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Abstract

The emergence of In-Context Learning (ICL) in
LLMs remains a remarkable phenomenon that is
partially understood. To explain ICL, recent stud-
ies have created theoretical connections to Gradi-
ent Descent (GD). We ask, do such connections
hold up in actual pre-trained language models?
We highlight the limiting assumptions in prior
works that make their setup considerably different
from the practical setup in which language models
are trained. For example, their experimental verifi-
cation uses ICL objective (training models explic-
itly for ICL), which differs from the emergent ICL
in the wild. Furthermore, the theoretical hand-
constructed weights used in these studies have
properties that don’t match those of real LLMs.
We also look for evidence in real models. We ob-
serve that ICL and GD have different sensitivity
to the order in which they observe demonstrations.
Finally, we probe and compare the ICL vs. GD
hypothesis in a natural setting. We conduct com-
prehensive empirical analyses on language mod-
els pre-trained on natural data (LLaMa-7B). Our
comparisons of three performance metrics high-
light the inconsistent behavior of ICL and GD
as a function of various factors such as datasets,
models, and the number of demonstrations. We
observe that ICL and GD modify the output dis-
tribution of language models differently. These
results indicate that the equivalence between ICL
and GD remains an open hypothesis and calls for
further studies.

1. Introduction
In-Context Learning (ICL) is an emergent behavior in Large
Language Models (LLMs), which allows them to recognize
patterns among demonstrations provided as prompts and
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extend these patterns to similar tasks (Brown et al., 2020).
This fascinating on-the-fly learning behavior has motivated
ample studies to better of understand its dynamics.

In particular, a notable line of work tries to explain ICL
via Gradient Descent (GD) (Garg et al., 2022; Zhang et al.,
2023). This connection is interesting because GD has been
around for decades and is well-understood, while ICL is
a recent phenomenon that has emerged somewhat surpris-
ingly (Wei et al., 2022), and is not fully understood. There-
fore, a solid formal bridge between the two approaches
would be an exciting finding as it can open new doors for
understanding ICL.

Hypothesis 1. For any Transformer weights resulting
from self-supervised pretraining and for any well-defined
task, ICL is algorithmically equivalent to GD (whole
model or sub-model).

In this work, we revisit the hypothesis on the equivalence of
ICL and GD, i.e., whether these two approaches to “learn-
ing” are functionally equivalent. Consider hypothesis 1 that
defines a universal notion of equivalence between the ICL
and GD. It defines equivalence as a property that must hold
for any Transformer model with parameters that emerge nat-
urally from pretraining on massive unlabeled data (Brown
et al., 2020), and is applicable for any choice of well-defined
tasks (Srivastava et al., 2023). For example, (Dai et al., 2023)
claims that ICL is equivalent to implicit finetuning.

Hypothesis 2. For a given well-defined task, there exist

Transformer weights such that ÎCL is algorithmically
equivalent to GD (whole model or sub-model).

emergent

whole model 
updates

sub-model 
updates

not emergent

      Hyp1                    Hyp2

However, other recent
works have focused on a
different claim outlined
in hypothesis 2, which
focuses on in-context
learning behavior that is
not emergent (denoted
as ÎCL). This deviates
from hypothesis 1 in the
family of models (differences in training setups) and family
of tasks, as we will see in detail in §3. This hypothesis
articulates a tangential target: being able to simulate GD

1



Do pretrained Transformers Learn In-Context by Gradient Descent?

on a given task with some (trained or hand-constructed)
Transformer weights. This is mainly concerned with
the expressivity of Transformer architecture (Merrill
et al., 2022; Chiang et al., 2023), ignoring how it may
emerge from pre-training. A few notable works use
this hypothesis to provide a theoretical argument for the
ICL≈GD claim. Specifically, (Akyürek et al., 2022; von
Oswald et al., 2023) show (via a different set of arguments)
that Transformer-based architectures (Vaswani et al.,
2017), for appropriate choices of parameters, can process
their in-context observations in a way that is equivalent
to running gradient updates on an implicit sub-model’s
parameters using the same demonstrations.

These claims are made under strong assumptions, which
raises the question of whether they hold in practice. Specif-
ically, do the recent results focusing on hypothesis 2
provide any (even partial) evidence for hypothesis 1?
Although these works highlight interesting abilities of the
Transformer architecture, their claims about the equivalence
between ICL and GD are too strong for real-world models.

We divide our study into three parts. In the first part (§3),
we show that previous works that study the ICL≈GD hy-
pothesis make assumptions that are hard to justify in the
real world (hypothesis 2). Then, we use order-sensitivity as
an argument against the equivalence between ICL and GD
(§4). Finally, we put these claimed equivalences to the test
(§5) by presenting a comprehensive empirical study. Our
experiments reveal that ICL operates and performs differ-
ently from GD (fine-tuning the whole model or intuitive
sub-models) on real-world language models across a variety
of model sizes, datasets and the number of demonstrations.

In summary,

1. We provide arguments against existing theories of equiv-
alence between ICL and GD, highlighting the gap be-
tween their experimental setup and real-world trans-
formers.

2. We empirically evaluate the equivalence between ICL
and GD in the real-world setting using a variety of
metrics and find that the two function quite differently.

3. We call for more nuanced studies that maintain parallels
with real-world LLMs so their inferences about ICL can
be practically useful.

2. Background
We start with our problem setting (§2.1). We use “sam-
pling” to emphasize a priori unknown problem parameters.
Specifically, our computational setup consists of sampling
(choosing) a learning problem (task) and correspondingly
sampling (training) a pretrained model. We then cover the
two learning setups studied for equivalence (§2.2), followed

by the treatment of ICL≈GD hypothesis in recent literature.

2.1. Sampling tasks and models

Sampling from the space of well-defined tasks. Con-
sider a family of functions (tasks) F such that each (f :
X → Y) ∈ F , maps inputs in the domain X to the
domain Y . A particular function f ∈ F elicits a sam-

pling process x
f∼ X which samples input from X such

that they are compatible with f . For example, in nat-
ural language, F defines the space of all tasks that in-
volve mapping from language input to language output,
like sentence completion, summarization, QA, translation,
etc. However, each task f (e.g., translating English to
French) would require specific inputs (English and not,
say, German) pertinent to the task. The goal is to find
models that learn (imitate) f by conditioning on a set

of examples Sf =
{
Sf
i = (xi, f(xi))

∣∣∣f ∼ F , xi
f∼ X

}
.

The model’s competence is then evaluated using a test set
Sf

test = {(xt
i, f(x

t
i))}, which is disjoint from Sf . During

the evaluation, only the inputs in Sf
test (which we denote as

Xf
test) are shown to the model.

Sampling from the space of pretrained models. LLMs
like GPT and LLaMa (Brown et al., 2020; Touvron et al.,
2023) are pretrained using the Causal Language Modelling
(CLM) objective (Radford et al., 2019) which is more com-
monly understood as next-word prediction objective (Liu
et al., 2018). This process of pretraining elicits a family of
modelsM depending primarily on the data distribution and
characteristics of sequences, and additionally on the choice
of architectures, initializations, etc. Formally, we denote
this model MΘ0 with pretrained weights Θ0, which is one
model sampled from a much larger space of low perplexity
pretrained models: MΘ0

∼M.

2.2. Standard Learning Setups

We review the standard treatment of ICL and GD and intro-
duce the relevant notation.

In-context learning (ICL). We follow the dominant def-
inition of In-context Learning (ICL) (Brown et al., 2020),
which involves conditioning pretrained LLMs with a hand-
ful of examples of task f . Given these demonstrations, we
want the LLM to perform f on new inputs. Formally, given
demonstrations Sf = {Sf

i }Ni=1 and a test input xt
i ∈ Xtest,

the model MΘ0 generates a label yt when presented as
MΘ0

(Sf
1 ◦ S

f
2 ◦ ...S

f
N ◦ xt

i) or MΘ0
(x1 ◦ f(x1) ◦ x2 ◦

f(x2)...xN ◦ f(xN ) ◦ xt
i), where ◦ is a delimiter like new-

line which separates the instances. MΘ0 produces a confi-
dence distribution ∈ R|V | over the vocabulary set V .

2



Do pretrained Transformers Learn In-Context by Gradient Descent?

Gradient Descent (GD). Gradient Descent is an itera-
tive numerical optimization algorithm used to minimize a
given objective with respect to model parameters. Given a
model with initial parameters Θ0 and a differentiable loss
function J ∈ Y×Y → R, the algorithm updates the param-
eters toward the negative gradient ∇Θ0

J . GD is a standard
optimizer used to train neural networks including LLMs.
Although there are variants, like SGD and Adam, that work
well in practice, we focus our study on vanilla GD, which
calculates the gradients and takes a step (learning rate η) of
fixed size. In the context of learning from a set of demon-
strations, pretrained models MΘ0

∼M are fine-tuned on a
particular task f using GD by updating model parameters.
Formally, parameter updates on the model MΘ0 are per-
formed for some epochs using the available demonstrations
Sf = {Sf

i = (xi, f(xi))}Ni=1 as follows:

Θ1 = Θ0 − η∇Θ

 1

N

∑
(xi,f(xi))

∈Sf

J (MΘ0(xi), f(xi))


(1)

After this process, the model is expected to perform this
task given a new test sample directly as input: MΘ1

(xt
i).

3. The limiting assumptions in the study of
ICL≈GD hypothesis

emergent

whole model 
updates

sub-model 
updates

not emergent

Ⓐ Ⓑ Ⓒ

Figure 1: C is discussed in
§3. A , B in §4, §5;

We highlight how recent
studies drift from these
conventional definitions
of ICL and GD (§2.2)
to support another form
of equivalence. Specif-
ically, they put restric-
tive assumptions on both
the space of models M
and the space of tasks F
when training Transform-
ers. Additionally, they
impose impractical assumptions on model weights needed
to prove their notion of equivalence between ICL and GD.
We discuss why these deviations from real practice are non-
trivial and offer little support for the equivalence between
ICL and GD in practical settings. Fig.1 encapsulates the
theme of our arguments discussed in detail next.

3.1. Real LLMs are not pretrained with ICL objective

The widely-known ability of ICL emerges in pre-trained
models (M) that are obtained by training on CLM objective
with natural language text as described in §2.1. Sequences
in the pretraining corpus of natural language have a com-
plicated relationship with the family of tasks F that they

can perform using ICL. Understanding this relationship is
an active area of research (cf. §6). However, we know that
the pretraining corpus does not exclusively and explicitly
contain sequences pertinent to F . We refer to this training
of Transformers with “natural” data (not necessarily natural
language), which does not explicitly train it to perform ICL,
as training with the CLM objective.

However, recent works use a different set of objectives. In
Akyürek et al. (2022); von Oswald et al. (2023); Garg et al.
(2022), the models are trained using the ICL objective:

argminΘ E
f∼F̂
xi

f∼X

[
L
(
f(xi),MΘ(x1◦f(x1)◦x2◦f(x2)...◦xi)

)]
.

(2)

This deviates from the real settings in at least two aspects:

Changing the space of tasks. This objective trains the
model on the same restricted task distribution that it is tested
on via ICL. We call this ÎCL, or the ability to perform
ICL by training on ICL objective (cf. Figure 1) and the
corresponding family of tasks F̂ . For example, if the target
task to learn is linear regression, the model is trained on
the sequence of linear regression instances. Therefore, this
setup does not necessarily capture the essence of how ICL
emerges in LLMs, which are not trained to perform ICL on
a family of tasks.

Changing the space of models. Moreover, optimizing for
this objective elicits a family of models M̂ that is embedded
with the inductive bias of expecting a constant structure in
the sequence: a series of (x, y) pairs followed with a query
input. Combined with the training on sequences specifically
related to a restricted family of tasks F̂ , this space of models
has different characteristics from the space of modelsM
defined in §2.1.

The relationship between these sets of models is neither
clear nor discussed in these recent works. Therefore, these
works essentially equate ÎCL with ĜD ( C in Figure 1).
Although restricted to a stricter family of tasks like Linear
Regression is reasonable for analysis, it is important to
discuss these distinctions between the setups. Using the
term Transformers to refer to both these spaces of models
and using the term ICL for ÎCL are both misleading.

3.2. Hand-constructed weights and their limits

In this section, we analyze the weight matrices constructed
by von Oswald et al. (2023) and Akyürek et al. (2022). As
no method is provided to arrive at these weights by training,
we place these hand-constructed weights under the umbrella
of ÎCL. Next, we show how they are hard to justify for
real-world language models (e.g., LLaMa-7B).

We first re-write the weight matrices of Transformers con-
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structed by von Oswald et al. (2023). Their proposition
states that given a reference linear model W , there exist key,
query, value, and projection matrices (WK ,WQ,WV , P )
of a Transformer such that a forward pass in that Trans-
former is identical to a gradient descent step on W , i.e.,
ej ← (xj , yj) + (0,−∆Wxj) = (xi, yi) + PV KT qj .

The weight update ∆W is calculated by the mean
squared error loss on the in-context samples as ∆W =
−η∇WL(W ) = − η

N

∑N
i=1(Wxi − yi)x

T
i .

They construct WK = WQ =

(
Ix 0
0 0

)
,WV =(

0 0
W0 −Iy

)
and P = η

N I , where Ix, Iy and I are identity

matrices of size Nx, Ny and Nx +Ny respectively. Using
these matrices, they achieve the dynamics of a gradient step
in the forward pass of a Linear Self Attention Layer (without
softmax). The construction by Akyürek et al. (2022) is more
complex and requires multiple steps to simulate one step of
GD on one in-context sample. However, the construction
is similar in that it is similarly sparse (see section C.4 in
Akyürek et al. (2022)’s appendix). These constructions raise
multiple concerns about their scaling to real-world models.

How does the model arrive at the correct P? In the con-
struction by von Oswald et al. (2023), P is trivially assigned
the value η

N I which would change with the number of in-
context samples. There is no insight into how a Transformer
model would arrive at this information and how this forma-
tion behaves without any in-context samples. An edge case
is N = 0 (no demonstrations), which surprisingly makes
terms in P go to infinity.

Are LLM weights this sparse? The weight construction
by von Oswald et al. (2023) has a lot of extremely sparse
weight matrices. To be precise, WK and WQ would be
matrices with Nx terms equal to 1 in the top left of the
diagonal with the rest of (Nx +Ny)

2 −Nx terms equal to
zero. For LLaMa, the embedding size of the token vector,
Nx = Ny = 4096. This means that the sparsity ratio (SR)

in the weight matrices should be ((Nx+Ny)
2−Nx)

(Nx+Ny)2
> 99.99%.

The sparsity ratio in WV should be close to ≈ 75% if we
assume each element in W0 to be non-zero. In practice,
the sparsity ratio is much lower for real-world models like
LLaMa and GPT-J. As precisely 0 values for weights are
unlikely, we measured the sparsity ratio in WK ,WQ, and
WV by measuring weights less than a threshold (δ). Figure 2
shows the average sparsity value across layers for LLaMa.
Overall, real-world pretrained Transformers have a much
lower sparsity ratio than the assumptions.

How does ICL evolve during training? From the given
constructions, models need to arrive at very specific weights
to be able to perform gradient descent on in-context sam-
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Figure 2: We show that the sparsity ratio in LLaMA (av-
eraged across layers with standard deviation shown with
shade) is much less than required by previous works to im-
plement GD. More plots in Appendix C.

ples, but in practice, we observe models develop, retain, and
improve this ability over time in training when the param-
eters change significantly (A detailed experimental setup
is deferred to Appendix B). In Figure 3, we look at how
the ability to perform ICL evolves compared with how the
model parameters change over time (for each check-pointed
GPT-J model). We measure the average parameter changes
across all layers across WK ,WQ, and WV . This reveals
that real Transformers do not settle on one set of weights
(as required by previous works for performing GD) but con-
tinue to evolve throughout training. Although this result is
an average over all the weights, certain groups of parameters
(as constructed in previous works) are unlikely to remain
constant throughout training. Therefore, ICL emerges in
real LLMs, not just for a single choice of parameters but
a family of parameters. Hence, to prove the equivalence
between GD and ICL, showing it for a single choice of
parameters is not enough.

3.2 3.4 3.6 3.8
Number of pre-training steps (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

5

10

15

20

25

Pa
ra

m
et

er
 d

iff
er

en
ce

 (1
e-

4)

ICL accuracy
Parameter Diff.

Figure 3: GPT-J’s ability to do ICL (on AGNews) does not
change much over a time cross-section of training while the
parameters change steadily.
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4. ICL is likely not equivalent to order-stable
algorithms

While we established some limiting assumptions in previous
studies, it remains unclear whether ICL≈GD hypothesis is
actually invalid for real LLMs ( A or B in Figure 1). For
two algorithms to be equivalent, they must also have the
same functional behavior. Namely, they should respond
identically to the changes in the ordering of the instances.
In this section, we discuss the discrepant sensitivity of ICL
and GD to the order in which they process training instances
(demonstrations).

Let’s begin with the definition of algorithmic equivalence.

Definition 1 (Algorithmic equivalence to ICL). Consider an
optimization algorithm A that modifies a pretrained model
MΘ0

∈ M, using demonstrations S = {(xi, f(xi)}Ni=1 of
a well defined task f ∼ F , i.e., ΘS ← A(S,MΘ0

). We call
A “equivalent” to ICL if and only if the following holds:

MΘ0
(S1◦S2◦...SN ◦xt) = MΘS

(xt) ∀ xi, x
t f∼ X . (3)

The following theorem establishes the equivalence of order
sensitivity between ICL and any algorithm A equivalent to
it:

Theorem 1 (Algorithmic equivalence implies the same or-
der sensitivity). Given a pretrained model MΘ0

∈ M,
an algorithm A equivalent to ICL, and demonstrations
S = {(xi, f(xi)}Ni=1 of a well defined task f ∼ F , let
σA, σB denote two orders of elements in S, such that
ΘσA

← A(σA,MΘ0) and ΘσB
← A(σB ,MΘ0). Then,

for ∀ xt f∼ X , we have

MΘ0(σA ◦ xt)−MΘ0(σB ◦ xt)︸ ︷︷ ︸
The order sensitivity of ICL

= MΘσA
(xt)−MΘσB

(xt)︸ ︷︷ ︸
The order sensitivity of algorithm A

,

Proof. The proof trivially follows from definition 1. We

know that, ∀ xt f∼ X we have:

MΘ0
(σA ◦ xt) = MΘσA

(xt)

MΘ0(σB ◦ xt) = MΘσB
(xt).

Simply subtracting these two terms proves the theorem.

4.1. ICL is likely not GD based on order inconsistency

Let’s assume that GD is equivalent to ICL (arrow A in Fig-
ure 1). We show that this assumption leads to a contradiction
due to their inconsistent order sensitivity.

GD is order-stable. We know that GD is performed on a
batch of samples from the training distribution, as seen in
Equation 1. It does not matter which order the samples are
presented. GD calculates the gradient using the average loss
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Figure 4: Order Sensitivity (standard deviation in output
probabilities over the vocabulary) of ICL and GD (and its
variants SGD and Adam) as measured on the LLaMa-7B on
AGNews. The std is taken across 10 different orders of 8
ICL demos. More results are deferred to Appendix A.

across all samples and is therefore agnostic of the order in
which they are calculated. With respect to theorem 1, ifA =
GD, MΘσA

= MΘσB
or MΘσA

(xt)−MΘσB
(xt) = 0.

ICL and GD show different order-sensitivity. For ICL
to be equivalent to any order-stable algorithm like GD, it
must also be order-stable. However, previous research (Lu
et al., 2022; Hahn & Goyal, 2023) has demonstrated that
ICL is highly sensitive to the order of in-context samples.
This is also easy to see because decoder-only Transformers
exhibiting ICL only predict a token based on what they have
seen before in the input. A different order of samples would
change the behavior of the model. Therefore, ICL can not be
equivalent to GD (arrow A in Figure 1) as claimed by (Dai
et al., 2023). These conclusions may change upon notable
technological shifts (e.g., the architecture of LLMs). We
also empirically verify this phenomenon by comparing the
output distributions produced by ICL and GD (Figure 4).
Details are deferred to Appendix A.

4.2. ICL is likely not ĜD based on order inconsistency

Gradient Descent on implicit sub-model (ĜD ).
(Akyürek et al., 2022; von Oswald et al., 2023) also hy-
pothesize the existence of implicit sub-models inside the
weights of Transformer models. These sub-models (param-
eterized to perform linear regression) are constructed into
the weights of the Transformer. When the Transformer is
presented with in-context samples, it can simulate steps of
gradient descent on the regression loss (using these sam-
ples) with respect to the sub-model parameters. Formally,
for a sub-model with weights W0, the Transformer model
MΘ0

= MΘ0\W0,W0
with fixed parameters (Θ0\W0) would

optimize the weights of the inbuilt implicit sub-model (W0)
when presented with in-context samples and make its final
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prediction using updated weights (W1). We refer to this
version of GD as ĜD.

Now we define the equivalence of ICL to an algorithm that
updates the implicit model only.

Definition 2. Consider an optimization algorithm A that
modifies the implicit sub-model weights W0 of a pre-
trained model MΘ0 ∈ M, using demonstrations S =
{(xi, f(xi)}Ni=1 of a well defined task f ∼ F , i.e., WS ←
A(S,W0). We call A “equivalent” to ICL if and only if the

following holds, given ∀ xi, x
t f∼ X :

MΘ0\W0,W0
(S1 ◦S2 ◦ ...SN ◦xt) = MΘS\WS ,WS

(xt) (4)

and Θ0 \W0 = ΘS \WS , i.e., the pretrained model only
updates by the sub-models weights.

When the model with implicit sub-model weights W0 is
provided with in-context examples, it arrives at updated
weights WS using A without changing any other weights.
This is equivalent to when the model starts with sub-model
weights WS and is provided no in-context examples, so
no update happens on the weights via A. Now, based on
Definition 2 and Theorem 1, the following corollary about
the equivalence of order sensitivity between ICL and an
equivalent algorithm A also holds:

Corollary 1. For a pretrained model MΘ0 ∈M, an algo-
rithm A equivalent to ICL (according to definition 2) and
two orders σA, σB of elements in the demonstration set S,

∀ xt f∼ X ,

MΘ0\W0,W0
(σA ◦ xt)−MΘ0\W0,W0

(σB ◦ xt)

= MΘσA
\WσA

,WσA
(xt)−MΘσB

\WσB
,WσB

(xt) (5)

ICL and ĜD show different order-sensitivity. Let’s
assume that ĜD is equivalent to ICL (arrow B in Fig-
ure 1) according to definition 2. According to the
same argument as in §4.1, WσA

= WσB
or ΘσA

\
WσA

,WσA
= ΘσB

\WσB
,WσB

or MΘσA
\WσA

,WσA
(xt)−

MΘσB
\WσB

,WσB
(xt) = 0. This again implies that for ICL

to be equivalent to ĜD, it must be order-stable. Again, em-
pirical evidence in today’s LLMs shows that ICL is not
order-stable and hence not equivalent to ĜD (arrow B in
Figure 1). These conclusions may change in future.

What about variants of GD? We note that the construc-
tion of Akyürek et al. (2022) allows for order sensitivity
in GD as the update is performed on samples one by one
instead of the batch update performed by von Oswald et al.
(2023). Although it is unclear which order is used to perform
this update, we compared the order-sensitivity of ICL with
SGD and Adam (Figure 4) and found that ICL is still signif-
icantly more sensitive to order than SGD/Adam. Therefore,

it is unlikely that ICL is equivalent to even variants of GD.
We provide more order-sensitivity results in Appendix A.

5. Empirical evalutation of ICL vs. GD/ĜD in
large pre-trained language models

This section provides an empirical evaluation of ICL≈GD
equivalence in realistic settings. Specifically, we take a
language model pretrained on natural data and use it with
ICL demos to get ICL outputs. Then, we use the same
demos to fine-tune the model using GD and ĜD, and get
their respective output (without ICL demos). Next, we
compare these outputs on various metrics to see how well
ICL and GD/ĜD align in practice.

5.1. Experimental settings

Model and benchmarks. We choose LLaMa (7B) (Tou-
vron et al., 2023) as our primary model for evaluation. Our
model-size comparative studies use the GPT family of mod-
els (as discussed later §5.2). For benchmarking, we select
the following datasets: AGNews (Zhang et al., 2015), CB
(De Marneffe et al., 2019), SST-2 (Socher et al., 2013), and
RTE (Dagan et al., 2005).

Experimental setup. We evaluate ICL with varying
demonstration sizes N ∈ {1, 2, 4, 8} and for GD, we fine-
tune the models with the same corresponding ICL demon-
strations, experimenting with a variety of learning rates
{1e-4, 5e-4, 1e-5, 5e-5} over 200 epochs, which ensures the
convergence of model. Specifically, the objective function
of GD is J =

∑
(x,y)∈S Lclm(y;x), where Lclm(y;x) is the

CLM loss of y, given x as the prefix. It is noteworthy that
we only use gradients of the label and not the whole prefix
to update the model. This is done to keep settings similar
to the existing formalisms around ICL≈GD equivalence,
where only output loss is calculated.

For ĜD, it is not trivial to identify the implicit sub-model as
described in §4.2. Moreover, it is computationally infeasi-
ble to experiment on all possible subsets of parameters to
identify the sub-model. Therefore, we use the hypotheses in
Akyürek et al. (2022); von Oswald et al. (2023), to experi-
ment with intuitive subsets. According to von Oswald et al.
(2023) the implicit model lies in WV of the Transformer
while the probing experiments in Akyürek et al. (2022) sug-
gest that this iterative optimization happens in top layers of
the Transformers. This guides us to choose two intuitive
subsets to simulate ĜD:

1. WV of a single deep layer.

2. WV of a single middle layer (for comparison).

Overall, we compare ICL to GD, ĜD (mid), and ĜD (deep).
Exact details about this setup are deferred to Appendix E.
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(a) Accuracy comparison of ICL and GD variants.
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(b) Token Overlap of ICL with GD variants.

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

la
p 

Co
sin

e 
Si

m
ila

rit
y GD (whole model training)

GD(lr=1e-3)
GD(lr=1e-4)
GD(lr=5e-3)
GD(lr=5e-4)
ICL

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
GD (1-mid-layer training)

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
GD (1-deep-layer training)

(c) Overlap Cosine Similarity of ICL with GD variants.

Figure 5: Comparison of ICL and GD/ĜD on our three metrics for the AGNews dataset (with 4 ICL demos). ICL lines in
Token Overlap and Overlap Cosine Similarity are calculated between two different ICL output distributions (with different
order of demonstrations in the prompt). A substantial gap between ICL and GD is highlighted by the gray diagonal lines.

Evaluation metrics. Previous works often use standard
performance metrics (accuracy and loss) based on the token
with the maximum probability from label set Y (Srivastava
et al., 2023; Wei et al., 2021). We argue that these metrics do
not paint the whole picture. Even if two sorting algorithms
reach the same result, their dynamics may differ. For this
purpose, we propose to look at relative uplifting of tokens in
the output distribution. This nuanced analysis presents finer-
grained information. A match/mismatch at the distributional
level sheds more light on the dynamics of the algorithm.
Therefore, we use the following metrics for analysis.

Accuracy: It is calculated using the target labels and pre-
dicted tokens with highest probability mass from the whole
vocabulary V (rather than just the label set Y) as it better
evaluates the model’s understanding of the task. It is defined
as 1

|Stest|
∑

(xt
i,y

t
i)∈Stest

1{yti = argmaxM(C ◦ xt
i)}, where

M is the model, C is the context and Stest is the test set.

Token Overlap: This is a relative metric which compares
two output distributions over the vocabulary V . These dis-
tributions could be either produced by the same model on
different inputs (in case of ICL: different number of demos,
order of demos, etc.) or different models on the same inputs
(ICL (with context) vs GD (fine-tuned, without context)).
We sort the tokens based on their probability mass for each
token and select the top-K tokens (denoted by T 1

K and T 2
K ).

The token overlap is calculated as 1
K |T

1
K ∩ T 2

K |. We use
K = 10 in our experiments (most of the probability mass
typically lies in top-10 tokens).

Overlap Cosine Similarity (OCS): Token overlap evaluates
each of the top-K tokens with the same weight. With OCS,
we measure how well the tokens agree individually. This
metric is computed on the confidence distribution of top-
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K tokens to avoid trivial values (most vocabulary tokens
have low probabilities, making OCS ≈ 1). We denote the
intersection of the two sets T 1

K , T 2
K by O = T 1

K ∩ T 2
K and

use the following formula:

OCS =

∑
t∈O p1(t) · p2(t)√

(
∑

t∈O p1(t)2) · (
∑

t∈O p2(t)2) · (K − |O|)
(6)

Intuitively, this quantifies the cosine distance between the
overlapping tokens and assumes all the other tokens have
zero overlap, therefore normalizing by

√
(K − |O|) (when

K = |O|, we divide by
√
1).

We evaluate every metric across three random seeds and
compute the mean and std. Each random seed is used to
sample demos for use in ICL experiments. The same demos
are used to fine-tune models for GD/ĜD. Note that for Token
Overlap and Overlap Cosine Similarity, the values for ICL
are calculated between predictions made for the same set of
demos but presented in a different order in the prompt.

5.2. Results

Gap between ICL and GD. Figure 5 shows our findings
via plots of the three metrics, comparing ICL to various
types of GD and /ĜD). We only show results for one dataset
and one demonstration set size here. Other corresponding
results are deferred to Appendix D and E due to space
constraints. We see a clear gap between them ICL and all
variants of GD and ĜD, across all three metrics, suggesting
that these learning mechanisms likely work differently.

Comparing ICL vs. GD, ICL vs. ICL & GD vs. GD.
In Figure 5, we see that the Token Overlap as well as OCS
are consistently smaller between ICL and GD variants com-
pared to ICL and ICL (with different demonstration order).
For completeness, we conducted another experiment on
AGNews where we calculated these relative metrics for dif-
ferent GD model checkpoints (say lr=1e-4 at epoch 20 and
1e-5 at epoch 200). Apart from the early epoch checkpoints
(when most models have not changed much), most pairs had
small Token Overlap and OCS. This shows how drastically
GD based learning changes the model’s behavior. With ICL–
ICL comparisons, we see significantly higher values which
point to a different functional behavior.

Why does GD perform poorly? As a trend in most
datasets and setup variations, ICL outperforms GD and
improves faster with increasing size of demonstration set
(please see accuracy plots in Appendix D and E). This un-
derlines our understanding about GD which tends to overfit
when trained with only few samples. For illustration, we
fine-tuned the model with GD using 512 demos and saw a
boost in the performance (Table 1). Note that we can not
compare this setting (with many demonstrations) with ICL

Table 1: Performance of GD (accuracy) increases with more
samples, as expected. GD with many more demos obtains
comparable performance to ICL with fewer demos, high-
lighting yet another empirical discrepancy.

DemosDataset 8 512

AGNews 0.42 0.69
CB 0.39 0.72

SST-2 0.49 0.75
RTE 0.36 0.65

because of the limited context window of LLaMa. Similar
to our previous arguments, this also highlights that when a
model performs ICL, it does not simply utilize demos like
GD, but possibly recognizes the task from the demos and
uses its prior knowledge about it to make predictions (Pan
et al., 2023).

Additional results on other datasets, with different numbers
of ICL demos are deferred to Appendix D (GD) and Ap-
pendix E (ĜD). We also present other results about the
impact of model size in Appendix F.

6. Related Work
Functional explanations. Many works offer functional
explanations of ICL (Liu et al., 2022; Olsson et al., 2022;
Schlag et al., 2021). Among these, explanations via
GD (Garg et al., 2022; Zhang et al., 2023; Ahn et al., 2024)
are most pertinent to our work. Notably, Akyürek et al.
(2022) showed that Transformers can implement learning
algorithms (gradient descent or closed-form OLS) for lin-
ear regression problems and empirically showed that the
optimality of algorithms implemented experience a phase
shift with increasing model size. Raventós et al. (2024)
discovered similar results about algorithm discovery and
phase shifts with increasing task diversity. Dai et al. (2023)
similarly showed a dual between attention layers and linear
layers optimized using gradient descent. Li et al. (2023)
showed such an equivalence on softmax regression tasks.
Finally, von Oswald et al. (2023) showed a similar con-
struction with a simpler Linear Self-Attention Transformer,
claiming that Transformers learn in-context using gradient
descent on linear regression problems. Notably, Akyürek
et al. (2022) found this GD behavior applicable only in
small models, with bigger models exhibiting Bayes optimal
learning behavior (like Ordinary Least Squares for linear
regression). In contrast, von Oswald et al. (2023) claimed
that bigger Transformers also implement GD with added
data transformations.

Most of this line of work shows how Transformers have
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the ability to implement such algorithms resulting from
training on ICL objectives (hypothesis 2) and not that real-
world models pretrained on natural data develop this ability
(hypothesis 1).

Distributional explanations. This body of work explains
ICL via distributional frameworks and the relevant proper-
ties of LLMs (Xie et al., 2021; Wies et al., 2024). Xie et al.
(2021) explained ICL as implicit Bayesian inference, which
implicitly maps a given set of demonstrations to an appropri-
ate latent concept (task) learned via pretraining on a massive
unsupervised corpus. Similarly, Hahn & Goyal (2023) the-
orized that natural language pretraining data consists of
compositional structure, which leads to the emergent abil-
ity of in-context learning, while Chan et al. (2022) showed
that this might be because of distributional properties of
the training distribution (like burstiness). These are all rea-
sonable explanations of how ICL works, although they are
somewhat tangential to the focus of this study.

Empirical studies. Various empirical works study ICL
under various settings (Brown et al., 2020; Zhao et al., 2021;
Min et al., 2022; Mishra et al., 2022; Han et al., 2023; Wang
et al., 2023). To note a few, Srivastava et al. (2023) famously
benchmarked ICL for many tasks and models. Perez et al.
(2021); Lu et al. (2022) showed the sensitivity of ICL to
the choice of demonstrations and their orderings. Shin et al.
(2022); Razeghi et al. (2022) showed the sensitivity of ICL
performance to the frequency and size of the relevant pre-
training corpus. Shen et al. (2023) treat the ICL prompt
selection as an optimization problem. Pan et al. (2023) dis-
entangle task recognition and task learning in ICL, which
is analyzed in theory recently by Lin & Lee (2024). These
works highlight numerous ways the ability of models to
perform ICL changes under different conditions but do not
attempt to explain how it functions.

7. Discussion and Conclusion
This work intends to clarify the distinction between natu-
rally emergent ICL (commonly seen in LLMs pretrained
on natural text data); hypothesis 1) vs. task-specific ICL
as a result of training Transformers for ICL (hypothesis 2).
While recent work has shown that Transformers have the
expressive capacity to simulate gradient-descent in their for-
ward pass, this does not immediately imply that real-world
models actually do simulate it. We hope this work moti-
vates alternative approaches that reveal the true nature of
in-context learning in pretrained LLMs.

We recognize that hypothesis 1 establishing a universal
equivalence between ICL and GD may be too strong. A
more reasonable hypothesis might involve certain restric-
tions, such as the target task’s distributional properties or

the number of demonstrations. However, the specifics of
such conditions are unclear, so we have opted for a general
statement.

Besides using in-context demonstrations, recent work has
also discovered other ways in which in-context prompts en-
hance the performance of LLMs. For example, appending
prompts like “Think step by step” (Kojima et al., 2022) or
“Take a deep breath and think” (Yang et al., 2023) before
asking a task-specific question has been shown to improve
zero-shot performance of LLMs. Such evidence may sug-
gest that an optimization algorithm like GD cannot fully
describe the ability of ICL. Understanding ICL dynamics
requires a more holistic theory which considers the various
nuances of this remarkable learning paradigm.

8. Limitations and Future Opportunities
Because of its computationally infeasible nature, we were
not able to do an exhaustive search over all sub-models and
pinpoint which subset of parameters could correspond to
sub-models that could get updated in ĜD. This could be an
interesting avenue of research. Moreover, we do not provide
alternate explanations of how ICL works functionally. As
ICL is hard to study directly in LLMs, it is natural to turn to
simpler settings. But it is imperative that we keep the setups
analogous so that inferences from one can be extended to
the other.

Impact Statement
It is evident that LLMs and their remarkable ability to learn
in context have far-reaching impacts in various applications.
Understanding the nuances of ICL and its exact functional
behavior will uncover the true strengths and limits of LLMs,
which is essential to use them reliably. A growing line of
research shows theoretical expressivity of transformers to
simulate gradient descent by training them on ICL objec-
tives. But it is important to differentiate this from the natural
ICL that emerges in language models, so that progress to-
wards understanding its true nature is made in the right
direction.

Acknowledgements
This work is supported in part by ONR grant N00014-24-
1-2089, and generous gifts from Amazon and the Allen
Institute for AI. We are grateful to the anonymous reviewers
for constructive feedback for improving this work. We also
thank Anqi Liu, Jason Eisner, Holden Lee, Tianjian Li and
the anonymous reviewers for their insightful discussions.
GPU machines for conducting experiments were provided
by ARCH Rockfish cluster at Johns Hopkins University
(https://www.arch.jhu.edu).

9

https://www.arch.jhu.edu


Do pretrained Transformers Learn In-Context by Gradient Descent?

References
Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-

formers learn to implement preconditioned gradient de-
scent for in-context learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2024. URL
https://arxiv.org/abs/2306.00297.
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Supplementary Material
A. Order sensitivity of ICL and GD-based algorithms
We present empirical evidence highlighting the distinct sensitivities of GD-based algorithms and ICL with respect to data
order. Specifically, we assess the variation in confidence assigned to vocabulary V by the model across different data
orderings.

Experimental setup We evaluate the order sensitivity of GD-based algorithms using the GD, SGD, and Adam optimizers.
The chosen learning rates are 1e-4, 1e-5, 5e-4, and 5e-5. Our experiments are conducted on the AGNews dataset using the
LLaMa-7B model. We set the number of demonstrations to 8. GD training continues for 200 epochs to avoid issues of
non-convergence, but is evaluated at every 20 epochs. The number N of random orders {σi}Ni=1 is set as 10 (as the total
number of orders are combinatorial).

Evaluation metric (Sen) As for the evaluation metric of sensitivity (Sen), it is defined as follows: Given a set of confidence
vectors {pi}Ni=1 resulting from distinct data orders {σi}Ni=1, we calculate the standard deviation for each dimensionality
within V using the samples {pi}Ni=1. Subsequently, the variances for individual tokens are aggregated.

Results In Figure 4, we presented a high level overview of our findings. In Figure 6, we present it in detail. First, ICL
exhibits a much more pronounced data order sensitivity than the three GD-based algorithms. Second, as GD training
progresses, its sensitivity diminishes. And third, this happens with both GD and ĜD. Overall, these findings underscore
distinct behaviors of ICL and GD-based algorithms with respect to data order. This suggests a disparity between ICL and
GD, as shown in Theorem 1.

Ablation results

Batch size: In Figure 7, we show that a similar trend is seen when we ablate the batch size.

Model: This difference in order sensitivity is not restricted to the LLaMa model. In Figure 8, we show an experiment with
the AGNews dataset, where the order sensitivity of ICL is similarly higher than GD variants for other LLMs (like Qwen-7B
and GPT-J).
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(a) Order sensitivity of ICL and GD when batchsize = 1
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(b) Order sensitivity of ICL and ĜD when batchsize = 4

Figure 6: The order sensitivity (y-axis represents Sen (appendix A)) of ICL and GD (SGD and Adam) as the batchsize
changes.
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Figure 7: The order sensitivity (y-axis represents Sen (appendix A)) of ICL and ĜD (SGD and Adam) as the batchsize
changes. From left to right, three figures refer to cases bs=1, 2, 4.
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Figure 8: The order sensitivity (y-axis represents Sen (appendix A)) of ICL and GD (SGD and Adam) on Qwen-7B and
GPT-J. The dataset is AGNews, and the batchsize is set as 4.
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B. How does ICL evolve during training?
Experimental setup. We chose intermediate checkpoints from GPT-J, ranging from 310k to 380k pretraining steps. Using
these varied pretraining steps, our approach simulates the fine-tuning process. Specifically, we focus on two metrics to
quantify the magnitude of fine-tuning: (1) Step Gap: This represents the difference in pretraining steps between selected
checkpoints. (2) Parameter Gap: In line with the assumptions made by Oswald et al. (von Oswald et al., 2023), we compute
the average differences for each parameter within the WK , WQ, and WV matrices across different checkpoints. To evaluate
the ICL capacity of the models, we conducted tests on AGNews, SST-2, CB, and RTE using eight demonstrations.

Results. The results are shown in Figure 9, from where we can observe that there is no significant gap between ICL
capacity of different checkpoints, indicating that continued fine-tuning (pretraining) will not substantially hurt the ICL
performance.
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Figure 9: The ability of GPT-J to perform ICL does not change much over a time cross-section of training while the
parameters change steadily.
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C. Layer-wise sparsity rate of LLMs
We show the sparsity ratio of each layer of LLMs. Specifically, in our paper, we have used LLaMa-7B and GPT-J are main
experiments, so we show their sparsity rate of WK , WQ, and WV in each layer. The results are shown in Figure 10. It is
interesting that although WK and WQ have almost constant sparsity in all layers, WV has slightly decaying sparsity.
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Figure 10: The sparse ratio of LLaMa-7B and GPT-J in each layer. From left to right, three figures represent the cases of
WK , WQ, and WV .
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D. Additional results on ICL vs GD comparisons
Here we present all comprehensive plots on ICL vs GD on AGNews and other datasets.

The case of N = 1. We see an almost similar accuracy between ICL and one GD variant in all datasets, which is an
interesting finding. There are several reasons why this does not directly imply ICL≈GD:

1. There are different GD variants that correspond to the ICL performance in each dataset. This implies the absence of a
standard GD-like algorithm that would work on all problems.

2. Other nuanced metrics show that there is a stark difference in the output distributions of ICL and all GD variants.

3. The jump in performance from N = 1 to N = 2 is typically much more pronounced for ICL than GD. This hints at
differences in their functional behavior.
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Figure 11: Comparison of ICL and GD for the AGNews dataset, with increasing number of demonstrations.
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Figure 12: Comparison of ICL and GD for the SST dataset, with increasing number of demonstrations.
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Figure 13: Comparison of ICL and GD for the CB dataset, with increasing number of demonstrations.
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Figure 14: Comparison of ICL and GD for the RTE dataset, with increasing number of demonstrations.
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E. Empirical results on ICL vs ĜD

Here, we present corresponding results on ICL vs ĜD.

How are sub-models selected for optimization? Since ĜD conducts updates only on the subset of the model and
enumerating all the possible subsets of model parameters is infeasible, we select intuitive subsets of parameters to simulate
ĜD.

We use the hypotheses in (Akyürek et al., 2022; von Oswald et al., 2023), to experiment with intuitive subsets of models.
In particular, according to von Oswald et al. (2023) the implicit model lies in WV of the Transformer while the probing
experiments in (Akyürek et al., 2022) suggest that this iterative optimization happens in top layers of the Transformers.
Therefore, we provide experiments with two intuitive subsets to simulate ĜD: finetuning (1) WV of a single deep layer, and
(2) WV of a single middle layer.

Results of ICL vs. ĜD (Deep layer) Following a similar experimental setup in §5, we compare the differences between
ICL and ĜD. We randomly select one layer from the last four layers from LLaMa (29-32), repeat the experiments four times
and plot the mean and std. The results are shown in Figure 15 - Figure 18, and we can observe similar gaps between ICL
and ĜD.
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Figure 15: Comparison of ICL and ĜD for the AGNews dataset, with increasing number of demonstrations. ĜD is simulated
by optimizing on one random deep layer of LLaMa.
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Figure 16: Comparison of ICL and ĜD for the SST dataset, with increasing number of demonstrations. ĜD is simulated by
optimizing on one random deep layer of LLaMa.
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Figure 17: Comparison of ICL and ĜD for the CB dataset, with increasing number of demonstrations. ĜD is simulated by
optimizing on one random deep layer of LLaMa.
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Figure 18: Comparison of ICL and ĜD for the RTE dataset, with increasing number of demonstrations. ĜD is simulated by
optimizing on one random deep layer of LLaMa.

Results of ICL vs. ĜD (Middle layers) This time, we randomly select one layer from the middle layers of LLaMa
(16-20). The results are shown in Figure 19 - Figure 22, we can observe similar gaps between ICL and ĜD.
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Figure 19: Comparison of ICL and ĜD for the AGNews dataset, with increasing number of demonstrations. ĜD is simulated
by optimizing on one random middle layer of LLaMa.
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Figure 20: Comparison of ICL and ĜD for the SST dataset, with increasing number of demonstrations. ĜD is simulated by
optimizing on one random middle layer of LLaMa.
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Figure 21: Comparison of ICL and ĜD for the CB dataset, with increasing number of demonstrations. ĜD is simulated by
optimizing on one random middle layer of LLaMa.
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Figure 22: Comparison of ICL and ĜD for the RTE dataset, with increasing number of demonstrations. ĜD is simulated by
optimizing on one random middle layer of LLaMa.

F. Impact of model capacity on the ICL vs GD.
We also investigated the influence of model size on the gap between ICL and GD. Specifically, we fix the dataset to AGNews,
N = 8, and select GPT2-XL (Radford et al., 2019), GPT-NEO (Black et al., 2021), GPT-J (Wang & Komatsuzaki, 2021)
as models of choice to conduct ICL vs GD experiments. Note that the model capacity is ranked as follows: LLAMA (7B)
>GPT-J (6B)>GPT-NEO (2.7B)>GPT2-XL (1.5B). The results are shown in Figure 23, from where we can see that the
gap does not change significantly as the model size increases from GPT2-XL to LLAMA.
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Figure 23: Comparison of ICL and GD for the AGNews dataset as model size varies.
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