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Abstract

We present a meta-algorithm for learning a posterior-inference algorithm for re-
stricted probabilistic programs. Our meta-algorithm takes a training set of prob-
abilistic programs that describe models with observations, and attempts to learn
an efficient method for inferring the posterior of a similar program. A key feature
of our approach is the use of what we call a white-box inference algorithm that
analyses the given program sequentially using multiple neural networks to compute
an approximate posterior. The parameters of these networks are learnt from a
training set by our meta-algorithm. We empirically demonstrate that the learnt
inference algorithm generalises well to programs that are new in terms of both
parameters and model structures, and report cases where our approach achieves
greater test-time efficiency than alternatives such as HMC.

1 Introduction

The development of performant probabilistic programming systems[Goodman et al., 2008, Wood
et al., 2014, Mansinghka et al., 2014, Minka et al., 2018, Narayanan et al., 2016, Salvatier et al.,
2016, Carpenter et al., 2017, Tran et al., 2016, Ge et al., 2018, Bingham et al., 2018] also revealed
the difficulty of achieving efficiency and universality simultaneously, and the need for equipping
probabilistic programming languages (PPLs) with mechanisms for customising inference or learning
algorithms to a given domain. In fact, recent PPLs include constructs for specifying conditional
independence in a model [Bingham et al., 2018] or defining proposals [Ritchie et al., 2015, Siddharth
et al., 2017, Bingham et al., 2018, Tran et al., 2018, Cusumano-Towner et al., 2019], all enabling users
to help the algorithms. In this paper, we present a meta-algorithm for learning a posterior-inference
algorithm itself from a given set of restricted probabilistic programs. The meta-algorithm aims at
constructing a customised inference algorithm for the given set of models, while ensuring universality
to the extent that the constructed algorithm generalises to similar but unseen programs.

The distinguished feature of our approach is the use of what we call a white-box inference algorithm,
which is equipped with multiple neural networks, one for each type of atomic command in a PPL, and
computes an approximate posterior for a given program by analysing individual atomic commands
in it sequentially using these networks. For instance, our white-box inference algorithm regards the
program in Fig. 1 as a sequence of the five atomic commands, initialises its internal state h ∈ Rm with
h0, and transforms the state over the sequence. The internal state h is the encoding of an approximate
posterior at the current program point, which corresponds to an approximate filtering distribution of a
state-space model. The update of this state for each atomic command is directed by neural networks.
Our meta-algorithm trains the parameters of these networks by trying to make the inference algorithm
compute accurate posterior approximations over a training set of probabilistic programs.

We discuss related work [Andrieu and Thoms, 2008, Hoffman and Gelman, 2014, Wang et al.,
2018, Gong et al., 2019, Wu et al., 2020, Gordon et al., 2019, Iakovleva et al., 2020, Minka, 2001,
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mass ∼ N (5, 10); // log of the mass of Milky Way
g1 ∼ N (mass × 2, 5); obs(N (g1, 1), 10); // observed velocity vel1=10 of the first satellite galaxy
g2 ∼ N (mass +5, 2); obs(N (g2, 1), 3) // observed velocity vel2=3 of the second satellite galaxy

Figure 1: Probabilistic program for a model for Milky Way and its two satellite galaxies. The obs
statements refer to the observations of (unnamed) random variables vel1 and vel2.

Wainwright and Jordan, 2008, Jitkrittum et al., 2015, Gershman and Goodman, 2014, Le et al., 2017,
Paige and Wood, 2016, Stuhlmüller et al., 2013, Kingma and Welling, 2013, Mnih and Gregor, 2014,
Rezende et al., 2014, Ritchie et al., 2016, Marino et al., 2018, Zaremba and Sutskever, 2014, Bieber
et al., 2020, Reed and de Freitas, 2016] in Appendix A.

Our contributions are as follows: (i) we present a white-box posterior-inference algorithm, which
works directly on model description and can be customised to a given model class; (ii) we describe a
meta-algorithm for learning the parameters of the inference algorithm; (iii) we empirically analyse
our approach with different model classes, and show the promise as well as the remaining challenges.

2 Our Approach

Setup Our results assume a simple PPL without loop and with a limited form of conditional statement.
The syntax of the language is given by the following grammar, where r represents a real number, z
and vi variables storing a real, and p the name of a procedure taking two real-valued parameters and
returning a real number:

Programs C ::= A | C1;C2

Atomic Commands A ::= z ∼ N (v1, v2) | obs(N (v0, v1), r) | v0 := if (v1 > v2) v3 else v4
| v0 := r | v0 := v1 | v0 := p(v1, v2)

Programs in the language are constructed by sequentially composing atomic commands. The last
atomic command v0 := p(v1, v2) is a call to one of the known deterministic procedures, which may
be standard binary operations such as addition and multiplication, or complex non-trivial functions
that are used to build advanced, non-conventional models. When p is a standard binary operation,
we use the usual infix notation and write, for example, v1 + v2, instead of +(v1, v2). We provide
full discussion of (our choice of) the PPL in Appendix B. The formal semantics of the PPL is in
Appendix C. Our white-box inference algorithm aims at computing the approximate posterior and
marginal likelihood estimate for a given program C, when the unnormalised density pC (denoted by
C) has a finite non-zero marginal likelihood and, as a result, a well-defined posterior density.

White-Box Inference Algorithm Consider, for presentation, programs that sample n-many latent
variables z1, . . . , zn and use at most m-many variables (m ≥ n). Let V be [0, 1]m, the space of
the one-hot encodings of those m variables, and P the set of procedure names. Given a program
C = (A1; . . . ;Ak), our white-box inference algorithm computes an approximate posterior and a
marginal likelihood estimate for C by sequentially processing the Ai’s. The computation for each Ai
is directed by one of the neural networks defined below, according to the type of Ai:
nnsa,φ1

:V3×Rs→Rs, nnob,φ2
:V2×R×Rs→Rs, nn if,φ3

:V5×Rs→Rs,
nnc

:=,φ4
:V×R×Rs→Rs, nnv

:=,φ5
:V2×Rs→Rs, nnp,φp

:V3×Rs→Rs for p ∈ P,
nnde,φ6

:Rs→ (R×R)n, nn intg,φ7
:V2×R×Rs→R,

where φ1:7 and φp for p ∈ P are network parameters. The top six networks are for the six types of
atomic commands, nnde,φ6 is a decoder that maps the states h to the probability densities (means
and variances in our setup) over latent variables, and nn intg,φ7

is used when the algorithm updates
the marginal likelihood estimate for an observe statement obs(N (v0, v1), r). The full details for
nn intg,φ7

and the derivation of the marginal likelihood are provided in Appendix D.

Given a program C = (A1; . . . ;Ak) that draws n samples (and so uses latent variables z1, . . . , zn),
the algorithm approximates the posterior and marginal likelihood of C as follows:

INFER(C) = let (h0, Z0) = (~0, 1) and (hk, Zk) = (INFER(Ak) ◦ . . . ◦ INFER(A1))(h0, Z0) in
let ((µ1, σ

2
1), . . . , (µn, σ

2
n)) = nnde,φ6

(hk) in return
(∏n

i=1N (zi | µi, σ2
i ), Zk

)
,

where INFER(Ai) : Rs × R→ Rs × R picks an appropriate neural network based on the type of Ai,
and uses it to transform h and Z:
INFER(obs(N (v0, v1), r))(h, Z) = (nnob(v0:1, r, h), Z ×nn intg(v0:1, r, h)),
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Figure 2: Average training and test losses under three random seeds. The y-axes are log-scaled. The
increases in later epochs of Fig. 2c were due to only one or a few test programs out of 50.
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Figure 3: Comparisons of predicted and reference marginal posteriors recorded before training and
after 2K epochs.

INFER(v0 := if (v1>v2) v3 else v4)(h, Z) = (nn if(v0:4, h), Z),

INFER(v0 := r)(h, Z) = (nnc
:=(v0, r, h), Z), INFER(z∼N (v1, v2))(h, Z) = (nnsa(z, v1:2, h), Z),

INFER(v0 := v1)(h, Z) = (nnv
:=(v0:1, h), Z), INFER(v0 := p(v1, v2))(h, Z) = (nnp(v0:2, h), Z).

where v0:k refers to the sequence of the one-hot encodings of variables v0, . . . , vk.

Meta-Learning Parameters Given a training set of programs D = {C1, . . . , CN}, we learn the
parameters φ = (φ1:7, (φp)p∈P) by solving the following optimisation problem:1

argmin
φ

∑
C∈D

KL[πC(z1:n)||qC(z1:n)] +
λ

2
(NC − ZC)2

where λ > 0 is a hyper-parameter, NC is the marginal likelihood
∫
pC(z1:n)dz1:n for pC , the

next πC(z1:n) is the normalised posterior pC(z1:n)/NC for C, and the last qC and ZC are the
approximate posterior and marginal likelihood estimate computed by the inference algorithm (that is,
(qC(z1:n), ZC) = INFER(C)). We optimise the objective by stochastic gradient descent, where the
gradients can be approximated by sampling techniques. We describe the full algorithm in Appendix E.

3 Empirical Results

This section describes our empirical results. See Appendix F for the full list of our model classes,
Appendix G for the detailed experimental setup, and Appendix N for limitations and future work.

Generalisation to New Model Parameters and Observations We evaluated our approach on six
model classes: Gaussian (gauss), two hierarchical (hierl and hierd), clustering (cluster), Milky Way
(milky and milkyo), and Rosenbrock models (rb) (see Appendix F.1). For each model class, we used
400 programs to meta-learn an inference algorithm, and applied the learnt algorithm to 50 unseen
test programs. We measured the average test loss over the 50 test programs, and also compared the
marginal posteriors predicted by our learnt inference algorithm with the reference marginal posteriors
that were computed analytically, or approximately by HMC using 500K samples after 50K warmups.
In case of HMC, we computed the marginal sample means and standard deviations using one of
the 10 independent, converged Markov chains. All training and test programs were automatically
generated by a random program generator. The training setup is described in Appendix G.1.

1Strictly speaking, we assume that the marginal likelihood of any C ∈ D is non-zero and finite.
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Figure 4: Comparisons of test-time efficiency in terms of moments estimation.

Fig. 2 shows the training and test losses for gauss, hierl, and milky under three random seeds. The
losses for the other model class are in Appendix H. The training loss was averaged over the training
set and over the 8 batch updates. The test loss was averaged over the test set. The decrease of training
losses led to the downturns of the test losses. The later part of Fig. 2c shows cases where the test
loss increases. This was because the loss of only a few programs in the test set (of 50 programs)
became large; the losses of the rest remained small. Fig. 3 compares, for 10 test programs in hierl,
the reference marginal posteriors (blue) and their predicted counterparts (red) by the learnt inference
algorithm instantiated before training and after 2K epochs. It shows that the learnt inference algorithm
predicts the reference posteriors precisely for most of the variables. We observed similar patterns for
the other cases, except for cluster and rb (see Appendix I).

Generalisation to New Model Structures We let two kinds of model structure vary across programs:
the dependency (or data-flow) graph for the variables of a program and the position of a nonlinear
function nl(x) = 50/π × arctan(x/10) in the program. We specifically considered two classes of
models, ext1 (four-variable models that are grouped into 12 types according to the dependency graph
and the position of nl) and ext2 (seven-variable models that are grouped into five types according to
the dependency graph). See Appendix F.2 for full description. We ran seven experiments for ext1;
three evaluated generalisation to unseen dependency graphs, and four evaluated generalisation to
unseen positions of nl. We ran five experiments for ext2, each of which evaluated generalisation to
an unseen dependency graph. All the experiments were repeated three times under different random
seeds, and so the total numbers of experiment runs were 21 and 15 for ext1 and ext2, respectively.
The rest of the setup was similar to the generalisation-to-new-parameters case, and we detail the full
setup in Appendix G.2.

In 17 runs (out of 21) for ext1, the test losses stabilised or reduced as the training losses decreased,
even when the test losses were high and fluctuated in earlier training epochs. In 8 runs (out of
15) for ext2, the test losses were stabilised as the training losses decreased; in 4 runs out of the
other 7, the test losses increased only slightly. Appendix J and K show all the losses. In terms
of predicted posteriors, we observed highly accurate predictions in 8 runs of ext1. For ext2, the
predicted posteriors were precise in 7 runs. Overall, the learnt algorithms generalised to unseen types
of models well or fairly well in many cases.

Test-Time Efficiency in Comparison with Alternatives We considered three-variable models
(mulmod) where two latent variables follow normal distributions and the other stores the value of
the function mm(x) = 100 × x3/(10 + x4). The models are grouped into three types defined by
their dependency graphs and the positions of mm in the programs (see Appendix F.3). We ran
our meta-algorithm using 600 programs from all three types using importance samples (not HMC
samples). Then for 60 test programs from the last model type, we measured ESS and the sum of
second moments along the wall-clock time using three approaches: importance sampling (IS-pred;
ours) with the predicted posteriors as proposal, importance sampling (IS-prior) with prior as proposal,
and HMC. As the reference sampler, we used importance sampling (IS-ref) with prior as proposal
using 5M samples. All the approaches were repeated 10 times.

We report the results for a program (see Appendix L) in the test set. Fig. 4a and 4b show the moments
estimated by HMC and IS-{pred, prior}, respectively, in comparison with the same (across the two
figures) reference moments by IS-ref. The estimates by IS-pred (red) converged to the reference
(green) more quickly (18ms) than those by HMC (orange; over 84s) and IS-prior (blue; higher
variance). We obtained similar results for ESS, and the results are in Appendix M.
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A Related Work

The difficulty of developing an effective posterior-inference algorithm has motivated active research
on adapting key components of an inference algorithm. Techniques for adjusting an MCMC pro-
posal [Andrieu and Thoms, 2008] or an HMC integrator [Hoffman and Gelman, 2014] to a given
inference task were implemented in popular tools. Recently, methods for meta-learning these tech-
niques themselves from a collection of inference tasks have been developed [Wang et al., 2018, Gong
et al., 2019]. The meta-learning approach also features in the work on stochastic variational inference
(VI) where a variational distribution receives observations for each inference task and is trained with
a collection of datasets of observations [Wu et al., 2020, Gordon et al., 2019, Iakovleva et al., 2020].
For a message-passing-style VI, such as expectation propagation [Minka, 2001, Wainwright and
Jordan, 2008], Jitkrittum et al. [2015] studied the problem of learning a mechanism to pass a message
for a given single inference task. A natural follow-up is to meta-learn such a mechanism from a
dataset of multiple inference tasks that can generalise to unseen models. Our white-box inference
algorithm can be viewed as a message-passing-style VI that can meta-learn the representation of
messages and a mechanism for passing them for given probabilistic programs.

Amortised inference and inference compilation [Gershman and Goodman, 2014, Le et al., 2017,
Paige and Wood, 2016, Stuhlmüller et al., 2013, Kingma and Welling, 2013, Mnih and Gregor, 2014,
Rezende et al., 2014, Ritchie et al., 2016, Marino et al., 2018] are closely related to our approach
in that they also attempt to learn a form of a posterior-inference algorithm. However, the learnt
algorithm by them and that by ours have different scopes. The former is designed to work for unseen
inputs or observations of a single model, while the latter for multiple models with different structures.

The idea of running programs with learnt neural networks also appears in the work on training
neural networks to execute programs [Zaremba and Sutskever, 2014, Bieber et al., 2020, Reed and
de Freitas, 2016]. As far as we know, however, we are the first to frame the problem of learning a
posterior-inference algorithm as the one of learning to execute.

B Full Discussion about the Choice of the PPL

Programs C ::= A | C1;C2

Atomic Commands A ::= z ∼ N (v1, v2) | obs(N (v0, v1), r) | v0 := if (v1 > v2) v3 else v4
| v0 := r | v0 := v1 | v0 := p(v1, v2)

Programs in the language are constructed by sequentially composing atomic commands. The language
supports six types of atomic commands. The first type is z ∼ N (v1, v2), which draws a sample from
the normal distribution with mean v1 and variance v2, and assigns the sampled value to z. The second
command, obs(N (v0, v1), r), states that a random variable is drawn from N (v0, v1) and its value is
observed to be r. The next is a restricted form of a conditional statement that selects one of v3 and v4
depending on the result of the comparison v1 > v2. The following two commands are different kinds
of assignments, one for assigning a constant and the other for copying a value from one variable to
another.

We permit only the programs where a variable does not appear more than once on the left-hand side
of the := and ∼ symbols. This means that no variable is updated twice or more, and it corresponds to
the so-called static single assignment assumption in the work on compilers. This restriction lets us
regard variables updated by ∼ as latent random variables. We denote those variables by z1, . . . , zn.

We use this simple language for two reasons. First, the restriction imposed on our language enables
the simple definition of our white-box inference algorithm. For instance, the language supports
only a limited form of conditional statements and restricts the syntactic forms of atomic commands;
the arguments to a normal distribution or to a procedure p should be variables, not more general
expression forms such as addition of two variables. As we will show soon, this restriction makes it
easy to exploit information about the type of each atomic command in our inference algorithm; we
use different neural networks for different types of atomic commands in the algorithm. Second, the
language is intended to serve as an intermediate language of a compiler for a high-level PPL, not the
one to be used directly by the end user. The compilation scheme in, for instance, [van de Meent et al.,
2018] from high-level probabilistic programs with general conditional statements and for loops to
graphical models can be adopted to compile such programs into our language.
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Programs with recursion or while loops cannot generally be translated into our intermediate language,
since such programs may go into infinite loops while the programs in our language always terminate.
Programs with for loops and general branches can in theory be translated into a less expressive
language such as ours. For example, van de Meent et al. [2018] explain a language called FOPPL
(Section 2), which has for loops and branches, and the translation of FOPPL into graphical models
(Section 3). We think that these graphical models can be translated into programs in our language. Of
course, this does not mean that the learnt inference algorithm would interact well with the compilation;
the interaction between compilation and inference in the context of meta-learning is something to be
explored in future work.

C Formal Semantics of the PPL

Probabilistic programs in the language denote unnormalised probability densities over Rn for some n.
Specifically, for a program C, if z1, . . . , zn are all the variables assigned by the sampling statements
zi ∼ N (. . .) in C in that order and C contains m observe statements with observations r1, . . . , rm,
then C denotes an unnormalised density pC over the real-valued random variables z1, . . . , zn:

pC(z1:n) = pC(x1:m = r1:m|z1:n)×
n∏
i=1

pC(zi|z1:i−1)

where x1, . . . , xm are variables not appearing in C and are used to denote observed variables. This
density is defined inductively over the structure of C.

Here z1, . . . , zn are all the variables assigned by the sampling statements zi ∼ N (. . .) in C in
that order, the program C contains m observe statements with observations r1, . . . , rm, and these
observed random variables are denoted by x1, . . . , xm. The goal of this section is to provide the
details of our statement. That is, we describe the formal semantics of our probabilistic programming
language, and from it, we derive a map from programs C to unnormalised densities pC .

To define the formal semantics of programs in our language, we need a type system that tracks
information about updated variables and observations, and also formalises the syntactic conditions
that we imposed informally in the main text. The type system lets us derive the following judgements
for programs C and atomic commands A:

(S, V, α) `1 C : (T,W, β), (S, V, α) `2 A : (T,W, β),

where S and T are sequences of distinct variables, V and W are sets of variables that do not appear
in S and T , respectively, and α and β are sequences of reals. The first judgement says that if before
running the program C, the latent variables in S are sampled in that order, the program variables
in V are updated by non-sample statements, and the real values in the sequence α are observed in
that order, then running C changes these three data to T , W , and β. The second judgement means
the same thing except that we consider the execution of A, instead of C. The triples (S, V, α) and
(T,W, β) serve as types in this type system.

The rules for deriving the judgements for C and A follow from the intended meaning just explained.
We show these rules below, using the notation @ for the concatenation operator for two sequences
and also set(S) for the set of elements in the sequence S:

(R,U, α) `1 C1 : (S, V, β) (S, V, β) `1 C2 : (T,W, γ)

(R,U, α) `1 (C1;C2) : (T,W, γ)

(S, V, α) `2 A : (T,W, β)

(S, V, α) `1 A : (T,W, β)

z 6∈ set(S) ∪ V v1, v2 ∈ set(S) ∪ V
(S, V, α) `2 (z ∼ N (v1, v2)) : (S@[z], V, α)

v0, v1 ∈ set(S) ∪ V
(S, V, α) `2 obs(N (v0, v1), r) : (S, V, α@[r])

v0 6∈ set(S) ∪ V v1, v2, v3, v4 ∈ set(S) ∪ V
(S, V, α) `2 (v0 := if (v1 > v2) v3 else v4) : (S, V ∪ {v0}, α)

v0 6∈ set(S) ∪ V
(S, V, α) `2 (v0 := r) : (S, V ∪ {v0}, α)

v0 6∈ set(S) ∪ V v1 ∈ set(S) ∪ V
(S, V, α) `2 (v0 := v1) : (S, V ∪ {v0}, α)
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v0 6∈ set(S) ∪ V v1, v2 ∈ set(S) ∪ V
(S, V, α) `2 (v0 := p(v1, v2)) : (S, V ∪ {v0}, α)

We now define our semantics, which specifies mappings from judgements forC andA to mathematical
entities. First, we interpret each type (S, V, α) as a set, and it is denoted by J(S, V, α)K:

J(S, V, α)K = {(p, f, l) | p is a (normalised) density on R|S|, f = (fv)v∈set(S)∪V ,

each fv is a measurable map from R|S| to R,

l is a measurable function from R|S| × R|α| to R+},
where |S| and |α| are the lengths of the sequences S and α, and R+ means the set of positive reals.
Next, we define the semantics of the judgements (S, V, α) `1 C : (T,W, β) and (S, V, α) `2 A :
(T,W, β) that can be derived by the rules from above. The formal semantics of these judgements,
denoted by the J−K notation, are maps of the following type:

J(S, V, α) `1 C : (T,W, β)K : J(S, V, α)K→ J(T,W, β)K,
J(S, V, α) `2 A : (T,W, β)K : J(S, V, α)K→ J(T,W, β)K.

The semantics is given by induction on the size of the derivation of each judgement, under the
assumption that for each procedure name p ∈ P, we have its interpretation as a measurable map from
R2 to R:

JpK : R2 → R.
We spell out the semantics below, first the one for programs and next that for atomic commands.

J(S, V, α) `1 A : (T,W, β)K(p, f, l) = J(S, V, α) `2 A : (T,W, β)K(p, f, l),
J(R,U, α) `1 (C1;C2) : (T,W, γ)K(p, f, l) = (J(S, V, β) `2 C2 : (T,W, γ)K

◦ J(R,U, α) `2 C1 : (S, V, β)K)(p, f, l).
Let N (a; b, c) be the density of the normal distribution with mean b and variance c when c > 0 and 1
when c ≤ 0. For a family of functions f = (fv)v∈V , a variable w 6∈ V , and a function f ′w, we write
f ⊕ f ′w for the extension of f with a new w-indexed member f ′w.

J(S, V, α) `2 z ∼ N (v1, v2) : (S@[z], V, α)K(p, f, l) = (p′, f ′, l′)

(where p′(a1:|S|+1) = p(a1:|S|)×N (a|S|+1; fv1(a1:|S|), fv2(a1:|S|)),

f ′v(a1:|S|+1) = fv(a1:|S|) for all v ∈ V , f ′z(a1:|S|+1) = a|S|+1,

l′(a1:|S|+1, b1:|α|) = l(a1:|S|, b1:|α|)),

J(S, V, α) `2 obs(N (v0, v1), r) : (S, V, α@[r])K(p, f, l) = (p, f, l′)

(where l′(a1:|S|, b1:|α|+1) = l(a1:|S|, b1:|α|)×N (b|α|+1; fv1(a1:|S|), fv2(a1:|S|)),

J(S, V, α) `2 (v0 := if (v1 > v2) v3 else v4) : (S, V ∪ {v0}, α)K(p, f, l) = (p, f ⊕ f ′v0 , l)
(where f ′v0(a1:|S|) = if (fv1(a1:|S|) > fv2(a1:|S|)) then fv3(a1:|S|) else fv4(a1:|S|)),

J(S, V, α) `2 (v0 := r) : (S, V ∪ {v0}, α)K(p, f, l) = (p, f ⊕ f ′v0 , l)
(where f ′v0(a1:|S|) = r),

J(S, V, α) `2 (v0 := v1) : (S, V ∪ {v0}, α)K(p, f, l) = (p, f ⊕ f ′v0 , l)
(where f ′v0(a1:|S|) = fv1(a1:|S|)),

J(S, V, α) `2 (v0 := p′(v0, v1)) : (S, V ∪ {v0}, α)K(p, f, l) = (p, f ⊕ f ′v0 , l)
(where f ′v0(a1:|S|) = Jp′K(fv0(a1:|S|), fv1(a1:|S|))).

Finally, we define pC for the well-initialised well-typed programs C, i.e., programs C for which we
can derived

([], ∅, []) `1 C : (S, V, α).
For such a C, the definition of pC is given below:

pC(z1:|S|) = p(z1:|S|)× l(z1:|S|, α)
where (p, _, l) = J([], ∅, []) `1 C : (S, V, α)K(p0, f0, l0) for the constant-1 functions p0 and l0 of
appropriate types and the empty family f0 of functions.
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D Marginal Likelihood Computation: Derivation and Correctness

What nn intg,φ Aims at Computing When we write the meaning of this observe statement as the
likelihood N (r; v0, v1), and the filtering distribution for v0 and v1 under (the decoded density of) the
current state h as ph(v0, v1),2 the neural network nn intg,φ computes the following approximation:

nn intg,φ(v0:1, r, h) ≈
∫
N (r; v0, v1)ph(v0, v1)dv0dv1

where v0:1 mean the one-hot encoded variables v0:1.

Derivation and Correctness of the Marginal Likelihood Let xn be the random variable (RV)
that is observed by the command obs(N (v0, v1), r) and x1:(n−1) be the (n−1) RVs that are observed
before the command. When our algorithm is about to analyse this observe command, we have (an
estimate of) p(x1:(n−1)) by induction. Then, the marginal likelihood of x1:n can be computed as
follows:

p(x1:(n−1), xn)

=

∫∫
p(x1:(n−1), xn, v0, v1) dv0 dv1

=

∫∫
p(x1:(n−1)) p(v0, v1|x1:(n−1)) p(xn|x1:(n−1), v0, v1) dv0 dv1

≈ p(x1:(n−1))
∫∫

ph(v0, v1) p(xn|x1:(n−1), v0, v1) dv0 dv1

// The filtering distribution p(v0, v1|x1:(n−1)) is approximated by ph.

= p(x1:(n−1))

∫∫
ph(v0, v1) p(xn|v0, v1) dv0 dv1

// The RV xn is conditionally independent of x1:(n−1) given v0, v1.

= p(x1:(n−1))

∫∫
ph(v0, v1)N (r; v0, v1) dv0 dv1

// p(x1:(n−1)) is Z in the description of INFER(Ai) in the main text, and the neural network

// nn intg,φ7
aims at approximating the integral term accurately.

This derivation leads to the first equation in this appendix section.

In a setting of probabilistic programming where observations are allowed to be different in true and
false branches, the marginal likelihood may fail to be defined, and such a setting is beyond the scope
of our language. Using variables multiple times or having observe commands spread out in the
program does not make differences in the derivation above.

E Description of Our Optimisation Algorithm

We optimise the objective by stochastic gradient descent. The key component of the optimisa-
tion is a gradient estimator derived as follows: (∇φ

∑
C∈D KL[πC ||qC ] + λ

2 (NC − ZC)
2) =

(
∑
C∈D Ez1:n∼πC

[−∇φ log qC(z1:n)]−λ(NC−ZC)∇φZC) ≈
∑
C∈D −L̂C,φ−λ(N̂C−ZC)∇φZC .

Here L̂C,φ and N̂C are sample estimates of Ez1:n∼πC
[∇φ log qC(z1:n)] and the marginal likelihood,

respectively. Both estimates can be computed using standard Monte-Carlo algorithms. For instance,
we can run the self-normalising importance sampler with prior as proposal, and generate weighted sam-
ples {(w(j), z

(j)
1:n)}1≤j≤M for the unnormalised posterior pC . Then, we can use these samples to com-

pute the required estimates: N̂C = 1
M

∑M
j=1 w

(j) and L̂C,φ = 1
M

∑M
j=1(w

(j)∇φ log qC(z(j)1:n))/N̂C .
Alternatively, we may run Hamiltonian Monte Carlo [Duane et al., 1987] to generate posterior
samples, and use those samples to draw weighted importance samples using, for instance, the layered
adaptive importance sampler [Martino et al., 2017]. Then, we compute L̂C,φ using posterior samples,

2The ph(v0, v1) is a filtering distribution, not prior.
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Table 1: Full list of the model classes in the empirical evaluation.

Evaluation Model class Description Detail

Generalisation
to new model
parameters and
observations

gauss Gaussian models with a latent variable and an
observation where the mean of the Gaussian
likelihood is an affine transformation of the
latent.

Appendix F.1.1

hierl Hierarchical models with three hierarchically
structured latent variables.

Appendix F.1.2

hierd Hierarchical or multi-level models with both
latent variables and data structured hierarchi-
cally where data are modelled as a regression
of latent variables of different levels.

Appendix F.1.3

cluster Clustering models where five observations are
clustered into two groups.

Appendix F.1.4

milky and milkyo Milky Way models, and their multiple-
observations extension where five observations
are made for each satellite galaxy.

Appendix F.1.5

rb Models with the Rosenbrock function, which
is expressed as an external procedure.

Appendix F.1.6

Generalisation
to new model
structures

ext1 Models with three Gaussian variables and one
deterministic variable storing the value of the
function nl(x) = 50/π×arctan(x/10), where
the models have 12 different types — four dif-
ferent dependency graphs of the variables, and
three different positions of the deterministic nl
variable for each of these graphs.

Appendix F.2.1
(and Fig. 5)

ext2 Models with six Gaussian variables and one
nl variable, which are grouped into five model
types based on their dependency graphs.

Appendix F.2.2
(and Fig. 6)

Test-time
efficiency in
comparison
with alternatives

mulmod Three-variable models where two latent vari-
ables follow normal distributions and the other
stores the value of the function mm(x) =
100× x3/(10 + x4). The models in this class
are grouped into three types defined by their
dependency graphs and the positions of mm in
the programs.

Appendix F.3
(and Fig. 7)

and N̂C using weighted importance samples. Note that neither πC in Ez1:n∼πC
[−∇φ log qC(z1:n)]

nor NC depends on the parameters φ. Thus, for each C ∈ D, NC needs to be estimated only once
throughout the entire optimisation process, and the posterior samples from πC need to be generated
only once as well. We use this fact to optimise the computation of each gradient-update step.

F Detailed Descriptions for Probabilistic Models Used in the Empirical
Evaluation

Table 1 shows the full list of the model classes that we considered in our empirical evaluation (§3).
We detail the program specifications for the classes using our probabilistic programming language,
and then describe how our program generator generated programs from those classes randomly.

In the program specifications to follow, randomly-generated constants are written in the Greek
alphabets (θ), and latent and other program variables in the English alphabets. Also, we often use
more intuitive variable names instead of using zi for latent variables and vi for the other program
variables, to improve readability. When describing random generation of the parameter values, we let
U(a, b) denote the uniform distribution whose domain is (a, b) ⊂ R; we use this only for describing
the random program generation process itself, not the generated programs (only normal distributions
are used in our programs, with the notation N ).
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F.1 Generalisation to New Model Parameters and Observations

F.1.1 gauss

The model class is described as follows:
mz := θ1; vz := θ′2; c1 := θ3; c2 := θ4; vx := θ′5;

z1 ∼ N (mz, vz); z2 := z1 × c1; z3 := z2 + c2;

obs(N (z3, vx), o)

For each program of the class, our random program generator generated the parameter values as
follows:

θ1 ∼ U(−5, 5), θ2 ∼ U(0, 20), θ′2 = (θ2)
2, θ3 ∼ U(−3, 3)

θ4 ∼ U(−10, 10), θ5 ∼ U(0.5, 10), θ′5 = (θ5)
2

and then generated the observation o by running the program forward where the value for z1 was
sampled from z1 ∼ U(mz − 2×√vz,mz + 2×√vz).

F.1.2 hierl

The model class is described as follows:
mg := θ1; vg := θ′2; vt1 := θ′3; vt2 := θ′4; vx1

:= θ′5;

vx2 := θ′6; g ∼ N (mg, vg); t1 ∼ N (g, vt1); t2 ∼ N (g, vt2);

obs(N (t1, vx1), o1); obs(N (t2, vx2), o2)

For each program of the class, our generator generated the parameter values as follows:
θ1 ∼ U(−5, 5), θ2 ∼ U(0, 50), θ′2 = (θ2)

2, θ3 ∼ U(0, 10)

θ′3 = (θ3)
2, θ4 ∼ U(0, 10), θ′4 = (θ4)

2, θ5 ∼ U(0.5, 10)

θ′5 = (θ5)
2, θ6 ∼ U(0.5, 10), θ′6 = (θ6)

2

and then generated the observations o1 and o2 by running the program (i.e., simulating the model)
forward.

F.1.3 hierd

The model class is described as follows:
ma0 := θ1; va0 := θ′2; va1 := θ′3; va2 := θ′4; mb := θ5;

vb := θ′6; d1 = θ7; d2 = θ8; vx1
:= θ′9; vx2

:= θ′10;

a0 ∼ N (ma0 , va0); a1 ∼ N (a0, va1); a2 ∼ N (a0, va2);

b ∼ N (mb, vb);

t1 := b× d1; t2 := a1 + t1; obs(N (t2, vx1
), o1);

t3 := b× d2; t4 := a2 + t3; obs(N (t4, vx2
), o2)

For each program of the class, our generator generated the parameter values as follows:
θ1 ∼ U(−10, 10), θ2 ∼ U(0, 100), θ′2 = (θ2)

2, θ3 ∼ U(0, 10)

θ′3 = (θ3)
2, θ4 ∼ U(0, 10), θ′4 = (θ4)

2, θ5 ∼ U(−5, 5)
θ6 ∼ U(0, 10), θ′6 = (θ6)

2, θ7 ∼ U(−5, 5), θ8 ∼ U(−5, 5)
θ9 ∼ U(0.5, 10), θ′9 = (θ9)

2, θ10 ∼ U(0.5, 10), θ′10 = (θ10)
2

and then generated the observations o1 and o2 by running the program forward where the values for
a0, a1, a2, and b in this specific simulation were sampled as follows:

a0 ∼ U(ma0 − 2×√va0 , ma0 + 2×√va0)
a1 ∼ U(a0 − 2×√va1 , a0 + 2×√va1)
a2 ∼ U(a0 − 2×√va2 , a0 + 2×√va2)
b ∼ U(mb − 2×

√
vb, mb + 2×

√
vb)
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F.1.4 cluster

The model class is described as follows:

mg1 := θ1; vg1 := θ′2; mg2 := θ3; vg2 := θ′4; vx := θ′5;

g1 ∼ N (mg1 , vg1); g2 ∼ N (mg2 , vg2);

zero := 0; hund := 100;

t1 ∼ N (zero, hund); m1 := if (t1 > zero) g1 else g2;

obs(N (m1, vx), o1);

t2 ∼ N (zero, hund); m2 := if (t2 > zero) g1 else g2;

obs(N (m2, vx), o2);

t3 ∼ N (zero, hund); m3 := if (t3 > zero) g1 else g2;

obs(N (m3, vx), o3);

t4 ∼ N (zero, hund); m4 := if (t4 > zero) g1 else g2;

obs(N (m4, vx), o4);

t5 ∼ N (zero, hund); m5 := if (t5 > zero) g1 else g2;

obs(N (m5, vx), o5)

For each program of the class, our generator generated the parameter values as follows:

θ1 ∼ U(−15, 15), θ2 ∼ U(0.5, 50), θ′2 = (θ2)
2

θ3 ∼ U(−15, 15), θ4 ∼ U(0.5, 50), θ′4 = (θ4)
2

θ5 ∼ U(0.5, 10), θ′5 = (θ5)
2

and then generated the observations o1:5 by running the program forward.

F.1.5 milky and milkyo

The model class milky is described as follows:

mmass := θ1; vmass := θ′2; c1 := θ3; vg1 := θ′4; c2 := θ5;

vg2 := θ′6; vx1 := θ′7; vx2 := θ′8;

mass ∼ N (mmass , vmass);

mass1 := mass × c1; g1 ∼ N (mass1, vg1);

mass2 := mass + c2; g2 ∼ N (mass2, vg2);

obs(N (g1, vx1
), o1); obs(N (g2, vx2

), o2)

For each program of milky, our generator generated the parameter values as follows:

θ1 ∼ U(−10, 10), θ2 ∼ U(0, 30), θ′2 = (θ2)
2, θ3 ∼ U(−2, 2)

θ4 ∼ U(0, 10), θ′4 = (θ4)
2, θ5 ∼ U(−5, 5), θ6 ∼ U(0, 10)

θ′6 = (θ6)
2, θ7 ∼ U(0.5, 10), θ′7 = (θ7)

2, θ8 ∼ U(0.5, 10)

θ′8 = (θ8)
2

and then generated the observations o1 and o2 by running the program forward.

Everything remained the same for the milkyo class, except that the two obs commands were extended
to obs(N (g1, vx1

), [o1, o2, o3, o4, o5]) and obs(N (g2, vx2
), [o6, o7, o8, o9, o10]), respectively, and

all the observations were generated similarly by running the extended model forward.

F.1.6 rb

The model class rb is described as follows:

mz1 := θ1; vz1 := θ′2; mz2 := θ3; vz2 := θ′4; vx := θ′5;

z1 ∼ N (mz1 , vz1); z2 ∼ N (mz2 , vz2); r := Rosenbrock(z1, z2);

obs(N (r, vx), o)
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where Rosenbrock(z1, z2) = 0.05× (z1 − 1)2 +0.005× (z2 − z12)2. The function is often used to
evaluate learning and inference algorithms [Goodman and Weare, 2010, Wang and Li, 2018, Pagani
et al., 2019]. For each program of the class, our generator generated the parameter values as follows:

θ1 ∼ U(−8, 8), θ2 ∼ U(0, 5), θ′2 = (θ2)
2, θ3 ∼ U(−8, 8)

θ4 ∼ U(0, 5), θ′4 = (θ4)
2, θ5 ∼ U(0.5, 10), θ′5 = (θ5)

2

and then generated the observation o by running the program forward where the values for z1 and z2
in this specific simulation were sampled as follows:

z1 ∼ U(mz1 − 1.5×√vz1 , mz1 + 1.5×√vz1)
z2 ∼ U(mz2 − 1.5×√vz2 , mz2 + 1.5×√vz2)

F.2 Generalisation to New Model Structures

For readability, we present canonicalised dependency graphs where variables are named in the
breadth-first order. In the experiments reported in the corresponding part of the main text, we used a
minor extension of our probabilistic programming language with procedures taking one parameter.

F.2.1 ext1

Fig. 5 shows the dependency graphs for all model types in ext1. The variables z0, z1, . . . and
x1, x2, . . . represent latent and observed variables, respectively, and observed variables are colored in
gray. The red node in each graph represents the position of the nl variable.

Our program generator in this case generates programs from the whole model class ext1; it generates
programs of all twelve different types in ext1. We explain this generation process for the model type
(1,1) in Fig. 5, while pointing out that the similar process is applied to the other eleven types. To
generate programs of the model type (1,1), we use the following program template:

mz0 := θ1; vz0 := θ′2; vz2 := θ′3; vz3 := θ′4; vx1 := θ′5;

z0 ∼ N (mz0 , vz0); z1 := nl(z0); z2 ∼ N (z1, vz2); z3 ∼ N (z2, vz3);

obs(N (z3, vx1), o1)

where nl(z) = 50/π × arctan(z/10). The generation involves randomly sampling the parameters
of this template, converting the template into a program in our language, and creating synthetic
observations. Specifically, our generator generates the parameter values as follows:

θ1 ∼ U(−5, 5), θ2 ∼ U(0, 20), θ′2 = (θ2)
2, θ3 ∼ U(0, 20), θ′3 = (θ3)

2

θ4 ∼ U(0, 20), θ′4 = (θ4)
2, θ5 ∼ U(0.5, 10), θ′5 = (θ5)

2

and generates the observation o1 by running the program forward where the values for z0:3 in this
specific simulation were sampled (and fixed to specific values) as follows:

z0 ∼ U(mz0 − 2×√vz0 , mz0 + 2×√vz0)
z1 = nl(z0)

z2 ∼ U(z1 − 2×√vz2 , z1 + 2×√vz2)
z3 ∼ U(z2 − 2×√vz3 , z2 + 2×√vz3).

The generator uses different templates for the other eleven model types in ext1, while sharing the
similar process for generation of the parameters and observations.

F.2.2 ext2

Fig. 6 shows the dependency graphs for all five model types in ext2. Programs of these five types are
randomly generated by our program generator. As in the ext1 case, we explain the generator only for
one model type, which corresponds to the first dependency graph in Fig. 6. To generate programs of
this type, we use the following program template:

mz0 := θ1; vz0 := θ′2; vz1 := θ′3; vz3 := θ′4; vz4 := θ′5; vz5 := θ′6; vz6 := θ′7;

vx1
:= θ′8; vx2

:= θ′9; vx3
:= θ′10; vx4

:= θ′11;

15



z0 ∼ N (mz0 , vz0); z1 ∼ N (z0, vz1); z2 := nl(z0); z3 ∼ N (z0, vz3);

z4 ∼ N (z1, vz4); z5 ∼ N (z1, vz5); z6 ∼ N (z2, vz6);

obs(N (z4, vx1
), o1); obs(N (z5, vx2

), o2); obs(N (z6, vx3
), o3); obs(N (z3, vx4

), o4)

In order to generate a program of this model type and observations, our generator instantiates the
parameters of the template as follows:

θ1 ∼ U(−5, 5), θ2 ∼ U(0, 10), θ′2 = (θ2)
2, θ3 ∼ U(0, 10), θ′3 = (θ3)

2, θ4 ∼ U(0, 10), θ′4 = (θ4)
2

θ5 ∼ U(0, 10), θ′5 = (θ5)
2, θ6 ∼ U(0, 10), θ′6 = (θ6)

2, θ7 ∼ U(0, 10), θ′7 = (θ7)
2

θ8 ∼ U(0, 10), θ′8 = (θ8)
2, θ9 ∼ U(0, 10), θ′9 = (θ9)

2, θ10 ∼ U(0, 10), θ′10 = (θ10)
2

θ11 ∼ U(0, 10), θ′11 = (θ11)
2.

Then, it generates the observations o1:4 by running the program forward where the values for z0:6 in
this specific simulation were sampled (and fixed to specific values) as follows:

z0 ∼ U(mz0 − 2×√vz0 , mz0 + 2×√vz0)
z1 ∼ U(z0 − 2×√vz1 , z0 + 2×√vz1)
z2 = nl(z0)

z3 ∼ U(z0 − 2×√vz3 , z0 + 2×√vz3)
z4 ∼ U(z1 − 2×√vz4 , z1 + 2×√vz4)
z5 ∼ U(z1 − 2×√vz5 , z1 + 2×√vz5)
z6 ∼ U(z2 − 2×√vz6 , z2 + 2×√vz6).

The generator uses different templates for the other four model types in ext2, while sharing the similar
process for generation of the parameters and observations.

F.3 Test-Time Efficiency in Comparison with Alternatives

This section details the mulmod class, which has three different model types. Fig. 7 shows the
dependency graphs for all the model types. The red node in each graph represents the position of
the mm variable. We used all the three types in training, applied the learnt inference algorithm to
programs in the third model type, and compared the results with those returned by HMC.

We similarly explain the generator only using the model type corresponding to the first dependency
graph in Fig. 7. To generate programs of this type, we use the following program template:

mz0 := θ1; vz0 := θ′2; vz1 := θ′3; vx1
:= θ′4;

z0 ∼ N (mz0 , vz0); z1 ∼ N (z0, vz1); z2 := mm(z1); obs(N (z2, vx1
), o1)

where mm(x) = 100×x3/(10+x4). For each program in this model type, our generator instantiates
the parameter values as follows:

θ1 ∼ U(−5, 5), θ2 ∼ U(0, 20), θ′2 = (θ2)
2, θ3 ∼ U(0, 20), θ′3 = (θ3)

2

θ4 ∼ U(0.5, 10), θ′4 = (θ4)
2

and synthesises the observation o1 by running the program forward where the values for z0:2 in this
specific simulation were sampled (and fixed to specific values) as follows:

z0 ∼ U(mz0 − 2×√vz0 , mz0 + 2×√vz0)
z1 ∼ U(z0 − 2×√vz1 , z0 + 2×√vz1)
z2 = mm(z1).

The generator uses different templates for the other two model types in mulmod, while sharing the
similar process for instantiation of the parameters and observations.

G Detailed Evaluation Setup

We implemented our inference algorithm and meta-algorithm using ocaml-torch [Mazare, 2018],
an OCaml binding for PyTorch. For HMC, we used the Python interface for Stan [Carpenter et al.,
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2017]. We used a Ubuntu server with Intel(R) Xeon(R) Gold 6234 CPU @ 3.30GHz with 16 cores,
32 threads, and 263G memory.

In our evaluation, the dimension s of the internal state h was 10 (i.e., h ∈ R10). We used the same
neural network architecture for all the neural network components of our inference algorithm INFER.
Each neural network had three linear layers and used the tanh activation. The hidden dimension was
10 for each layer in all the neural networks except for nnde where the hidden dimensions were 50.
The hyper-parameter in our optimisation objective was set to λ = 2 in the evaluation. For HMC, we
used the NUTS sampler [Hoffman and Gelman, 2014].

G.1 Detailed Training Setup for Generalisation to New Model Parameters and
Observations in §3

For each training program, our meta-algorithm used 215 samples from the analytic (for gauss) or
approximate (for the rest, by HMC) posterior distribution for the program.3 Similarly, our meta-
algorithm computed the marginal likelihood analytically (for gauss) or approximately (for the rest)
using layered adaptive importance sampling [Martino et al., 2017] where the proposals were defined
by an HMC chain. We performed mini-batch training with the batch size 212. We used Adam
[Kingma and Ba, 2015] with its hyperparameters {β1 = 0.9, β2 = 0.999, weight_decay = 0} and
0.001 as the initial learning rate. We repeated the same experiments three times using different
random seeds, and the training stopped when the average training loss converged enough.

G.2 Detailed Setup for Generalisation to New Model Structures in §3

We let two structural aspects vary across programs: the dependency (or data-flow) graph for the
variables of a program and the position of a nonlinear function in the program. Specifically, we
considered two kinds of models: (1) models (ext1) with three Gaussian variables and one deterministic
variable storing the value of the function nl(x) = 50/π × arctan(x/10), where the models have 12
different types — four different dependency graphs of the variables, and three different positions
of the deterministic nl variable for each of these graphs; and (2) models (ext2) with six Gaussian
variables and one nl variable, which are grouped into five types based on their dependency graphs.
See Fig. 5 and 6 in the appendix for visualisation of the different types in ext1 and ext2, respectively.

Before running our inference algorithm, we canonicalise the names of variables in a given program
based on its dependency (i.e., data-flow) graph. Although not perfect, this preprocessing removes a
superficial difference between programs caused by different variable names, and enables us to avoid
the unnecessary complexity caused by variable-renaming symmetries at training and inference times.

For ext1, we ran seven different experiments. Four of them evaluated generalisation to unseen
dependency graphs. Among all the four possible dependency graphs of programs we considered,
these experiments used only three of them during training, and the other for testing: the dependency
graph of each training program is one of these three (with the nl variable positioned in all the three
possible places in the graph), and that of each test program is the other dependency graph. The
remaining three experiments evaluated generalisation to unseen positions of the nl variable where
we fixed the position of the nl variable in the four dependency graphs, and used programs with the
variable in one of those fixed positions for testing, while using programs with the variables in all the
other positions for training. For ext2, we ran five different experiments where each of them tested
generalisation to an unseen dependency graph after training with the other four types of dependency
graphs. All of these experiments were repeated three times under different random seeds. So, the
total numbers of experiment runs were 21 (= 7× 3) and 15 (= 5× 3) for ext1 and ext2, respectively.

In each experiment run for ext1, we used 720 programs for training, and 90 (when generalising to
new graphs) or 100 (when generalising to new positions of the nl variable) unseen programs for
testing. In each run for ext2, we used 600 programs for training and tested the learnt inference
algorithm on 50 unseen programs. We ran HMC to estimate posteriors and marginal likelihoods, and
used 200K samples after 10K warmups to compute reference posteriors. We stopped training after
giving enough time for convergence within a limit of computational resources. The rest was the same
as in Appendix G.1.

3Except for rb; see the discussion on Rosenbrock models in Appendix I.
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H Losses for hierd, cluster, milkyo, and rb

Fig. 8 shows the average training and test losses under three random seeds for hierd, cluster, milkyo,
and rb. The later part of Fig. 8a, 8c and 8d shows cases where the test loss surges. This was when the
loss of only a few programs in the test set (of 50 programs) became large. Even in this situation, the
losses of the rest remained small. We give analyses for cluster and rb separately in §I.

I Multimodal Posteriors: cluster and rb

The cluster and rb classes posed another challenge: the models often had multimodal posteriors,
and it was significantly harder for our meta-algorithm to learn an optimal inference algorithm. To
make the evaluation partially feasible for rb, we changed two parts of our meta-algorithm slightly, as
well as increasing the size of the test set from 50 to 100. First, we used importance samples instead
of samples by HMC, which often failed to converge, to learn an inference algorithm. Second, our
random program generator placed some restriction on the programs it generated (e.g., by using tight
boundaries on some model parameters), guided by the analysis of the geometry of the Rosenbrock
function [Pagani et al., 2019]. Consequently, HMC (with 500K samples after 50K warmups) failed to
converge for only one fifth of the test programs.

Fig. 9 shows the similar comparison plots between reference and predicted marginal posteriors for 10
test programs of the rb type, after 52.4K epochs. Our inference algorithm computed the posteriors
precisely for most of the programs except two (pgm75 and pgm79) with significant multimodality.
The latent variable pgm75_z0 had at least two modes at around−10 (visible in the figure) and around
10 (hidden in the figure)4. Our inference algorithm showed a mode-seeking behavior for this latent
variable. Similarly, the variable pgm79_z0 had at least two modes in the similar domain region (one
shown and one hidden), but this time our inference algorithm showed a mode-covering behavior.

The multimodality issue raises two questions. First, how can our meta-algorithm generate samples
from the posterior more effectively so that it can optimise the inference algorithm for classes of
models with multimodal posteriors? For example, our current results for cluster suffer from the fact
that the samples used in the training are often biased (i.e., only from a single mode of the posterior).
One possible direction would be to use multiple Markov chains simultaneously and apply ideas
from the mixing-time research. Second, how can our white-box inference algorithm catch more
information from the program description and find non-trivial properties that may be useful for
computing the posterior distributions having multiple modes? We leave the answers for future work.

J Training and Test Losses for ext1

Fig. 10 shows the average training and test losses in the ext1 experiment runs (under different random
seeds).

K Training and Test Losses for ext2

Fig. 11 shows the average training and test losses in the ext2 experiment runs (under different random
seeds).

L Program from mulmod That was Reported in the Test-Time Comparisons
in §3

Fig. 12 shows the program that is reported in the test-time comparisons in our evaluation, written in
our probabilistic programming language.

4The blue reference plots were drawn using an HMC chain, but the HMC chain got stuck in the mode around
−10 for this variable.
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Table 2: ESS by IS-pred, compared with those by HMC and IS-prior. For HMC, two kinds of ESS
were computed (bulk and tail [Carpenter et al., 2017]) for each latent variable, and we report the
maximum among them. For IS-{pred, prior}, ESS was averaged over the 10 trials. The elapsed time
for all the three approaches was averaged over 10 trials.

HMC IS-pred IS-prior
ESS 80.0 16,030.1 1, 364.1

Elapsed time 84.2s ≈ 18ms ≈ 18ms
Sample size 1M 70K 100K

M ESS Results in the Comparisons with Alternatives in Terms of Test-Time
Efficiency in §3

Table 2 shows ESS by the same runs of the three approaches as in the last columns of Fig. 4a and
4b in §3. IS-pred produced over 16K effective samples in 18ms, while HMC generated only 80
effective samples even after 84s. Similarly, IS-pred produced effective samples 10 times more than
IS-prior in the approximately same elapsed time. In fact, Fig. 13 shows that as the time increases, the
gap between the ESSes of IS-pred and IS-prior gets widen, because the former increases at a rate
significantly higher than the latter.

N Limitation and Future Work

A learnt inference algorithm in this work does not generalise to programs with different sizes [Yan
et al., 2020], e.g., from clustering models with two clusters to those with ten clusters. Each model
class assumes a fixed number of variables, and the neural networks crucially exploit the assumption.
Second, our meta-algorithm does not scale in practice to large programs, e.g., state-space models
with a few hundred time steps, and cannot learn an optimal inference algorithm within a reasonable
amount of time. Third, it is a good future work to relax the (meanfield Gaussian) assumption
on the approximating distribution in our inference algorithm, and to meta-learn the form of the
approximation itself by, e.g., incorporating the ideas proposed by Ambrogioni et al. [2021]. This
extension is closely related to automatic guide generation in the Pyro community [Bingham et al.,
2018].
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Figure 5: Canonicalised dependency graphs for all 12 model types in ext1. The rows are for different
positions of the nl variable, and the columns are for different dependency graphs: the model type
(i,j) means one of the 12 model types in ext1 that corresponds to the i-th position of the nl variable
and j-th dependency graph.
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Figure 6: Canonicalised dependency graphs for all five model types in ext2.
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Figure 8: The y-axes are log-scaled. The surges in later epochs of Fig. 8a, 8c and 8d were due to only
a single or a few test programs out of 50.
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Figure 10: Average training and test losses for generalisation in ext1. The y-axes are log-scaled.
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Figure 11: Average training and test losses for ext2. The y-axes are log-scaled.
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a := 3.93; b := 348.16; c := 57.5; d := 14.04; e := 40.34;

z1 ∼ N (a, b); z2 ∼ N (z1, c); z3 := mm(z1);

obs(N (z2, d), 53.97); obs(N (z3, e), 0.12)

Figure 12: The program in mulmod that is reported in the test-time comparisons, written in our
probabilistic programming language.
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Figure 13: ESS by IS-pred and IS-prior for the test program from mulmod in the test-time comparisons
in §3.
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