
Under review as a conference paper at ICLR 2023

UNSUPERVISED MANIFOLD LINEARIZING AND CLUS-
TERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering data lying close to a union of low-dimensional manifolds, with each
manifold as a cluster, is a fundamental problem in machine learning. When the
manifolds are assumed to be linear subspaces, many methods succeed using low-
rank and sparse priors, which have been studied extensively over the past two
decades. Unfortunately, most real-world datasets can not be well approximated
by linear subspaces. On the other hand, several works have proposed to identify
the manifolds by learning a feature map such that the data transformed by the map
lie in a union of linear subspaces, even though the original data are from non-linear
manifolds. However, most works either assume knowledge of the membership of
samples to clusters, or are shown to learn trivial representations. In this paper,
we propose to simultaneously perform clustering and learn a union-of-subspace
representation via Maximal Coding Rate Reduction. Experiments on synthetic
and realistic datasets show that the proposed method achieves clustering accu-
racy comparable with state-of-the-art alternatives, while being more scalable and
learning geometrically meaningful representations.

1 INTRODUCTION

1.1 MOTIVATION AND CONTRIBUTIONS

Clustering is a fundamental problem in machine learning, allowing one to group data into clusters
based on assumptions about the geometry of clusters. For example, when data are concentrated
around distinct centroids, classical k-means clustering (Lloyd, 1957; Forgey, 1965; Jancey, 1966;
MacQueen, 1967) and its variants (Bradley et al., 1996; Arthur & Vassilvitskii, 2006; Bahmani
et al., 2012) are able to find the cluster centroids and assign membership to each data point. More
generally1, subspace clustering methods (Elhamifar & Vidal, 2009; 2013; Lu et al., 2012; Liu et al.,
2013; Heckel & Bölcskei, 2015; You et al., 2016a) are designed to cluster data that lie close to a
union of different low-dimensional linear (or affine) subspaces, where each subspace defines a clus-
ter. Overall, those methods often enjoy theoretical guarantees of correct clustering (Soltanolkotabi
& Candés, 2012; Lu et al., 2012; Elhamifar & Vidal, 2013; Soltanolkotabi et al., 2014; Wang et al.,
2015; Wang & Xu, 2016; You et al., 2016b;a; Tsakiris & Vidal, 2018; Li et al., 2018; You et al.,
2019; Robinson et al., 2019) and find applications in various problems such as image clustering,
face recognition, motion segmentation, and recently in popular Transformer architectures in deep
learning (Roy et al., 2021).

Despite the wide range of applications and theoretical guarantees, subspace clustering methods rely
on a crucial assumption that each cluster can be well approximated by a linear/affine subspace, which
is often not valid for many real-world datasets. For instance, even in a dataset as simple as MNIST
hand-written digits, images of a single digit do not lie close to a low-dimensional linear subspace,
thus directly applying subspace clustering will fail. Instead, it is more a natural to assume the clusters
are from non-linear low-dimensional manifolds (one manifold per cluster), and attempt to learn or
design a non-linear embedding of the data so that the transformed data lies close to distinct linear
subspaces, with points from one manifold mapped to the same subspace. For example, Lim et al.
(2020) shows that a subspace clustering method can achieve 99% clustering accuracy on MNIST
images after embedding the data with the scattering transform Bruna & Mallat (2013).

1This includes k-means-based methods, since a centroid is a 0-dimensional affine subspace.
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Figure 1: (a) Input data X of two manifolds each containing 100 points. (b) Features Zθ at random initializa-
tion. (c) Zθ after self-supervised initialization. (d) Zθ after MLC (4) training. Details are in Appendix B.

Beyond the above example, numerous other subspace clustering methods have explored hand-
designing an appropriate feature embedding (or kernel) such as polynomial or exponential map-
pings (Patel & Vidal, 2014). However, these embeddings assume specific families of manifolds,
thus they need to be hand-crafted for various tasks and datasets using domain knowledge, which
makes their application challenging for complicated data such as natural images. On the other hand,
Elhamifar & Vidal (2011) proposes to cluster data based on treating a local neighborhood of the
manifold approximately as a linear subspace. However, for this to succeed sufficient sampling den-
sity is required, which implies a prohibitive number of samples when the manifolds are of moderate
dimension or are highly curved. Further, for a new sample unseen at training time one needs to
run the algorithm with all samples to embed it or assign a membership to it, which is expensive
computationally. More recently, numerous works propose to learn an appropriate linear embedding
of the data via deep networks and then perform subspace clustering in the feature space (Peng et al.,
2017; Ji et al., 2017; Abavisani & Patel, 2018; Zhang et al., 2019; Kheirandishfard et al., 2020).
Unfortunately, it has been shown that many of these methods are provably ill-posed and learn trivial
representations2, with much of the claimed benefit coming from ad-hoc post-processing rather than
the method itself (Haeffele et al., 2020). This leads to the following question:

Question 1. For data approximately supported on an underlying union of manifolds, can we learn a
transformation of the data, so that the transformed data lie in distinct linear subspaces to be easily
clustered?

Meanwhile, learning a representation from multi-modal data has been a topic of its own interest
in machine learning. An ideal property of the learned representation often pursued is between-
cluster discrimination, i.e., features from different clusters should be well separated. Further, an
important yet often ignored property of the learned representation is that it maintains within-cluster
diversity. This is desirable as it allows distances of samples within a cluster to be preserved under
the learned transformation, which could facilitate downstream tasks such as denoising, hierarchical
clustering and semantic interpretation. In the supervised setting, training with the cross-entropy (CE)
classification objective fails to achieve the second property, as it has been shown empirically (Papyan
et al., 2020) and theoretically (Tirer & Bruna, 2022; Zhou et al., 2022) that the representation learned
by CE has the property that features from one cluster tend to collapse to a single point. On the other
hand, recent work has proposed the principle of Maximal Coding Rate Reduction (MCR2) Yu et al.
(2020) as one of the few methods that are able to achieve the two ideal properties by learning
a representation where features from each cluster are expected to lie close to a low-dimensional
subspace (within-cluster diverse), and the subspaces from different clusters are orthogonal to each
other (between-cluster discriminative). However, for MCR2 to learn such orthogonal subspaces
each corresponding to one cluster, one needs the annotation of which sample belong to which cluster.
Such annotation might be expensive or impossible to acquire for large-scale datasets. This motivates
another question of interest:

Question 2. Can we learn a union-of-orthogonal-subspace representation of data coming from an
underlying union of manifolds without access to the labels?

This paper gives positive answers to the two interrelated questions by contributing the following.

2In this paper, we use ‘representation’ and ‘feature’ interchangeably to mean the image of data under a
(learned) transformation.
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1. We propose to simultaneously cluster the data and learn a union-of-orthogonal-subspace
representation via MCR2, when data is assumed to lie close to a union of manifolds. This
is achieved by formulation (4), which optimizes over both the representation and a doubly
stochastic cluster membership formulation inspired by the state-of-the-art subspace clus-
tering result Lim et al. (2020).

2. Since the membership has as many entries as the square of the batch size of the input data,
we give a parameterization of the membership (Figure 2). Further, as problem (4) is highly
non-convex, we give a meta-algorithm (Algorithm 1) on how to initialize the variables and
to optimize it.

3. We conduct experiments on simulation and CIFAR10 to demonstrate some desirable prop-
erties of the proposed method. We further experiment on datasets with larger number
of clusters and imbalanced clusters such as CIFAR100-20, CIFAR100-100, and TinyIm-
ageNet200, and show that the proposed method achieves state-of-the-art performance.

1.2 ADDITIONAL RELATED WORK

Beyond the above, we make connections to a few important works that are related to this paper.

Deep Clustering and Representation Learning. Recently, there is an interesting line of research
in representation learning and clustering that takes advantage of pseudo-labelling and semi/self-
supervised learning (Caron et al., 2018; Van Gansbeke et al., 2020; Park et al., 2021; Niu et al.,
2021). Specifically, one first identifies a subset of samples (often termed reliable samples) based on
geometric or statistical criteria in the learned representation and cluster prediction, and then uses the
predicted labels for those reliable samples as if they are ground-truth labels to refine the represen-
tation and cluster prediction of other samples. Despite the promising clustering performance, the
representation learned by these methods are not constrained to be both between-cluster discrimina-
tive and within-cluster diverse. In contrast, the proposed method learns a representation with these
two ideal properties (see Figure 4) and also achieves state-of-the-art clustering performance (see
Tables 2 and 4).

Neural Manifold Clustering and Embedding (NMCE). A recent preprint (Li et al., 2022) also
proposes a solution to the same problem we study, i.e., clustering the data and learning an union-
of-orthogonal-subspace representation. In particular, NMCE proposes to model the point-to-cluster
membership and optimize MCR2 (Yu et al., 2020) over both the representation and the membership.
In this paper, we adopt a similar formulation, but we propose to model the point-to-point affinity
using a doubly stochastic matrix, inspired by the state-of-the-art subspace clustering methods (§2.2).
Aside from having different conceptual formulations and algorithms, our formulation is much more
stable with respect to initialization and is naturally suitable for hierarchical clustering. We detail
these distinctions in §2.2. Experiments (Table 2) further show that the proposed method (MLC)
achieves higher accuracy than NMCE on large scale realistic datasets.

2 PROBLEM FORMULATION

We start by defining the problem that we study. Suppose X = [x1, . . . ,xn] ∈ RD×n is a dataset of
n samples drawn from a union of k underlying manifolds

⋃k
j=1Mj and y ∈ Rn their memberships

to the manifolds, i.e., xi ∈My(i).

Problem 1 (Unsupervised Manifold Linearizing and Clustering). Given the dataset X , can we
simultaneously 1) cluster the samples, i.e., estimate y, and 2) learn a linear representation for
manifolds, i.e., find a transformation f : RD → Rd, such that the image of each manifold f(Mi)
is a low-dimensional linear subspace of Rd, and the subspaces satisfy desired properties (§1), i.e.,
they are between-cluster discriminative and within-cluster diverse?

Here we base our approach on the principle of Maximal Coding Rate Reduction (MCR2) which is
designed to learn ideal representations in the supervised case, i.e., when the membership y is given
(§2.1). Then we discuss the challenges of simultaneously clustering and learning representation
(Problem 1), and propose our MCR2 clustering objective to solve Problem 1 with those challenges
in mind (§2.2). We further give an algorithm to optimize the proposed objective (§2.3).
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2.1 SUPERVISED MANIFOLD LINEARIZING VIA MCR2

In the case when the labels y are given as supervision, MCR2 Yu et al. (2020) aims to address part
2) of Problem 1. Let fθ : RD → Sd−1 be a featurizer parameterized by a neural network, which in
turn gives an embedding Zθ := [z1, . . . ,zn] ∈ Rd×n of data with zi := fθ(xi) ∈ Sd−1. MCR2

aims to learn an ideal representation by optimizing

max
θ

log det

(
I +

d

nϵ2
ZθZ

⊤
θ

)
︸ ︷︷ ︸

R(Zθ ; ϵ)

−
k∑

j=1

⟨Πj ,1⟩
n

log det

(
I +

d

⟨Πj ,1⟩ϵ2
Zθ Diag(Πj)Z

⊤
θ

)
︸ ︷︷ ︸

Rc(Zθ,Π; ϵ)

,

s.t. zi ∈ Sd−1, ∀i ∈ [n]. (1)

where it is assumed that fθ is constrained to output unit ℓ2 norm vectors in Rd (i.e., on the sphere
Sd−1), Π ∈ Rn×k is a given membership matrix such that Πij = 1 if j = y(i) and Πij = 0
otherwise, ϵ > 0 is a prescribed precision parameter, Πj ∈ Rn denotes the jth column of Π, 1 is
a vector of all ones so that ⟨Πj ,1⟩ is the number of points in cluster j, and for v ∈ Rn, Diag(v)
denotes a diagonal matrix with the entries of v along the diagonal.

Intuitively3, the R(Zθ; ϵ) term of (1) measures the volume of Zθ, and maximizing it would diversify
features from all samples, which we will refer to as the expansion term. Likewise, the Rc(Zθ,Π; ϵ)
term measures the sum of volumes of each class of Zθ and is referred to as the compression term,
since minimizing it would push features within each class to stay close. It has been shown that
given Π, the features obtained by maximizing the rate reduction R(Zθ; ϵ) − Rc(Zθ,Π; ϵ) has
the property that the features of each cluster spread uniformly within a subspace (within-cluster
diverse), and the subspaces from different clusters are orthogonal (between-cluster discriminative),
under relatively mild assumptions (Yu et al., 2020).

2.2 UNSUPERVISED MANIFOLD LINEARIZING AND CLUSTERING VIA MCR2

While the MCR2 formulation is designed to learn ideal representations (§1) when the membership y
(or equivalently Π) is given, here we are interested in the unsupervised setting where one does not
have access to membership annotations. Thus, we propose to simultaneously perform both parts 1)
and 2) of Problem 1 by also optimizing over the membership Π of each data point. This naturally
leads to

max
θ,Π∈Ω◦

R(Zθ; ϵ)−Rc(Zθ,Π; ϵ), s.t. zi ∈ Sd−1, ∀i ∈ [n], (2)

where Ω◦ := {Π ∈ Rn×k : ∀i ∈ [n], ∃ŷ(i) s.t. Πiŷ(i) = 1 and Πij = 0 for j ̸= ŷ(i)} is the
set of all ‘hard’ assignments, i.e., each row of Π is a one-hot vector. However, this optimization
is in general combinatorial: its complexity grows exponentially in n and k, and it does not allow
smooth and gradual changes of Π. Further, a second challenge is the chicken-and-egg nature of this
problem: If one already has an ideal representation Z, then existing subspace clustering methods
can be applied on Z to estimate the membership. Likewise, if one is given the membership Π of
clusters, then solving (1) would lead to an ideal representation. However, the Zθ and Π at the
beginning of optimization is typically far from ideal.

Doubly Stochastic Subspace Clustering. To address the combinatorial of estimating the cluster
memberships, we draw inspiration from the closely related problem of subspace clustering, where
the goal is to cluster n samples assumed to lie close to a union of k low-dimensional subspaces
(§1). In this case, one typically does not directly learn an n × k matrix denoting memberships
of n points into k subspaces. Instead, one first learns an affinity matrix Π ∈ Rn×n signaling the
similarity between pairs of points, and then applies spectral clustering on the learned Π to obtain a
final clustering (Elhamifar & Vidal, 2009; 2013; Lu et al., 2012; Liu et al., 2013; Heckel & Bölcskei,
2015; You et al., 2016a). In particular, requiring doubly-stochastic constraints on the affinity Π is
shown theoretically to suppress false inter-cluster connections for clustering problems (Ding et al.,

3More formally, terms of the form log det
(
I + d

nϵ2
WW⊤) estimate the average number of bits needed

to code n i.i.d. samples W ∈ Rd×n from a zero-mean d-dimensional Gaussian up to a distortion ϵ (Ma et al.,
2007), hence the name coding rate.
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2022) along with state-of-the-art empirical performance for subspace clustering problems Lim et al.
(2020).

Inspired by the above, we propose a constraint set Ω for the matrix Π to be the set of n× n doubly
stochastic matrices,

Ω = {Π ∈ Rn×n : Π ≥ 0, Π1 = Π⊤1 = 1}. (3)

However, this constraint alone is insufficient for strong clustering performance: Consider the op-
timization of (2) with respect to Π ∈ Ω only, and note that the objective is strongly convex with
respect to Π. Since we maximize a convex function with respect to convex constraints Ω, an optimal
Π would lie at an extreme point of Ω, which for doubly stochastic matrices is a permutation matrix.
This is not ideal for clustering, as it implies that every point is assigned to its own distinct cluster,
and there is no incentive to merge points into larger clusters. To resolve this issue, we follow the
approach in Lim et al. (2020) and add ℓ2 regularization4 γ

2 ∥Π∥
2
F to Π which biases Π toward the

uniform matrix 1
n11

⊤, so by tuning γ we can also tune the sparsity level of Π. This results in our
final proposed formulation, dubbed Manifold Linearizing and Clustering (MLC):

max
θ

log det

(
I +

d

nϵ2
ZθZ

⊤
θ

)
︸ ︷︷ ︸

R(Zθ ; ϵ)

− 1

n

n∑
j=1

log det

(
I +

d

ϵ2
Zθ Diag((Πθ)j)Z

⊤
θ

)
︸ ︷︷ ︸

Rc(Zθ,Πθ ; ϵ)

−γ

2
∥Πθ∥2F ,

s.t. zi ∈ Sd−1, ∀i ∈ [n]; Πθ ∈ Ω, (4)

where Πθ = Πθ(X) is now also parameterized by a neural network. While this is constrained
optimization which may appear difficult to handle, we explain in §2.3 how we parameterize Zθ and
Πθ via neural networks so that the constraints are satisfied by construction. Below, we note a few
advantages of the proposed formulation.

Parameterizing Π via a Neural Network versus Free Variables. An alternative way to parame-
terize the membership would be to directly take Π as decision variables in Ω, as opposed to outputs
of a neural network. However, this leads to maintaining O(n2) variables which is prohibitive for
large datasets (e.g., n = 106 for ImageNet). In contrast, this is not the case if one parameterizes Π
as a neural network, since one can do stochastic gradient descent such that for each batch both the
memory and computational complexity is at most square of the batch size (Figure 2).

Comparison with NMCE. As mentioned in §??, NMCE (Li et al., 2022) approaches Problem 1
also by optimizing MCR2 over both the representation and membership. However, in NMCE the
membership is parameterized by an n× k matrix Πn×k that models the point-cluster membership,
which is different from our doubly stochastic point-point membership matrix Πθ inspired from
the state-of-the-art subspace clustering. Note further that for NMCE the initialization of Πn×k is
arbitrary and has nothing to do with the structures in the initialized representation Πθ, and a bad
initialization of Πn×k could lead to the features from different true clusters being compressed. On
the other hand, the proposed doubly stochastic membership Πθ can be initialized deterministically
using structures from self-supervised initialized features Zθ (§2.3). Interestingly, optimizing (4)
allows an interpretation of linearizing each point with its neighbors. Empirically as seen in (Table 2),
the proposed MLC yields a higher clustering accuracy than NMCE.

2.3 ALGORITHMS

As mentioned, in the MLC objective (4), we parameterize both the representation Zθ and doubly
stochastic membership Πθ via a neural network. Below we elaborate on how this is done. We
summarize the network architecture in Figure 2, and the meta algorithm in Algorithm 1.

Parameterizing Zθ. We follow Yu et al. (2020) and take some existing network architecture as the
backbone. We append a few affine layers with non-linearity as the representation head to further
transform the output in Rd, followed by a projection layer to respect the unit sphere Sd−1 constraint.

Parameterizing Πθ. In subspace clustering, the membership Π given data X often takes the form
of g(X)⊤g(X) for some (linear) transformation g, such as in the inner product kernel (Heckel &

4Other choices of regularization are also possible: Essentially any function which achieves its minimum
over Ω at the uniform matrix could potentially be used, e.g., the negative entropy function

∑
ij Πij log(Πij).
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Figure 2: Overall architecture for optimizing the proposed manifold linearizng and clustering (MLC) objective
(4). Given n input samples X each lying in RD , their d-dimensional representation is given by Zθ(X), where
θ denotes network parameters. Further, their doubly stochastic membership matrix Πθ(X) is given by taking
an inner product kernel of the output of the cluster head Cθ(X) followed by a doubly stochastic projection.

Bölcskei, 2015; Ding et al., 2022) where g = I or the least square regression (Lu et al., 2012)
where g = (I + λX⊤X)−1/2. This motivates us to parameterize gθ by a neural network, and
take C⊤

θ Cθ ∈ Rn×n as the membership where Cθ is shorthand for gθ(X). Nevertheless, such an
n × n matrix is in general not doubly stochastic, i.e., C⊤

θ Cθ /∈ Ω. To obtain a doubly stochastic
membership, we further apply a Sinkhorn projection layer PΩ,η(·) (Sander et al., 2021; Eisenberger
et al., 2022), which gives our final parameterization of the membership as Πθ = PΩ,η(C

⊤
θ Cθ) ∈ Ω.

Initializing Zθ: Self-supervised Representation Learning via MCR2. Since the proposed MCR2

clustering objective (4) is non-convex, it is important to properly initialize both Z and Π to converge
to good (local) minimum. On the other hand, randomly initialized features are typically far from
being ideal, since they may not satisfy the idealized properties (§1), and further may not respect the
invariance to augmentation, i.e., the augmented samples should have their representation close to
each other. Thus, we adopt the self-supervised training strategy Li et al. (2022)

max
θ

log det

(
I +

d

nϵ2
Zθ +Z ′

θ

2

Zθ +Z ′
θ

2

⊤
)

+ λ

n∑
i=1

|z⊤
i z′

i|,

s.t. z′
i, zi ∈ Sd−1, ∀i ∈ [n], (5)

where for every i, zi and z′
i are features of different augmentations of the i-th sample. This essen-

tially requires that features from different augmentations of the same sample should be as close as
possible, whereas features from different samples should be as uncorrelated as possible.

Initializing Πθ. An ideal initialization of Πθ would be such that if (Πθ)ij has a high value then
points i, j are likely to be from the same true cluster and vice versa. On the other hand, after the
self-supervised feature initialization mentioned above, Zθ already have some structures which we
can utilize. Thus, we propose to initialize Πθ with PΩ,η(Z

⊤
θ Zθ), which is easily implemented by

copying the parameters from Zθ to Cθ once after the self-supervised initialization of the former,
i.e., from the feature head to the cluster head in Figure 2.

Data Augmentation. Beyond initializing Zθ, it is often desirable to incorporate augmentation in
optimizing (4). Specifically, from {X(a) ∈ RD×n}Aa=1 the dataset X under A different augmenta-
tions, one computes (Z(a)

θ ∈ Rd×n,Π
(a)
θ ∈ Rd×n) for each augmentation a, and use in (4)

Zθ = PSd−1

(
1

A

A∑
a=1

Z
(a)
θ

)
∈ Sd−1, Πθ =

1

A

A∑
a=1

Π
(a)
θ ∈ Ω. (6)

Note that one can benefit from parallelization by putting X(a),Z
(a)
θ ,Π

(a)
θ for each augmentation a

on one computing device, since Π
(a)
θ only depends on X(a) but not from other augmentations.

3 EXPERIMENTS ON REAL DATASETS

Metrics. To evaluate the clustering quality, we run spectral clustering on learned membership
matrix Π, and report the normalized mutual information (NMI, Strehl & Ghosh (2002)) and
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Algorithm 1 MLC: Unsupervised Manifold Linearizing and Clustering

Input: X ∈ RD×n, ϵ, γ, η, λ > 0, d, k, nb, T, A ∈ Z≥0

1: initialize Zθ by self-supervised representation learning via MCR2 ▷ (5)
2: initialize Πθ

3: for t = 1, . . . , T do
4: X̄ ∈ RD×nb ← sample a batch from X
5: X̄(1), . . . , X̄(A) ← apply A augmentations to X̄
6: Z̄θ, Π̄θ ← forward pass with {X̄(a)}Aa=1 and network parameters θ ▷ (6)
7: ∇θ(4)← backward pass with respect objective (4)
8: θ ←update θ using some optimizer on∇θ(4)
9: end for

10: run spectral clustering on Πθ to estimate labels ŷ of samples
Output: Zθ, ŷ

clustering accuracy (ACC, Lee et al. (2015)), as are commonly used in clustering tasks. To
evaluate the learned representation, we define the following metric: for a collection of points
W = [w1, . . . ,wl] ∈ Rd×l (l > d) with associated singular values {σi}di=1, define the numerical

rank of W as argminr

{
r :
∑r

i=1 σ
2
i /
∑d

i=1 σ
2
i > 0.95

}
. Now, one can measure the numerical

rank of the learned representaion Z, as well as that of each ground-truth cluster5 of Z. A low nu-
merical rank of W implies that points in W lie close to a low-dimensional subspace. We further
report the cosine similarity of learned representation, which is simply |z⊤

i zj | for points i and j,
since ∥zi∥ = 1 by construction in (4). Finally, to compare the efficiency of methods we report the
training time in §3.2, where the experiments are run on 2 Nvidia RTX3090 GPUs.

3.1 COMPARISON WITH SUBSPACE CLUSTERING

To demonstrate the ability of MLC to cluster the samples and linearize the manifolds, we conduct
experiments on CIFAR10, which consists of RGB images from 10 classes such as planes, birds, and
deers. As mentioned in §1 subspace clustering methods rely crucially on the assumption that data
lie close to a union of linear subspaces, which many real-world dataset may not satisfy. To show that
this is the case, we additionally compare the proposed method with subspace clustering methods.
As we shall see, applying subspace clustering directly on self-supervised features of CIFAR10 will
yield low clustering accuracy. In contrast, MLC is able to achieve high clustering accuracy, and
moreover, produce a union-of-orthogonal-subspace representation on which subspace clustering
methods can also achieve high accuracy.

Data. We use the training split of CIFAR10 containing 50000 RGB images, each of size 3×32×32.
We use the augmentation in Appendix C.1 to perform self-supervised representation learning (5) and
get Zself . For a fair comparison, the so-learned Zself are used both as initialization for MLC (line
1 of Algorithm 1), and as the input for subspace clustering methods6. In MLC, for each image in
each batch we randomly sample A = 2 augmentations to apply on the image. As an additional
comparison, we also run subspace clustering methods on the features ZMLC learned by MLC.

Methods. We compare with the elastic-net subspace clustering with active-set solver (EnSC,
You et al. (2016a)) and sparse subspace clustering with orthogonal matching pursuit solver (SSC-
OMP, You et al. (2016b)), using off-the-shelf implementation provided by the authors7. We search
the parameters of EnSC over (γ, τ) ∈ {1, 5, 10, 50, 100} × {0.9, 0.95, 1} and those of SSC over
(kmax, ϵ) ∈ {3, 5, 10, 20} × {10−4, 10−5, 10−6, 10−7}, and report the run with the highest cluster-
ing accuracy for each method. We summarize detailed parameters for MLC in the appendix.

Results. Figure 3 reports the coding rates (as loss terms in (4) and numerical ranks of features
learned by MLC as epoch varies. As a first note, the coding rate R of all features (the blue curve in

5They are defined by the true labels y (§2), so that the numerical rank metric is decoupled from the quality
of learned membership Π.

6The self-supervised features Zself empirically exhibit some union-of-subspace structure, and are typically
used for subspace clustering, as also seen in (Yu et al., 2020, §3.2), (Zhang et al., 2021, §4.2).

7https://github.com/ChongYou/subspace-clustering
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(a) Coding rate of all features R, that of clustered fea-
tures Rc, and the rate reduction ∆R = R−Rc.

(b) Numerical ranks of all features Zθ and features
from each ground-truth cluster i, {zj : y(j) = i}.

Figure 3: Coding rates (as loss terms in (4)) and numerical ranks (§3.1) of the features learned by MLC on
CIFAR10 as epoch varies.

Figure 3a) decreases only slightly as epoch goes, indicating that the overall representation is diverse
in the feature space. Indeed, the numerical rank of all features (the dark curve in Figure 3b) stays
118 which is close to the dimension 128 of the feature space. This is in sharp contrast to the deep
subspace clustering methods where all the features collapse to a one-dimensional subspace (Ha-
effele et al., 2020). Moreover, as the coding rate Rc of clustered features (the orange curve in
Figure 3a) goes down, the numerical ranks of features from each ground-truth cluster decrease. For
instance, the representation from true cluster 3 has a numerical rank of 37 in the first step and 24 in
the last step. This implies that most representation gets linearized better and clustered more accu-
rately, even though the MLC objective (4) is unsupervised, i.e., it does not use ground-truth labels
y. Last but not the least, note that the features within each ground-truth cluster spread well in a
low-dimensional subspace, e.g., the numerical ranks for the true clusters at the last step are within
[13, 23]. This achieves the desired within-cluster diverse property (§1), as opposed to the neural
collapse phenomenon that appears with the cross-entropy loss.

Figure 4: Cosine similarity |Z⊤
MLCZMLC| of

the features ZMLC learned by MLC.

Method Input Data ACC NMI

EnSC Zself 72.2 67.9
ZMLC 81.5 79.2

SSC-OMP Zself 67.8 64.5
ZMLC 78.4 76.3

MLC X 86.3 78.3

Table 1: Clustering accuracy and normalized mutual infor-
mation for subspace clustering (EnSC, SSC-OMP) on self-
supervised features Zself , features ZMLC learned by MLC,
and manifold clustering (MLC) on X , where X is 6 · 104 im-
ages from 10 classes of CIFAR10.

To compare MLC with subspace clustering methods, we report clustering accuracy and normalized
mutual information for EnSC, SSC-OMP on self-supervised features Zself , features ZMLC learned
by MLC, and MLC on X , where X is 6 · 104 images from 10 classes of CIFAR10. In addition
we plot the cosine similarity of the features learned by MLC in Figure 4. Remarkably, the highest
clustering accuracy is 86.3% achieved by MLC on X , which surpasses EnSC (72.2%) and SSC-
OMP (67.8%) on Zself by a large margin, even though Zself is used both as initialization for MLC
and input for EnSC and SSC-OMP. Interestingly, using instead the features ZMLC learned by MLC,
the clustering performance of EnSC and SSC-OMP increases and even becomes comparable to
MLC, e.g., EnSC achieves 79.2% normalized mutual information compared to 78.3% of MLC. This
suggests that ZMLC has a union-of-subspace structure that can be utilized by subspace clustering.
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Table 2: Clustering accuracy and normalized mutual information on large scale datasets. For a fair comparison,
all methods use ResNet-18 as backbone.

Method / Dataset CIFAR10 CIFAR100-20 CIFAR100-100 Tiny ImageNet-200
Metrics ACC NMI ACC NMI ACC NMI ACC NMI

DeepCluster (ECCV′18) 37.4 - 18.9 - - - - -
IIC (ICCV′19) 61.7 51.1 25.7 22.5 - - - -
SCAN (ECCV′20) 87.6 78.7 46.8 45.9 34.3 55.7 - -
RUC+SCAN (CVPR′21) 90.3 - 53.3 - - - - -
IMC-SWAV (Arxiv′21) 89.1 81.1 49.0 50.3 43.9 58.3 28.2 52.6
TCR (Arxiv′22) 83.0 76.1 43.7 48.8 - - - -
MLC 86.3 78.3 52.2 54.6 49.4 68.3 33.5 67.5

Indeed, as seen in Figure 4, features from different clusters tend to have a small similarity, i.e., being
orthogonal to each other. This demonstrates the between-cluster discrimination (§1) as desired.

3.2 COMPARISON WITH DEEP CLUSTERING METHODS

We further compare the proposed MLC with state-of-the-art deep clustering methods. Note that
most methods reported (all except TCR which is discussed in §2.2) do not aim to learn a union-of-
orthogonal-subspace representation, in contrast to MLC. As we will see, MLC achieves clustering
accuracy comparable to state-of-the-art methods on large scale datasets with faster computational
time, and further surpasses them on datasets of imbalanced clusters.

Compared Methods. We conduct experiments with MLC, SCAN (Van Gansbeke et al., 2020), and
IMC-SWAV (Ntelemis et al., 2021).8 Training details can be found in Appendix C.2. In addition we
include the numbers reported from DeepCluster (Caron et al., 2018), IIC (Ji et al., 2018), RUC (Park
et al., 2021) and TCR (Li et al., 2022). For a fair comparison, all methods reported use ResNet-18
as the backbone, which is also commonly adopted by other methods.

Datasets. Beyond CIFAR10 (§3.1), we further use CIFAR100-20, CIFAR100-100 and Tiny
Imagenet-200 to evaluate the performance of our method. Both CIFAR100-100 and CIFAR100-
20 contain the same 50000 train images and 10000 test images with size 32 × 32 × 3, while the
former are split into 100 clusters and the latter 20 super clusters. Finally, Tiny ImageNet contains
100000 train images and 10000 test images with size 64× 64× 3 split into 200 clusters.

Results on Large-scale Datasets. We report clustering accuracy and normalized mutual informa-
tion on CIFAR10, CIFAR100-20, CIFAR100-100, and TinyImageNet in Table 2, and we further
report running time in minutes for CIFAR100-100 in Table 3. As seen, the highest clustering per-
formance on CIFAR10 is achieved by RUC+SCAN (90.3% ACC) and IMC-SWAV (81.1% NMI),
where MLC yields a slightly lower ACC of 86.3% and NMI of 78.3%. We note interesting semantic
interpretation for the clustering obtained by MLC in Appendix A. On the other hand, MLC per-
forms comparably with other methods on CIFAR100-20 by achieving an ACC of 52.2% and NMI of
54.6%. Notably, MLC outperforms SCAN and IMC-SWAV on CIFAR100-100 and TinyImageNet-
200 by a large margin, while using lower running time: E.g., on CIFAR100-100, MLC yields an
accuracy of 49.4% in 291 minutes, whereas IMC-SWAV has 43.9% using 529 minutes, and SCAN
has 34.3% in 396 minutes.

Imbalanced Clusters. Note that for CIFAR10 or CIFAR100 each cluster contains approximately
the same number of samples. On the other hand, natural images are typically imbalanced, i.e.,
the clusters have unequal number of samples. To mimic this setting, we take a naive approach to
construct the following imbalanced datasets. For the 10 clusters of CIFAR10, we remove half of the
samples from odd-numbered clusters (i.e., clusters 1, 3, . . . , 9) from both the training and test split.
We refer to the reduced dataset Imb-CIFAR10. Likewise we construct Imb-CIFAR100-100. We run

8The authors are aware of a preprint (Niu et al., 2021) which approaches image clustering via a combination
of self/semi-supervised learning and pseudo-labeling. However, to the best of our effort we are unable to
reproduce the numbers reported in this paper using the implementation provided by the authors. We discuss the
details in Appendix C.2 and thus do not report their numbers here.
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two state-of-the-art methods IMC-SWAV and SCAN as well as the proposed MLC on Imb-CIFAR10
and Imb-CIFAR100-100.

Table 4 shows clustering accuracy on the imbalanced datasets Imb-CIFAR10 and Imb-CIFAR100-
100. As a first observation, the clustering accuracy of all methods is lower on the imbalanced datasets
than on the balanced counterparts, as expected. Notably, MLC suffers from the least performance
drop, e.g., when moving from CIFAR10 to Imb-CIFAR10 the accuracy of MLC drops from 86% to
80%, whereas that of SCAN and IMC-SWAV decreases from above 87% to below 66%.

Table 3: Running time in minutes and clustering ac-
curacy on CIFAR100-100. For a fair comparison, all
methods use ResNet-18 as backbone.

Method / Metric Running Time ACC
Stage I II III Total

SCAN (ECCV′20) 308.3 33.3 54.7 396.3 34.3
IMC-SWAV (Arxiv′22) 529.4 - - 529.4 43.9
MLC 266.7 17.7 - 284.4 48.3

Table 4: Clustering accuracy on imbalanced datasets:
(a) Imb-CIFAR10, (b) Imb-CIFAR100-100. For a fair
comparison, all methods use ResNet-18 as backbone.

Method / Dataset (a) (b)

IMC-SWAV (Arxiv′21) 65.7 38.2
SCAN (ECCV′20) 62.9 31.1
MLC 80.0 46.1

4 CONCLUSION

This paper studies the problem of simultaneously clustering and learning an union-of-orthogonal-
subspace representation for data, when data lies close to a union of low-dimensional manifolds. To
address the problem we propose an objective based on maximal coding rate reduction and doubly
stochastic membership inspired by the state-of-the-art subspace clustering results. We provide an
efficient and effective parameterization of the membership variables as well as a meta-algorithm to
optimize the representation and membership jointly. We further conduct experiments on datasets
with larger number of clusters and imbalanced clusters and show that the proposed method achieves
state-of-the-art performance. We believe that our work provides a general and unified framework
for unsupervised learning of structured representations for multi-modal data.
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A SEMANTIC INTERPRETABILITY OF THE LEARNED REPRESENTATION AND
CLUSTERS ON CIFAR10

Recall that MLC is designed to perform clustering while learning a union-of-orthogonal-subspace
representation (§1), where each cluster defines a low-dimensional subspace. Therefore, we further
visualize the different directions within each learned cluster or subspace. Specifically, after a final
clustering is obtained (line 10 of Algorithm 1), we take the features from each learned cluster and
apply Principal Component Analysis (PCA) to them to obtain the first 8 principal components.
These correspond to the 8 rows for each cluster in Figure 5. Recall that the principal components
are mutually orthogonal, indicating uncorrelated directions within one cluster. To visualize those
directions or principal components in images, we take the features that are closest to the principal
components and visualize the corresponding original images.

Interestingly, the rows of images corresponding to principal components appear to exhibit some se-
mantic ‘concepts’. For example in Figure 5b, row 1 and 8 are respectively white and red trucks,
while row 4 are the trucks that ship sand or mud; row 1 of Figure 5d are deers with trees as back-
ground. This further suggests that the learned embedding seems to preserve distance within each
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(a) Learned cluster 1 (b) Learned cluster 2 (c) Learned cluster 3

(d) Learned cluster 4 (e) Learned cluster 5 (f) Learned cluster 6

(g) Learned cluster 7 (h) Learned cluster 8 (i) Learned cluster 9

Figure 5: Principal images (defined in §A) of clusters learned by MLC on CIFAR10.
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cluster (as desired in §1), i.e., images that are close/far in semantic meaning will be close/far in the
feature space. Note however, that some learned clusters do not align fully with the ground-truth la-
bels. For instance, rows 1 and 3 of Figure 5h are cats while all other rows in this cluster are dogs. On
the other hand, one may argue that Figure 5h are a cluster of cats and dogs of light colors, whereas
Figure 5c is a cluster of those of brown colors, which could be a semantically meaningful clustering
even though it does not align with the ground-truth labels.

B SIMULATION ON SYNTHETIC UNION-OF-MANIFOLD DATA

We perform simulations to visualize the properties of the proposed manifold learning and clus-
tering method. As seen in Figure 1a, we generate data X from two manifolds on the sphere
S2, each consisting of 200 samples. The points from the first manifold (green) take the form
xi =

[
cos
(
A sin(ωϕi)

)
cosϕi, cos

(
A sin(ωϕi)

)
sinϕi, sin

(
A sin(ωϕi)

)]⊤
+ ϵi, where A = 0.2

and ω = 5 sets the curvature of the manifold, ϵi ∼ N (0, 0.05I3) is the additive noise, and we take
ϕi =

2πi
100 for i = 1, . . . , 100 to generate 100 points. On the other hand, the points from the second

manifold (blue) are simply 100 samples from N ([0, 0, 1]⊤, 0.05I3). We take the feature dimension
d = 3 to be equal to he input dimension D = 3. We paramterize both the feature head fθ and
the cluster head gθ to be a simple fully-connected network with 100 hidden neurons, followed by
a Rectified Linear Unit as non-linearity and a projection operator onto the sphere S2. Figures 1b
to 1d report the features Zθ with random initialization (i.e., before line 1 of Algorithm 1), with self-
supervised initialization, and at convergence of MLC. Notably, despite Zθ being noisy and only
approximately piece-wise linear, as epoch goes Zθ gradually transform to two linear subspaces:
the green points converge to a 2-dimensional subspace (intersected with S2) and the blue points
converge to a 1-dimension subspace.

C TRAINING DETAILS ON REAL DATASETS

C.1 TRAINING DETAILS OF MLC

As said, we use ResNet-18 as the backbone for experiments on CIFAR10, CIFAR100-20,
CIFAR100-100 and Tiny-ImageNet-200, and the imbalanced counterparts Imb-CIFAR10, Imb-
CIFAR100-100. We also fix the batch size to be 1024 in all experiments. In self-supervised ini-
tialization of Zθ (line 1 of Algorithm 1), we use the precision (§2.1) parameter ϵ2 = 0.2, a LARS
optimizer (You et al., 2017) (as is also done in (Chen et al., 2020; Li et al., 2022)) with a learning
rate of 0.3 and trained MLC for 1000 epochs. On the other hand, in the training of MLC objective,
we use ϵ2 = 0.1 and γ = 0.05, an SGD optimizer (Robbins & Monro, 1951) with a learning rate
of 0.01 and momentum of 0.9, and η = 0.175 for the entropy regularization in the Sinkhorn projec-
tion (Eisenberger et al., 2022) layer PΩ,η(·). Finally, for all experiments, we use the augmentation
applied in (Bardes et al., 2022) detailed below in PyTorch code.

1. transforms.RandomResizedCrop(32,scale=(0.04, 1.0))
2. transforms.RandomHorizontalFlip(p=0.5)
3. transforms.RandomGrayscale(p=0.2)
4. transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8)
5. GaussianBlur(p=0.1)

C.2 TRAINING DETAILS OF OTHER METHODS

To compare with state-of-the-art methods, we use the code released by the authors. As mentioned,
the preprint (Niu et al., 2021) proposed a method SPICE that appears to achieve state-of-the-art
performance in image clustering. We tried to reproduce their results on CIFAR-100-20 using the
official implementation9. However, the provided implementation ran into a few errors, which are
also discussed in 10. Despite our best effort to fix those issues, the experiments yield 14% accuracy

9https://github.com/niuchuangnn/SPICE, commit 5eba538.
10https://github.com/niuchuangnn/SPICE/issues/27,https://github.com/

niuchuangnn/SPICE/issues/31
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on CIFAR100-20 as opposed to the 53% reported in their paper. Therefore, in this work, we does
not include SPICE in our comparison.

D SENSITIVITY OF MLC TO RANDOM SEED

It has been noticed in the previous literature (Van Gansbeke et al., 2020) that random seeds can
largely influence the performance of image clustering. In this section, we study the influence random
seeds have on our method. We conduct experiment on CIFAR100-100, using standard training
details which we described above. We use CIFAR100-100 because it is one of the hardest dataset
in our work, so the influence of random seed should be most obvious. We report in Table 5 the
accuracy of MLC on CIFAR100-100 with different seeds. We observe that the choice of seed has
very little impact on performance.

Random Seed 1 5 10 15 100

Accuracy 0.483 0.480 0.488 0.482 0.484

Table 5: Ablation study on varying random seeds.

E MORE RESULTS ON MEMBERSHIP LEARNED BY MANIFOLD CLUSTERING

In this section, we present more results on the membership learned by manifold clustering on other
datasets like CIFAR100-20, CIFAR100-100 and TinyImageNet-200. We present these results in Fig
??. The learned representation and clusters form a block diagonal structure, showing that the feature
by clustering are orthogonal to each other. This verifies the between-cluster discrimination (§1) as
desired on larger scale of data.
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(a) CIFAR100-20

(b) CIFAR100-100

(c) Tiny ImageNet-200

Figure 6: Cosine similarity |Z⊤
MLCZMLC| of the features ZMLC learned by MLC on more complicated

datasets: CIFAR100-20, CIFAR100-100, Tiny ImageNet-200
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(a) Learned cluster 1 (b) Learned cluster 2 (c) Learned cluster 3

(d) Learned cluster 4 (e) Learned cluster 5 (f) Learned cluster 6

(g) Learned cluster 7 (h) Learned cluster 8 (i) Learned cluster 9

(j) Learned cluster 10 (k) Learned cluster 11 (l) Learned cluster 12
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(a) Learned cluster 13 (b) Learned cluster 14 (c) Learned cluster 15

(d) Learned cluster 16 (e) Learned cluster 17 (f) Learned cluster 18

(g) Learned cluster 19 (h) Learned cluster 20

Figure 8: Principal images of clusters learned by MLC on CIFAR100-20.
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