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Abstract
The rapid development of Large Language001
Models (LLMs) has been pivotal in advancing002
AI, with pre-trained LLMs being adaptable to003
diverse downstream tasks through fine-tuning.004
Federated learning (FL) further enhances fine-005
tuning in a privacy-aware manner by utilizing006
clients’ local data through in-situ computation,007
eliminating the need for data movement. How-008
ever, fine-tuning LLMs, given their massive009
scale of parameters, poses challenges for clients010
with constrained and heterogeneous resources011
in FL. Previous methods employed low-rank012
adaptation (LoRA) for efficient federated fine-013
tuning but utilized traditional FL aggregation014
strategies on LoRA adapters. This approach led015
to mathematically inaccurate aggregation noise,016
reducing fine-tuning effectiveness and failing017
to address heterogeneous LoRAs. In this work,018
we first highlight the mathematical incorrect-019
ness of LoRA aggregation in existing federated020
fine-tuning methods. We introduce a new ap-021
proach called FLORA that enables federated022
fine-tuning on heterogeneous LoRA adapters023
across clients through a novel stacking-based024
aggregation method. Our approach is noise-025
free and seamlessly supports heterogeneous026
LoRAs. Extensive experiments demonstrate027
FLORA’s superior performance in both homo-028
geneous and heterogeneous settings, surpassing029
state-of-the-art methods. We envision this work030
as a milestone for efficient, privacy-preserving,031
and accurate federated fine-tuning of LLMs.032

1 Introduction033

The Large Language Models (LLMs) have shown034

remarkable performance on various tasks, such as035

chatbots (Bill and Eriksson, 2023), virtual assis-036

tants (Dong et al., 2023), search engines (Kelly037

et al., 2023), and healthcare (Thirunavukarasu et al.,038

2023; Singhal et al., 2023). However, adapting039

pre-trained LLMs (e.g., Llama 2 (Touvron et al.,040

2023b)) to downstream tasks requires tremendous041

computation resources to fine-tune all the model042
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Figure 1: The overview of LoRA, FedIT and our
FLORA. The top row shows how LoRA updates the
model in centralized fine-tuning. The middle and bot-
tom rows show the global model updating strategies in
FedIT and our FLORA respectively.

parameters. To mitigate this issue, a variety of 043

parameter-efficient fine-tuning (PEFT) methods 044

have been proposed. One of the most widely used 045

PEFT methods is low-rank adaptation (LoRA) (Hu 046

et al., 2021). As shown in the top of Figure 1, 047

LoRA adds a parallel branch of trainable adapters 048

A and B to compute the model update ∆W, where 049

the ranks of A and B are much smaller than the 050

pre-trained model parameter W. When applying 051

LoRA for fine-tuning, only A and B are updated 052

while the entire W is frozen, thereby significantly 053

reducing the GPU memory consumption. 054

Fine-tuning Large Language Models (LLMs) re- 055

quires ample data for adaptation to specific down- 056

stream tasks. Often, this data is dispersed across a 057

multitude of devices, harboring privacy concerns. 058

For instance, aggregating medical data from hospi- 059

tals for centralized LLM fine-tuning poses signifi- 060

cant challenges. Consequently, to facilitate fine- 061

tuning without compromising private data, fed- 062

erated learning (FL) becomes essential, enabling 063

LLM fine-tuning across distributed clients while 064

preserving data privacy (McMahan et al., 2017; 065

Zhang et al., 2021). In this work, we focus on 066

federated fine-tuning, enabling distributed clients 067
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to collaboratively fine-tune LLMs for adaption to068

downstream tasks while preserving data privacy.069

Prior work, FedIT, proposed a federated fine-070

tuning method (Zhang et al., 2023a), integrating071

LoRA with FedAvg (McMahan et al., 2017). In072

each FL round of FedIT, clients fine-tune LoRA073

modules using their local data and then send the074

fine-tuned modules to the server. The server aver-075

ages all the local LoRA modules to obtain a global076

LoRA. Since only the weights of the LoRA mod-077

ules are fine-tuned and communicated, FedIT ef-078

fectively reduces both computation and communi-079

cation costs. However, FedIT faces two key issues.080

First, the naive averaging of local LoRA modules081

in FedIT introduces noise to the global model082

update. Specifically, FedIT averages local A and083

B independently, which introduces mathematical084

errors to the global LoRA. In short,085

The cause of aggregation noise:086 ∑
A×

∑
B︸ ︷︷ ︸

FedIT

̸=
∑

A×B︸ ︷︷ ︸
mathematically correct

.087

088 We will elaborate on this issue in Section 2 with089

theoretical analysis. Such an inaccurate aggrega-090

tion will hinder convergence, leading to higher fine-091

tuning costs. Second, due to the heterogeneous092

data distribution (Zhao et al., 2018; Li et al., 2019)093

and heterogeneous hardware resources, clients094

need to adapt LoRA ranks (Zhang et al., 2023b)095

according to the system and data heterogeneity.096

However, FedIT cannot aggregate local LoRAs097

with heterogeneous ranks.098

In this work, we present FLORA, an099

aggregation-noise-free federated fine-tuning100

method that supports heterogeneous LoRAs.101

Specifically, as shown in Figure 2, we propose102

to stack the local LoRA modules Ak and Bk103

separately to construct the global LoRA mod-104

ules A and B, where Ak and Bk denote the105

corresponding LoRA modules on the k-th client.106

This stacking method is theoretically proven to107

be accurate for the aggregation of local LoRA108

modules (Section 3.1). Additionally, it can natu-109

rally accommodate heterogeneous LoRA settings110

(Section 3.2), since stacking does not require the111

local LoRA modules to have identical ranks across112

clients. The noise-free aggregation of FLORA113

accelerates convergence, which, in turn, improves114

the overall computation and communication115

efficiency of federated fine-tuning. Furthermore,116

FLORA effectively caters to heterogeneous data117

and computational resources across clients, where118

heterogeneous ranks are applied. The noise-free 119

aggregation of FLORA accelerates convergence, 120

which will in turn improve the overall computation 121

and communication efficiency of federated 122

fine-tuning. Furthermore, FLORA can effectively 123

cater to heterogeneous data and computational 124

resources across clients, where heterogeneous 125

ranks are applied. Our key contributions are 126

summarized as follows: 127

• We propose FLORA, a federated fine-tuning 128

algorithm based on LoRA that can perform 129

noise-free aggregation of local LoRA mod- 130

ules. Theoretical analysis shows that FLORA 131

eliminates the meaningless intermediate term 132

in the global model update, leading to faster 133

convergence and improved performance. 134

• The proposed stacking mechanism for aggre- 135

gating LoRA modules supports heterogeneous 136

LoRA ranks across clients, accommodating 137

data and system heterogeneity in realistic set- 138

tings. This encourages the broader participa- 139

tion of clients with heterogeneous data and 140

resources in federated fine-tuning. 141

• We use FLORA to fine-tune LLaMA, 142

Llama2 (Touvron et al., 2023a) and TinyL- 143

lama (Zhang et al., 2024) on four benchmarks 144

for two downstream tasks. Results show that 145

FLORA surpasses SoTA methods for both 146

homogeneous and heterogeneous settings. 147

2 Preliminaries 148

Fine-tuning LLMs with LoRA. LoRA (Hu 149

et al., 2021) uses two decomposed low-rank ma- 150

trices to represent the update of the target module: 151

152
W′ = W +∆W = W +BA, (1) 153

where W ∈ Rm×n and W′ ∈ Rm×n denote 154

the pre-trained and fine-tuned parameters of target 155

modules (e.g., attention modules), respectively. A 156

and B are low-rank decomposition of ∆W. where 157

A ∈ Rr×n,B ∈ Rm×r, such that ∆W = BA 158

with the identical dimensions as W and W′. The 159

rank of LoRA, denoted by r, is typically signifi- 160

cantly smaller than m and n, leading to dramatic pa- 161

rameter reduction of ∆W. During the fine-tuning 162

phase, LoRA optimizes matrices A and B instead 163

of directly updating W, thus achieving substantial 164

savings in GPU memory usage. For example, in 165

the context of the Llama-7b model (Touvron et al., 166

2023a), the original dimension of attention mod- 167

ules is 4096×4096 (i.e., W ∈ R4096×4096), setting 168
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the LoRA rank to 16 reduces the decomposed ma-169

trices to A ∈ R16×4096 and B ∈ R4096×16. This170

approach decreases the number of trainable param-171

eters to merely 0.78% of the entire parameter space172

of the pre-trained model, offering a significant effi-173

ciency boost in fine-tuning.174

FedIT: Averaging Homogeneous LoRA. The175

most widely used FL algorithm, i.e., Fe-176

dAvg (McMahan et al., 2017), aggregates all the lo-177

cal model updates by weighted averaging to update178

the global model in each communication round:179

W′ = W +

K∑
k=1

pk∆Wk = W +∆W (2)180

where W′ and W denote the global model pa-181

rameters before and after a communication round.182

∆Wk represents the local model update from the183

k-th client, with pk being the corresponding scaling184

factor that is typically weighted by the local data185

size, and ∆W represents the global model update.186

FedIT (Zhang et al., 2023a) directly integrates187

FedAvg with LoRA to enable federated fine-tuning,188

where each client fine-tunes LoRA modules with189

the homogeneous rank. Specifically, the clients190

download the pre-trained LLM from the server.191

Then, the clients locally initialize and fine-tune192

the LoRA modules. After the local fine-tuning, the193

updated LoRA modules are sent to the server. The194

server finally updates the global LoRA modules195

A and B by independently applying the weighted196

averaging across all local modules Ak and Bk:197

A =

K∑
k=1

pkAk, B =

K∑
i=0

pkBk. (3)198

199 This aggregation of FedIT is almost the same200

as FedAvg except that only the LoRA modules are201

trained and communicated. However, such a naive202

aggregation mechanism introduces additional prob-203

lems for federated fine-tuning. First, each single204

module A or B is not the model update, and only205

BA represents the model update. Thus, averaging206

Ak and Bk independently to compute the aggre-207

gated gradients will introduce noises to the global208

model update. Here we use a simple example to209

explain how the noise is generated, and we assume210

that two clients are applying FedIT to perform fed-211

erated fine-tuning. In a communication round, the212

two clients train A0, B0 and A1, B1 respectively.213

The local model updates ∆W0 and ∆W1 are the214

product of corresponding LoRA modules:215

∆Wk = BkAk, k ∈ {0, 1}. (4)216

According to Equation 2, the expected global 217

model update ∆W can be obtained by weighted 218

averaging ∆W0 and ∆W1: 219

∆W = p0∆W0 + p1∆W1

= p0B0A0 + p1B1A1.
(5) 220

However, according to Equation 3, FedIT aggre- 221

gates A and B independently: 222

∆W = BA = (p0B0 + p1B1)(p0A0 + p1A1)

= p20B0A0 + p21B1A1 + p0p1(B0A1 +B1A0).
(6) 223

The global model update in Equation 6 is differ- 224

ent from the expected one in Equation 5, mainly 225

due to the underlined intermediate term that is ob- 226

tained by the cross-production of LoRA modules 227

from different clients. This intermediate-term is un- 228

expected noise in the model aggregation. With the 229

number of clients increasing, this noisy term will 230

become much larger than the real global updates, 231

significantly slowing down the fine-tuning progress. 232

In addition, FedIT applies the scaling factor pk to 233

both Ak and Bk, resulting in a p2k coefficient for 234

the local model update ∆Wk, exacerbating the 235

error of LoRA aggregation. As Figure 2 illustrates, 236

the averaging algorithm in FedIT is an inaccurate 237

aggregation method, leading to slower convergence 238

and more computation cost. 239

The other deficiency of FedIT is that it cannot 240

support aggregation on heterogeneous LoRA mod- 241

ules. The local data in FL may exhibit significant 242

heterogeneity across clients (Zhao et al., 2018; Li 243

et al., 2019). If a client configures a higher rank 244

than the actual one required by the local data com- 245

plexity, this may result in overfitting. Conversely, 246

if the rank is too small, it may lack the necessary 247

generalization capacity to effectively learn from the 248

local dataset (Figure 4). Moreover, the heteroge- 249

neous computational resource across clients also re- 250

quires heterogeneous rank deployment, e.g., clients 251

with smaller memory can only afford to train LoRA 252

modules with smaller ranks. AdaLoRA (Zhang 253

et al., 2023b) has been proposed to adapt LoRA 254

ranks based on available computation resources. 255

Therefore, deploying heterogeneous ranks across 256

clients is a pressing requirement for accommoda- 257

tion to data and system heterogeneity. However, ac- 258

cording to Equation 3, FedIT is only able to aggre- 259

gate LoRA modules with the homogeneous rank. 260

3 Proposed Method: FLoRA 261

3.1 Stacking-based Noise-free Aggregation 262

Motivated by the aforementioned problem, we pro- 263

pose a novel aggregation mechanism that accu- 264
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Figure 2: Module stacking in FLORA is a noise-free aggregation for LoRA, while the module averaging in FedIT
cannot accurately aggregate the local updates.

rately compute global model update ∆W by aggre-265

gating local LoRA modules and effectively support266

the heterogeneous LoRA. According to matrix mul-267

tiplication principles and the model update rule in268

LoRA (i.e., Equation 1), the element at position269

(x, y) of the model update ∆W is computed as270

the sum of the products of corresponding elements271

from the x-th column of B and the y-th row of A:272

δxy =

r∑
i=0

ayibxi, (7)273

where δxy represents the element at position (x, y)274

in ∆W. ayi, bxi are the elements at positions (y, i)275

and (x, i) in A and B, respectively. According276

to Equation 7, the model update in LoRA can be277

expressed as the sum of the products of the corre-278

sponding rows of A and the columns of B.279

To illustrate this concept further, let us consider a280

simplified example where the dimensions of LoRA281

modules are given by A ∈ R2×3 and B ∈ R3×2.282

As described in Equation 8, A and B can be decom-283

posed to two sub-matrices with rank r = 1, and the284

product of A and B then are computed as the sum285

of the products of two respective sub-matrices:286

BA =

b00, b01b10, b11
b20, b21

 ·
[
a00, a10, a20

a01, a11, a21

]

=


b00
b10
b20

·
[
a00, a10, a20

]
+


b01
b11
b21

·
[
a01, a11, a21.

] (8)287

288 To address the aggregation challenge from an289

alternative perspective, let us consider the scenario290

where we have multiple pairs of LoRA modules,291

Ak, Bk, optimized by the clients. Each pair satis-292

fies the dimensions Ak ∈ Rrk×n and Bk ∈ Rm×rk .293

Similar to Equation 8, the sum of the products of294

these module pairs is the product of the stacked295

modules, i.e.,
∑K

k=1BkAk = BA, where B rep-296

resents the stacking of all Bk modules aligned297

through dimension m and A is the stacking of all298

Ak aligned through dimension n. Figure 2 visually299

illustrates this concept, where the orange, green,300

and blue rectangles symbolize Ak, Bk, and their301

respective products. The aggregation of three prod-302

ucts mirrors the product of the stacked B and A303

from all Bk and Ak pairs trained by clients. This 304

mechanism demonstrates that, in the context of 305

federated fine-tuning, we can achieve a noise-free 306

aggregation of local updates by simply stacking 307

the local LoRA modules. This process also cir- 308

cumvents the need for transmitting the full model 309

parameters, thus reducing communication costs. 310

To facilitate our discussion, we introduce the 311

stacking operation symbolized by "⊕" to denote 312

the module aggregation as depicted in Figure 2. 313

This operation is mathematically defined as: 314

A =A0 ⊕A1 ⊕A2, B = B0 ⊕B1 ⊕B2,

Ak ∈ Rrk×n,A ∈ R(r0+r1+r2)×n,

Bk ∈ Rm×rk ,B ∈ Rm×(r0+r1+r2).

(9) 315

316In Equation 9, "⊕" indicates that for A, each 317

subsequent module is vertically stacked below the 318

preceding one, whereas for B, each module is hori- 319

zontally stacked to the right of the one before it. 320

We can now formalize our conclusion regarding 321

the aggregation of LoRA modules. The sum of the 322

products of K LoRA module pairs is equivalent to 323

the product of their stacked matrices: 324

K∑
k=0

BkAk = (B0 ⊕ ...⊕BK)(A0 ⊕ ...⊕AK) (10) 325

This foundational principle will guide the de- 326

sign of FLORA, as it allows for the efficient and 327

effective aggregation of local updates without the 328

transmission of entire model parameters. 329

3.2 FLORA: Stacking-based Federated 330

Fine-tuning for Heterogeneous LoRA 331

The stacking-based aggregation facilitates not only 332

the accurate aggregation of LoRA modules but also 333

inherently supports the heterogeneous LoRA ranks. 334

This approach imposes no constraints on the ranks 335

of each local LoRA module as long as each client 336

fine-tunes the same pre-trained model, i.e., they 337

share the same dimension m and n. 338

By employing the stacking-based aggregation 339

mechanism, we introduce FLORA, an approach de- 340

signed to facilitate federated fine-tuning of LLMs 341

with heterogeneous LoRA. Let us use a concrete 342

example to illustrate the key steps of applying 343
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Figure 3: FLORA workflow. The local LoRA modules are initialized and optimized each round, and stacked by the
server to obtain the global LoRA modules. The global modules are then sent back to clients to update local models.

FLORA, where K heterogeneous clients are in-344

volved in fine-tuning an LLM, and the pre-trained345

parameters are denoted by W.346

Initialization. The server first disseminates the347

pre-trained model parameters W to all K clients.348

Then, the clients initialize their local LoRA mod-349

ules based on the complexity of local data and350

available local resources. The adaptation of LoRA351

ranks is beyond the scope of this paper, but exist-352

ing work like AdaLoRA (Zhang et al., 2023b) can353

facilitate the rank adjustment.354

Local Fine-tuning. Following initialization, the355

clients train their local LoRA modules with the356

local data for several iterations. Then, the clients357

send the local LoRA modules back to the server.358

Note that the clients initialize local LoRA modules359

each round before local fine-tuning.360

Stacking-based LoRA Aggregation. Upon re-361

ceiving the heterogeneous LoRA modules from par-362

ticipating clients, the server proceeds to aggregate363

them by stacking all Bk and Ak according to Equa-364

tion 10, resulting in the global A ∈ R(
∑K

k=0 rk)×n365

and B ∈ Rm×(
∑K

k=0 rk). The aggregation process366

of FLORA can be described as follows:367

A = p0A0 ⊕ p1A1 ⊕ ...⊕ pKAK

B = B0 ⊕B1 ⊕B2 ⊕ ...⊕BK

Ak ∈ Rrk×n,Bk ∈ Rm×rk

A ∈ R(
∑K

k=0 rk)×n,B ∈ Rm×(
∑K

k=0 rk),

(11)368

where pk represents the scaling factor for each local369

update, determined by the relative size of the local370

data to the global data:371

pk =
len(Dk)

len(
∑K

k=0 Dk)
. (12)372

Note that the scaling factor pk should be only 373

applied to one of Ak and Bk to avoid squaring the 374

factor in the final model update BA. This method 375

ensures a noise-free aggregation mechanism as de- 376

scribed in Equation 10. 377

Update Local Models. After each round of 378

noise-free aggregation, the server redistributes the 379

updated global LoRA modules A and B back to the 380

clients. The clients then proceed to update the lo- 381

cal models using BA and continue the fine-tuning. 382

Using the stacking approach, the dimensions of 383

updated global LoRA modules A and B are larger 384

than those of FedIT, potentially leading to larger 385

communication overhead in each round. However, 386

empirical observations indicate that federated fine- 387

tuning typically requires only a limited number of 388

communication rounds to achieve satisfactory re- 389

sults, as detailed in Section 4. In addition, it is 390

important to note that the LoRA modules A and B 391

constitute a small fraction of the overall size of the 392

pre-trained model, which is distributed to clients 393

during the initialization phase. Thus, the additional 394

communication overhead of the stacking approach 395

is negligible and does not significantly impact the 396

efficiency of federated fine-tuning. 397

4 Experiments 398

The key features of FLORA are (i) noise-free ag- 399

gregation and (ii) support for heterogeneous LoRA 400

modules. In this section, we verify these key fea- 401

tures across various LLM fine-tuning tasks. We 402

first study the performance of FLoRA and com- 403

pare it against FedIT under homogeneous settings 404

to demonstrate the advantages of noise-free aggre- 405

gation (Zhang et al., 2023a). Then, we examine 406
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performance in a synthetic heterogeneous setup407

and compare FLORAwith a vanilla zero-padding408

method. Finally, we conduct ablation studies on409

the scaling factor, the heterogeneity of LoRA ranks,410

and the extra communication overhead of FLoRA.411

4.1 Experiment Setup412

Models, Datasets and Experiment Settings. We413

employ three Llama-based models with different414

scales in our experiments: TinyLlama with 1.1 bil-415

lion parameters (Zhang et al., 2024), and the 7416

billion parameter versions of Llama (Touvron et al.,417

2023a) and Llama2 (Touvron et al., 2023b), eval-418

uating FLORA across different model capacities.419

Following the configurations in the original LoRA420

paper (Hu et al., 2021), the LoRA modules are421

applied to the self-attention layers only.422

We use the Databricks-dolly-15k (Zhang et al.,423

2023a) instruction dataset, Alpaca dataset (Taori424

et al., 2023), and Wizard dataset (Luo et al., 2023)425

for the question-answering (QA) task, and Wiz-426

ard and ShareGPT for the chat assistant task.427

We evaluate the federated fine-tuned models on428

MMLU (Hendrycks et al., 2020) for the QA task429

and MT-bench (Zheng et al., 2023) for the chat as-430

sistant task, respectively. We sample 10 clients uni-431

formly at random following the non-IID setting in432

FedIT (Zhang et al., 2023a). The other experimen-433

tal configurations are elaborated in Appendix A.434

Baselines. We compare FLORA with four base-435

lines. (1) FedIT: It is the SOTA federated fine-436

tuning method (Zhang et al., 2023a) that integrates437

LoRA with FedAvg. We only apply FedIT to homo-438

geneous LoRA experiments as it does not support439

heterogeneous LoRA. (2) Zero-padding: It is an440

approach that enables FedIT to support heteroge-441

neous LoRA (Cho et al., 2023). It extends all the442

heterogeneous local ranks to the maximum rank443

among the clients and pads their remaining parts444

by 0. (3) Centralized Fine-tuning: we compare445

FLORA with centralized LoRA fine-tuning with446

the same hyperparameters and configurations. (4)447

Standalone: the client fine-tunes the pre-trained448

model locally without federations.449

4.2 Experiment Results450

Homogeneous LoRA. We first evaluate the per-451

formance of FLORA with homogeneous LoRA.452

Specifically, all the clients share the identical LoRA453

rank of 16. As Table 1 depicts, FLORA achieves454

consistently better performance than FedIT across455

all the evaluated models and tasks. This is evident456

in the MT-bench scores for both TinyLlama and 457

Llama models, where FLORA’s performance ex- 458

ceeds that of FedIT by at least 0.2. A notable exam- 459

ple is the MT-bench score for the Llama model fine- 460

tuned with Wizard dataset, where FLORA scores 461

4.21, surpassing FedIT’s 3.07. On the MMLU test 462

set, FLORA outperforms FedIT in all the settings. 463

For example, considering the TinyLlama model 464

fine-tuned with Dolly, FLORA nearly doubles the 465

accuracy achieved by FedIT. While FedIT occa- 466

sionally matches the performance of FLORA, as 467

observed with the Alpaca dataset on MMLU, the 468

performance gap is marginal. Interestingly, in sev- 469

eral scenarios, the performance of FLORA not 470

only outpaces FedIT but also exceeds the perfor- 471

mance achieved by the centralized fine-tuning. This 472

phenomenon, observed in the TinyLlama model 473

fine-tuned with the Alpaca and Wizard datasets, 474

suggests that the smaller data volume on clients 475

for federated fine-tuning may help mitigate overfit- 476

ting, thereby enhancing model generalization. The 477

experiment results of the Llama2 model are pre- 478

sented in Appendix A, which reveal the same trend 479

as that in TinyLlama and Llama. The consistent 480

observations across the three models demonstrate 481

that FLoRA consistently outperforms FedIT in the 482

homogeneous LoRA setting. 483

Heterogeneous LoRA. Compared with FedIT, a 484

distinctive strength of FLORA lies in its inherent 485

capability to accommodate heterogeneous LoRA 486

configurations. In the heterogeneous LoRA set- 487

tings, we apply varied local LoRA ranks, i.e., [64, 488

32, 16, 16, 8, 8, 4, 4, 4, 4], to 10 clients, simu- 489

lating a realistic scenario where clients have het- 490

erogeneous computational resources. As Table 1 491

and Table 4 illustrate, FLORA not only adapts to 492

heterogeneous ranks without performance degrada- 493

tion but also maintains consistency with the results 494

observed in most homogeneous settings. This con- 495

trasts sharply with the performance of FedIT, where 496

the application of zero-padding significantly de- 497

grades its performance on MMLU and MT-bench. 498

It reveals that zero-padding exacerbates FedIT’s 499

inherent noise issues in the aggregation process, 500

posing significant challenges in managing fine- 501

tuning performance. For example, by applying 502

the zero-padding method, the MMLU accuracy 503

of Llama model fine-tuned with Alpaca dataset 504

dramatically drops to 7.97%. The results demon- 505

strate that FLORA not only accommodates hetero- 506

geneous LoRA ranks effectively but also sustains 507

robust training performance compared to baseline 508
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Table 1: Comparison of FLORA with baselines on MMLU and MT-bench. "Homo" represents the settings with
homogeneous LoRA ranks, and "Heter" denote the settings with heterogeneous LoRA ranks.

Foundation Strategy Fine-tuning MMLU MT-bench
model algorithm Dolly Alpaca Wizard Wizard ShareGPT

TinyLlama

Centralized LoRA 27.99 28.03 29.13 2.34 2.79

Homo FedIT 16.35 30.02 42.51 2.92 2.55
FLORA 30.80 31.92 43.87 3.13 2.77

Heter Zero-padding 15.76 29.56 40.79 1.56 1.29
FLORA 18.45 29.69 41.48 3.14 2.71

Llama

Centralized LoRA 35.91 29.18 31.68 4.38 3.99

Homo FedIT 29.67 29.41 33.43 3.07 3.73
FLORA 30.99 29.85 34.26 4.21 3.93

Heter Zero-padding 26.46 7.97 26.98 3.51 3.26
FLORA 28.50 29.54 27.91 4.14 3.64

4.0-2
4.02-0.1
4.04-0.5

(a) TinyLlama - Wizard (b) TinyLlama - ShareGPT (c) Llama - Wizard (d) Llama - ShareGPT

Figure 4: The impact of heterogeneous LoRA ranks across clients. The red bars represent the global model
performance and the blue bars represent the local model performance with varying LoRA ranks.

methods. It facilitates the participation of devices509

with varied computational capacities in heteroge-510

neous federated fine-tuning tasks efficiently. Addi-511

tionally, FLORA can be seamlessly integrated with512

AdaLoRA (Zhang et al., 2023b), which dynami-513

cally adjusts the LoRA rank using on the clients,514

the results are presented in Appendix A.515

The Impact of Scaling Factor. The scaling fac-516

tor, denoted as pk in Equation 12, playing a pivotal517

role in the efficacy of FL (Wang et al., 2023). To518

understand its impact on FLORA, we conduct ex-519

periments investigating how varying scaling factors520

influence the performance of FLORA. Given that521

the default scaling factor is set to 0.1 for all clients,522

assuming 10 clients with equal local dataset sizes523

as per Equation 12, we explored the effects of al-524

ternative scaling factors, namely 0.01, 0.05, and525

0.2. The results are summarized in Figure 5. The526

results do not reveal a clear pattern or optimal scal-527

ing factor for federated fine-tuning across different528

settings. The efficacy of a specific scaling factor529

appears to be contingent upon the dataset, task,530

and model in use. For example, when fine-tuning531

TinyLlama on the Dolly dataset, a lower scaling532

factor of 0.01 yields the highest accuracy, signifi-533

cantly outperforming the 0.1 and 0.2 scaling fac-534

tors. Conversely, the model fine-tuned on Wizard535

dataset demonstrates a preference for a higher scal-536

ing factor of 0.2, achieving the best performance, 537

whereas the lowest scaling factor of 0.01 was the 538

least effective. In the case of the Llama model, 539

larger scaling factors consistently facilitated bet- 540

ter fine-tuning performance. Applying FLORA to 541

Dolly and Alpaca shows the optimal performance 542

with a scaling factor of 0.2. These observations 543

suggest that the choice of an appropriate scaling 544

factor is highly dependent on specific datasets and 545

model characteristics, underscoring the necessity 546

for a tailored approach in federated fine-tuning. 547

The Impact of Heterogeneous LoRA Ranks. 548

Although the above results demonstrate FLORA 549

effectively enables the federated fine-tuning with 550

heterogeneous LoRA, it is worth further investi- 551

gating how the federated fine-tuning improves the 552

local models with various ranks. Motivated by this, 553

we evaluate MT-bench scores for local models with 554

LoRA ranks of 64, 32, 16, 8, and 4, presenting 555

the results in Figure 4. Global model scores are 556

shown in red bars, while local models are in blue, 557

with deeper shades indicating higher ranks. The 558

results show that the global model outperforms all 559

local models, except for a case with the TinyLlama 560

model fine-tuned on the Wizard dataset, where 561

the client with rank 32 slightly exceeds the global 562

model. This demonstrates FLORA’s ability to syn- 563

thesize knowledge from diverse clients effectively. 564
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(e) Llama2 - MT-bench

(a) TinyLlama - MMLU (b) Llama - MMLU

(c) TinyLlama - MT-bench (d) Llama - MT-bench

Figure 5: The impact of the scaling factor on FLORA.
The x-axis is the scaling factor, and the y-axis represents
the MMLU accuracy for (a)-(b) and MT-bench score for
(c)-(d). The results of Llama2 are in Appendix A.

Regarding the LoRA rank’s impact, a rank of 8565

consistently yields strong performance across var-566

ious models and datasets. However, performance567

diverges at extreme ranks; for instance, the TinyL-568

lama model fine-tuned on Wizzard with the LoRA569

rank of 64 underperforms the ones with smaller570

ranks, but the Llama model with the rank of 64571

excels the counterparts with smaller ranks. This572

also demonstrates the heterogeneous rank deploy-573

ment across clients is a realistic setting. These ob-574

servations suggest a potential positive correlation575

between optimal LoRA rank and model capacity,576

motivating further exploration in future research.577

Communication Efficiency. As discussed in578

Section 3, the server needs to send global LoRA579

modules to the clients in FLORA, potentially rais-580

ing concerns about increased communication over-581

head. To quantify this, we compare the commu-582

nicated parameters of full fine-tuning, FedIT, and583

FLORA over three communication rounds. As Fig-584

ure 6 shows, although FLORA transmits slightly585

more parameters than FedIT, it still significantly586

reduces the overhead of full fine-tuning. Despite587

the minor communication increase compared to588

FedIT, FLORA enhances fine-tuning effectiveness589

and supports heterogeneous LoRA ranks, making590

it a preferable solution in federated fine-tuning.591

5 Related Work592

5.1 Parameter-efficient Fine-tuning of LLMs.593

Parameter-efficient fine-tuning aims to reduce the594

number of trainable parameters. BitFit (Zaken595

et al., 2021) fine-tunes only the biases while596

Figure 6: The ratio of communicated parameter num-
bers to full fine-tuning.

achieving similar accuracy with full fine-tuning. 597

Houlsby et al. (2019) and Pfeiffer et al. (2020) ap- 598

ply transfer learning that adds pre-trained adapter 599

layers between transformer blocks. LoRA (Hu 600

et al., 2021) adopts the product of two low- 601

rank matrices to represent the gradient in full 602

fine-tuning, which achieves memory-efficient fine- 603

tuning. AdaLoRA (Zhang et al., 2023b) optimizes 604

LoRA by adaptively allocating the parameter bud- 605

get, which enhances the flexibility of LoRA. 606

5.2 Federated Fine-tuning of LLMs. 607

Federated fine-tuning aims to extract knowledge 608

from multiple on-device datasets while preserving 609

data privacy. FedIT (Zhang et al., 2023a) leverages 610

the FL framework for fine-tuning LLMs. It uses 611

LoRA as the local fine-tuning strategy. However, 612

concerns related to the deficiency in supporting het- 613

erogeneous LoRA limit its utilization. Cho et al. 614

(2023) tries to solve this problem by zero-padding 615

the local LoRA modules. However, this padding 616

process causes additional computing overhead. Be- 617

sides, it separately averages A and B modules, 618

introducing noise to the global model. 619

6 Conclusion 620

In this work, we identified the limitations in current 621

federated fine-tuning methods (e.g., FedIT), and 622

the challenges of applying federated fine-tuning 623

in realistic settings, i.e., the heterogeneous LoRA 624

ranks across clients. To overcome these practical 625

challenges and broaden the applicability of feder- 626

ated fine-tuning, we introduced FLORA to enable 627

the accurate aggregation on heterogeneous LoRA 628

modules using the proposed stack-based LoRA ag- 629

gregation mechanism. Our extensive experiments 630

demonstrate that FLORA outperforms the SOTA 631

method in both homogeneous and heterogeneous 632

LoRA settings. Moreover, our inspiring results 633

provide valuable insights for future research in fed- 634

erated fine-tuning of large language models in a 635

lightweight and accurate manner. 636
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Broader Impacts and Ethics Statement637

The objective of this paper is to improve the ef-638

fectiveness of federated fine-tuning and does not639

involve sensitive information or ethical concerns640

related to AI and society. The experiments sec-641

tion of this paper uses publicly available LLMs642

and text datasets from the Internet with appropriate643

citations of their sources. The proposed algorithm644

can contribute to building up a privacy-preserving645

distributed fine-tuning framework. It encourages646

the research community to consider data privacy in647

fine-tuning LLMs with collected data.648

Limitation649

Our approach has the limitation that the server650

sends the stacked LoRA modules to the client,651

thereby increasing the communication costs. We652

discussed this limitation both theoretically and ex-653

perimentally in Section 3 and Section 4, respec-654

tively. We believe that the increase in communica-655

tion overhead is acceptable under the premise of656

improving fine-tuning effectiveness and accelerat-657

ing convergence. In addition, due to constraints658

on computational resources and time, we only uti-659

lized Llama models in the experimental section.660

We aim to observe experimental phenomena of dif-661

ferent types of LLM federated fine-tuning in future662

research and derive more general principles.663
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A Additional Experiments and Setup781

Details782

A.1 Datasets and Metric783

Dolly dataset. The Dolly dataset is an open-784

source dataset with 15k text samples generated by785

Databricks employees. The topics include brain-786

storming, classification, closed QA, generation, in-787

formation extraction, open QA, and summariza-788

tion (Zhang et al., 2023a).789

Alpaca dataset. The Alpaca dataset contains790

52K instruction-following data used for fine-tuning791

the Alpaca model (Taori et al., 2023). This dataset792

is believed to be diverse enough for fine-tuning793

LLMs.794

Wizard dataset. The Wizard dataset we use 795

is the training data of the WizardLM model. It 796

includes 70k pairs of instructions and outputs. The 797

Wizard dataset generally features more complex 798

instructions compared to the other datasets. Its fine- 799

tuning results are typically better, which has been 800

confirmed by our experiments, especially those 801

evaluated by the MT-bench scores. 802

ShareGPT dataset. The ShareGPT dataset is 803

a collection of approximately 52,000 conversa- 804

tions scraped via the ShareGPT API. The conver- 805

sations in ShareGPT include both user prompts 806

and responses from ChatGPT. In our experiments, 807

we split the conversation dataset into question- 808

answering pairs. 809

MMLU test set. The MMLU dataset is a widely 810

used question-and-answer dataset in LLM fine- 811

tuning. It has 14,024 questions in 57 different 812

subjects, which can evaluate the logical reasoning 813

capabilities of LLMs. We selected 1444 samples 814

from the dataset for a quick and comprehensive 815

evaluation. 816

MT-bench evaluation. MT-bench is a set of 817

challenging multi-turn open-ended questions for 818

evaluating chat assistants (Zheng et al., 2023). It 819

evaluates the performance of LLMs by using the 820

GPT-4 API to score the LLM-generated conver- 821

sations. LLMs that behave more like GPT-4 will 822

receive higher scores. 823

A.2 Hyperparameter Details 824

In all our experiments, the learning rate of fine- 825

tuning is set to 0.0003; the batch size is 128 and the 826

micro batch size is 16. Due to the large dataset 827

and model sizes selected, federated fine-tuning 828

consumes significant computational resources and 829

time. Therefore, we opted for fewer fine-tuning 830

rounds (even just one round) to ensure that we 831

could observe enough data. Additionally, the 832

MMLU dataset is prone to overfitting on these large 833

datasets, resulting in a decrease in accuracy. There- 834

fore, fewer training rounds ensure the effectiveness 835

of the observed phenomena. Table 2 shows the 836

fine-tuning rounds and local epochs we selected. 837

A.3 Supplementary Experiment Results 838

Integrating FLORA with AdaLoRA All the ob- 839

servations about the impact of rank on the model 840

performance, despite being influenced by data 841

heterogeneity, still manage to reveal the impor- 842

tance of selecting an appropriate LoRA rank for 843

a specific task. Thus, some algorithms such as 844
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Table 2: The communication rounds and local epochs
on each experiment setting. The Rounds column rep-
resents the number of communication rounds and the
Epochs column represents the number of local fine-
tuning epochs in each round.

Foundation Datasets Rounds Epochs

TinyLlama

Dolly 3 1
Alpaca 3 1
Wizard 3 1

ShareGPT 1 1

Llama

Dolly 3 3
Alpaca 3 3
Wizard 1 1

ShareGPT 1 1

Llama2 Wizard 1 1
ShareGPT 1 1

Table 3: The performance of FLORA + AdaLoRA.
AdaLoRA can reduce the rank while preserving the
fine-tuning effectiveness.

Foundation Fine-tuning Sum of MT-bench
model algorithm local ranks score

TinyLlama FLORA 160 3.13
FLORA+AdaLoRA 120 3.14

Llama FLORA 160 4.21
FLORA+AdaLoRA 131 4.10

Llama2 FLORA 160 4.17
FLORA+AdaLoRA 140 4.25

AdaLoRA (Zhang et al., 2023b) are designed to845

adaptively adjust the LoRA rank to optimize the846

model performance and save computational re-847

sources. With our support for heterogeneous LoRA,848

we can flexibly utilize AdaLoRA with adaptive849

LoRA ranks. We conducted corresponding exper-850

iments to demonstrate that we can use AdaLoRA851

to further improve the efficiency of federated fine-852

tuning. We implement AdaLoRA on each client853

to adjust LoRA modules during local fine-tuning.854

The results are shown in Table 3. The "Sum of855

local ranks" column means the sum of all local856

LoRA rank values after fine-tuning. Since our857

FLORA does not adjust the rank, its value is 160,858

the same as the initial value. On the other hand,859

AdaLoRA dynamically adjusts the rank to maxi-860

mize training effectiveness and minimize rank val-861

ues to save resources. From Table Table 3, we862

can see that AdaLoRA on TinyLlama and Llama863

reduced the sum of local ranks to 120 and 131864

from 160 respectively. We further conclude that865

FLORA+AdaLoRA can further reduce the train-866

able parameter count while ensuring comparable867

Table 4: Compare FLORA with baselines in Llama2.

Strategy Fine-tuning Wizard ShareGPTalgorithm
Centralized LoRA 4.24 3.99

Homo FedIT 4.03 3.87
FLORA 4.22 3.96

Heter Zero-padding 4.01 3.70
FLORA 4.17 3.91

Figure 7: The impact of scaling factor on Llama2 model.

or even improved performance compared to simply 868

using LoRA on the clients. Our support for such 869

rank adaptation further demonstrates the effective- 870

ness and applicability of the FLORA approach. 871

Experiment results of Llama2. Due to the in- 872

herently strong performance of Llama2, the im- 873

provement in the QA dataset is not significant. 874

Therefore, we fine-tuned Llama2 using the Wiz- 875

ard and ShareGPT datasets. Overall, Llama2 ex- 876

hibits similar experimental results to Tinyllama 877

and Llama. Table 4 shows the comparison between 878

FLORA and our baselines. In the homogeneous 879

and heterogeneous settings, the MT-bench scores 880

of Wizard and ShareGPT all surpass those in FedIT 881

and Zero-padding. As for the impact of scaling fac- 882

tors in Figure 7, Llama2 has a similar trend to the 883

Llama-7b model, in which higher scaling factors 884

exhibit better fine-tuning performance. 885

B Convergence Analysis 886

In this section, we demonstrate the convergence of 887

FLORA following the standard convergence anal- 888

ysis in Li et al. (2019). The FedAvg algorithm 889

exhibits convergence to the global optimum at a 890

rate of O(1/T ) for non-IID (independent and iden- 891

tically distributed) data under full client participa- 892

tion. This convergence is based on four assump- 893

tions mentioned in Li et al. (2019): 894

Assumption 1. Each local objective function 895

is L- smooth, that is, for all x and y, Fk(x) ≤ 896

Fk(y) + (x− y)T∇Fk(y) +
L
2 ∥x− y∥22 897

Assumption 2. Each local objective function is 898
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µ - strongly convex that is, for all x and y, Fk(x) ≥899

Fk(y) + (x− y)T∇Fk(y) +
µ
2∥x− y∥22900

Assumption 3. The variance of stochas-901

tic gradients in each client is bounded:902

E∥∇Fk(W
(t)
k , ξ

(t)
k ) − ∆W

(t)
k ∥2 ≤ σ2

k for903

k = 1, ...,K, where ξ
(t)
k is the subset of training904

data randomly sampled from k-th client.905

Assumption 4. The expected squared norm906

of stochastic gradients is uniformly bounded:907

E∥∇Fk(W
(t)
k , ξ

(t)
k )∥2 ≤ G2 for all k = 1, ...,K908

and t = 1, ..., T , where ξ(t)k is the subset of training909

data randomly sampled from k-th client.910

For the convergence analysis of FLORA, we911

introduce an additional assumption 5 tailored to912

the specific dynamics of LoRA fine-tuning and its913

relation to traditional SGD-based full fine-tuning:914

Assumption 5. (Unbiased LoRA Gradient).915

The updates applied to LoRA modules by each916

client serve as unbiased estimators of the gradi-917

ent that would be directly computed on the base918

model through SGD: B(t+1)
k A

(t+1)
k −B

(t)
k A

(t)
k =919

η(t)∇Fk(W
(t)
k |ξ(t)k ). Note that we define the920

model parameter in t-th round by W(t).921

Theorem 1. Based on Assumptions 1-5, we922

choose k = L
µ , γ = max{8k,E}. The local learn-923

ing rate αk
rk

= 2
µ(γ+t) . Then, we can deduce that924

the expectation of the fine-tuning error in FLORA925

can be bounded by:926

δ(T ) ≤ 2k

γ + T
(
M

µ
+ 2L∥W(1) −W∗∥2), (13)927

where δ(T ) is the fine-tuning error in T -th round.928

δ(T ) and M are defined as follows:929

δ(T ) = E[F (w(T−1) +B(T )A(T ))]− F ∗,

M =

K∑
k=1

p2kσ
2
k + 6LΓ + 8(E − 1)2G2.

(14)930

where L, µ, σk, and G are defined by the assump-931

tions 1-4. Γ is defined by Γ = F ∗ −
∑K

k=1 pkF
∗
k932

for quantifying the degree of non-iid. This the-933

orem posits that as the number of rounds T ap-934

proaches infinity, the expectation of the fine-tuning935

error δ(T ) converges to zero. In contrast, FedIT936

deviates from the FedAvg model updating rule as937

depicted in Equation 2, introducing non-gradient938

noises through its averaging process. Therefore, it939

fails to achieve convergence at the rate of O(1/T )940

While this deviation does not invalidate FedIT’s941

utility in federated fine-tuning, it significantly im-942

pairs its convergence rate and overall effectiveness.943
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