) is the subset of training
data randomly sampled from k-th client.

For the convergence analysis of FLORA, we
introduce an additional assumption 5 tailored to
the specific dynamics of LoRA fine-tuning and its
relation to traditional SGD-based full fine-tuning:

Assumption 5. (Unbiased LoRA Gradient).
The updates applied to LoRA modules by each
client serve as unbiased estimators of the gradi-
ent that would be directly computed on the base
model through SGD: B,(fH)A,(:H) — BS) Ag) =
n(t)VFk(W,gt)\glgt)). Note that we define the
model parameter in ¢-th round by W),

Theorem 1. Based on Assumptions 1-5, we

choose k = ﬁ, v = max{8k, E'}. The local learn-

. Qg 2
ing rate E = St Then, we can deduce that

the expectation of the fine-tuning error in FLORA
can be bounded by:

ok M
s < 2 (2 Lo WD — WH|12). (13

where §(7) is the fine-tuning error in 7-th round.
5T and M are defined as follows:

60 = E[F(wT-Y B AT — p~,
= 2 2 22 (14)
M =) " pioj + 6LT + 8(E — 1)°G*.
k=1

where L, u, oy, and G are defined by the assump-
tions 1-4. ['is defined by I' = F % — 1 p, F
for quantifying the degree of non-iid. This the-
orem posits that as the number of rounds 7' ap-
proaches infinity, the expectation of the fine-tuning
error §(7) converges to zero. In contrast, FedIT
deviates from the FedAvg model updating rule as
depicted in Equation 2, introducing non-gradient
noises through its averaging process. Therefore, it
fails to achieve convergence at the rate of O(1/T")
While this deviation does not invalidate FedIT’s
utility in federated fine-tuning, it significantly im-
pairs its convergence rate and overall effectiveness.
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